

Presentations Computer Vision Research Lab

Edward Riseman

- Relevant UMass Research Edward Riseman
- Image Warping for Image RegistrationHoward Schultz
- ImagingImagingImagingImagingHoward Schultz
- ^I 3D Terrain and Site Modeling
- Aided Search and Target Cueing Gary Whitten
- Knowledge-Based and Adaptive Image Processing Allen Hanson

Considerable overlap of the 5 topics Interaction between subproblems and solutions

Computer Vision Personnel

Allen R. Hanson and Edward M. Riseman

- Professors, Computer Science Department
- Co-Directors, Computer Vision Research Lab

Howard Schultz

- Research Professor, UMass since 1989
- JPL, Member of the Technical Staff, 1984-86
- Bendix Aerospace, Research Engineer, 1982-84
- ERIM, Research Scientist, 1978-82

Gary Whitten

- Research Professor, UMass since 1996
- University of Maryland, Research Faculty, 1995-96
 O Co-PI with Azierl Rosenfeild, ONR ATR program
- Martin-Marietta, Senior Scientist, 1990-95
- Fairchild Western, Senior Engineer, 1985-90

Presentations Computer Vision Research Lab

- Relevant UMass Research Edward Riseman
- Image Warping for Image RegistrationHoward Schultz
- ImagingImagingImagingImagingHoward Schultz
- Image: 3D Terrain and Site ModelingEdward Riseman
- IAided Search and Target CueingGary Whitten
- Knowledge-Based and Adaptive Image Processing
 - Allen Hanson

Relevant UMass Research

1993-1996 RADIUS Program DARPA/ORD

(Research and Development in Image Understanding Systems) 0 5 Universities and 2 Corporations

UMass Ascender I

0 Multi-view reconstruction of buildings
0 Focused on accurate 3D acquisition of flat-roof structures
0 Produces textured-mapped CAD models
0 Fly-through visualization

System for Automatic Site Modeling

Multiple Images

rooftop detection line extraction corner detection perceptual grouping
epipolar matching
multi-image triangulation geometric constraints precise photogrammetry
extrusion to ground plane
texture mapping

Geometric Models

Relevant UMass Research

1996-1999 APGD Program DARPA/NIMA (Automatic Population of Geospatial Databases)

UMass Ascender II

- ⁰ Context-sensitive reconstruction of cultural sites
- ⁰ Knowledge-based strategies for intelligently invoking algorithms
- ⁰ Reconstruction of many types of complex buildings
- ⁰ Identification of buildings, roads, parking lots, etc.
- ⁰ Reconstruction from SAR and IFSAR images

Video Clip 1 Ascender I

3D Accuracy vs. Number of Views

Number of views used vs. 3-D reconstruction accuracy in meters

3D Reconstruction Accuracy

Image	711	713	525	927
IV Planimetric	0.68	0.73	1.09	0.89
IV Altimetric	0.51	0.55	0.90	0.61

Median planimetric and altimetric errors (in meters) between reconstructed 3-D polygon vertices and ground truth roof vertices.

Relevant UMass Research

1989-1995 ONR Basic Research

(Recovering the Small Scale Structure of the Ocean Surface)

Terrest (Terrain Reconstruction System)

- Produces a digital elevation map from pairs of aerial images
- Adapted from oceanographic to land-based applications
- Utilized in DARPA-Army Unmanned Ground Vehicle (UGV) program
 - ⁰ Path planning
 - ⁰ Visibility analysis
 - 0 Battlefield awareness and visualization

Terrest Terrain Reconstruction System

Goals

- Rapid and accurate generation of elevation maps
- Multiple Images/Sensors
- Oblique Images
- Widely Separated Images
- Large base-to-height ratios
- Subpixel precision
- Capable of using a-priori information (DTED, etc)
- Capable of running on

distributed systems

ISPRS 'Flat Scene'

Video Clip 2 Terrest

Relevant UMass Research

Fusion of Information from the above programs

- 2D lines, corners, polygons from images
- 3D lines, corners, surfaces from DEMs
- Grouping to construct buildings
- Applying constraints during stereo analysis to improve DEM generation

Results: Denver, Co.

Texture-Mapped Rendered Elevation

DEM + Optical 1

Combined Results

Kirtland AFB

Approach: 2D Polygons + DEM

Video Clip 3 Data fusion

Relevant UMass Research

1998-2001 NSF Environmental Monitoring project

- Global forest management using aerial and satellite images
- Terrain classification using real-time interactive decision tree classification
- Video sequence registration and analysis
- Automatic aerial photogrammetry

S

University lof assachusetts

E

Η

Hypercluster image with GPS-logged points shown in yellow.

