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Abstract

The Ascender  system acquires,  extends  and refines  3D geometric  site  models
from calibrated  aerial  imagery.    To  acquire  a  new site  model,  an  automated
building detector is run on one image to hypothesize potential building rooftops.
Supporting  evidence  is  located  in  other  images  via  epipolar  line  segment
matching in constrained search regions.    The precise 3D shape and location of
each building is then determined by multi-image triangulation under geometric
constraints of 3D orthogonality, parallelness, colinearity and coplanarity of lines
and  surfaces.    Projective  mapping  of  image  intensity  information  onto  these
polyhedral building models results in a realistic site model that can be rendered
using virtual “fly- through'' graphics.    

As new images of the site  become available,  model  extension and refinement
procedures are performed to add previously unseen buildings and to improve the
geometric accuracy of the existing 3D building models.    In this way, the system
gradually accumulates evidence over time to make the site model more complete
and more accurate.

An  extensive  performance  evaluation  of  component  algorithms  and  the  full
system has been carried out.    Two-dimensional building detection accuracy, as
well as accuracy of the three-dimensional building reconstruction, are presented
for a representative data set.
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1. Introduction

The  Research  and  Development  for  Image  Understanding  Systems  (RADIUS)  project  is  a
national  effort  to  apply  image  understanding (IU)  technology  to  support  model-based aerial
image analysis [11].      Automated construction and management of 3D geometric site models is
a key component of this effort.    Site models enable efficient exploitation of the tremendous
volume  of  information  collected  daily  by  national  sensors.  In  all  of  these  applications,  the
expected  benefits  are  decreased  work-load  on  human  analysts,  together  with  an  increase  in
measurement accuracy due to the introduction of digital IU and photogrammetric techniques.
When  properly  annotated,  automatically  generated  site  models  can  also  provide  the  spatial
context for specialized IU analysis tasks such as vehicle counting and change detection,  and
graphical visualization techniques using 3D site models are valuable for training and mission
planning.    Other applications of the technology presented here include automated cartography,
land-use surveying and urban planning.

The  long-term  goal  of  our  research  is  an  entirely  automated  system.    Given  the  extreme
complexity of some image domains, often rather challenging even for expert human users, this
goal may not be fully achievable.    However, our focus in this project is to push an automated
paradigm as far as possible.    We believe that the 3D aerial reconstruction problem can, to a great
degree,  be automated given a large enough set of images.    As related factors become more
difficult, such as high building density, complex building and surface shapes (as in European
cities), little space between buildings, and/or only a small number of available views, accurate
reconstruction becomes much harder.    It is generally true that if a sufficiently large number of
appropriate image viewpoints are not available, any reconstruction problem can become difficult
or  impossible.    Thus,  expectations  of  a  completely  automated  system  must  be  tempered.
However, our goal is to come as close as possible, and as we reach the limits of automation,
intelligent interactive tools can be provided for manual specification of constraints or results.

1.1 Ascender AND THE TECHNICAL CHALLENGES 
The UMass Automated Site Construction, Extension, Detection and Refinement (ASCENDER)
system has been designed to automatically populate a site model with buildings extracted from
multiple,  overlapping images.  There are  many technical challenges involved in  developing a
building extraction system that works reliably on the type of images being considered under the
RADIUS  program.      Images  may  be  taken  over  significant  time  spans,  and  under  vastly
different  weather  and lighting conditions.  The use of monocular,  oblique imagery introduces
perspective distortion due both to the obliquity and to the large differences in camera viewpoint.
Images taken under different weather conditions and at different times of day introduce large
intensity variations between images of the same building surface.    There is typically a lot of
clutter surrounding buildings (vehicles, pipes, oil  drums, vegetation) and on their  roofs (roof
vents, air conditioner units, ductwork), buildings often occlude each other in oblique views, and
shadows falling across building faces break up extracted low-level features such as line segments
and regions.    Furthermore, nearby buildings can vary greatly in size and shape.
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1.2  DESIGN PHILOSOPHY / KEY IDEAS 

The  Ascender  system combines  several  algorithms  into  a  data  flow hierarchy  leading  from
images to a final site model.  Image 1 shows the data dependencies between each component and
how the overall system is composed.    The UMass design philosophy incorporates several key
ideas. First, 3D reconstruction is based on geometric features that remain stable under a wide
range of viewing and lighting conditions.      Second, rigorous photogrammetric camera models
are used to describe the relationship between pixels in an image and 3D locations in the scene, so
that  diverse  sensor  characteristics  and  viewpoints  can  be  effectively  exploited.      Third,
information is fused across multiple images for increased accuracy and reliability.      Finally,
known  geometric  constraints  are  applied  whenever  possible  to  increase  the  efficiency  and
reliability of the reconstruction process. The current Ascender system is designed to perform well
at one end of a data-vs-control complexity spectrum, namely a large amount of data and a simple
control  structure,  versus  the  alternative  of  using  less  data  but  more  complicated  processing
strategies.      In particular, while the system can be applied to a single stereo pair, it generally
performs better (in terms of number and quality of buildings found) when more images are used.

The design here represents the Ascender I system. New research is underway into more advanced
system designs.    For example, the system currently extracts polygons from a single image and
uses  other  imagery  for  verification  and  height  computation.    However,  a  true  multi-image
scheme would  not  depend  on  the  accuracy  of  polygons  extracted  from this  first  “reference
image”.    Suffice it  to  say that  there is  not  necessarily  a  single best  flow of  control  for  an
automated reconstruction system and control may depend on available images, algorithms, and
scene context.    
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Ascender I supports three different site modeling tasks, model acquisition, model extension, and
model refinement.    Site model acquisition involves processing a set of images to detect both
man-made and natural features of interest, and to determine their 3D shape and placement in the
scene.    Two other important site modeling tasks are model extension -- updating the geometric
site model by adding or removing features, and model refinement -- iteratively refining the shape
and placement of features as more views become available.    Model extension and refinement
are ongoing processes that are repeated whenever new images become available, each updated
model becoming the current site model for the next iteration.    Thus, over time, the site model is
steadily improved to become more complete and more accurate.

1.3 OUTLINE OF PAPER
This paper is organized as follows.      Section 2 reviews a number of past and present building
extraction systems.    Section 3 then presents a system-level specification of the Ascender system,
followed in Section 4 by a breakdown of the building extraction process into its key algorithmic
components.  Section  5  presents  an  in-depth  experimental  evaluation  of  system performance
using imagery taken over Ft. Hood, Texas.    Section 6 discusses the strengths and shortcomings
of the current system, proposes future research directions, and concludes the paper with a brief
summary.

The  Ascender  I  system  is  a  set  of  complex  algorithms  that  work  together  to  perform  site
reconstruction.    This  paper  introduces  the  system,  discusses  its  components  in  detail,  and
presents the results of extensive testing.    However, it is important for the reader to realize that
many parts  of the system have been discussed in previous papers and we suggest that these
papers (when referenced) should be read as a useful accompaniment to this paper.

2. Related Work

Over the past decade,  automated building detection systems have evolved along many lines.
The trend has always been towards greater generality: from special-case nadir views to general
oblique viewpoints, from single image analysis to multi-image techniques, and from purely 2D
hypothesis extraction in image-space to rigorous 3D geometric reconstruction in object-space.
As  a  system  for  extracting  precise  3D  building  models  from  multiple  oblique  views,  the
Ascender system represents the state-of-the-art in all aspects of this ongoing evolution.
 
Many early systems were based on the nadir viewpoint assumption, in part because most of the
available images at that time were from mapping applications that relied on nadir views.    The
nadir assumption greatly simplifies building extraction geometry since rectangular building roofs
appear as rectangles in the image, and there is very little occlusion of one building by another.
The RADIUS project re-enforced the need for using oblique images, since even though satellite
coverage of the globe is available on a daily basis, only a small fraction of it appears as a nadir
view directly underneath the satellite's flight path. The easiest generalization from nadir views to
handle obliquity is to assume weak-perspective or affine views, where rectangular roofs appear
as  parallelograms  [23;  24].  The  ultimate  generalization  is  to  introduce  photogrammetrically
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rigorous  camera  projection  equations  that  more  accurately  model  the  (typically  projective)
viewing geometry [26; 27; 14]. Our work takes this latter approach.

