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Abstract

We present a technique for local image representation that is invariant to viewpoint for scenes with arbi-
trary non-planar shape. We show that generic viewpoint invariance can be achieved, under suitable condi-
tions, although the resulting invariant is not shape-discriminative. Our results serve both to validate existing
approaches to local feature detection and description, as well as to complement them where they are not
applicable. We illustrate our approach on images of 3-D corners where existing approaches fail.
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1 Introduction

Visual classification plays a key role in a number of applications and has received considerable attention in
the community during the last decade. The fundamental question is easy to state, albeit harder to formalize
analytically: when do two or more images “belong to the same class”? A class reflects some commonality
among scenes being portrayed by the images in question [14, 17, 30]. Classes that contain only one element
are often called “objects,” in which case the only variability in the images is due to extrinsic factors – the
imaging process – but there is no intrinsic variability in the scene. Extrinsic factors include illumination,
viewpoint, and so-called clutter, or more generally visibility effects. Classification in this case corresponds to
recognition of a particular scene (object) in two or more images. In this manuscript we restrict ourselves to
object recognition. While this is considerably simpler than classification in the presence of intrinsic variability,
there are some fundamental questions yet unanswered: What is the “best” representation for recognition? Is
it possible to construct features that are viewpoint-invariant for scenes with arbitrary (non-planar) shape? If
so, are these discriminative? Under what conditions can illumination invariance be achieved? In fact, do we
even need a notion of “feature” to perform recognition? We wish to contribute to formalizing these questions,
and where possible give precise answers. Our contributions are highlighted as (a)-(e) in Section 1.3.

1.1 Generalized correspondence

The simplest instance of our problem can be stated as follows: When do two (or more) images portray
(portions of) the same scene? Naturally, in order to answer the question we need to specify what is an
image, what is a scene, and how the two are related. We will make this precise later; for now, we just use
a formal notation for the image I and the scene ξ. An image I is obtained from a scene ξ via a certain
function(al) h, that also depends on certain nuisances ν of the image formation process, namely viewpoint,
illumination, and visibility effects. With this notation we can formalize the question above: we say that two
images are in correspondence1 if there exists a scene that generates them

I1 ↔ I2 ⇔ ∃ ξ |

{
I1 = h(ξ, ν1)
I2 = h(ξ, ν2)

(1)

for some nuisances ν1, ν2. Matching, or deciding whether two or more images are in correspondence, is
equivalent to finding a scene ξ that generates them all, for some nuisances νi, i = 1, 2, . . . . These (viewpoint,
illumination, occusions, cast shadows) could be estimated explicitly as part of the matching procedure, akin
to “recognition by reconstruction,” or they could be factored out in the representation, as in “recognition

1Note that there is no locality implied in this definition, so correspondence here should not be confused with point-
correspondence.
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using features” (see Appendix A for further details). But what is a feature? and why do we need it? We will
address these questions in Section 2.2.

In the definition of correspondence the “=” sign may seem a bit strong, and it could certainly be relaxed
by allowing a probabilistic notion of correspondence. However, even with such a strong requirement, it is
trivial to show that any two images can be put in correspondence. For instance, choose the scene to be
a mirror surface (e.g. a sphere), the viewpoint to be arbitrary, and the illumination be a larger sphere
where each image is back-projected via the mirror surface. This example should convince the reader that the
notion of correspondence is meaningless without additional knowledge on the scene and the nuisance. Such
knowledge could come in probabilistic form, e.g. as a prior distribution on “likely” scenes and nuisances, or
in physical form, e.g. via assumptions on reflectance and illumination. In the former case, assuming that
we have prior distributions dP (ν), dP (ξ), we could tune up the definition of correspondence as a Bayesian
decision.2 While this is formally easy, in practice this is unfeasible because even for the simplest scenes we
do not know how to endow the space of shapes, reflectance functions, illumination functions with a metric
and a probabilistic structure, let alone actually computing the likelihood ratio. Therefore, we choose to make
physical assumptions, all and only those that allow us to give a meaningful answer to the correspondence
problem.

1.2 Lambertian scenes in ambient light

While global correspondence can be computed for scenes with complex reflectance, under suitable assump-
tions [26], local correspondence cannot be established in the strict sense defined by (1) unless the scene is
Lambertian, and even then, it is necessary to make assumptions on illumination to guarantee uniqueness
[7]. In particular, one can easily verify following [7] that if the illumination is assumed to be constant (am-
bient) then local correspondence can be established. We therefore adopt such assumptions and relegate all
non-Lambertian effects to “noise.”

We can now make the formal notation above more precise: We represent an image as an array of positive
numbers; for simplicity we neglect quantization in the pixels and gray levels and represent images in a
continuum: I : D ⊂ R2 −→ R+; x 7→ I(x). A Lambertian scene is represented by a collection of (piecewise
smooth) surfaces embedded in R3, which we indicate collectively by S ⊂ R3, that support a positive-valued
function ρ : S → R+ with bounded variation, called albedo. So, the scene is described by ξ = {S, ρ} where
both shape and albedo are infinite-dimensional objects (functions).

The scene and the image are related by an image formation model. This requires specifying a viewpoint,
i.e. a moving reference frame gt ∈ SE(3), where SE(3) denotes a Euclidean reference frame (rotation and
translation relative to a fixed reference frame), and an illumination. In case of ambient illumination, we have
a linear scaling of the image αt and an offset βt, as one can easily verify. The overall model can thus be
written as {

It(xt) = αtρ(p) + βt + nt(x)
xt = π(gtp), p ∈ S

(2)

where π : R3 → R2 is the perspective projection and nt is a “noise” term that includes all the nuisances that
are not explicitly modeled. The nuisance proper here is limited to viewpoint and illumination, ν = {gt, αt, βt}.
We have so far neglected visibility effects (occlusions and cast shadows), but we will come back to it. Note
that the equation above is reminiscent of deformable templates [50, 9, 18], although here we do not know the
templates. Correspondence is also naturally related to wide-baseline matching [43, 15, 15, 10, 28]. From now
on we will restrict our attention to the model (2).

1.3 State of the art and our contributions

One of the questions addressed in this manuscript is whether it is possible to construct viewpoint and
illumination invariants, and whether such invariants are discriminative. Belhumeur and coworkers [7] showed
that even for Lambertian scenes there exist no discriminative illumination invariant. We show that, if one

2The likelihood ratio is L(I1, I2) = p(I1, I2|H0)/p(I1, I2|H1) ≥ τ where H0 is the null hypothesis (correspondence) and H1 is
the alternative (different scenes); τ is a threshold that depends on the cost of wrong decisions and priors on each hypothesis. The
component densities can be written as p(I1, I2|Hj) =

R
p(I1 − h(ξ1, ν1))p(I2 − h(ξ2, ν2))dP (ξ1, ξ2|Hj)dP (ν1)dP (ν2), assuming

independent nuisances.
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assume ambient illumination, then (a) illumination invariants can be constructed, and indeed this is often
done in practical (local) correspondence algorithms (Section 2.3).

On viewpoint invariance, Burns et al. [5] showed that there do not exist generic viewpoint invariants.
This statement, however, is misleading, since it refers to collections of points in space, with no photometric
signature associated to them. We show that (b) viewpoint invariance can be achieved for scenes with arbitrary
shape, regardless of their albedo, under suitable conditions (Section 2.1). As a corollary, however, we show
that (c) any viewpoint invariant necessarily “kills” shape information, and therefore discrimination has to
occur based solely on the photometric signature (Section 2.1). In deriving our results (a)-(c), we will lay out
a general framework for designing detector/descriptor pairs that (d) allows comparison of existing algorithms
on analytical grounds, in addition to experimental as done in [37]. Finally, we illustrate our theory on a test
case, by introducing (e) a 3-D corner detector/descriptor, and test its performance on scenes where existing
approaches fail (Section 3). So, our work serves to validate existing methods where appropriate, and to
complement them where their applicability is limited.

The topic of this manuscript relates to a vast body of work in low-level image representation, recognition,
wide-baseline matching, segmentation. We will therefore point out relationship throughout the manuscript.

