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Abstract

In this work we propose a model for video scenes that contain temporal variability in shape and ap-
pearance. We propose a conditionally linear model akin to a dynamic extension of active appearance
models. We formulate the problem variationally, and use finite-element methods to compute a numerical
solution. We illustrate our model to learn and simulate the shape, appearance, and motion of scenes
that exhibit some form of temporal regularity, intended in a statistical sense.

1. Introduction
In modeling complex visual phenomena one can employ rich models that characterize the global statis-
tics of the image, or choose simple classes of models to represent the local statistics of a spatio-temporal
“segment,” together with the partition of the data into such segments. Each segment could be charac-
terized by certain statistical regularity in space and/or time. The former approach is often pursued in
computer graphics, where a global model is necessary to capture effects such as mutual illumination or
cast shadows. However, such models are not suitable for inference, since their parameters (often infinite-
dimensional) cannot be uniquely inferred from the data. For instance, the complex appearance of sea
waves can be attributed to a scene with simple reflectance and complex geometry, such as the surface of
the sea, or with simple geometry and simple reflectance, for instance a mirror reflecting the radiance of
a complex illumination pattern.

Since a “physically correct” model of the shape, motion and appearance of complex scenes cannot be
inferred, one can resort to modeling visual complexity in terms of statistical variability from a nominal
model – best if such a model contains all and only the parameters that can be identified. The simplest in-
stance of this program is to use linear statistical analysis to model the variability of a dataset as an affine
variety; the “mean” is the nominal model, and a Gaussian density represents linear variability. This
is done, for instance, in Eigenfaces [17] where appearance variation is modeled by a linear Gaussian
process, in Active Shape Models [9, 7] where shape variation is represented by a Gaussian Procrustean
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density, and in Dynamic Textures [11], where motion is modeled by a Gaussian density. Active Ap-
pearance Models (AAM) [9], or linear morphable models [18], go one step beyond in combining the
representation of appearance and shape variation into a conditionally linear Gaussian process. Natu-
rally, one could make the entire program more general and non-linear by “kernelizing” each step of the
representation [16] in a straightforward way.

In this paper we seek to expand this program andmodel the statistics of data segments that exhibit
spatio-temporal stationarity using conditionally linear processes for shape, motion and appearance.In
other words, rather than modeling only appearance (eigenfaces), only shape (active shape models) or
only motion (dynamic textures), using linear statistical techniques, we model all three simultaneously.1

Therefore, our work could be thought of as extending AAM’s to the temporal domain, or extending
dynamic textures to temporal variations of the domain.

Note that, as we have suggested, there is ambiguity in how these three factors interact: We could
attribute all the responsibility for the variation of a dataset to changes in appearance (i.e. the range of
the image), or – under suitable conditions2 – to changes in geometry (i.e. transformations of the domain
of the image).We are interested in developing a modeling framework where a complexity cost dictates
the “modeling responsibility” of each factor.

Unlike traditional AAM’s, we do not use “landmarks,” and our work follows the lines of the more
recent efforts in AAM, such as the work of Baker et al. [6] and Cootes et al. [10].

In Section 3 we formulate the problem in a variational framework, and in Section 3.1 we propose a
numerical solution using finite-element methods. This provides us with a principled modeling frame-
work where physical priors (stiffness) can be easily imposed, yielding an automatic technique for model
selection. We also impose photometric priors implicitly by the use of an explicit dynamical model of
appearance, akin to dynamic textures [11].

Our models can be used to support detection (segmentation), classification (recognition) as well as
simulation (synthesis) tasks. We illustrate the power of the models using the latter criterion, measured
using prediction error, together with the overall complexity of the model. We compare our results with
existing models, and show significant improvement in both fidelity (RMS error) and complexity (model
order).

2. Dynamic Active Appearance
We propose to jointly model the variability in geometry (shape), photometry (appearance) and dynamics
(motion) of a scene as a conditionally linear process. Before doing that, however, we must define a
nominal, or “mean,” model. This has to be identifiable, in the sense that all of its parameters have to be
uniquely determinable given sufficiently exciting data.