Early systems were dominated by monocular, image-based approaches, since often only a single
view of the area was available.    However, buildings are raised 3D structures, and it is difficult to
disambiguate  roof  hypotheses  and determine  building  height  without  3D information.    One
powerful source of inferred 3D information in monocular images is shadows, and indeed, many
systems have been designed that exploit the relationship between shadows and roof hypothesis
[24;  15;  25;  17].  Shadow  analysis  is  particularly  attractive  when  combined  with  nadir
viewpoints, since building height is directly proportional to the length of the building shadow on
the  ground.     Systems  that  rely  on  shadow  analysis  often  assume  that  the  sun  position
(illumination direction) is known, and always assume that building shadows fall on flat terrain
surrounding the building (and not across other buildings or on rocky or hilly terrain). A more
general method of deriving 3D-height information is to use stereo triangulation across two or
more images [7; 16; 31].    The Ascender system uses such multi-image stereo analysis to extract
the precise shape and location of each building in the scene.    Most notably, the system currently
does not use shadow information at all, but derives 3D structure completely from multi-image
matching and triangulation.

Several approaches are similar to the technique in which building regions are hypothesized in the
Ascender  system.    These  typically  organize  extracted  image  features  into  more  complex
structures based on geometric constraints [15] and have been used for the grouping of features
into 3D models from several views [14].    These approaches to grouping have been improved
through the use of a richer set of constraints including the explicit use of knowledge [22] and the
fusion of digital surface models (DSMs) with optical images [35].    The use of DSMs has been
used for both detection of possible building regions and for constraining a perceptual grouping
process [8].

There are at least three current building extraction systems similar to our own, in that they derive
3D building models from multiple, oblique views. Noronha and Nevatia [29] describe a system
where  hierarchical  grouping and matching across  multiple  images  is  used to  reconstruct  3D
building models. Buildings are extracted in hierarchical stages, ranging from line segments, to
junction,  parallel  pairs,  U-shapes,  and finally,  whole  parallelograms.    At  each  stage  in  the
extraction  hierarchy,  the following three  steps  are  performed:  1)  two-dimensional  perceptual
grouping  of  features  at  that  level  in  each  image,  2)  epipolar      matching  to  determine
correspondence of features across pairs of views, 3) applying geometric constraints to check the
consistency of the 3D structures implied by those feature matches. Final building hypotheses are
verified by searching for consistent shadows and evidence of vertical walls.    Only rectangular
building hypotheses are found -- arbitrary rectilinear structures are formed by merging abutting
or overlapping rectangular 3D building hypotheses of similar height. The most notable feature of
the system is that information from all views is used in a non-preferential way, as opposed to the
Ascender system where one image is used to extract hypotheses, and other views are used to
corroborate each hypothesis and compute 3D structure.

In the MULTIVIEW system [31; 27] corner features extracted via vanishing point analysis are
matched across a pair of views to get 3D corners. These 3D corners become nodes in a graph,
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and  pairs  are  linked  if  image  gradient  intensity  information  supports  an  edge  hypothesis.
Polygonal surface hypotheses are formed by looking for cycles in the graph that meet certain
planarity  and  perpendicularity  constraints.    When  more  views  are  available,  relationships
between corners  and lines  in the graph are updated as  each new view is  added.      Surface
detection can be performed after each view, or can be left until after several views have been
added (batch mode). The system results are sensitive to the permutation of the views, since the
first  pair  of  views is  used  to  initialize  the  3D corner-edge graph,  and the  graph is  updated
sequentially as each view is added.    Both this  system and the one of Noronha and Nevatia
perform pairwise feature-based stereo to derive 3D features that are then grouped into surfaces.
In  contrast,  our  epipolar  matching  phase  uses  all  images  simultaneously  to  compute  3D
information, even when a building was only detected in a single image, which can result in more
accurate localization of 3D features.    

In addition to geometric constraints, the use of semantic and domain knowledge can widen the
scope of  automatic  building  reconstruction  and  improve  robustness.    For  example,  Fischer,
Kolbe, and Lang [9] have emphasized the use of reasoning and knowledge at several levels to
constrain the number of possible hypotheses that can be produced from multiple views.    As
opposed to implicit models used in Ascender (embedded in the 2D grouping constraints), explicit
semantic  models  are  used  that  include  simple  image  features,  3D  building  terminals
(parameterized parts of buildings), and 3D surfaces.    A grouping process attempts to construct
complete building models from the recognized parts.    In a similar effort, researchers within the
Amobe project [13] extract trihedral corners and make use of both epipolar imaging constraints
and knowledge about building surfaces to group features into complete building models.

The use of a range image registered to an optical image allows the extraction of a rich class of
three-dimensional features including surfaces, 3D line segments, and 3D trihedral corners.    It
has been shown that the introduction of three-dimensional geometric constraints can allow for a
wider range of cultural features to be detected and reconstructed [19].

Kim and Muller [20] combine a monocular building extraction scheme with elevation maps to
detect possible building boundaries. Given possible boundaries, interior elevations are used to
estimate a height  for reconstruction.    Foerstner  [10]  makes use of the range image to  both
hypothesize buildings and reconstruct the building geometry.    Robust techniques select a set of
non-contradicting 3D constraints for optimal estimation of the object shape.    Haala and Hahn
[12] use the elevation map directly to infer the presence of buildings by searching for local
maxima, with 3D lines computed in these regions used for parametric model fits to the extracted
line segments.    The approach estimates the initial parameters for model fitting, but assumes that
the buildings at the site can be reconstructed using a single parametric model (e.g. a peaked roof
model). 

3. The Ascender System 

The Ascender system was designed to automatically acquire 3D building models from a set of
overlapping aerial images. To maintain tractable research and implementation goals,    Ascender
deals only with a single generic    class of buildings, namely flat-roofed,    rectilinear structures.
The simplest example of this class is a rectangular box-shape; however other examples include
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L-shapes, U-shapes, and indeed any arbitrary building shape such that pairs of adjacent roof
edges are perpendicular and lie in a horizontal plane.

The Ascender system was developed using the RADIUS Common Development Environment
(RCDE)  [28].  RCDE  provides  a  framework  for  the  development  of  site  model  acquisition
algorithm.    The choice of a photogrammetric development environment was constrained by the
funding agency.

3.1 IMAGES
Site model acquisition requires a set of images, both nadir and oblique, that view the same area
of the site.    The system is designed to operate over multiple images, typically five or more,
exhibiting a wide variety of viewing angles and sun conditions.    The desired number five is
chosen arbitrarily to allow ideally one nadir view plus four oblique views from each of four
perpendicular  directions  (e.g.  North,  South,  East  and  West).    This  configuration  is  not  a
requirement, however. Indeed, some useful portions of the system require only a single image,
namely line segment extraction and building rooftop detection.    On the other hand, epipolar
rooftop matching and wireframe triangulation require, by definition, at least two images, with
robustness and accuracy increasing when more views are available.    

Although best results require the use of several images with overlapping coverage, the system
allows considerable freedom in the choice of images to use.    Unlike many previous building
extraction systems, this system does not currently use shadow information and works equally
well  on  images  with  different  sun  angles  or  with  no  strong shadows  at  all.  Also,  the  term
“epipolar” as used here does not imply that images need to be in scan-line epipolar alignment, as
required by many traditional stereo techniques.    The term is used instead in its most general
sense as a set of geometric constraints imposed on potentially corresponding image features by
the relative orientation of their respective cameras. The relative orientation of any pair of images
is computed from the absolute orientation of each individual image (see below).

3.2 SITE COORDINATE SYSTEM
Reconstructed building models are represented in a local site coordinate system that must be
defined  prior  to  the  reconstruction  process.  The  system  assumes  this  is  a  “local-vertical”
Euclidean  Coordinate  System,  that  is,  a  Cartesian  X-Y-Z  coordinate  system with  its  origin
located within or close-to the site, and the positive Z-axis facing upwards (parallel to gravity).
The system can be either right-handed or left-handed.    Under a local-vertical coordinate system,
the Z values of reconstructed points represent their vertical position or elevation in the scene, and
X-Y coordinates represent their horizontal location in the site.

3.3 CAMERA MODELS
For each image given to the system, the absolute orientation of the camera with respect to the
local site coordinate system must be known.    This is a specification of how 3D locations in the
site  coordinate  system are  related  to  2D image pixels  in  each image.  One common camera
representation is a 3 X 4 projective transformation matrix encoding both the internal orientation
(lens/digitizer parameters) and the external  orientation (pose parameters) of each perspective
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camera. Ascender can also handle the fast block interpolation projection (FBIP) camera model
used in the RCDE to represent the geometry of non-perspective cameras. Given the absolute
orientation for each image, Ascender computes all the necessary relative orientation information
needed for determining the epipolar geometry between images (or local approximations to the
epipolar geometry in the case of non-perspective cameras).    

3.4 DIGITAL TERRAIN MAP
Currently, the Ascender system explicitly reconstructs only the rooftops of building structures,
and relies on vertical extrusion to form a volumetric 3D-wireframe model of the whole building.
The extrusion process relies on knowing the local terrain, namely the ground elevation (Z value)
at  each location in the scene.      This  can be represented simply as  a  single plane equation
provided the ground is relatively flat, or more generally as an array of elevation values from
which terrain values at any horizontal location are interpolated.