2 Recognition using features

We define a feature to be any image statistic, that is a known vector-valued function(al) of the image:
φ(I) ∈ Rk. In particular, the image itself is a (trivial) feature, and so is the function φ(I) = 0 ∀ I. A feature
φ(I) = ψ({I(x), x ∈ Ω ⊂ D}) where D is the domain of the image, is called a local feature. Obviously, of all
features, we are interested in those that facilitate correspondence between two images I1, I2, or equivalently
recognition of the scene ξ. This requires handling the nuisance ν, either in the correspondence process
(expensive) or by designing features that are invariant with respect to the nuisance. A feature is invariant3

if its value does not depend on the nuisance: φ(I) = φ ◦ h(ξ, ν) = φ ◦ h(ξ, µ) ∀ ν, µ.
As we have mentioned, φ(I) = 0 ∀ I is a feature, and indeed it is an invariant one. Alas, it is not very

helpful in the correspondence process. Therefore, one can introduce the notion of discriminative feature when
two different scenes yield different statistics:4 ξ1 6= ξ2 ⇒ φ ◦ h(ξ1, µ) 6= φ ◦ h(ξ2, ν) ∀ µ, ν. In particular, we
say that a feature is shape-discriminant if scenes with different shape (but possibly identical albedo) result
in different statistics, and similarly for albedo-discriminant.

2.1 Viewpoint invariant features

In the image formation model (2) the nuisance ν comprises viewpoint and illumination. Because of the
assumptions of Lambertian reflection and ambient illumination, a change in the illumination results in an
affine transformation of the albedo. We will discuss in Section 2.3 how to achieve illumination invariance
by normalization. For now, we assume that this has been done, and therefore let αt = 1 and βt = 0 in (2).
In general, invariance to viewpoint and illumination will have to be determined simultaneously.

If we neglect self-occlusion (see below on this issue), we can parametrize the surface S as Ω ⊂ R2 →
R3, x 7→ S(x) for some choice of local coordinates, for instance x = π(p), the perspective projection of p ∈ S
onto the image plane from the viewpoint g = Id (the group identity, see eq. (2)). Since both ρ and S are
unknown, and we only measure their composition through It(xt) = ρ ◦ S(x), with an abuse of notation we
can rename the function ρ .= ρ ◦ S. Similarly, we call wt

.= π ◦ gt ◦ S : Ω ⊂ R2 → R2 the function that maps
the point x to the point xt. This yields the following simplified model:{

I(xt) = ρ(x), x ∈ Ω
xt = wt(x).

(3)

We have dropped the generic “noise” term nt since that will only affect the inference technique, not the
general modeling paradigm and invariance considerations. Excluding self-occlusion and the other visiblity

3The “=” sign can be relaxed to yield a probabilistic notion of invariance (insensitivity relative to the nuisance distribution).
However, since in general we do not have manageable ways to define distributions on the spaces of nuisances, this pursuit is well
beyond our scope.

4This definition can be relaxed as ∃ ξ1 6= ξ2 | φ ◦ h(ξ1, µ) 6= φ ◦ h(ξ2, ν) as proposed in [7].

4



effect, wt is an homeomorphism. Since homeomorphisms form a transformation group, they induce a partition
of the set of images {I(x)} in equivalence classes. Any function that maps I(x) to a unique representative
Î(x) of its equivalence class [I(x)] provides a viewpoint invariant. Moreover, since the resulting invariants
are in one-to-one correspondence with the equivalence classes [I(x)], any other invariant can be expressed as
a function of them. Hence, we can state the following result, that clarifies a fact that is implicitly exploited
by many existing work in the literature, specifically [36, 27, 35, 46] for affine invariance, and [2, 39, 15] for
more general transformations:

Theorem 1 (Viewpoint invariants exist ...) Given an image I of a Lambertian scene ξ with continuous
(not necessarily smooth) surfaces with no self-occlusions, viewed under ambient light, there always exist non-
trivial viewpoint invariants.

This result is at the base of our approach to design 3-D viewpoint-invariant features, and its application will
be illustrated in steps.

Unfortunately, invariant features can never be fully “discriminative”. Indeed, let φ(I) be any viewpoint
invariant statistic of the image I(x). Any image I1(x1) can be obtained by the image formation model (2)
from an object that is either a plane Sa or a curved surface Sb. At the same time, by fixing one surface and
changing the viewpoint, we get a (generally) different image I2(x2). Since φ is viewpoint invariant, we must
have φ(I1) = φ(I2). Therefore I1 and I2 are two different images obtained from two different scenes Sa and
Sb that have the same value of the feature. Formally

Corollary 1 (... but are not shape-discriminant) If φ is a viewpoint-invariant feature, then for any
scene ξ yielding an image I there exists a scene ξ′ with different shape yielding a different image I ′ such that
φ(I) = φ(I ′).

This does not mean that an invariant feature is useless! The albedo “information” is still present, warped
together with shape information, in ρ and Ω.

Visibility and local features. The technical assumption to prove Theorem 1 requires the domain defor-
mation wt to be invertible, which in turn implies that there are no visibility effects such as self-occlusion
or clutter. Clutter is an “adversarial” nuisance (one can always make object A look like object B by
placing object B in front of it), and no analytical results can be proven that will guarantee (worst-case)
invariance to generic clutter. Therefore, we can relax the notion of correspondence by requiring that a given
scene ξ generates at least a (non-empty) subset of each image I1, I2. That is, with an abuse of notation:
I1 ↔ I2 ⇔ ∃ Ω ⊂ D, ξ | ∀ x ∈ Ω : I1(x) = h(ξ(x), ν1), I2(x) = h(ξ(x), ν2).

This brings us to the notion of local feature which is what we will use from now on. The extent of the
domain Ω depends on the visibility boundaries and will be determined by a detector, which is itself a feature
(i.e. a function of the image), as we discuss in Section 2.3.

2.2 Why features?

Before we marry to the notion of feature it is useful to pause: In fact, Rao-Blackwell’s theorem ([47], page
87), adapted to our context, claims that there is no advantage in using features, as opposed to using the entire
data I1, I2. That is, unless we could eliminate the nuisance ν without “throwing away information” on the
scene ξ.5 Unfortunately, Corollary 1 says that this is not possible: in order to achieve viewpoint invariance,
shape information has to be sacrificed. In light of this result, then, does it still make sense to use features?

Posing the correspondence problem as an optimal decision requires marginalizing nuisances, that are
infinite-dimensional unknowns living in spaces that are not easily endowed with a metric (let alone prob-
abilistic) structure. Therefore, unless we are willing to perform recognition by reconstructing the entire
observable component of the scene and its nuisances, the use of invariant statistics seems to be the only
computationally viable option. However, by choosing a viewpoint invariant we are agreeing to give up some
discriminative power, and therefore accept some degradation of recognition performance relative to the op-
timal (Bayes) risk.

5“Throwing away information” in this context means lowering the Bayesian risk associated with the decision task of correspon-
dence. A feature that maintains the Bayesian risk unaltered would be a sufficient statistic (with respect to the correspondence
decision) for the scene ξ.
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2.3 Invariance by canonization

It is immediate to see from (3) that {ρ(x), x ∈ Ω} is the “maximal” invariant feature, in the sense that
any other invariant feature is a function of it (it only depends on the scene, and has no t subscript). Of
course, we do not know ρ nor Ω. So, we start by expressing what we have in terms of what we want:
It(xt) = ρ(w−1

t (xt)), xt ∈ wt(Ω) ⊂ D. Unfortunately, if we take any homeomorphism v : R2 → R2 and
replace ρ(·) with ρ̃(·) .= ρ ◦ v(·), wt(·) with w̃t(·)

.= wt ◦ v(·), and Ω with Ω̃ .= v−1(Ω), we obtain the same
images, and therefore we cannot distinguish {ρ(·),Ω} from {ρ(v(·)), v−1(Ω)}. In other words, what we can
recover from It(xt), xt ∈ D is not the invariant feature φ .= {ρ(x), x ∈ Ω}, but an entire equivalence class
of invariant features: [φ] .= {ρ(v(x)), x ∈ v−1(Ω), v : R2 → R2 a homeo}. Although we may still use the
feature for classification by defining a distance d([φ1], [φ2]) between equivalence classes, this would be not
easier than estimating the nuisance in the first place. The alternative is to identify, for each equivalence
class, a canonical representative, that is a unique element of the class, φ̂, and then define a distance between
feature elements, d(φ̂1, φ̂2).