We could start with an approximation of a physical model, for instance a family of deforming surfaces
St : Ω ⊂ R2 → R3, viewed from a moving viewpointgt ∈ SE(3), reflecting energy via a bi-directional
reflection distribution (BRDF), under a certain illumination. Unfortunately, it is trivial to show that this
model cannot be identified, as the counterexamples in the previous section illustrate. Indeed, even if
we assume that the scene is Lambertian, so the BRDF can be represented by an albedoρt : St → R+,
but allow arbitrary illumination, we cannot infer the model uniquely [8]. More in general, illumination

1Eventually this will have to be integrated into a higher-level spatio-temporal segmentation scheme, but such a high-level
model is beyond our scope, and here we concentrate in modeling and learning each segment in isolation.

2When the dataset can be represented as the transitive action of a group of deformations of the domain of the image.
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and reflectance play exchangeable roles (a consequence of Helmholtz reciprocity principle [19]), and
therefore any physical model with an explicit illumination other than ambient (constant) would be an
overkill for our purpose. Therefore, we will start by a simple Lambertian scene in ambient illumination
as our nominal model. Deviations from this model in terms of shape, appearance and motion will be
represented statistically, as we describe in the next section.

2.1. Derivation of the nominal model
Under the assumptions discussed above, the intensity of the image at positionxt and timet can be written
asIt(xt) = ρt(p), p ∈ St wherext = π(gtp) andπ : R3 → R2 is the canonical perspective projection.
To simplify this model we can parameterizeSt : Ω ⊂ R2 → R3; x 7→ St(x). This already highlights the
ambiguity in shapeSt and motiongt, since we only measure their composition, and we could attribute
the variability in the image to either factor. Therefore, we lump them intowt

.
= gtSt : Ω → R2. Then,

the reader will notice the ambiguity in shapeSt and appearanceρt in It(xt) = ρt(St(x)), so again we
could attribute image variation to either factor. With a bad abuse of notation, we renameρt

.
= ρt ◦ St

(note that the domain ofρt is nowΩ ⊂ R2, rather thanSt ⊂ R3). We can then rewrite the model as

{
It(xt) = ρt(x), x ∈ Ω ⊂ R2

xt = wt(x), t = 1, 2, . . . , T
(1)

which is reminiscent of deformable templates, except that here we do not know the templateρt. If
we think of an image as a function with a domainΩ and a rangeR+, we have that shape and motion
are warped together in the domain deformationwt, and shape and appearance are merged in the range
deformationρt. Naturally, there is ambiguity even between these two factors, as one can easily see by
substitutingIt(xt) = ρt(w

−1
t (xt)), xt ∈ wt(Ω), assuming the domain deformation to be homeomorphic,

from which one can see that all the modeling responsibility could be delegated towt, yielding the notion
of deformable templates, or toρt. Recently Miller and Younes have proposed various joint models [15],
and so have Fitzgibbon and Zisserman in their work on the joint manifold distance [12]. We will seek
for complexity to dictate the assignment of modeling responsibility toρt andwt, as we explain in the
next section.

2.2. Variability from the nominal model
Rather than representing the deviation from Lambertian reflection with a BRDF, the deviation from rigid
motion with some physical deformation model, we use a statistical model, indeed the simplest possible
one, which corresponds to assuming that the variability of shape, motion and appearance is conditionally
linear. This means that shape is modeled as a Gaussian shape space; given shape, appearance variation is
modeled by a Gaussian distribution, and given shape and appearance, motion is modeled by a Gaussian
distribution in the joint representation:

wt(x) = w0(x) + W (x)st, x ∈ Ω (2)

wherew0 : R2 → R2 andW : R2 → Rk are vector- and matrix-valued functions respectively. Similarly,
we assume that

ρt(x) = ρ0(x) + P (x)αt, x ∈ Ω (3)
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whereρ0 : R2 → R+ andP : R2 → Rl. Herest ∈ Rk andαt ∈ Rl are the shape and appearance
parameters respectively. They, in turn, can be modeled by a dynamical system, so we assume that there
exist suitably sized matricesA,B, C and a Gaussian process{ξt} with initial conditionξ0 such that





ξt+1 = Aξt + nt nt ∼ N (0, Q)[
st

αt

]
= Cξt

(4)

wherent is a white and zero-mean Gaussian process with a covarianceQ.
Note that traditional AAM’s assume thatx ∈ {x1, . . . , xN}, a set of “landmark points” in (2), and

then extend it by interpolation toΩ in order to perform linear statistical analysis in (3). Baker et al. [6]
have proposed an extension where (2) is performed onΩ, and we will comment on the differences in the
next section.