Dual camera video strip

Zoomed Coverage

Aerial Image Interpretation and classification for environmental monitoring

Video Clip 4 Interactive Teacher-Learner Classifier

Relevant UMass Research

- 1998-? DARPA SAFER Mobile Robot Project Interdisciplinary vision, robotics, AI, software engineering
 - Cooperative mobile robots in search and rescue
 - Multiple mobile robots and sensor configurations
 - 3D obstacle detection and avoidance
 - Object (human) recognition
 - 3D reconstruction from Panoramic images

Robotic Panoramic Sensor for 3D reconstruction

Current UMass projects with similar panoramic sensor

 Change in azimuth and scale of an object determines its location in space

Presentations Computer Vision Research Lab

- Relevant UMass Research Edward Riseman
- Image Warping for Image RegistrationHoward Schultz
- ImagingImagingImagingImagingHoward Schultz
- ^I 3D Terrain and Site Modeling

Edward Riseman

- Aided Search and Target CueingGary Whitten
- Knowledge-Based and Adaptive Image Processing

Allen Hanson

Image Warping for Image Registration

- Precise image registration depends on
 - Sensor projection model
 - Internal model parameters (focal length, distortion, ...)
 - Sensor physics (IR, EO, Radar, ...)
 - External parameters
 - Scene geometry

Context Sensitive Image Warping

Scene Geometry

Objects at infinity

Warping Function

No depth information required

- Distant objects not at infinity
 "billboard objects"
- Close objects

- Depends no distance to target
- Some level of 3D
 reconstruction required

Image Registration

To register objects at infinity

- No 3D information
- Requires calibration parameters measured at assembly
 - Sensor models
 - Focal length
 - Lens distortion
 - Relative orientation between sensors

Image Registration

Factors for Registering objects not at infinity

- Calibration parameters, plus
- Distance to target
 - 0 radar
 - 0 sonar
 - 0 parallax

Factors for Registering close objects

- Calibration parameters plus
- Full or partial 3D reconstruction
 - 0 model matching
 - 0 stereo

UMass calibration lab designed for

- video and small format cameras
- Geometric accuracy to $\sim 0.001^{\circ}$
- Radiometric accuracy to 1:1,000

Presentations Computer Vision Research Lab

- Relevant UMass Research Edward Riseman
- Image Warping for Image RegistrationHoward Schultz
- ImagingImagingImagingImagingHoward Schultz
- 3D Terrain and Site Modeling Edward Riseman
- I Aided Search and Target CueingGary Whitten
- Knowledge-Based and Adaptive Image Processing
 - Allen Hanson

Panoramic Image Stabilization

- From a sequence of overlapping digital
 - Create a mosaic (composite) image
 - Individual images are seamlessly patched
 - New images overwrite old images
- ^[] For most applications the mosaic grows indefinitely
- For panoramic applications the mosaic image wraps around

- Motivated by DARPA VSAM program (Video Surveillance and Monitoring)
 - Processing video sequences for
 - 0 motion detection
 - 0 stabilization
 - 0 object tracking
 - 0 activity recognition
 - Relevant factors for submarine domain
 - 0 unmodeled sensor motion
 - 0 small temporal interval
 - 0 small image displacement

Mosaic from an image sequence

Panoramic Mosaic from an image sequence

0°

360°

3D Panoramic Imaging

^I With the current configuration

- Operator sees only one frame at a time
- Maximum scan rate is 6 seconds
- A stabilized panoramic view enables
 - The operator to see the entire field-of-view
 - Separates scene acquisition and viewing procedures
 - Much faster, more reliable observations
 A full panoramic view will take ~2 seconds to generate
 - Computation of the distance to an object from multiple panoramic views

3D Panoramic Imaging

- From two stabilized panoramic views
 - determine the location of targets
 - track objects Time 1 Motion Parallax Time 2

Robotic Panoramic Sensor for 3D reconstruction

Current UMass projects with similar panoramic sensor

 Change in azimuth and scale of an object determines its location in space

Presentations Computer Vision Research Lab

- Relevant UMass Research Edward Riseman
- Image Warping for Image RegistrationHoward Schultz
- ImagingImagingImagingImagingHoward Schultz
- ^I 3D Terrain and Site Modeling

Edward Riseman

- Aided Search and Target Cueing Gary Whitten
- Knowledge-Based and Adaptive Image Processing
 - Allen Hanson

3D Terrain and Site Modeling Naval Scenarios

DOD Joint Program Office (JPO)

- UGV Unmanned Ground Vehicle Program
- UAV Unmanned Air Vehicle Program
- UAV Images could be used by UGVs for
 - 3D terrain modeling
 - mission rehearsal
 - path planning
 - ATD and ATR

3D Terrain and Site Modeling Naval Scenarios

Naval UAV images for

- 3D site modeling of coastal regions
- Register periscope images with 3D terrain models
- Visualization fly-through
- Training and mission planing
- ATD and ATR

3D Terrain and Site Modeling Naval Scenarios

- Motion Sequences from Periscope Images
 - 3D reconstruction from ocean level views
 - Frontal view of coast allows accurate range estimates
 0 cannot view building roofs
 - ⁰ obscure terrain (e.g., behind buildings)
 - Panoramic views enables reconstruction of the complete surrounding naval environment

Presentations Computer Vision Research Lab

- Relevant UMass ResearchEdward Riseman
- Image Warping for Image RegistrationHoward Schultz
- ImagingImagingImagingImagingHoward Schultz
- ^I 3D Terrain and Site Modeling

Edward Riseman

Aided Search and Target Cueing Gary Whitten

Knowledge-Based and Adaptive Image Processing

Allen Hanson

Presentations Computer Vision Research Lab

- Relevant UMass Research Edward Riseman
- Image Warping for Image RegistrationHoward Schultz
- Imaging3D Panoramic ImagingHoward Schultz
- Image: 3D Terrain and Site ModelingEdward Riseman
- IAided Search and Target CueingGary Whitten
- Knowledge-Based and Adaptive Image Processing
 Allen Hanson