Feature detectors. A choice of the element φ̂ in the equivalence class [φ] must be made from the available
data, that is It(xt), xt ∈ D. In other words, given an equivalence class [φ], we are looking for a canonical
representative φ̂ = {ρ̂(x), x ∈ Ω̂} where ρ̂ .= ρ(v̂), Ω̂ ⊂ v̂−1(Ω) for some diffeomorphism v̂. More formally,
from the pre-image theorem, we are looking for contra-variant functionals Fi, i = 1, 2, . . ., such that Fi([φ]) =
Fi(x, v,Ω) = ei uniquely determines v̂, and therefore φ̂. Without loss of generality we can choose ei = 0, since
whatever value can be incorporated into the definition of Fi. Furthermore, in the presence of uncertainty,
rather than looking for φ̂ | Fi(φ̂) = 0, we can look for

φ̂
.= arg min

φ
‖Fi(φ)‖ (4)

for some choice of norm. For a suitable choice of the functionals Fi, one obtains all the existing methods
(e.g. Harris [20] 2-D points, DoG [33] and Harris-Laplace [36] 3-D points, second order moments [32, 36],
edge/intesity [15], saliency [27], level set [35] based affine regions, affine omogeneous-texture regions [46]).

Feature descriptors. Once v̂ and Ω̂ have been determined, the statistic It(v−1(x)), x ∈ Ω̂ becomes available.
This is invariant by construction, and we therefore call it, or any deterministic function of it, invariant
descriptor. The result indicates that the local structure of the image around a point can be used to determine
a local “natural” frame. We discuss the consequences of this in Section 2.4.

Once detectors/descriptors have been obtained, matching can be based on just comparing the descriptors
(since the domains have been normalized), or comparing the domains as well, for instance by quantifying the
energy necessary to register them. A combination of the two can also be implemented [38, 16]. As we have
pointed out, fixing w via equations (4) eliminates the dependency on g (the nuisance), but also eliminates
the dependency on S, which is part of the description of the scene. Nevertheless, the resulting residual above
depends on ρ, part of the descriptor. Also note that both w and Ω are unknown.

Now, suppose that the image I does not allow full inference of w via (4), for instance because it does not
contain enough structure (e.g. local extrema) to provide a sufficient number of constraints. This means that,
once the available constraints on w have been enforced via (4), the “residual” is already, by construction,
invariant to w, and therefore g (and S). In the extreme case where I does not allow to infer any part of w,
for instance when I or its statistics are constant, I is already a “descriptor” in the sense that it is invariant
with respect to g.

Illumination invariance. Introducing illumination into the model does not modify the scheme just outlined
for the simple case of ambient illumination and Lambertian scene. In fact, this case corresponds to an affine
transformation of the range of the image, which simply enriches the equivalence class [φ]. Normalization is
trivial for the illumination parameters, since we can choose β̂t =

∫
Ω̂
ρ̂(x)dx and α̂t = std({ρ̂(x) x ∈ Ω̂}).

Naturally inference of the canonical elements (detection) has to be performed simultaneously with respect to
all free parameters, which only increases the computational complexity, but not the conceptual derivation of
the invariant.
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2.4 Hierarchy of detectors/descriptors

The previous section established that the local structure of the image can be used to fix a “natural” frame
via a detector. Any statistic of the image normalized relative to the natural frame is a descriptor. Depending
on the choice of group structure wt, that can range from simple planar translation (which we represent with
a vector T ∈ R2) to infinite-dimensional groups of diffeomorphisms, one can adopt different normalization
techniques.

In particular, corresponding to a geometric stratification of the group structure, one can build a hierarchy
of detector/descriptor pairs. Translation invariance (R2) requires fixing a point T ∈ R2 and assigning
its coordinates to [0, 0]T in the local frame. This is very common, and can be fixed using Harris’ corner
detector [20]. Translation and scale invariance (R3) requires a point with a scale associated with it,
or a rotationally-symmetric intensity profile (e.g. a “blob”). The point is assigned to coordinates [0, 0]T

in the local frame, and the unit is assigned isotropically to 1 in the two coordinate axes. This can be
done by the Harris-Laplace detector [36], or in several other ways eloquently illustrated by Lindeberg [31].
Similarity invariance (SE(2)×R) requires a point, a scale and one direction. The point is assigned to the
origin, the scale to the unit, and the direction to one of the coordinate axes. See for instance [33]. Affine
invariance (A(2)) is well-known, and widely used. An affine invariant detector requires at least 3 points, or
one point and two scaled directions. Schmid and coworkers have compared a number of affine detectors in
their recent work [37]. Any affine-warped statistic, or “co-variant region,” is an affine-invariant descriptor.
Viewpoint invariance, planar shape (H(2)): planar projective transformations require 4 points. They
are usually approximated by affine transformations because the added complexity only provides diminishing
return. Viewpoint invariance, generic shape (SE(3)): here the map w is infinite-dimensional, due
to its dependency on S. The homeomorphism w can be inferred only to the extent where the albedo ρ
exhibits a sufficient degree of variability. We approximate w with a finite-dimensional map, and use a bank
of local filters to determine a number of position, orientation and scale constraints. A variety of models can
be used for the purpose, ranging from thin-plate splines [3, 2] (not a group, however) to polynomials (not
recommended) for the representation of the warp w, and from curvelets [6] and local histogram (e.g. polar
orientation histograms) to semi-global representations such as the sketch [11] for the analysis of the image.
In Section 3 we illustrate this case with a piecewise affine deformation model.

All the detectors based on the invariance properties just outlined allow one to determine a localized frame,
called a co-variant local frame,6 that has a well-defined origin, hence the early nomenclature “feature point”
even though a region Ω is used to determine the frame. However, often an image region Ω contains structure
that is not localized or is repeated regularly. In other words, the frame associated to a certain point is only
determined up to a subgroup which could be either continuous (e.g. the one-dimensional translational group
for the case of an edge) or discrete (e.g. the repetition period for regular textures). In this case, one can
associate the descriptor to any point along the equivalence class determined by the subgroup ambiguity. We
distinguish the following frames: edge in space (SE(3)), fixed by an edge with the associated scale; edge
on the image (SE(2)/R), as a special case of the former when it is not possible to reliably associate a
scale to the edge; homogeneous periodic texture (SE(3)/Z2) when the intensity profile is periodic with
identical period along two spatial dimensions (possibly after warping or normalization). The construction
can be extended for many special cases.

When we do not have a localized frame, the result of the detector is a warped image patch that contains
an intensity profile with symmetries. Any statistic computed from such a profile is a valid descriptor . The
descriptor does not contain any information on the geometry of the scene, like in the case of the localized
frame, but, unlike that case, neither does the detector. Therefore, in such a case one can extend the region
Ω to include all points that admit the same descriptor, i.e. the detector becomes a segmentation procedure.

Finally, one can integrate local descriptors in a global model by enforcing geometric information [30]
(epipolar geometry, or shape statistics), or topological information [14, 17] (graphs of local descriptors).

3 Case study: 3-D corner

As an application of our theory, we develop a descriptor of a new kind of invariant features, corresponding
to “3-D corners”. We design a simple detector that select points where a suitable frame of reference can be

6Even though contra-variant would be a more appropriate name (Section 2.3).
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easily attached. In particular, we focus on points x0 that are projections of corners of the surface S(x). A
corner is a singular point of the object surface and cannot be approximated by a plane. Thus our descriptor
works exactly under the conditions not supported by existing approaches [36, 15] (Figure 1).

3.1 Deformation under viewpoint change

We model a corner as a vertex with n planar faces. Barring occlusions, its image consists of n angular
sectors, projections of the n faces, and a center x0, projection of the vertex. These sectors are separated by
edges, which we represent as vectors vi ∈ R2, i = 1, ..., n. The length of the vectors will be used as a scale
parameter.

When the viewpoint changes, the n faces of the corner are transformed by homographies, which we
approximate by affine warps. This model locally captures the true transformation to an arbitrary degree
of precision, which cannot be done by a single affine transformation as current approaches do. Since the
corner surface is continuous, in the absence of occlusions so is the overall transformation. Thus, the n affine
transformations are not independent and are fully specified by the mapping x0 7→ y0 of the center and the
mappings vi 7→ ui, i = 1, ..., n of the edges (with their scales). Formally, let {χi(x), i = 1, ..., n} be a
partition of R2 in n angular sectors, being χi(x) the indicator function of the i-th sector. We call piecewise
affine transformation of degree n a function w : R2 → R2 given by w(x) =

∑n
i=1 χi(x)Ai(x−x0)+y0, x ∈ R2

where the matrices Ai ∈ GL(2), i = 1, ..., n are chosen so that w(x) is continuous.
Since the deformation of a corner under a viewpoint change is (locally) a PWA, PWAs are the minimal

class of transformations with respect to which the feature has to be invariant, even though any more general
class of transformations would fit. In particular, a PWA of degree m can be used for a corner that has n < m
physical edges, as long as the transformation is estimated consistently.