3. Learning
Given It(xt), xt ∈ wt(Ω), learning the model amounts to determining the functionsw0(·) (mean de-
formation),W (·) (principal warps),ρ0(·) (mean template),P (·) (principal components), the dynamical
model parametersA,C and covarianceQ that minimize a discrepancy measure between the data and the
model. In formulas, we are looking for





arg minw0,W,ρ0,P,A,C,Q

∫
Ω

∑
t(It(wt(x))− ρ(x))2 dx

subject to (1), (2), (3), (4) and∫
Ω

P.i(x)P.j(x) dx = δij =
∫

Ω
W.i(x)W.j(x) dx

(5)

in addition to minimizing additional regularizing terms for the functionsw0(·),W.i(·), ρ0(·), P.i(·) to
guarantee that the problem is well-posed. The last set of constraints impose orthogonality of the shape
and appearance bases, and could be relaxed under suitable conditions. Needless to say, this is a tall order.
In the rest of this section we show how to reduce this problem to finite dimensions using finite-element
methods (FEM), which provides with a straightforward way to regularize the unknowns. Once the
learning part is done, modeling is straightforward since the spatio-temporal statistics of a data segment
are now captured by the finite-dimensional parametersαt, st which are easy to be determined by using a
chain of singular value decompositions (SVD’s).

3.1. Solving the learning problem
Solving problem (5) entails performing a minimization in an infinite dimensional space. In order to
avoid dealing with such a complicated problem, in this section we describe an alternating minimization
procedure, together with a reduction of the problem to a minimization in a finite dimensional space.

The first step of the optimization starts by assuming thatw0(x), W (x), andW τ
1 = [w1(x), · · · , wτ (x)]

are known, and we are interested in solving the following problem

arg min
ρ0,P,α

∫

Ω

τ∑
t=1

(It(wt(x))− ρ0(x)− P (x)αt)
2 dx . (6)
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Note that during the first iteration all the modeling responsibility is delegated to the appearanceρt(x),
which means thatW (x) = 0,∀x ∈ Ω, also note that one can assume, without loss of generality, that
x = w0(x), ∀x ∈ Ω.

The minimization problem (6) is linear, and can readily be solved in closed form, once a model
selection criterion has been chosen. More precisely, the nominal appearanceρ0 can be computed as the
sample mean of the images warped to the domainΩ:

ρ0(x) =
1

τ

τ∑
t=1

It(wt(x)) , x ∈ Ω . (7)

Then, after removing the nominal appearance, one can compute the principal components of the dataset
[I1(wt(x)), · · · , Iτ (wt(x))], that we indicate withUρ(x) : R2 → RT (computationally, this can eas-
ily be done by performing a SVD of the dtaset), so that one can write[I1(wt(x)), · · · , Iτ (wt(x))] =
Uρ(x)ΣρV

T
ρ , whereVρ ∈ Rτ×τ is a unitary matrix, andΣρ ∈ Rτ×τ contains the singular values

σρ,1 ≥ σρ,2 ≥ · · · ≥ σρ,τ , in its diagonal.
At this point, in order to estimateP (·), one needs to select the dimensionality of the appearance state

αt. Since we are interested in setting up a procedure that automatically attributes the percentage of
modeling responsibility of the appearance and the shape, this is a delicate step. We propose to perform
automatic model selection of the appearance by looking at the energy of the principal componentsUρ(·).
In more detail, we compute the normalized energyσ̃ρ,i = σρ,i/

∑τ
j=1 σρ,j, and defineP (·) to be the

collection of principal components with normalized energy higher than a certain thresholdγρ:

{
l = maxi{i|σ̃ρ,i ≥ γρ} ,
P (x) = [Uρ,1(x), · · · , Uρ,l(x)], x ∈ Ω .

(8)

This way of doing model selection is very similar to model selection techniques that have been used for
long time within the system identification community [1].