3.5 OTHER REQUIRED PARAMETERS
In addition to the general information described above, a few other parameters must be supplied.
The most important of these are: 

1. resection-residual-error --  a  number  representing  the expected  residual  error  (in  pixels)
present between projected ground truth points and their observed 2D image locations, for the
given camera resection. This summarizes, in a single number for each image, the level of
geometric error remaining after camera resection has taken place.    This parameter is used for
generating  statistical  confidence  intervals,  for  determining the  proper  relative  weights  of
information from each image, and for generating feature search regions.    As new images
arrive,  a  resection-residual  error  can be over-estimated in  order to  be sure that  evidence
gathered from the image is not weighted too greatly.    Over-estimation of this parameter will
loosen search regions and may create false positives, but will not cause the system to fail to
detect features. 

2. max-building-height -- the maximum possible height of    any building that is expected in
the site model.    This threshold is used to limit the extent of epipolar search regions in each
image.    The  lower  this  threshold  is  set,  the  smaller  the  search  area  for  rooftop  feature
matches  will  be,  leading to  faster  searches  with higher  likelihood of  finding the  correct
matches.

3.  min-building-dimension -- the minimum extent (width, length or height) of any building
that will be included in    the site model. This is, loosely speaking, a way of specifying the
desired    “resolution” of the resulting site model, since any buildings having dimensions less
than  this  threshold  will  not  be  found.    Setting  this  value  to  a  relatively  long  length
essentially ensures that only large buildings in the site will be modeled.

4. feature grouping sensitivity  --  the sensitivity  at  which image features  are  progressively
grouped into higher level objects. This linear parameter (ranging from “low” to “high”) was
defined based-on significant experience with the system, and was intended to provide a user
interface that is straightforward yet useful.    The value of this single grouping sensitivity
parameter controls several other component procedures that are part of the system. A low
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sensitivity will cause the system to group features that strictly comply with the entire set of
constraints, while a larger value will loosen the grouping operations to generate more feature
aggregations.    This parameter influences the grouping behavior of the system but remains
independent of the line extraction parameters (see Sections 4.1 and 4.2).    For example, the
system will  only  group lines  into  buildings  that  are  strictly  rectilinear  at  low sensitivity
settings, but line extraction filters (on length and contrast) determine the set of features that
will be used for grouping.

 

4. Algorithmic building blocks

The Ascender building extraction system currently follows a simple processing strategy.    To
acquire a new site model, an automated building detector is run on one image to hypothesize
potential building rooftops.    Supporting evidence is then located in other images via epipolar
line segment matching, and the precise 3D shape and location of each building is determined by
multi-image triangulation and extrusion.    Image intensity information can be backprojected onto
each face of these polyhedral-building models, to facilitate realistic rendering from new views. 

This section describes the key algorithms that together comprise the model acquisition portion of
the system. These algorithms are: line segment extraction, building rooftop detection, epipolar 
rooftop matching, multi-image wireframe triangulation, and projective intensity mapping.    Line 
segment extraction and building rooftop detection are illustrated with sample results from two 
sites, the Schenectady County Air National Guard base (Figure 2a ),    and Radius Model Board 1
(Figure 2b).    In the next section, serious system evaluation will be carried out on images of Ft. 
Hood, Texas.

      

Title:
/users12/vis/rcollins/Figures/mb1j2.eps
Creator:
XV Version 3.01  Rev: 3/30/93  -  by John Bradley
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

              

Title:
/users12/vis/rcollins/Figures/sch.eps
Creator:
XV Version 3.01  Rev: 3/30/93  -  by John Bradley
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

 
                                                                                             (a)
(b)

Figure 2: Subimages used for reconstruction.    (a) Schenectady subimage.    (b)
Model Board 1 (MB1) subimage.
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                                                                                                                        (a)
(b)              

Figure 3:    (a) Extracted lines for Schenectady subimage.    (b) Lines extracted for
MB1.

4.1 LINE SEGMENT EXTRACTION
To help bridge the huge representational gap between pixels and site models,  a straight line
feature extraction routine is applied to produce a set  of symbolic line segments representing
geometric image features of potential interest such as building roof edges. We use the Boldt
algorithm for extracting line segments [4].    At the heart of the Boldt algorithm is a hierarchical
grouping system inspired by the Gestalt laws of perceptual organization. Zero-crossings of the
Laplacian  of  the  intensity  image provide  an  initial  set  of  local  intensity  edges.  Hierarchical
grouping then proceeds iteratively, using measures of colinearity and connectedness.    At each
iteration, edge pairs are linked and replaced by a single longer edge if their end points are close,
their  perpendicular  offset  is  small,  and  their  orientation  and  contrast  values  are  similar
(difference  in  average  intensity  level  across  the  line).    Each  iteration  results  in  a  set  of
increasingly longer line segments. The final set  of line segment features    (Figure 3) can be
filtered according to length and contrast values supplied by the user.

Although  the  Boldt  algorithm does  not  rely  on  any  particular  camera  model,  the  utility  of
extracting straight lines as a relevant representation of image/scene structure is based on the
assumption  that  straight  lines  in  the  world  (such  as  building  edges)  will  appear  reasonably
straight in the image. To the extent that this assumption remains true at the scale of the objects
being  considered,  such  as  over  a  region  of  the  image  containing  a  single  building,  then
straightline extraction remains a viable feature detection method.    However,  very long lines
spanning a significant extent of the image, such as the edges of airport runways, may become
fragmented depending on the amount of curvature introduced into the image by nonlinearities in
the imaging process.    Furthermore, image lines may contain contrast changes along their length
from illumination differences in the scene, changes in material reflectance, and other properties
in  the  scene.    The  Boldt  algorithm is  sensitive  to  these  contrast  changes  and will  produce
fragmented lines.    The grouping algorithm employed in the 2D-polygon detection algorithm

13



addresses this by merging compatible line fragments based on higher level geometric grouping
criteria.

4.2 BUILDING ROOFTOP DETECTION/ 2D POLYGON EXTRACTION
The goal of automated building detection is to roughly delineate building boundaries that will
later  be verified in other images  by epipolar  feature matching and triangulated to  create 3D
geometric  building models.      The building detection algorithm [18]  is  based on perceptual
grouping  of  line  segments  into  image  polygons  corresponding  to  the  boundaries  of  flat,
rectilinear rooftops in the scene.      Perceptual organization is a powerful method for locating and
extracting scene structure.    The rooftop extraction algorithm proceeds in three steps; low level
feature extraction, collated feature detection, and hypothesis arbitration.    Each module generates
features that are used during the next phase, and interacts with lower level modules through top-
down feature extraction.

 Low-level features used by the building detection system are straight line segments and corners.
Line segments used by the building detection system are produced by the Boldt line algorithm
discussed  in  section  4.1.    Edges  may be  filtered  based on length  before  they  are  used  for
detection in a particular image.    The shortest expected building edge in the scene is projected
into the image to compute a minimum image distance in pixels.    Line segments that are shorter
are removed.    

The domain assumption of flat-roofed rectilinear structures implies that rooftop polygons will be
produced by flat horizontal surfaces, straight edges, and orthogonal corners. Orthogonal corners
in the world are not necessarily orthogonal in the image; however the known camera geometry
can be used to compute a corresponding world angle.    To determine a set of relevant corner
hypotheses, pairs of line segments with spatially proximate endpoints are grouped together into
candidate  image corner  features.    Each potential  image corner  is  then  backprojected into a
nominal  Z-plane  in  the  scene,  and  the  resulting  hypothetical  scene  corner is  tested  for
orthogonality.    A parameter, tied to the sensitivity setting of the system, is used to threshold
corners based on the angular difference from an orthogonal corner.

Mid-level collated features are sequences of perceptually grouped corners and lines that form a
chain (Figure 4).    A valid chain group must contain an alternation of corners and lines, and can
be of any length.    Chains are a generalization of the collated features in earlier work [16] and
allow final polygons of arbitrary rectilinear shape to be constructed from low-level features. 

Collated feature chains are represented by paths in a feature relation graph. The feature relation
graph is an encoding of feature dependencies and perceptual compatibility in the image.    Low
level  features  (corners  and  line  segments)  are  nodes  in  the  graph,  and  perceptual  grouping
relations between these features are represented by edges in the graph. Nodes have a certainty
measure that represents the confidence of the low-level feature extraction routines; edges are
weighted with the certainty of  the grouping that  the edge represents.  For  example,  an exact
alignment of corners in the scene would be represented by an edge in the graph with a large
weight, while features that are not exactly aligned but still are grouped together would receive a
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lower weight edge in the graph.    A chain of collated features inherits an accumulated certainty
measure from all the nodes and edges along its path.    