3.2 Feature detection

The detection process searches for corner structures in the image and attaches a reference frame to them.
While there exist many possible procedures for detecting corners, including sketch primitives [11] or matched
filters [19], our emphasis here is not in proposing yet another detector, but rather in how to arrive at a
viewpoint invariant once a structure has been detected. Therefore, we choose a simple if not somewhat naive
detector, designed to provide directly the structures that we need.

The procedure is articulated as follows. Initally, a set of Harris points [20] X = {x1, ..., xn} is extracted.
These points are used as candidate corners and as evidence for edge-like structures in the image (we use
the fact that some Harris points are located along edges, particularly nearby the edge terminations). The
algorithm checks for each pair (xi, xj) ∈ X2 whether the image portrays an edge connecting xi to xj . Edges
are modeled using the parametric template

T (x, y;w) = sign(y), (x, y) ∈ [0, 1]× [−w,w] (5)

reminds what done in [1]. The template is matched7 to the image by normalized cross correlation (NCC).
Once the set E of edges has been extracted, the procedure attaches a reference frame to each point x0 ∈ X.
All edges connected to x0 are considered: first the localization of each edge is refined using the model (5);
then edges with the same orientation are clustered, because they relate to the same image structure; finally
the edge that best covers the full extension of the underlying image structure is selected within each cluster.
The selection uses an extension of the model (5) which represents explicitly the edge termination.

3.3 Feature canonization

Once a reference frame has been detected, we map it to a canonical configuration. In order to avoid singular
configurations, we enforce the following conditions: (i) if all sectors are less than π radians wide, the normal-
ized frame has n equally wide sectors; (ii) if one of the sectors is wider than π radians, we make this sector
3π/4 radians wide and we fit evenly the others in the remaining π/2 radians8; (iii) if one sector is exactly

7There exists some simple yet effective heuristics that one can use to pre-prune the set of candidate edges and speed-up
significantly the algorithm.

8We do this because no PWA (nor viewpoint) transformation can make the wide sector smaller than π radians
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Figure 1: Affine-invariant descriptors fail to capture non-planar structures: (top) two images of the same
scene with detected regions; (middle and bottom) correspondence established using affine invariant signatures re-
spectively for planar (middle) and non planar (bottom) regions. Several non planar regions are detected by the
low-level detector, but are not matched because of the large discrepancy in the corresponding descriptor, caused by
the non-planar structure of the scene.

π radians wide (T-junction), we delete one edge and we reduce to the former case9. Note that at least two
edges are required to compute the PWA transformation. If a point has less than two edges attached to it, it
is discarded.

These rules fix the canonical reference frame up to a rotation. The rotation can be partially eliminated
by requiring that one edge maps to (1, 0). However, any edge could do, and we are left with a discrete
subgroup of rotations to choose from. If the corner has a sector wider than π radians, we use this to uniquely
identify an edge and eliminate the ambiguity. This is possible because there is at most one such sector and
the property is preserved under viewpoint changes. If all sectors are narrower than π radians, we use the
sector with maximal mean albedo as reference.

3.4 Feature description

Although the canonized features could be compared directly (e.g. by NCC), we compute a descriptor for
each detected feature. This has two advantages: (1) makes the comparison much faster and (2) may absorb
differences in the normalized features due to imprecise detections or unsatisfied assumptions (e.g. the surface
is not Lambertian). Furthermore, most descriptors are insensitive to affine transformations of the albedo, so
that we do not need to normalize explicitly the illumination. In the experiment we use the SIFT descriptor
[33], one of the most widely used [33, 37]. We note however how this descriptor may not be as effective in
our case as is for other kind of features. Indeed our canonized corners have strong oriented structures (the
edges) in fixed position. This makes the SIFT descriptor (which is based on the gradient distribution) less
discriminative.
Unilateral feature descriptors. The detector/descriptor works well under the assumptions we made.
However, we wish to relax the hypotheses that the whole corner image is the projection of a single object.

9We do this because no PWA (nor viewpoint) transformation can change the π radians wide angle.
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Figure 2: Example of mismatched corner. By changing viewpoint we make the pose of a corner of one box
similar to the pose of a corner of the other box. This confuses the affine descriptors.

In fact, many corners are found on the boundaries of objects [48], and some sectors χi of the corner image
may belong to the background. Clearly, we are not supposed to incorporate the background into the feature
if we want to preserve invariance. We solve the problem by computing multiple descriptors for each possible
assignment of the faces to the foreground or the background. In practice, the most common cases (objects
with convex corners) are covered if we do so only for sectors larger than π radians, thereby obtaining no more
than two descriptors for each detected feature.

3.5 Experiments

In the first experiment we explore the domain of applicability of our technique, by showing that it operates
when established detector/descriptor techniques fail. To illustrate our point, we have purposefully chosen
a simple scene (Figure 1 and 2): even on such scenes, most of the current affine-invariant methods fail to
establish correspondence. Also, note that our goal is not to compare our method with existing affine-invariant
schemes, since our method works on top of them. Since, to the best of our knowledge, nobody has presented
viewpoint invariant schemes for non-planar scenes, we cannot do direct comparisons with any existing scheme.

As a typical representative [37] of the class of affine invariant detectors, we selected the Harris-Affine
detector [36]. Figure 1 shows that most of the non-planar detected regions are incorrectly matched using the
affine descriptor: of 186 features detected in the first image, 53 are successfully matched, 68 are mis-matched
because the descriptor variability and 65 are not matched because the low-level detector fails to select the
corresponding region. In contrast, Figure 3 and 4 show the performance of our method on the corners of the
same images: almost all 3-D corners are matched correctly. There is just one mismatch, due to the almost
identical appearance of the exchanged features (last two feature pair in Figure 3), and two missing corners,
which are not extracted by the Harris detector in the very first stage of the algorithm. An exact comparison
with the affine-invariant detector is difficult because the latter finds several times the same structures; roughly
speaking, however, 70% of the mismatches (due to missing features or discrepancy of the descriptor) of the
affine detector are fixed by the “3-D corner” model. As an additional advantage, our method extracts just
one feature for each 3-D structure, while the Harris-Affine detector generates many duplicate detections of
these structures.

In the second experiment we test our method on a more complex scene, made of various objects presenting
a variety of 3-D corners. Figure 5 shows the detected reference frames and the matching pairs. One third
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Figure 3: General viewpoint invariants can match 3-D corners: (top) detected reference frames; (bottom)
matched “3-D features”; (right) examples of canonized features. Most of the “3-D features” that are detected but
mismatched using an affine-invariant descriptor are correctly matched using a more general viewpoint-invariant model,
in this case a “3-D corner.”

Figure 4: A corner matched by the 3-D descriptor but not by the affine one
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Figure 5: Matching example: (top) all the features detected in the first image are connected to their nearest
neighbors in the second image; (bottom) all the features detected on the first image are connected to their nearest
neighbors in the second image and (right) a variety of normalized features. Of 93 detected features, 32 are present
and correctly matched in the second image.

of the detected features in the first image are correctly matched to the corresponding features in the second.
Therefore, the performance is similar to that of the Harris-Affine detector on the planar structures of Figure 1,
but in our case for non-planar structures. Some feature pairs are shown as well: they illustrate the most
typical canonical configurations.

In the last experiment (Figure 6) we test our method on a more challenging scene, where several of our
working hypotheses are not verified. We match two images of an highly non-planar, non-Lambertian scene.
Not only the scene contains many 3-D corners, but these have non planar faces as well. Moreover, the two
images are at two significantly different scales. The figure shows two corners that our method is able to
match nevertheless, together with the corresponding canonized features. Note that the features are quite
different, because of both the reflections and the non planarity of the corner faces. Still, these canonized
features are similar enough to be matched using the SIFT descriptor, illustrating the importance of viewpoint
canonization. As a further example of this fact and of the generality of our framework, we show the same
two corners normalized using a thin-plate spline deformation, estimated by tracking and rectifying the edges.
The matching distances are slightly smaller (0.28 7→ 0.15 and 0.4 7→ 0.36 respectively) using this deformation
as we compensate for the curvature of the edges.
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Figure 6: Matching a challenging scene: two corners matched by our method; (top row) features canonized by a
piecewise-affine transformation; (middle row) features canonized by a thin-plate spline transformation; (bottom row)
features canonized by the Harris-Affine detector. Concert Hall, like all recent Gehry building, is challenging because
severely non-Lambertian, and non-planar. Although the scene does not meet most of our working assmumptions, a
few corners are still matched. The affine descriptor is shown to capture (up to a rotation) the deformation of the 2-D
corner (right pair) but to fail the registration of the 3-D corner (left pair). On the contrary, our descriptor correctly
normalize both cases.
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4 Discussion

Formalizing the simplest instance of the recognition problem makes it immediate to see that features cannot
improve the quality of “recognition by reconstruction,” if that was theoretically and computationally viable.
However, features can provide a principled, albeit suboptimal, solution to the recognition problem: We have
shown that under certain conditions viewpoint and illumination-invariant features can be constructed. Such
features are local image statistics, and can be computed efficiently.