Once the number of principal componentsl is known, one can estimate the appearance stateατ
1 =

[α1, · · · , ατ ] by simply computing the following matrix product

ατ
1 = Σρ,1:l,1:lV

T
ρ,:,1:l , (9)

where here we have made use of Matlab notation to indicate the selection of the firstl columns and rows
of Σρ, and the firstl columns ofVρ.

The second step of the optimization starts by assuming thatρ0(x), P (x), andατ
1 are known, and we

are interested in solving the following problem

arg min
w0,W,s

∫

Ω

τ∑
t=1

(It(w0(x) + W (x)st)− ρt(x))2 dx . (10)

To simplify this complex minimization, we decide to split it in two steps. In the first one we will solve
the following problem:

arg min
w

∫

Ω

τ∑
t=1

(It(wt(x))− ρt(x))2 dx , (11)
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which will allow us to estimatew0(x) andW (x), while in the second one we will estimate the warping
statesτ

1 = [s1, · · · , st] by solving

arg min
s

∫

Ω

τ∑
t=1

(It(w0(x) + W (x)st)− ρt(x))2 dx . (12)

We are going to discuss the minimization (11) and (12) in the following two sections respectively.

3.1.1 Estimation of the nominal and principal warps

In solving problem (11) we are interested in guaranteing that: (a)wt(x) is a homeomorphism inx, and
this is because in (1) we require the warping to be invertible as it cannot handle occlusions; (b)wt(x)
varies smoothly in time, as we expect that two adjacent images of a video sequence have not changed
much (and this is in accordance with (4)); (c)wt(x) is Guaussian distributed around the nominal warp
w0(x), and this is to satisfy (2), and partly (4). It is obvious that none of the three conditions (a), (b), and
(c) are guaranteed to be satisfied if we minimize the functional in (11) as it is, from which the need for
a regularization.

To regularize the functional in (11) we view the problem of estimating the warpwt(x) as a three-
dimensional stress analysis problem, where we consider the set of points{(x, t) | x ∈ Ω, t ∈ [1, τ ] ⊂
R} as a three-dimensional Euclidean space filled with a homogeneous isotropic linear elastic material.
In absence of external loads, each particle located at a point(w0(x), t) is in equilibrium. Under this
condition we have(wt(x), t) = (w0(x), t), ∀ (x, t). In presence of external loads with a potential
energy given by the functional in (11), a particle located in(w0(x), t) moves to(wt(x), t), and is subject
to a displacementu(x, t)

.
= [wT

t (x)− wT
0 (x) 0]T . This displacement generates a strain in the structure

that is given byε = [∂u1/∂x1 ∂u2/∂x2 0 ∂u1/∂x2 + ∂u2/∂x1 ∂u1/∂t ∂u2/∂t]T , which increases the
total potential energy of the system by an amount of1/2

∫
Ω

∫ τ

1
εT Dε dtdx, whereD is an elasticity

matrix containing the appropriate material properties [13].
The problem of estimating the warpingwt(x) can therefore be solved by minimizing the total potential

energy given by the following functional
∫

Ω

∫ τ

1

(It(wt(x))− ρt(x))2 dtdx +
1

2

∫

Ω

∫ τ

1

εT Dε dtdx , (13)

where, for notational consistency, the summation int of (11) has been replaced with an integral. The first
part of the functional obviously represents the data fidelity term, while the second part is a regularization,
or model prior term.

Unlike problem (6), minimizing (13) entails a non-linear minimization in an infinite dimensional
space. To reduce the problem to a non-linear minimization in a finite dimensional space, we use finite-
element methods [13]. Using this approach we discretize the structure under consideration into a collec-
tion of finite elements connected to each other at several nodes. Then, the displacementue(x, t), inside
each elemente, is approximated by a function of the nodal displacementsve−v0e, wherev0e is the nodal
position at equilibrium andve is the new nodal position. More preciselyue(x, t) = Ne(x, t)(ve − v0e),
whereNe(x, t) is the so called shape function matrix, and the elemental strain vectorεe can be ex-
pressed in terms of the nodal displacements asεe = Be(ve − v0e), whereBe contains appropriate
derivatives of the shape functions. Finally, the strain energy stored in the element can be written as
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1/2
∫

vol
εT

e Dεe dtdx = 1/2(ve − v0e)
T Ke(ve − v0e), whereKe =

∫
vol

BT
e DBe dtdx is the so called

element stiffness matrix, and the total strain energy becomes

1

2

∫

Ω

∫ τ

1

εT Dε dtdx =
1

2

∑
e

(ve − v0e)
T Ke(ve − v0e)