High-level polygon hypothesis extraction proceeds in two steps.    First, all possible polygons are
computed from the collated features.    Then, polygon hypotheses are arbitrated in order to arrive
at a final set of non-conflicting, high confidence rooftop polygons (Figure 5). 
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Figure 4: (a)Feature chains for Schenectady.    (b) Feature chains for MB1.
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Figure 5:    Final rooftop hypotheses.    (a)  Schenectady subimage.    (b)  MB1
subimage.
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Polygon hypotheses  are  simply  closed  chains,  which  can  be  found as  cycles  in  the  feature
relation graph.      All of the cycles in the feature relation graph are searched for in a depth-first
manner,  and  stored  in  a  dependency  graph  where  nodes  represent  complete  cycles  (rooftop
hypotheses).    Nodes in the dependency graph contain the certainty of the cycle that the node
represents.    An edge between two nodes in the dependency graph is created when cycles have
low-level features in common. 

The final set of non-overlapping rooftop polygons is the set of nodes in the dependency graph
that are both independent (have no edges in common) and are of maximum certainty. Standard
graph-theoretic techniques are employed to discover the maximally-weighted set of independent
cycles, which is output by the algorithm as the final set of independent high confidence rooftop
polygons.

While  searching for  closed cycles,  the  collated feature detector  may be  invoked in  order  to
attempt closure of chains that are missing a particular feature.  The system then searches for
evidence in the image that such a virtual feature can be hypothesized.    An example occurs in
Figure 4.    The upper-right building corner is missing due to a large gap in the extracted line
segments.    However, during the graph search, a corner was hypothesized and the extracted line
segments provided sufficient support to complete a cycle (figure 5).      In this way, the rooftop
detection process does not have to rely on the original set of features that were extracted from the
image.      Rather, as evidence for a polygon accumulates, tailor-made searches for lower level
features  can  be  performed.  This  type  of  top-down  inquiry  increases  system  robustness.
Currently virtual feature production is only used to fill in a single missing feature, i.e. a missing
corner  or  straight  line  but  not  both.      Therefore  U-shapes  will  not  be  hypothesized  for
completion.

4.3 EPIPOLAR LINE SEGMENT MATCHING
After detecting a potential rooftop in one image, corroborating geometric evidence is sought in
other images (often taken from widely different viewpoints) via epipolar feature matching. The
primary  difficulty  to  be  overcome during  epipolar  matching  is  the  resolution  of  ambiguous
potential matches, and this ambiguity is highest when only a single pair of images is used.    For
example, the epipolar search region for a roof edge match will often contain multiple potentially
matching line segments of the appropriate length and orientation, one of which comes from the
corresponding roof edge, but the others coming from the base of the building, the shadow edge
of the building on the ground, or from roof/ base/shadow edges of adjacent buildings (see 6a).
This situation is exacerbated when the roof edge being searched for happens to be nearly aligned
with an epipolar line in the second image.    The resolution of this potential ambiguity is the
reason that simultaneous processing of multiple images with a variety of viewpoints and sun
angles is preferred.
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Figure 6: Multiple ambiguous matches can often be resolved by consulting a new
view.

Rooftop polygons are matched using an algorithm similar to the mutibaseline stereo matching
algorithm of Okutumi and Kanade [30], but generalized to handle arbitrary camera poses and
line segment image features.    For each polygon line segment from one image, an appropriate
epipolar search area is formed in each of the other images, based on the known camera geometry
and the assumption that the roof is flat.      This quadrilateral search area is scanned for possible
matching line segments, the disparity of each potential match implying a different roof height in
the  scene.  Results  from each  line  search  are  combined  in  a  1-dimensional  histogram,  each
potential match voting for a particular roof height.      Each vote is weighted by compatibility of
the match in terms of  expected line segment  orientation and length.  This  allows for  correct
handling of fragmented line data, since the combined votes of all subpieces of a fragmented line
count  the  same  as  the  vote  of  a  full-sized,  unfragmented  line.  A single  global  histogram
accumulates height votes from multiple images, and for multiple edges in a rooftop polygon.
After  all  votes  have  been tallied,  the  histogram bucket  containing  the  most  votes  yields  an
estimate of the roof height in the scene and a set of correspondences between rooftop edges and
image line segments from multiple views.    Competing ambiguous roof heights will appear as
multiple  peaks  in  the  histogram; these  can be carried forward for  disambiguation via  future
images.

4.4 WIREFRAME TRIANGULATION AND OPTIMIZATION

Multi-image triangulation is performed to determine the precise size, shape, and position of a
building  in  the  local  3D site  coordinate  system.  A nonlinear  estimation  algorithm has  been
developed for simultaneous multi-image, multi-line triangulation of rectilinear rooftop polygons.
Object-level constraints such as perpendicularity and coplanarity are imposed on the solution to
assure reliable results.    This algorithm is used for triangulating 3D rooftop polygons from the
line segment correspondences determined by epipolar feature matching.    

The parameters estimated for each rooftop polygon are shown in Figure 7.    The horizontal plane
containing the polygon is parameterized by a single variable Z.    The orientation of the rectilinear
structure within that plane is represented by a single parameter  .    Finally, each separate line
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within the polygon is represented by a single value  ri representing signed distance of the line
from a local origin within the roof polygon. The representation is simple and compact, and the
necessary coplanarity and rectangularity constraints on the polygon's shape are built in.    (A
more general approach based on the Plucker coordinate representation of 3D lines has also been
implemented for triangulating general wireframe structures [5,6]).

                                                                                                                               

Figure  7:  Parameterization  of  a  flat,  rectilinear  polygon  for  multi-image
triangulation.

The triangulation process minimizes an objective function that measures how well each 3D edge
aligns with corresponding 2D line segments in the set of images.    Each edge (Z,ri) of the
parameterized 3D roof polygon is projected into an image to form a 2D line, a x + b y + c = 0.
The endpoints (x1, y1) and (x2, y2) of a corresponding image line segment determined by the
prior epipolar matching stage provide a perpendicular distance measure that is squared and added
to the function:

              El =    S                            (ax1 + by1+c)2    +    (ax2 + by2 + c)2

                                                                              endpoints of
                  corresponding 

                   line segments

                                          
This  is  summed over  all  3D-roof  edge lines,  and over  all  images,  resulting  in  an  objective
function of the form: 

    Ep = S          S                El
    images        roof    lines
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A standard  Levenberg-Marquardt  algorithm  is  employed  to  determine  the  set  of    polygon
parameters(  Z,r1...rn)  that  minimize  this  objective  function.  Such  nonlinear  estimation
algorithms typically require an initial estimate that is then iteratively refined.    In this system, the
original  2D-rooftop polygon extracted by the building detector,  and the roof  height  estimate
computed by the epipolar matching algorithm, are used to automatically generate the initial flat-
roofed polygon estimate.    This results in a 2D rectangle with an associated height estimate that
best fits all the images simultaneously.

After triangulation, each refined 3D-roof polygon is extruded vertically down to the terrain to
form a volumetric model.    The extrusion process relies on being able  to  compute a terrain
elevation (Z value) for each (X,Y) vertex location in the scene.    This computation is performed
by the RCDE, which can handle a number of terrain representations, ranging from a simple plane
equation for relatively flat terrain, to a complete digital terrain map (DTM).    For representations
such as DTMs that represent terrain elevations at a discrete number of sampled locations, the
elevation value at any horizontal location between samples is computed via interpolation.    We
compute the terrain elevation under each of the roof polygon's vertices, and select the minimum
elevation as the Z-value for the base of the volumetric extrusion.

4.5 VOLUMETRIC HYPOTHESIS ARBITRATION

After  building  rooftops  have  been  triangulated  and  extruded  to  the  local  DTM,  they  are
represented as a volumetric, 3D model.    The final set of buildings is filtered according to spatial
overlap  in  order  to  generate  a  complete  and  consistent  site  model.      Figure  8  shows  a
reconstruction  that  resulted  in  several  competing  model  hypotheses.    Arbitration  of    these
overlapping    building models is    especially important when batch mode processing produces
similar or identical models due to 3D reconstruction from multiple overlapping polygons from
different images and processing windows. (see Section 3).    

The arbitration algorithm is straightforward.    Each building model volume,  VM, is intersected
with each neighboring, overlapping model volume, VO, to compute a intersection volume, VI .    If
this volume is greater than a certain percentage of both VM    and VO, then the building model with

the lower certainty measure is removed from the site model. That is, if,  and , then the
model with the lowest certainty measure computed from the grouping process (see Section 4.2)
is removed.    Otherwise, both overlapping models will be retained in the final output.
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Figure 8: Multiple, overlapping hypotheses generated by the Ascender system.
Brightness corresponds to the certainty value of the hypotheses.    There are five
alternate  building  models  in  addition  to  the  six  true  models.    (There  are  no
alternative models for the top center and left models and two alternates for the
bottom  right  model.)    Only  the  best  (brightest)  of  the  overlapping  models  is
retained after arbitration.