Our effort allows one to compare existing methods for invariant feature detection on a common analytical
footing. Also, our framework opens the grounds for a richer class of detectors/descriptors. As an illustrative
example, we introduce a 3-D corner descriptor that can be employed to establish correspondence when the
state of the art fails because of violation of the local-planarity assumption.

The major drawback of viewpoint invariant features is their inability to capture shape information, thereby
limiting their discriminative power when shape is more important than albedo. We argue that, by making
generic assumptions on the shape, it could be possible to design viewpoint invariant features that preserve
part of the shape information as well.

Appendix

A An image formation model

In order to formalize any vision problem we need a model of the so called image formation process, that is
the process for which images result from the interaction of an imaging device and the surrounding scene.
In this section we introduce the most simple image formation model that is powerful enough to discuss the
problems we are interested in.

A.1 What is the “image” ...

An “image” is just an array of positive numbers that measure the intensity (irradiance) of light (electro-
magnetic radiation) incident a number of small regions (“pixels”) located on a surface. We will deal with
gray-scale images on flat, regular arrays, but one can easily extend the reasoning to color or multi-spectral
images on curved surface, for instance omni-directional mirrors. In formulas, a digital image is a function
I : [0, Nx − 1]× [0, Ny − 1] → [0, Ng − 1]; (x, y) 7→ I(x, y) for some number of horizontal and vertical pixels
Nx, Ny and grey levels Ng. For simplicity, we will neglect quantization in both pixels and gray levels, and
assume that the image is given on a continuum Ω ⊂ R2, with values in the positive reals:

I : Ω ⊂ R2 → R+; x 7→ I(x) (6)

where x .= [x, y]T ∈ R2. When we consider more than one image, we index them with t, which may or may
not indicate time: I(x, t). This abstraction in representing images is all we need for the purpose of these
notes.

A.2 What is the “scene”...

A simple description of the “scene”, or the “object”, is less straightforward. This is a modeling task, for
which there is no right or wrong choice, and finding a right model is as much of an art as it is a science; one
has to exercise discretion to strike a compromise between simplicity and realism. We consider the scene as a
collection of “objects” that are volumes bounded by closed, piecewise smooth surfaces embedded in R3. We
call the generic surface Si, with i = 1, . . . , No, the number of objects. Each surface is described relative to a
(Euclidean) reference frame, which we call gi ∈ SE(3). The two entities

Si ⊂ R3; gi ∈ SE(3) ∀ i = 1, . . . , No (7)
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Figure 7: Local reference frame at the point p.

describe the geometry of the scene, and in particular we call gi the pose relative to a fixed (or “inertial”)
reference frame10 and Si the shape of objects, although a more proper definition of shape would be the
quotient Si/gi [29]. This is, however, inconsequential as far as our discussion is concerned.

In order to model the image formation process we need to complement our description of the objects with
the elements necessary to describe their interaction with light. We explore this issue in the next section.

A.2.1 How objects interact with light: vanilla radiometry

Objects interact with light in ways that depend upon their material properties. Describing the interaction
of light with matter is a nightmare if one seeks physical realism: one would have to start from Maxwell’s
equations and describe the scattering properties of the volume contained in each object. That is well beyond
our scope. Besides, we do not seek physical realism, but only to capture the phenomenology of the material
to the extent in which it affects the answer to our questions.

All objects emit, reflect and absorb lights and, in this regard, they are all equal. However, in order to
simplify the discussion, we allow only some objects L to emit light and we restrict the other objects S to
reflect/absorb light. We describe the radiation emitted by a surface L or S using its radiance, RL(p, l) or
RS(q, l), which indicates the power density per unit area and unit solid angle emitted at a point q ∈ L in a
given direction l ∈ H2, and is measured in [W/sterad/m2].

To make the notation more accurate, we define a Euclidean reference frame, called the local frame, centered
at the point p with the third axis along the normal to the surface, e3 = νp ∈ TpSi and first two axes parallel
to the tangent plane. We call such a local reference frame gp, which is described in homogeneous coordinates
by

gp =
[ [

up vp νp

]
p

0 1

]
(8)

where up, vp and νp are unit vectors. Therefore, a point q in the inertial reference frame will transform to
gpq in the local frame at p. Similarly, a vector v in the inertial frame will transform to gp∗v in the local frame
where

gp∗ =
[ [

up vp νp

]
0

0 0

]
. (9)

When we consider the particular direction l from a point q ∈ L on the light source towards a point p ∈ S
on the scene, this is given by gq∗(p − q) = gqp − 0 = gqp. Therefore, given a solid angle dΩL and an area
element dL on the light source, the power per solid angle and unit foreshortened11 area radiated from a point
q towards p is given by

RL(q, gqp)dΩL〈νq, gqp〉dL (10)

where gqp ∈ H2 is intended as a unit vector. Now, how big a patch dL of the light we see standing at a point
p on the scene depends on the solid angle dΩS we are looking through. Following Figure 8 we have that

dL = dΩS‖p− q‖2/〈νq, lqp〉 (11)

10If a point p is represented in coordinates via X ∈ R3, then the transformed point gp is represented in coordinates via RX+T ,
where R ∈ SO(3) is a rotation matrix and T ∈ R3 is a translation vector. The action of SE(3) on a vector is denoted by g∗v, so
that if the vector v has coordinates V ∈ R3, then g∗v has coordinates RV . See [34], chapter 2 and appendix A, for more details.

11If the area element on the light source is dL, the portion of the area seen from p is given by 〈νq , gqp〉dL; this is called the
foreshortened area.
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Figure 8: Energy balance: a light source patch dL radiates energy towards a surface patch dS. Therefore,
the power injected in the solid angle dΩL by dL equals the power received by dS in the solid angle dΩS .
Equation (12) expresses this balance in symbols.

where we have defined lqp
.= q− p/‖q− p‖ and the inner product at the denominator is called foreshortening.

Similarly, the solid angle dΩL shines a patch of the surface dS. The two are related by

dΩL =
dS

‖p− q‖2
〈νq, lpq〉 (12)

where lpq = −lqp = p− q/‖p− q‖. Substituting the expressions of dΩL and dL in the previous two equations
into (10), one obtains the infinitesimal power received at the point p.

Now, we want to write the portion of power exiting the surface at p in the direction of a pixel x through
an area element dS. First, we need to write the direction of x in the local reference frame at p. We assume
that x is a unit vector, obtained for instance via central perspective projection

π : R3 −→ S2; p 7→ π(p) .= x. (13)

However, the point p is written in the inertial frame, while x is written in the frame of the camera at time t.
We need to first transform x to the inertial frame, via g∗(t)−1x, and then express this in the local frame at p,
which yields gp

−1
∗ g∗(t)−1x. We call the normalized version of this vector lpx(t). The total energy radiated by

the point p in a direction v is obtained by integrating, of all the energy coming from the light source L weighted
by the so called bi-directional reflectance distribution function (BRDF) βi : H2 ×H2 → R+; (v, l) 7→ βi(v, l)
at point p. The BRDF determines the portion of energy12 coming from a direction l that is reflected in the
direction v, each represented as a point on the half-sphere H2 centered at the point p and is therefore measured
in [1/sterad]. This model neglects diffraction, absorption, subsurface scattering and other aberrations; the
BRDF only describes the reflective properties of materials (reflectance). Note that βi depends on the point
p on the surface, and we are imposing no restrictions on such a dependency. For instance, we do not assume
that βi is constant with respect to p (homogeneous material). When emphasizing such a dependency we
write β(v, l; p).