=
1

2
(v − v̄0)

T K(v − v̄0) (14)

whereK =
∑

e K
(aug)
e is the global stiffness matrix obtained by summing the appropriately augmented

elemental stiffness matrices and which is proved to be positive definite. The vectorvT = [vT
1 , · · · , vT

τ ] is
the global nodal position vector, where we ordered the nodes in such a way thatvt contains the positions
of all the nodes that are present in the time slicet, since it is there where eventually we will allow the
nodal points to lie. FinallȳvT

0 = [vT
0 , · · · , vT

0 ] since at equilibrium we require every time slice to have
the nodal positions to lie in the same place, and this is required to satisfy condition (c).

With this framework in place it becomes natural to choose a triangular prism as shape of the basic
elemente. In this way,vt in the time slicet, or image plane at timet, will represent the vertex locations
of a triangulated mesh that uniquely identify a piecewise affine warp. Withw0(x; v0) we indicate the
warping fromΩ to a nominal domain identified byv0, andwt(x; vt) indicates the warping fromΩ to a
domain identified byvt (see [14] for an accurate description of the implementation of a piecewise affine
warping map).

After this discretization, in lieu of minimizing the functional (13), we will concentrate on the following
non-linear optimization problem

arg min
v

∫

Ω

τ∑
t=1

(It(wt(x; vt))− ρt(x))2 dx +
1

2
(v − v̄0)

T K(v − v̄0) , (15)

that can efficiently be solved iteratively by using the so called inverse compositional image alignment
algorithm described in [4, 5], while its modifications for the case that handles priors can be found in [3].

During the iteration of the inverse compositional algorithm, there is the need to invert the Hessian
matrix, which one can show having the following expression:




H1 0
.. .

0 Hτ


 +




K1 K2 · · · Kτ

KT
2 K1

. ..
...

...
.. . . .. K2

KT
τ · · · KT

2 K1


 . (16)

The first term is a block diagonal matrix, and each block, given by the following expressionHt =∫
Ω
(∂wt/∂vt)

T∇ρt
T∇ρt∂wt/∂vt dx, is symmetric and positive definite. The second term is a symmetric

positive definite block Toeplitz matrix. Given the lack of an efficient algorithm for the computation of the
inverse of the Hessian, if the number of finite elements in the structure is too big, computing the inverse
of (16) could become a problem. On the other hand, it is possible to reduce the complexity of the prior
(14), and assume no dependency between deformations of the meshes at different time instants. This
assumption corresponds to imposingK2 = · · · = Kτ = 0. The main advantage of using this reduced
prior is computational efficiency, because one can run the inverse compositional algorithm image by
image, and not on the entire image, more importantly the Hessian that needs to be inverted to process
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the image at timet becomes3 Ht + K1. The main drawback instead, is the fact that the prior does not
impose a smooth variability in time of the warpwt(x). However, since the regularization that we are
going to describe in the next section addresses exactly this issue, not imposing time smoothness at this
stage is a problem that can be overcome in most of the cases.

Once we obtain an estimate forv, we proceed by updating the nominal warp, and this can be done by
computing the following sample mean

w0(x) =
1

τ

τ∑
t=1

wt(x; vt) . (17)

To compute the principal warpsW (·), once we remove the nominal warp from the datasetW τ
1 , one

can compute its singular value decompositionUw(x)ΣwV T
w , whereVw ∈ Rτ×τ is a unitary matrix, and

Σw ∈ Rτ×τ contains the singular valuesσw,1 ≥ σw,2 ≥ · · · ≥ σw,τ , in its diagonal. In order to estimate
W (·), one needs to select the dimensionality of the shape statest. As we did for the estimation of
P (·), we perform automatic model selection of the shape by looking at the normalized energy of the
principal componentsUw(·). If σ̃w,i = σw,i/

∑τ
j=1 σw,j is the normalized energy, we defineW (·) to be

the collection of principal components inUw(·) with normalized energy higher than a certain threshold
γw: {

k = maxi{i|σ̃w,i ≥ γw} ,
W (x) = [Uw,1(x), · · · , Uw,k(x)], x ∈ Ω .