This  criterion  is  used  to  filter  similar  overlapping building  models  but  is  not  guaranteed  to
remove  all  false  positives  generated  in  the  reconstruction  process.    For  example,  a  small
building completely contained within a larger building model will not be eliminated (since the
intersected volume will always remain small with respect to the large model) even though this is
not a physically realizable model.    Multi-level buildings present another problem since they are
often  detected  as  two  separate,  overlapping  polygons.    Hypothesis  arbitration  as  currently
implemented may filter one of the two polygons and thus correct detail in the site model may be
removed.    A more sophisticated analysis of the model topology would be required to include
complex multi-leveled buildings in the site model, and research into appropriate reconstruction
strategies for these cases is underway.

4.6 PROJECTIVE INTENSITY MAPPING
Rapid improvements in the capability of low-end to medium-end graphics hardware makes the
use of intensity mapping an attractive option for visualizing geometric site models from any
viewpoint,  with  near  real-time  interactive  virtual  reality  displays  achievable  on  high-end
workstations.      These graphics capabilities have resulted in a demand for algorithms that can
automatically acquire the necessary surface intensity maps from available digital photographs.
We have developed routines for acquiring image intensity maps for the planar facets (walls and
roof surfaces) of each building model recovered by Ascender.

Planar projective transformations provide a mathematical description of how surface structure
from a planar building facet maps into an image. By inverting this transformation using known
building  position  and  camera  geometry,  intensity  information  from  each  image  can  be
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backprojected to “paint” the walls and roof of the building model. Since multiple images are
used, intensity information from all faces of the building polygon can be recovered, even though
they are not all seen in any single image (see Figure 9a).    The full intensity-mapped site model
can then be rendered to predict how the scene will appear from a new view    (Figure 9b).
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Figure 9.    (a)  Intensity  maps are stored with the planar facets of  a building
model. (b) A complete site site model rendered from a new view.

When processing multiple overlapping images, each building facet will often be seen in more
than one image, under a variety of viewing angles and illumination conditions.    This has led to
the  development  of  a  systematic  mechanism  for  managing  intensity  map  data,  called  the
Orthographic Facet Library.    The orthographic facet library is an indexed data set storing all of
the intensity-mapped images of all the polygonal building facets that have been recovered from
the site, tagged with spatial and photometric indices (e.g. viewing angle, resolution, sun angle).
The building facets in the library are further automatically partitioned into pieces according to
whether they are sunlit, in shadow, or occluded (as determined by the viewpoint, sun angle, and
the position and size of the other buildings that are hypothesized to be in the site model).    In
order  to  render  new views,  the  multiple  intensity-map  versions  for  each  building  facet  are
“compiled” into a single, best representative intensity map for that facet.    Each pixel in the
representative intensity map is backprojected to determine which pieces of the intensity map in
the orthographic facet library it is associated with.      The set of pieces is then sorted according to
a heuristic function [34] that estimates the quality of the pixel data for that piece in terms of
resolution, orientation and photometric contrast, and the intensity data from the highest ranked
piece is  chosen as the representative value for  that  pixel.  Each surface intensity  map in the
rendered image is thus a composite formed from the best available views of that building face,
automatically  chosen  to  avoid  as  much  as  possible  visual  artifacts  caused  by  shadows  and
occlusions.      While pixels are individually ranked, usually larger sets of pixels in connected
components are selected from a single image because they are ranked equally in that image.

Although intensity mapping enhances the virtual  realism of graphic displays,  this  illusion of
realism  is  greatly  reduced  as  the  observer's  viewpoint  comes  closer  to  the  rendered  object
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surface.      For example, straightforward mapping of an image intensity map onto a flat wall
surface looks (and is) two dimensional, unlike the surface of an actual wall, windows and doors
on a real wall surface are typically inset into the wall surface and are surrounded by framing
material that extends out beyond the wall surface.    While these effects are barely noticeable
from a distance, they are quite pronounced up close.      A further problem is that the resolution of
the surface texture map is limited by the resolution of the original image.      As one moves closer
to the surface, more detail should become apparent, but instead, the graphics surface begins to
look “pixelated” and features become blurry.    In particular, some of the window features on the
building models we have produced are near the limits of the available image resolution.

What is needed to go beyond simple intensity mapping is explicit extraction and rendering of
detailed surface structures such as windows, doors and roof vents. Our current intensity map
extraction technology provides a convenient starting point, since rectangular lattices of windows
or roof vents can be searched for in the orthographic facet library without complication from the
effects of perspective distortion.    Specific surface structure extraction techniques can be applied
only where relevant, i.e. window and door extraction can be focused on wall intensity maps,
while  roof  vent  computations  are  performed  only  on  roofs.      As  one  example,  a  generic
algorithm has been developed for extracting windows and doors on wall surfaces, based on a
rectangular region growing method applied at local intensity minima in the unwarped intensity
map.    Extracted window and door hypotheses are used to compose a refined building model that
explicitly  represents  those  architectural  details.    An example  is  shown in  Figure  10.    The
windows and doors have been rendered as dark and opaque, but since they are now symbolically
represented,  it  would  be  possible  to  render  the  windows  with  glass-like  properties  such  as
transparency and reflectivity that would enhance the dynamic visualization of the scene.
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Figure  10:      Rendered  building  model  before  and  after  symbolic  window
extraction.
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Future work on extraction of surface structures will concentrate on roof features such as pipes
and vents that appear as ``bumps'' on an otherwise planar surface area.    Visual cues for this
reconstruction  include  shadows  from  monocular  imagery,  as  well  as  disparity  information
between multiple images.      This is a challenging problem given the resolution of available aerial
imagery. 

4.7 SITE MODEL EXTENSION

The goal of site model extension is to find unmodeled buildings in new images and add them
into  the  site  model  database.    The  main  difference  between  model  extension  and  model
acquisition is that now the camera pose for each image can be determined via model-to-image
registration. Our approach to model-to-image registration involves two 
components:    model matching and pose determination.

The goal of model matching is to find the correspondence between 3D features in a site model
and  2D  features  that  have  been  extracted  from  an  image;  in  this  case  determining
correspondences between lines in a 3D building wireframe and 2D extracted line segments from
the image.      The model matching algorithm described in [3] is being used. Based on a  local
search approach to  combinatorial  optimization,  this  algorithm searches  the  discrete  space of
correspondence mappings between model and image lines for one that minimizes a match error
function. The match error depends upon how well the projected model geometrically aligns with
the data, as well as how much of the model is accounted for by the data. The result of model
matching is a set of correspondences between model edges and image line segments, and an
estimate of the transformation that brings the projected model into the best possible geometric
alignment with the underlying image data.

Although a set of images with rigorous photogrammetric parameters are required to generate an
initial site model, partial site models can be used to compute the pose parameters of new views
and extend the capability of the system to handle poorly or partially calibrated imagery.    This
involves  a  second  aspect  of  model-to-image  registration  called  pose  determination.  It  is
important to note that since model-to-image correspondences are being found automatically, the
pose determination routine needs to take into account the possibility of mistakes or outliers in the
set of correspondences found.    The robust pose estimation procedure described in [21] is being
used. At the heart of this code is an iterative, weighted least-squares algorithm for computing
pose  from  a  set  of  correspondences  that  are  assumed  to  be  free  from  outliers.  The  pose
parameters are found by minimizing an objective function that measures how closely projected
model features overlap with their corresponding image features. Since it is well known that least
squares optimization techniques can fail catastrophically when outliers are present in the data,
this  basic  pose  algorithm is  embedded  inside  a  least  median  squares  (LMS) procedure  that
repeatedly samples subsets of correspondences to find one devoid of outliers. LMS is robust over
data sets containing up to 50% outliers.      The final results of pose determination are a set of
camera pose parameters and a covariance matrix that estimates the accuracy of the solution.

The model extension process involves registering a current geometric site model with a new
image, and then focusing on unmodeled areas to recover previously unmodeled buildings.    This
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process is illustrated using the partial site model constructed using the Ascender system applied
to the Model Board 1 dataset. 
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Figure 11: An existing model is matched to a new view (thin lines).    Areas in the
new image are masked if  they contain a building and the remaining image is
processed  for  new buildings.    New buildings  (thick  lines)  are  extracted  and
merged into a more complete site model.