Integrating the power received at point p ∈ S through the BRDF, the power exiting from p in the direction
of x through an area element dS results

RS(p, x)dS(p) =
∫

L

β(lpx(t), gpq)RL(q, gqp)dΩL(q)〈νq, gqp〉dL(q) (14)

12The term “energy” is used colloquially here to indicate radiance, irradiance, radiant density, power etc.
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where the arguments in the infinitesimal forms dS, dL, dΩL indicate their dependency. Now, we can substi-
tute13 the expression of dΩL from (12) and simplify the area element dS, to obtain the radiance of the surface
at p

RS(p, x) =
∫

L

β(lpx(t), gpq)RL(q, gqp)
〈νq, gqp〉
‖p− q‖2

〈
νp, lpq

〉
dL(q) (15)

Since the norm ‖p− q‖ is invariant to Euclidean transformations, we can write it as ‖gqp‖. Now, if the size
of the scene is small compared to its distance to the light, this term is almost constant, and therefore the
measure

dE(q, gqp)
.= RL(q, gqp)

〈νq, gqp〉
‖gqp‖2

dL(q) (16)

can be thought of as a property of the light source. Since we cannot untangle the contribution of RL from
that of dL, we just choose dE to describe the power distribution radiated by the light source. Therefore, we
have

RS(p, x) =
∫

L

β(lpx(t), gpq)
〈
νp, lpq

〉
dE(q, gqp). (17)

This is the portion of power per unit area and unit solid angle radiated from a point p on a reflective surface
towards a point x on the image at time t. The collection

βi(·, ·) : H2 ×H2 → R+, i = 1, . . . , No; L and dE : L×H2 → R+ (18)

describes the radiometry of the scene (reflectance and illumination).

A.2.2 Dynamics

In addition, reflectance (BRDF) and geometry (shape and pose) are properties of each object that can change
over time. So, in principle, we would want to allow βi, Si, gi to be functions of time. In practice, we will
assume that the material of each object does not change, but only its shape, pose and of course illumination.
Therefore, we will use

Si = Si(t); gi = gi(t), t ∈ [0, T ] (19)

to describe the dynamics of the scene. The index t can be thought of as time, in case a sequence of
measurements is taken at adjacent instants or continuously in time, or it can be thought of as an index if
disparate measurements are taken under varying conditions (shape and pose). Note that, as we mentioned,
the light source (L, dE) can also change over time. When emphasizing such a dependency we write L(t) and
dE(q, l; t).

Example 1 The simplest surface Si one can conceive of is a plane: Si = {p ∈ R3 | 〈νi, p〉 = di} where νi

is the unit normal to the plane, and di is its distance to the origin. For a plane not intersecting the origin,
1/d can be lumped into ν, and therefore three numbers are sufficient to completely describe the surface in the
inertial reference frame. In that case we simply have Si a constant, and gi = e, the identity. A simple light
source is an ideal point source, which can be modeled as L ∈ R3 with infinite power density dE = Elδ(q−L).
Another common model is a constant ambient illumination, which can be modeled as a sphere L = S2 with
dE = E0dL. We will discuss examples of various models for the BRDF later.

Remark 1 (Choosing a level of granularity in the representation) Note that by assuming that the
world is made of surfaces we are already imposing significant restrictions, and we are implicitly choosing a
level of description for our representation. Consider for instance the fabric shown in Figure 9. There is
no surface there. The fabric is made of thin one-dimensional threads, just woven tightly enough to give the
impression of spatial continuity. Therefore, we choose to represent them as a smooth surface. Of course, the
variation in the appearance due to the fine-scale structure of the threads has to be captured somehow, and
we delegate this task to the reflectance model. Naturally, one could even describe each individual thread as a

13Most often in radiometry one performs the integral above with respect to the solid angle dΩS , rather than with respect
to the light source. For those that want to compare the expression of the radiance RS with that derived in radiometry, it is
sufficient to substitute the expressions of dL and dΩL above, to obtain RS(p, x) =

R
H2 β(lpx(t), gpq)RL(q, gqp)〈νp, gqp〉dΩS(p).

In our context, however, we are interested in separating the contribution of the light and the scene, and therefore performing
the integral on L is more appropriate.
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Figure 9: A complex shape (woven thread) with simple reflectance (homogeneous material), or a simple shape
(a smooth surface) with complex reflectance (texture)?

cylindrical surface modeled as an object Si, but this is well beyond the detail that we want to capture. This
example illustrate the notion that defining objects entails a notion of scale. Something (e.g. a thread) is an
object at one scale, but is merely part of a texture at a coarser scale. Figure 9 highlights the modeling tradeoff
between shape and reflectance: one could model the fabric as a very complex object (woven thread) made of
homogeneous material (wool), or as a very simple object (a smooth surface) made of textured material. This
is a modeling choice.

Remark 2 (Tradeoff between shape and motion) We note that, instead of allowing the surface Si to
deform arbitrarily in time via Si(t), and moving rigidly in space via gi(t) ∈ SE(3), we can lump the motion
and deformation into gi(t) by allowing it to belong to a more general class of deformations G, for instance
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diffeomorphisms, and let Si be constant. Alternatively, we can lump the deformation gi(t) into Si and just
describe the surface in the inertial reference frame via Si(t). This can be done with no loss of generality, and
it reflects a fundamental tradeoff in modeling the interplay between shape and motion [52].

Now, if we agree that a scene can be described by its geometry, photometry and dynamics, we must decide
how these relate to the measured images.

A.3 And how are the two related?

Given a description of the geometry, photometry and dynamics of a scene, a model of the image is obtained
through a description of the imaging device. An imaging device is a series of elements designed to direct light
propagation. This is typically modeled through diffraction, reflection, and refraction. We will ignore the first
two propagation effects, and only consider the effects of refraction. For simplicity, we can also assume that
the set of objects that act as light sources and those that act as light sinks are disjoint, so that Si ∩ L = ∅,
i.e. we ignore inter-reflections. In that case, we can just lump all the objects into one, which we call the
scene S .= ∪No

i=1Si with its corresponding BRDF, β = ∪No
i=1βi. Note that S needs not be simply connected.

Equation (14) specifies how much power is radiated from the element dS at point p towards the pixel x.
The next step consists of quantifying what portion of this energy gets absorbed by the pixel at location x.
This follows a similar calculation, which we do not report here, and instead refer the reader to [21] (page
208). There, it is argued that the irradiance at the pixel x is equal to the radiance at the corresponding
point p on the scene, up to an approximately constant factor, which we lump into RS . The point p and its
projection x onto the image plane at time t are related by the equations

x = π(g(t)p) p = g(t)−1π−1
S (x) (20)

where π−1
S : S2 → R3 denotes the inverse projection, which consists in scaling x by its depth Z(x) in

the current reference frame, which naturally depends on S. Therefore, the equation below, known as the
irradiance equation, takes the form

I(x, t) = RS(p, π(g(t)p)) = RS(g(t)−1π−1
S (x), x). (21)

After we substitute the expression of the radiance (17), we have the imaging equation{
I(x, t) =

∫
L
β(lpx(t), gpq)

〈
νp, lpq

〉
dE(q, gqp);

x = π(g(t)p); p ∈ S
(22)

where the symbols above are defined as follows:

Notation: In the equation above, we have defined lpx
.= gp

−1
∗ g∗(t)−1x, gp and gp∗ are defined by Equation

(8) and (9) respectively, lpq
.= p− q/‖p− q‖ and gpq indicates the (normalized) direction from p to q,

and similarly for gqp;

Light source: L ⊂ R3 is the (possibly time-varying) collection of light sources emitting energy with a
distribution dE : L×H2 → R+ at every point q ∈ L towards the direction of a point p on the

Scene: a collection of (possibly time-varying) piecewise smooth surfaces S ⊂ R3; β : H2 × H2 × S → R is
the bidirectional reflectance distribution function (BRDF) that depends on the incident direction, the
reflected direction and the point p ∈ S on the scene S and is a property of its material.

Motion: relative motion between the scene and the camera is described by the motion of the camera g(t) ∈
SE(3) and possibly the action of a more complex group G, or simply by allowing the surface S(t) to
change over time.

Projection: π : R3 7→ S2 denotes ideal (pinhole) perspective projection, modeled here as projection onto
the unit sphere, although the same model applies if π : R3 → P2, in which case lpx has to be normalized
accordingly.
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Visibility and cast shadows: One should also add to the equation two characteristic function terms:
χv(x, t) outside the integral, which models the visibility of the scene from the pixel x, and χs(p, q)
inside the integral to model the visibility of the light source from a scene point (cast shadows). We are
omitting these terms here for simplicity. However, in some cases that we discuss in the next section,
discontinuities due to visibility or cast shadows can be the only source of visual information.