(18)

Once the number of principal warpsk is known, one can obtain a first estimate of the appearance state
sτ
1 by simply computing the following matrix product (in Matlab notation)

sτ
1 = Σw,1:k,1:kV

T
w,:,1:k . (19)

3.1.2 Estimation of the shape state and dynamic parameters

At this stage the estimate of the shape statesτ
1 needs to be updated as a consequence of the fact that

w0(x) and W (·) are known. Moreover, we are interested in learning a state in such a way that its
temporal statistics is second-order stationary as we plan to model it with a linear dynamical system. In
other words, the minimization of (12) has to be done subject to the prior model (4). To this end, we
estimatesτ

1 by solving the following problem

arg min
s

∫

Ω

τ∑
t=1

(It(w0(x) + W (x)st)− ρt(x))2 dx +
τ−1∑
t=1

‖ξt+1 − Aξt‖2
F . (20)

Where the prior aims at minimizing the Frobenius norm of the residuals. Again, this minimization can
be performed by using the inverse compositional algorithm [4]. Note that at each step of the algorithm,
the matrixA needs to be estimated as it appears in the derivative of the prior. Given the limited space,
we omit the derivation of the prior derivative, which is easy but tedious as it involves tensor algebra
computations. Suffices to say that the matrixA is estimated via least squares, which means that, if
ξt2
t1 = [ξt1 , ·, ξt2 ], thenA is computed by the following expression

A = ξτ
2ξτ−1

1
T
(ξτ−1

1 ξτ−1
1

T
)−1 ; (21)

3The matrixK1 is the stiffness matrix for the case of an elastic plane subject to stress, and its computation, based on a
decomposition in triangular elements, can be found in many standard books [13].
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Sequence l: PCA l: AAM k: AAM RMSE1: PCA RMSE2: PCA RMSE3: AAM

Test 4 2 3 7.3626 9.9951 2.3870
Flowers 22 19 6 4.0272 4.4273 4.1290
Candle 11 7 7 2.1146 2.9134 2.1484
Duck 16 11 6 1.6801 1.8580 1.6001
Flag 18 10 8 2.9926 3.6392 3.2491

Table 1: First three columns: dimensions of the state space by using PCA (dynamic textures), dimensions
of the appearance state, dimensions of the shape estate. Last three columns: root mean square error per
pixel for two PCA models and the active appearance model.

while the covariance of the driving noisent can be computed as

Q =
1

τ − 1
(ξτ

2 − Aξτ−1
1 )(ξτ

2 − Aξτ−1
1 )

T
. (22)

Note that in this simple exposition we have implicitly assumed that the matrixC is the identity matrix.

4. Results
In this section we will briefly describe the experiments we did to validate both the learning procedure
and the correctness of the proposed model.

To validate the learning procedure, figures (1) and (2) show the results on a synthetic sequence. This
sequence has been created by the nominal appearance and appearance components depicted in the row
(a) of figure (1), then a random stationary motion has been applied. The convergence of the learning
procedure is better illustrated by figure (2) (a) and (b). The first plot shows the evolution of the appear-
ance normalized energy{σ̃ρ,i}, while the second shows the evolution of the shape normalized energy
{σ̃w,i}. As the learning approaches convergence, the dimensions of the appearance statel and the shape
statek, converge to the right values, namely 2 for the appearance, and3 for the shape, since the square
is subject to a planar rigid motion (see movie uploaded with the submission). Figure (1) also shows the
estimated nominal appearance, appearance components (row (b)), and shape components (middle row).

Table (1) shows how well the model can represent the original dataset for a given dimensionality of
the models, and for five video sequences. The root mean square errors RMSE1 is the reconstruction
error per pixel when the simple PCA is used, while RMSE3 is the reconstruction error per pixel when
our active appearance model is used. The relationship between the two models is established by the fact
that the dimensionality of both of them was automatically computed by choosing the same appearance
energy thresholdγρ. On the other hand, the error RMSE2 was computed by retaining the same number
of principal components that are retained in the active appearance model.