Results of model-to-image registration of image J8 with the partial site model can be seen in
Figure 11, which shows projected building rooftops from the previous site model overlaid on the
image. Image areas containing buildings already in the site model were masked off, and the
building rooftop detector was run on the unmodeled areas. The multi-image epipolar matching
and  constrained  multi-image  triangulation  procedures  from  Sections  4.3  and  4.4  were  then
applied to verify the hypotheses and construct 3D volumetric building models.    These were
added to the site model database,  to produce the extended model shown in Figure 11 (thick
lines). The main reason for failure among building hypotheses that were not verified was that
they represented buildings located at the periphery of the site, in an area which is not visible in
very many of the eight views.    If more images were used with greater site coverage, more of
these buildings would have been included in the site model.    The utility of this approach is
explored in section 5.6 by detecting buildings in multiple views of the Ft. Hood dataset and
analyzing the overall building detection rate for the site.

5. System Evaluation 
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The Ascender  system has  been delivered  to  government  contractors  for  testing on classified
imagery and for integration into the RADIUS Testbed System [11].    An informal transfer has
also been made to the National Exploitation Laboratory (NEL) for familiarization and additional
testing. The system has been extensively tested on diverse sets of data.    This section presents a
of experiments designed to address questions like:    

1.  How is the rooftop detection rate related to system sensitivity settings? 
2.  Is the detection rate affected by viewpoint (nadir vs. oblique)?
3.  Does 2D detected polygon accuracy vary by viewpoint?
4.  Is 2D geometric accuracy related to sensitivity settings?
5.  How does 3D accuracy vary with the number of images used? 
6.  Does 3D accuracy vary by the geometry of the images used?
7.  How does 3D accuracy vary according to 2D accuracy of the hypothesized polygons?

Experiments were carried out using two different methods.    The first set of tests were run on
local  image patches  that  were known to contain  buildings.    This  helped to  classify system
performance and accuracy for a scenario in which a previous focus-of-attention mechanism has
detected image regions that may contain buildings.    For example, an image analyst may have
selected areas in which building reconstruction should take place.    Each image patch is selected
by creating  a  bounding  volume around  each  building  in  the  ground truth  model  (discussed
shortly).    Each volume is  then  projected  into  each of  the  images  using  the  known camera
geometry for those images.    This obtains all image patches of every building in the ground truth
model for which the entire building appears. The system was then run on each of these projected
regions.

The second set of tests deal with the case in which focus of attention regions are not available.
In this case, the image is broken into overlapping windows and reconstruction takes place within
each  image  window  independently.      In  this  “batch  mode”  style  of  processing  the  final
reconstruction undergoes a hypothesis arbitration phase in which redundant buildings, generated
from overlapping regions, are filtered (see section 4.5).    The size of the window for each of the
images was set to be at  least as large as the largest ground truth building.    The size of the
overlapping area between windows was half the width of a window.

Evaluation was carried out on a large data set from Ft.Hood Texas. The imagery was collected by
Photo Science Inc. (PSI) in October 1993 and scanned at the Digital Mapping Laboratory at
Carnegie Mellon University (CMU) in Jan-Feb, 1995.      Camera resections were performed by
PSI for the nadir views and by CMU for the oblique views.

5.1 METHODOLOGY
An evaluation data set was cropped from the Ft.Hood imagery, yielding seven subimages from
the views labeled 711, 713, 525, 927, 1025, 1125 and 1325 (images 711 and 713 are nadir views,
the rest are obliques). Table 1 summarizes the ground sample distance GSD for each image.
The region of overlap within the scene covers an evaluation area of roughly 760x740 meters,
containing  a  good blend  of  both  simple  and complex  roof  structures.    Thirty  ground truth
building models were created by hand using interactive modeling tools provided by the RCDE.
Each building is composed of RCDE “cube”,    “house” and/or “extrusion” objects that were
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shaped and positioned to project as well as possible (as determined by eye) simultaneously into
the set of seven images. This has become a standard procedure for acquiring ground truth data in
a domain where ground truth is difficult to obtain. The ground truth data set is shown in Figure
12.

711 713 525 927 1027 1125 1325
0.31 0.31 0.61 0.52 1.10 1.01 1.01

Table 1: Ground sample distances (GSD) in meters for the seven evaluation images.    A GSD of
0.3 means that a length of one pixel in the image roughly corresponds to a distance of 0.3 meters
on the ground.
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Figure  12:  Ft.  Hood  evaluation  area  with  30  ground  truth  building  models
composed of single and multi-level flat roofs, and two peaked roofs.    There are
73 roof facets in all. The size of the image area shown is 2375x1805 pixels.

Since the Ascender system explicitly recovers only rooftop polygons (the rest of the building
wireframe is formed by vertical extrusion), the evaluation is based on comparing detected 2D
and triangulated 3D roof polygons vs. their ground truth counterparts. In the set of seven images
there are 73 ground truth rooftop polygons among the set of 30 buildings.    Ground truth 2D
polygons for each image are determined by projecting the ground truth 3D polygons into that
image using the known camera projection equations.

We have utilized a  metric  that provides a  measure of the average distance between the two
polygons boundaries, reported in pixels for 2D polygons, and in meters for 3D polygons.    The
Center-Line Distance measures how well two arbitrary polygons match in terms of size, shape
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and location2.      The procedure is to oversample the boundary of one polygon into a set of
equally spaced points (several  thousand of them).      For  each point,  measure the minimum
distance from that point to the other polygon boundary.    Repeat the procedure by oversampling
the other polygon and measuring the distance of each point to the first polygon boundary.    The
center-line distance is taken as the average of all these values.    We prefer the center-line distance
to other comparison measures, such as the one used in [32] since it is very easy to compute and
can be applied to two polygons that do not have the same number of vertices.

For polygons that have the same number of vertices, and are fairly close to each other in terms of
center-line distance, an additional distance measure is computed between corresponding pairs of
vertices between the two polygons.    That is, for each polygon vertex, the distance to the closest
vertex  on the other  polygon is  measured.  For  2D polygons these  Inter-Vertex Distances are
reported in pixels, for 3D polygons the units are meters, and the distances are broken into their
planimetric (distance parallel to the X-Y plane) vs. altimetric (distance in Z) components.      An
Inter-Vertex  distance  is  only  computed  between  vertices  for  which  there  is  a  corresponding
ground truth polygon vertex.    Therefore statistics involving the inter-vertex distance will not
include vertices that are far from ground truth (from a partially detected building, for example).

5.2 EVALUATION OF 2D BUILDING DETECTION
One important module of the Ascender system is the 2D polygonal rooftop detector.    If 2D
building polygons are not detected in at least one image, then a complete 3D reconstruction is
not possible.    The detector was tested on images 711, 713, 525 and 927 to see how well it
performed  at  different  grouping  sensitivity  settings,  and  with  different  length  and  contrast
settings of the Boldt line extraction algorithm.    

The  detector  was  first  tested  in  “bounding-box mode” by projecting  each ground truth  roof
polygon  into  an  image,  growing  its  2D bounding  box out  by  20  pixels  on  each  side,  then
invoking the building detector in that region to hypothesize 2D rooftop polygons. The evaluation
goals were to determine both true and false positive detection rates  when the building detector
was invoked on an area containing a building,  and to measure the 2D accuracy of the true
positives.

The detector was also tested in “batch mode” by blindly processing each image in overlapping
image windows of size  N by  N.    Each window overlapped its neighbors by  N/2 pixels.    The
number  N was chosen for each image so that the image windows could encompass the largest
projected ground truth building.  Typically,  N was much larger  than the size of ground truth
buildings.

5.3 2D DETECTION RATES
The polygon detector  typically  produces  several  roof hypotheses  within a given image area,
particularly  when  run  at  the  higher  sensitivity  settings.  Determining  true  and  false  positive
detection rates thus involves determining whether or not each hypothesized image polygon is a
good  match  with  some  ground  truth  projected  roof  polygon.    To  automate  the  process  of

2Robert Haralick, private communication
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counting true positives and tabulating their  associated error,  each hypothesized polygon was
ranked by its center-line distance from the known ground truth 2D polygon that was supposed to
be detected.      Of all hypotheses with distances less than a threshold (i.e. polygons that were
reasonably good matches to the ground truth), the one with the smallest distance was counted as
a true positive; all other hypotheses were considered to be false positives.    The threshold value
used  was  0.2  times  the  square  root  of  the  area  of  the  ground  truth  polygon,  that  is:

 where  hyp and  gt  are  hypothesized  and  ground  truth  polygons,
respectively.    This empirical threshold allows 2 pixels total error for a square with sides 10
pixels long, and is invariant with respect to the scale of the image.    