The imaging equation is relevant because most of computer vision is about inverting it; that is, inferring
properties of the scene (shape, material, motion) regardless of pose, illumination and other nuisances (the
visual reconstruction problem). However, it the general formulation above, one cannot infer photometry,
geometry and dynamics from images alone. Therefore, we are interested in deriving a model that strikes a
balance between invertibility (i.e. it should contain only parameters that can be identified) and realism (i.e.
it should capture the phenomenology of image formation). In the next section we illustrate simple models
that are widely used in computer graphics to generate realistic, albeit non-perfect, looking images: Phong
(corrected) [42], Ward [51] and Torrance-Sparrow (simplified) [49]. All these models include a function
ρd(p) called (diffuse) albedo, and a function ρs(p) called specular albedo. Diffuse albedo is often called
just albedo, or, improperly, texture. We will discuss various special cases of the imaging equation and the
role they play in visual reconstruction. Here we limit ourselves to deriving the model under a generic14

illumination consisting of an ambient term and a number of concentrated point light sources at infinity:
L = S2 ∪{L1, L2, . . . , Lk}, Li ∈ R3, dE(q) = E0dL(q) +

∑k
i=1Eiδ(q−Li). In this case the imaging equation

reduces to I(x, t) = ρd(p)
(
E0 +

∑k
i=1Ei〈νp, Li〉

)
+ ρs(p)

∑
iEi

〈
g−1(t)x+Li/‖Li‖,νp

〉c

〈g−1(t)x,νp〉

x = π(g(t)p); p = S(x0).
(23)

Remark 3 Note that this model does not explicitly include occlusions and shadows. Also, note that the first
(diffuse) term does not depend on the viewpoint g, whereas the second term (specular) does. However, note
that, depending on the coefficient c, the second term is only relevant when x is close to the specular direction,
and therefore if one assumes that the light sources are concentrated, the second term is relevant in a small
subset of the scene. If we threshold the effects of the second term based on the angle between the viewing and
the specular direction, then we can write the above model as

I(x, t) =

{
ρd(p)

(
E0 +

∑k
i=1Ei〈νp, Li〉

)
if

〈
g−1(t)x+ Li/‖Li‖, νp

〉
< γ(c) ∀ i

ρs(p)Eî otherwise
(24)

where î = arg mini

〈
g−1(t)x+Li/‖Li‖,νp

〉c

〈g−1(t)x,νp〉 which justifies the rank-based model of [26]. Empirical evaluation of
the validity of this model, and the resulting “brightness constancy constraint” discussed in the next subsection,
has not been addressed thoroughly in the literature.

The “identity” of a scene or an object is specified by its shape S and its reflectance properties β. The
illumination L(t), dE(·, t), visibility χ(x, t) and pose/deformation g(t) are “nuisance factors” that affect the
measurements but not the identity of the scene/object15. They change with the view, whereas the identity
of the object does not (see Figure 10). In the imaging equation (23) we measure I(x, t) for all x ∈ Ω and
t = t1, t2, . . . , tm, and the unknowns are L(tj), dE(·, tj), g(tj), which for simplicity we indicate as Lj , dEj(·), gj

respectively, for all j = 1, . . . ,m. For simplicity, we indicate all the unknowns of interest with the symbol ξ
(note that some unknowns are infinite-dimensional), and all the nuisance variables with ν. Equation (23),
once we write the coordinates of the point p relative to the pixel in the moving frame, p = g(t)−1π−1(x, t),
can then be written as a functional h, formally, as follows:16

I = h(ξ, ν) + n. (25)

14See Problem 5.
15Depending on the problem at hand, some unknowns may play either role: motion, for instance, could be a quantity of

interest in tracking, but it is a nuisance in recognition. Illumination will almost always be a nuisance.
16Note that the symbol ν for “nuisance” in the symbolic equation may be confused with νp, the normal to the surface in the

physical model. Since the two symbols will be used exclusively in different contexts, it should be clear which one we are referring
to.
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Figure 10: Examples of variability among different images of the same scene (top-left): illumination (top-
center), viewpoint (top-right, bottom-left), removal/replacement of parts (bottom-center), partial occlusion
(bottom-right).

where, to summarize the equivalence of (25) with (23), we have

I : Ω ⊂ R2 → R3

ξ ∈ C(R2\D → R3)×BV (S2 × S2 → R+) .= S
ν ∈ SE(3)×BV (R3 → R+)× P(R3 → R2) .= ν

h : R3 ×BV (R3 → R+)× SE(3)× R+ × R3k × Rk → R+

(p, β, g, E0, {L1, . . . , Lk}, {E1, . . . , Ek}) 7→ I

n ∼ N (0, Q)

(26)

where D is a subset of measure zero (the set of discontinuities), BV denotes functions of bounded variation.
We will use the symbolic notation of (25) and the explicit notation of (23) interchangeably, depending on
convenience. In some cases we may indicate the arguments of the functions I, ξ, ν, n explicitly.

Remark 4 (Occlusions and cast shadows) Occlusions are an accident of image formation that signifi-
cantly complicates our modeling efforts. In fact, while they are “nuisances” in the sense that they do not
depend solely on the scene, the do depend on both the scene and the viewpoint (for occlusions) and illumina-
tion (for cast shadows). That is why, despite depending on the nuisance, under suitable conditions they can
exploit to infer the shape of the scene (see [53] for occlusions and [4] for cast shadows).
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B Special cases of the imaging equation and their role in visual
reconstruction (taxonomy)

All vision algorithms make implicit or explicit assumptions on the imaging equation (23). In this section we
discuss the most typical of such assumptions, particularly for what concerns the reflectance of the objects
and the illumination.

B.1 Empirical reflectance models

Most common materials can be described by a BRDF. Exceptions include translucent materials (e.g. skin),
anisotropic material (e.g. brushed aluminum), micro-structured material (e.g. hair) etc. However, since
our goal is not realism in a physical simulation, we are content with some common BRDF that are well
established in computer graphics: Phong (corrected) [42], Ward [51] and Torrance-Sparrow (simplified) [49].

Phong (corrected) β(v, l) = ρd(p) + ρs(p) cosc δ/ cos θi cos θo.
Here cos δ = 〈g(t)−1x + q/‖q‖, νp〉 where each term in the inner product is normalized, and θi

.=
arccos〈l, νp〉, and arccos(θo)

.= 〈v, νp〉; c ∈ R is a coefficient that depends on the material.

Ward β(v, l) = ρd(p) + ρs(p)
exp(− tan2(δ)/α2)√

cos θi cos θo
.

Here α ∈ R is a coefficient that depends on the material and is determined empirically.

Torrance-Sparrow (simplified) β(v, l) = ρd(p) + ρs(p)
exp(−δ2/α2)
cos θi cos θo

.

Separable radiance As Nayar and coworkers point out [41], the radiance for the latter model can be written
as the sum of products, where the first factor depends solely on material (diffuse and specular albedo),
whereas the second factor compounds shape, pose and illumination.

In all these cases, ρd(p) is an unknown function called (diffuse) albedo, and ρs(p) is an unknown function
called specular albedo. Diffuse albedo is often called just albedo, or, improperly, texture.

Note that the first term (diffuse reflectance) is the same in all three models. The second term (specular
reflectance) is different. Surfaces whose reflectance is captured by the first term are called Lambertian, and
are by far the most studied in computer vision. The rest of this appendix discusses various models of the
illumination for the Lambertian and non-Lambertian reflection cases.

B.2 Lambertian reflection

Lambertian surfaces essentially look the same regardless of the viewpoint: β(v, l) = β(w, l) ∀w ∈ H2. This
yields to major simplifications of the image formation model. Moreover, in the case of constant illumination,
it allows relating different views of the same scene to one another directly, bypassing the image formation
model. This is known as the correspondence problem, which relies crucially on the Lambertian assumption
and the resulting brightness constancy constraint.17 We address this case first.

B.2.1 Constant illumination

In this case we have L(t) = L and dE(q, l; t) = dE(q, l). We consider two simple light source models first.

Ambient light

Ambient light is due to inter-reflection between different surfaces in the scene. Since modeling such inter-
reflections is quite complicated,18 we will approximate it by assuming that there is a constant amount of
energy that “floods” the ambient space. This can be approximated by a sphere radiating constant energy:
L = S2 and dE = E0dL. In this case, the imaging equation reduces to

I(x, t) = ρd(p)E0

∫
S2
〈νp, l〉dΩ(l) (27)

17Although the constraint is often used locally to approximate surfaces that are not Lambertian.
18There is some admittedly sketchy evidence that inter-reflections are not perceptually salient [12].

22



Due to the symmetry of the light source, assuming there are no shadows, we can always change the global
reference frame so that νp = e3; therefore, the integral does not depend on p, and is a constant that, together
with E0, can be lumped into ρd, yielding the simplest possible model that, when written with respect to a
moving camera, gives {

I(x, t) = ρ(p)
x = π(g(t)p); p = S(x0).