Finally, we validate the ability of the model, and learning procedure to capture the spatio-temporal
information carried by a video sequence by using the model to extrapolate new images. For a sequence
of flowers, a candle, a toy duck, and a flag, figure (3) shows one frame of the original sequence, the same
frame with the superimposed grid identified byvt, one frame synthesized by using PCA (that is a sample
synthesized by using dynamic textures [11]), and a frame synthesized with the new active appearance
model (see movie uploaded with the submission).
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(a)

(b)

(c)

(e)

(f)

(g)

Figure 1: Top to bottom: (a) nominal appearance and appearance components (ground truth); (b) nom-
inal appearance and appearance components (estimated); (c) mean and first two principal components;
(d) shape components (estimated); (e) original sequence; (f) synthesis with PCA (dynamic textures); (g)
synthesis with the active appearance model.

5. Conclusions
We have presented a model for portions of image sequences where shape, motion and appearance can
be represented by conditionally linear models. These capture segments that exhibit certain statistical
stationarity properties in space and/or time, and can be found by a segmentation procedure.

Our approach can be though of as extending the work on Active Appearance Models [6, 9] to the
temporal domain, or extending dynamic textures [11] to the spatial domain.

We have presented a variational formulation of the problem, and an efficient computational solution
that uses standard numerical approaches (finite-element methods).

We have illustrated the modeling power of our approach in terms of extrapolation power (prediction-
error) and uploaded numerous movies to qualitatively display the behavior of these models during syn-
thesis.
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(b)

Figure 2: (a) evolution of the appearance energy,γρ = 0.05 (solid line represents convergence); (b)
evolution of the shape energy,γw = 0.05 (solid line represents convergence)

(a)

(b)

(d)

(c)

Figure 3: Top to bottom: (a) flowers sequence, (b) candle sequence, (c) toy duck sequence, (d) flag
sequence. Left to right: original frame, original frame with meshvt, synthesized frame with PCA,
synthesized frame with the active appearance model. (See the movie uploaded with the submission.)

11



References

[1] K.S. Arun and S.Y. Kung. Balanced approximation of stochastic systems.SIAM J. on Matrix Analysis and
Apps., 11(1):42–68, January 1990.

[2] The Authors. Technical report.

[3] S. Baker, R. Gross, and Matthews I. Lucas-kanade 20 years on: A unifying framework: Part 4. Technical
Report CMU-RI-TR-04-14, CMU, Pittsburgh, PA, February 2004.

[4] S. Baker and I. Matthews. Equivalence and efficiency of image alignment algorithms. InProc. of CVPR,
volume 1, December.

[5] S. Baker and I. Matthews. Lucas-kanade 20 years on: a unifying framework.Int. J. Computer Vision,
56(3):221–255, 2004.

[6] S. Baker, I. Matthews, and J. Schneider. Image coding with active appearance models. Technical report,
Carnegie Mellon University, The Robotics Institute.

[7] T. K. Carne. The geometry of shape spaces.Proc. of the London Math. Soc. (3) 61, 3(61):407–432, 1990.

[8] H. Chen, P. Belhumeur, and D. Jacobs. In search of illumination invariants. Technical report, Yale University
and Princeton, Department of Physics, CS, EE and NEC Research Institute.

[9] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. InProc. of the Eur. Conf. on Comp.
Vis., pages 484–496, 1998.

[10] T.F. Cootes, S. Marsland, C.J. Twining, K. Smith, and C.J. Taylor. Groupwise diffeomorphic non-rigid
registration for automatic model building. InProc. ECCV, May.

[11] G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto. Dynamic textures.Int. J. Computer Vision, 51:91–109,
2003.

[12] A. W. Fitzgibbon and A. Zisserman. Joint manifold distance: a new approach to appearance based clustering.
In Proc. IEEE Conf. on Comp. Vision and Pattern Recogn., 2003.

[13] T. J. R. Hughes.The Finite Element Method - Linear Static and Dynamic Finite Element Analysis. Dover
Publishers, New York, 2000.

[14] I. Matthews and S. Baker. Active appearance models revised.Int. J. Computer Vision, 60(2):135–164, 2004.

[15] M. I. Miller and L. Younes. Group action, diffeomorphism and matching: a general framework. InProc. of
SCTV, 1999.
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