The total numbers of roof hypotheses generated for each of the images 711, 713, 525 and 927 for
bounding-box processing are shown at the top of Figure 13.    Total polygons per image were
computed for nine different sensitivity settings of the building detector ranging from 0.1 to 0.9
(very low to very high). The line segments used for each image were computed by the Boldt
algorithm using length and contrast thresholds of 10.    The second graph in 13 plots the number
of  true  positive  hypotheses.  For  the  highest  sensitivity  setting,  the  percentage  of  rooftops
detected in 711, 713, 525 and 927 using the bounding-box strategy were 51%, 59%, 45% and
47%, respectively.    The same test was performed for the system using batch-mode processing
and the  results  are  shown in  figure  14.      For  the  highest  sensitivity,  results  similar  to  the
bounding-box processing mode were produced. Detection rates of 46%, 55%, 42%, and 39% for
each of the 711, 713, 525, 927 images respectively.    
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Figure  13:    Bounding-Box  processing  detection  rates.  Top:  Building  detector
sensitivity vs. total number of generated roof hypotheses per image.    Bottom:
Sensitivity vs. number of true positives.    Horizontal lines show the actual number
of ground truth polygons.    Combining results from all four view yields a detection
rate of 81% with lines of L > 10, and 97% with lines of L > 5.
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Figure  14:  Batch-mode  processing  detection  rates.    Top:  Building  detector
sensitivity vs. total number of roof hypotheses.    Bottom: Sensitivity vs. number of
true  positives.      Horizontal  lines  show  the  actual  number  of  ground  truth
polygons.    Combining results from all four view yields a detection rate of 95%.
Combining  results  from  a  more  feasible  setting  of  0.7  yields  a  combined
detection result of 89% with a false positive percentage of 46%. 

A significant difference between the two modes of processing is in the number of false positives
generated by each technique.    Because batch-mode processing involves blind application of the
building detector to the entire image an increase in the number of polygons detected is expected.
At the mid-to-higher range of sensitivities (0.5-0.7) the number of false positives produced is not
significant, however, at the highest sensitivities, batch-mode processing produces a large number
of false positives.    Without a prior focus-of-attention mechanism, the batch-mode extraction is
only feasible at middle-range sensitivities, which limits the number of true positives achievable.

The detection rates  seem to be sensitive to viewpoint.  More total  hypotheses and more true
positives were detected in the nadir views than in the obliques. This may represent a property of
the building detector, but it is more likely that most of the discrepancy is due to the difference in
GSD of the images for this area (see Table 1).    Each building roof simply occupies a larger set
of pixels in the nadir views than in the obliques for this data set, and therefore the nadir view of
buildings has a significantly higher resolution.

To measure the best possible performance of the rooftop detector on this data, it was run on all
four images at sensitivity level 0.9, using Boldt line data computed with the lowest length and
contrast thresholds of 5.    These were judged to be the highest sensitivity levels for both line
extractor and building detector that were feasible, and the results represent the best job that the
current building detector can do with each image. The percentages of rooftops detected in each
of the four images under these conditions in bounding-box mode were 86%, 84%, 74%, and
67%, with a combined image detection rate of 97% (71 out of 73).    Under these same conditions
(ignoring false positives) the batch-mode system reconstruction percentages were 85%, 83%,
72%, and 66%, with a  combined image detection rate  of 95%.    Using the highest possible
feasible sensitivity  for  batch-mode  processing  at  0.7  produces  62%,  51%,  34%,  and  32%
detection rates  for  each of the images  and a  combined rate  of 89% while  limiting the false
positive rate to 46% (see Figure 13).    This represents the best possible performance in batch-
mode while limiting the number of false positives.    

Finally, the rooftop detector was run in batch-mode on all four images at a sensitivity of 0.7,
using Boldt line data with length and contrast thresholds of 10.    These settings were deemed to
be the most feasible for batch-mode processing and were chosen to maximize the detection rate
versus false positives. This reflects the proper setting of the system without specific focus-of-
attention  mechanisms.  The  set  of  buildings  extracted  in  the  batch-mode  experiments  at  a
sensitivity of 0.7 were combined, yielding an overall detection rate of 89%.    It is interesting to
note  that  although  not  all  buildings  are  detected  in  one  image,  the  use  of  multiple  images
improves results significantly.    Figure 15 shows a view of the groundtruth with the number of
times each of the buildings was detected in the dataset.    Nearly all buildings were detected in
more than one image.    
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The reader should understand that if a building polygon was only detected in a single image, all
line correspondences in an epipolar constrained search region in the other images will contribute
to the 3D building triangulation even though a complete  polygon was not  detected in  other
images.      The peaked roof building at the right of the image was not detected in any image
because it does not conform to the class of buildings currently built into the system (see Section
6).    The center roof polygon was missed because tree cover breaks up both line and corner
features.    Other reasons for failure included too-low contrast between the building and ground in
all images, resolution problems (as in the small second story polygon at the right of the image),
and  accidental  alignment  of  surrounding  clutter  causing  large  error  in  the  final  polygon  (a
polygon that included the rooftop at the far left of the image with surrounding walkways was
generated in two images and was eliminated because of the introduced error).

                          

Figure 15: The ground truth model projected into image 713.    The number of
times  each  roof  facet  polygon  was  detected  over  the  four  different  views  is
overlaid to depict an overall 2D detection rate of 89% for batch-mode processing
at 0.7 sensitivity setting.    Higher detection rates are possible but at the expense
of more false-positives.    The sensitive setting 0.7 was chosen as a reasonable
setting that detects a large number of roof facets, while attenuating the number of
incorrect detections.
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5.4 QUANTITATIVE ACCURACY
To assess the quantitative accuracy of the true positive 2D roof polygons, each was compared
with  its  corresponding  2D  projected  ground  truth  polygon  in  terms  of  center-line  distance.
Figure 16 plots the median of the center-line polygon distances between detected and ground
truth 2D polygons for different sensitivity settings. Polygons detected at low sensitivity levels
seem to be slightly more accurate than those detected at the high sensitivity settings. This is so
because the detector only finds clearly delineated rooftop boundaries at the lower settings, and is
more forgiving in its grouping criteria at the higher settings    (i.e. accepting less accurate line and
polygon data) with the obvious benefit of a higher detection rate.
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Figure 16: 2D polygon accuracy vs. Building detector sensitivity.    Accuracy is
represented in pixels for both modes of processing (see text).

For pairs of detected and ground truth polygons having the same number of vertices, their set of
inter-vertex distances were also computed, and the medians of those measurements are broken
down by image in Table 2.    The average distance is around 2.7 pixels.        Polygons detected in
image 927 appear to be a little more accurate.    This difference may or may not be significant;
however,  image 927 was taken in the afternoon, and all  the other  images  were taken in the
morning, so the difference in sun angle may be the cause.
An interesting result is that the reconstruction accuracy of the two modes of processing is similar.
The differences shown in Table 2 are statistically insignificant.

Inter-Vertex Results for Bounding-Box Mode 
711 713 525 927

IV Distance 2.75 2.82 2.71 2.22

Inter-Vertex Results for Batch Mode
711 713 525 927

IV Distance 2.78 2.87 2.73 2.24
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Table 2: 2D vertex accuracy.    Median inter-vertex distances (in pixels) between
detected  polygon  vertices  and  projected  ground  truth  roof  vertices,  for  four
images.

5.5 EVALUATION OF 3D RECONSTRUCTION
The second major subsystem in Ascender takes 2D roof hypotheses detected in one image and
reconstructs 3D rooftop polygons via multi-image line segment matching and triangulation. Two
different  quantitative  evaluations  were  performed  on  this  subsystem.  The  3D reconstruction
process was first tested in isolation from the 2D detection process by using 2D projected ground
truth polygons as input.    This initial evaluation was done to establish a baseline measure of
reconstruction accuracy, that is, to see how accurate the final 3D building models would be given
perfect  2D rooftop extraction.  A second evaluation tested end-to-end system performance by
performing 3D reconstruction using a set of automatically detected 2D image polygons.

5.5.1 Baseline 3D Reconstruction Accuracy

The baseline measure of reconstruction accuracy was performed using 2D projected ground truth
roof polygons.    Since these 2D-polygons were generated from the same 3D ground truth 3D
polygons, presumably they would optimally regenerate the initial 3D-polygon model.    For each
of the 7 images in the evaluation test set, all the ground truth 2D polygons from that image were
matched and triangulated using the other 6 images as corroborating views.    The accuracy of
each reconstructed roof polygon was then determined by comparing it with its 3D ground truth
counterpart in terms of center-line distance and inter-vertex distances.    Table 3 reports, for each
image, the median of the centerline polygon distances between reconstructed and ground truth
polygons in pixels for that image.    Also reported are the medians of the planimetric (horizontal)
and altimetric  (vertical)  components  of  the  inter-vertex  distances  between  reconstructed  and
ground truth polygon vertices in meters. Horizontal placement accuracy was about 0.3 meters,
which is  in  accordance with the resolution of the images.      This  baseline error  provides a
measure of inherent 2D noise effects and pose errors in the 3D reconstruction process.    

711 713 525 927
CL Distance 0.57 0.46 0.45 0.53
IV planimetric 0.29 0.25 0.33 0.35
IV altimetric 0.49 0.42 0.37 0.43

Table  3:  Evaluation  of  baseline  accuracy  of  the  3D  reconstruction  process.
Median center-line distances (in pixels) as well  as inter-vertex planimetric and
altimetric errors are shown (in meters) for four images.    See text.

Another suite of tests was performed to determine how the number of views affects the baseline
accuracy of  the  resulting 3D polygons.  These  tests  were performed using  image 711 as  the
primary image, and all 63 non-empty subsets of the other 6 views as additional views.    For each
subset of additional views, all 2D projected ground truth polygons in image 711 were matched
and triangulated, and the median center-line and inter-vertex distances between reconstructed and
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ground truth 3D polygons were recorded. Figure 17 graphs the results, organized by number of
images used (including 711), ranging from only two views up to all six views.
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Figure 17: Number of views used vs. 3D reconstruction accuracy in meters. (see
text).

The distances reported under label “2” are averaged over the 6 possible image sets containing
711 and one other image,    distances reported under “3” are averaged over all 15 possible image
sets    containing 711 and two other images, and so on.      There is a noticeable improvement in
accuracy when using three views instead of two, but the curves flatten out after that, and there is
only modest improvement in 3D accuracy to be gained by taking image sets larger than four.

5.5.2 ACTUAL 3D RECONSTRUCTION ACCURACY
 In actual practice, Ascender reconstruction techniques are applied to the 2D image polygons
hypothesized  by  its  automated  building  detector.    Thus,  the  final  reconstruction  accuracy
depends not only on the number and geometry of the additional views used, but also on the 2D
image accuracy of the hypothesized roof polygons.    The typical end-to-end performance of the
system was separately evaluated by taking the 2D polygons detected through both bounding-box
and batch-mode processing and performing matching and triangulation using the other six views.
The  median  center-line  distances  between  reconstructed  and  ground  truth  3D  polygons  are
plotted in Figure 18 for different sensitivity settings of the polygon detector. The accuracy is
slightly better when using polygons detected at the lower sensitivity settings, mirroring the better
accuracy of the 2D polygons at those levels (compare with Figure 16).
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Figure 18: Building detector sensitivity vs. 3D polygon accuracy, computed as the
median of center-line distances between reconstructed 3D polygons and ground
truth polygons

For pairs of detected and ground truth polygons having the same number of vertices, the set of
inter-vertex  planimetric  and  altimetric  errors  were  computed,  and  the  medians  of  those
measurements  are  shown in Table 4,  broken down by the image in  which the 2D polygons
feeding the reconstruction process were hypothesized. Unlike the baseline error data from Table
3, where the horizontal accuracy of reconstructed polygon vertices was better than their vertical
accuracy, here the situation is reversed, strongly suggesting that the planimetric component of
reconstructed vertices is more sensitive to inaccuracies in the 2D polygon detection process than
the altimetric component. This result is consistent with previous observations that the corners of
Ascender's reconstructed building models are more accurate in height than in horizontal position
[8].

Bounding-Box Mode 3D Accuracy
711 713 525 927

IV planimetric 0.68 0.73 1.09 0.89
IV altimetric 0.51 0.55 0.90 0.61

Batch-Mode 3D Accuracy
711 713 525 927

IV planimetric 0.67 0.75 1.11 0.90
IV altimetric 0.53 0.55 0.91 0.60

Table 4: Evaluation of actual reconstruction accuracy.    Median planimetric and
altimetric  errors  (in  meters)  between  reconstructed  3D  polygon  vertices  and
ground truth roof vertices for the two different modes of processing.
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6. Summary and Future Work

6.1 EVALUATION SUMMARY

The previous section presented results of a comprehensive evaluation of the Ascender system
using an unclassified data set of Ft. Hood. While the results of the analysis are inevitably tied to
this specific data set, they give some indication of how the system should be expected to perform
under different scenarios.

Single-Image  Performance:  The  building  detection  rate  varies  roughly  linearly  with  the
sensitivity setting of the polygon detector.    At the high sensitivity level, roughly 50% of the
buildings are detected in each image using Boldt lines extracted at length and contrast > 10, and
about 75%-80% when using Boldt lines extracted with length and contrast > 5.      Although line
segments and corner hypotheses are localized to subpixel accuracy, the median localization error
of 2D rooftop polygon vertices is around 2-3 pixels, due in part to grouping errors, but also in
part to errors in resected camera pose. Note that even a perfectly segmented polygon boundary
will  not  align  with  the  projected  ground  truth  roof  if  the  camera  projection  parameters  are
incorrect.

Multiple-Image  Performance:  One  of  our  underlying  research  hypotheses  is  that  the  use  of
multiple  images  increases  the  accuracy  and  reliability  of  the  building  extraction  process.
Rooftops that are missed in one image are often found in another, so combining results from
multiple images typically increases the building detection rate. By combining detected polygons
from four images, the total building detection rate increased to 81% using medium-sensitivity
Boldt lines, and to 97% using high-sensitivity ones.    Matching and triangulation to produce 3D
roof polygons, and thus the full building wireframe by extrusion, can perform at satisfactory
levels of accuracy given only a pair of images, but using three views gives noticeably better
results.    After four images, only a modest increase in 3D accuracy is gained.

Of course, any of these general statements depends critically on the particular configuration of
views  used.      Further  testing  is  needed  to  elucidate  how  different  camera  positions  and
orientations  affect  3D accuracy.    Nadir  views appear  to  produce  better  detection rates  than
obliques, but this can be explained by large differences in the ground sample distance for this
image  set  and  may  not  be  characteristic  of  system  performance  in  general  --  again,  more
experimentation is needed. For this data set, 3D building corner positions were recovered to well
within a meter of accuracy, with height being estimated more accurately than horizontal position.
The accuracy of the final reconstruction depends on the accuracy of the detected 2D polygons, as
one might  expect;  however horizontal  accuracy is  more sensitive to  2D polygon errors than
vertical accuracy.    Also, the version of Ascender tested here uses only a simple control strategy
for detecting flat-roofed buildings.    More complex control strategies under development (see
next section) may yield more reliable results.
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6.2    FUTURE WORK
The building reconstruction strategies used in the Ascender system provide an elegant solution to extracting flat-
roofed  rectilinear  buildings,  but  extensions  are  necessary  in  order  to  handle  other  common  building  types.
Examples are complex multi-level flat roofs, peaked-roof buildings, juxtapositions of flat and peaked roofs, curved-
roof buildings such as Quonset huts or hangars, as well as buildings with more complex roof structures containing
gables, slanted dormers or spires.

To develop more general  and flexible building reconstruction systems, a significant research
effort is underway at UMass to explore alternative strategies that combine a wider range of 2D
and 3D information.    The types of strategies being considered involve generation and grouping
of 3D geometric tokens such as lines, corners and surfaces, as well  as techniques for fusing
geometric  token data  with high-resolution digital  elevation map (DEM) data.    By verifying
geometric consistencies between 2D and 3D tokens associated with building components, larger
and more complex 3D structures are being organized using context-sensitive, knowledge-based
strategies.

In  addition  to  work  that  addresses  a  wider  class  of  building  models,  improvements  to  the
Ascender  system  have  been  implemented  in  order  to  increase  the  overall  detection  rates.
Changes to the control structure that allow polygons to be detected in any of the available images
and improvements to the perceptual grouping routine have increased overall detection rates.    For
example,  in  recent  tests,  three additional  buildings have been detected at  the Fort  Hood site
without increasing in the number of false positives.

Our  symbolic  building  extraction  procedures  is  being  be  combined  with  Terrest  [33],  a
correlation-based terrain extraction system developed at UMass.    The two techniques clearly
complement each other:  symbolic processing and triangulation of 2D lines produces 3D line
features, complementing area correlation techniques that produce DEMs to which planar surfaces
can be fit.    Another way that they complement each other is that the terrain extraction system
can determine a digital elevation map upon which the volumetric building models rest, and the
symbolic building extraction procedures can identify building occlusion boundaries in exactly
the locations where correlation-based terrain recovery is expected to behave poorly.    A tighter
coupling  of  the  two  systems  is  also  being  investigated,  to  allow  correlation-based  surface
extraction to be applied to building rooftop regions to identify fine surface structure like roof
vents and air conditioner units.
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