(28)

Note that this model effectively neglects illumination, for one can think of a scene S that is self-luminous, and
radiates an equal amount of energy ρ(p) in all directions. Even for such a simple model, however, performing
visual inference is non-trivial. It has been done for a number of special cases:

Constant albedo: silhouettes When ρ(p) is constant, the only information in Equation (28) is at the
discontinuities between x = π(g(t)p), p ∈ S and p /∈ S, i.e. at the occluding boundaries. Given suitable
conditions, that have been first studied by Aström et al. [8], motion g(t) and shape S can be recovered.
The reconstruction of shape S and albedo ρ has been addressed in an infinite-dimensional optimization
framework by Yezzi and Soatto [53] in their work on stereoscopic segmentation.

Smooth albedo The stereoscopic segmentation framework has been extended to allow the albedo to be
smooth, rather than constant. The algorithm in [25] provides an estimate of the shape of the scene S
as well as its albedo ρ(p) given its motion relative to the viewer, g(t).

Piecewise constant/piecewise smooth albedo The same framework has been recently extended to allow
the albedo to be piecewise constant in [26]. This amount to performing region-based segmentation a’
la Mumford-Shah [40] on the scene surface S. Although it has not been done yet, the same ideas could
be extended to piecewise smooth albedo.

Nowhere constant albedo When ∇ρ(p) 6= 0 everywhere in p, the image formation model can be bypassed
altogether, leading to the so-called correspondence problem which we will see shortly. This is at the base
of most traditional stereo reconstruction algorithms and structure from motion. Since these techniques
apply without regard to the illumination, we will address this after having relaxed our assumptions on
illumination.

Point light(s)

A countable number of stationary point light sources can be modeled as L = {L1, L2, . . . , Lk}, Li ∈ R3,
dE =

∑k
i=1Eiδ(q − Li). In this case the imaging equation reduces to

I(x, t) =
k∑

i=1

Eiρd(p)〈νp, p− Li/‖p− Li‖〉. (29)

Note that, if we neglect occlusions and cast shadows, the sum can be taken inside the inner product and
therefore there is no loss of generality in assuming that there is only one light source. If the light sources are
at infinity, p can be dropped from the inner product; furthermore, the intensity of the source E multiplies
the light direction, so the two can be lumped into the vector L. We can therefore further simplify the above
model to yield, taking into account camera motion,{

I(x, t) = ρ(p)〈νp, L〉
x = π(g(t)p); p = S(x0)

(30)

Inference from this model has been addressed for the following cases.

Constant albedo Yuille et al. [55] have shown that given enough viewpoints and lighting positions one
can reconstruct the shape of the scene. Jin et al. [24] have proposed an algorithm for doing so, which
estimates shape, albedo and position of the light source in a variational optimization framework. If the
position of the light source is known and there is no camera motion, this problem reduces to classical
shape from shading [22].
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Smooth/piecewise smooth albedo In this case, one can easily show that albedo and light source cannot
be recovered since there are always combinations of the two that generate the same images. However,
under suitable conditions shape can still be estimated, as we discuss next.

Nowhere constant radiance If the combination of albedo and the cosine term (the inner product in (30))
result in a radiance function that has non-zero gradient, we can think of the radiance as an albedo
under ambient illumination, and therefore this case reduces to multi-view stereo, which we will discuss
shortly. Naturally, in this case we cannot disentangle reflectance from illumination, but under suitable
conditions we can still reconstruct the shape of the scene, as we discuss shortly in the context of the
correspondence problem.

Cast shadows If the visibility terms are included, under suitable conditions about the shape of the object
and the number and nature of light sources, one can reconstruct an approximation of the shape of the
scene.

General light distribution

An arbitrary distant light distribution can be modeled as a positive density on the sphere at infinity: L = S2.
Any positive density on the sphere can be approximated arbitrarily well by a sum of Gaussians, a result known
to Wiener, slightly modified to take into account the spherical ambient space. However, each Gaussian can
be represented as a convolution of a delta measure with a canonical Gaussian (zero-mean). When inserted
into the imaging equation, the effect of the Gaussian kernel and the BRDF compound in a way that cannot
be discerned from the data alone. Therefore, we can lump the Gaussian kernel into the BRDF and be left
with point light sources with no loss of generality. Naturally, in practice each each light may have a different
dispersion matrix, which in general results in an empirical coefficient (α in the Torrance-Sparrow model) that
is direction-dependent. If we allow the BRDF to be anisotropic, we can never distinguish reflectance from
illumination. Consider for instance a polished sphere illuminated by a Gaussian light sources, compared to
a rougher sphere illuminated by a point.

Note that most current work on general representation of illumination uses a series expansion of the
distribution dE on L = S2 into spherical harmonics [44]. This is problematic for two reasons: first, spherical
harmonics are global, so the introduction of another term in the series affects the entire image. Second, while
any function on the sphere can be approximated with spherical harmonics, there is no guarantee that such
a function be positive. Indeed, the harmonic terms in the series are themselves not positive, and therefore
each individual component does not lend itself to be interpreted as a valid illumination, and there is no
guarantee except in the limit where the number of terms goes to infinity that the truncated series will be
a vaild illumination. The advantage of a sum of Gaussian approximation is that one can approximate any
positive function, and given any truncation of the series one is guaranteed to have a positive distribution dE.

Given these considerations, we restrict our attentions to illumination models that consist of the sum of a
constant ambient term and a countable number of point light sources. The general case, therefore, reduces
to the special cases seen above:

L = S2; dE(q) = E0dL(q) +
k∑

i=1

Eiδ(q − Li). (31)

Note that the energy does not depend on the direction, since for distant lights (sphere of infinite radius) all
directions pointing towards the scene are normal to L.

Multi-view stereo and the correspondence problem

If the radiance of the scene RS(p) is not constant, under suitable conditions one can do away with the
image formation model altogether. Consider in fact the irradiance equation (21). Under the Lambertian
assumption, given (at least) two viewpoints, indexed by t1 and t2, we have that

I(x1, t1) = RS(p, π(g(t1)p)) = I(x2, t2) (32)
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without regard to how the radiance RS comes to existence. The relationship between x1 and x2 depends
solely on the shape of the scene S and the relative motion of the camera between the two time instants,
g12

.= g(t1)g(t2)−1:
x1 = π(g12π−1

S (x2))
.= w(x2;S, g12). (33)

Therefore, one can forget about how the images are generated, and simply look for the function w that
satisfies (substitute the last equation into the previous one)

I(w(x2;S, g12), t1) = I(x2, t2) . (34)

Finding the function w from the above equation is known as the correspondence problem, and the equation
above is the brightness constancy constraint.

More recently, Faugeras and Keriven have cast the problem of stereo reconstruction in an infinite-
dimensional optimization framework, where the equation above is integrated over the entire image, rather
than just in a neighborhood of feature points, and the correspondence function w is estimated implicitly by
estimating the shape of the scene S, with a given motion g. This works even if ρ is constant, but due to
a non-uniform light and the presence of the Lambertian cosine term (the inner product in equation (30))
the radiance of the surface is nowhere constant (shading effect, or attached shadow) and even in the case
of cast shadows, if the light does not move. In the presence of regions of constant radiance, the algorithm
interpolates in ways that depend upon the regularization term used in the infinite-dimensional optimization
(see [13] for more details).

B.2.2 Constant viewpoint: photometric stereo

When the viewpoint is fixed, but the light changes, inverting the model above is known as photometric stereo
[21]. If the light configuration is not known and is allowed to change between views, Belhumeur and coworkers
have shown that this problem cannot be solved [7]. In particular, given two images one can pick a surface S
at will, and construct two light distributions that generate the given images, even if the scene is known to be
Lambertian. However, this result relies on the presence of a single point light source. We conjecture that if the
illumination is allowed to contain an ambient term, these results do not apply, and therefore reconstruction
could be achieved. Note that psychophysical experiments suggest that face recognition is extremely hard for
humans under a point light source, whereas a more complex illumination term greatly facilitates the task.

B.3 Non-Lambertian reflection

In this subsection we relax the assumption on reflectance. While, contrary to intuition, a more complex
reflectance model can in some cases facilitate recognition, in general it is not possible to disentangle the
effects of shape, reflectance and illumination. We start by making assumptions that follow the taxonomy
used for the Lambertian case in the previous subsection.

B.3.1 Constant illumination

Ambient light

In the presence of ambient illumination, the specular term of an empirical reflection model, for instance
Phong’s, takes the form

ρs(p)
∫ π

−π

∫ π/2

0

cosk δ

cos θo
sin θidθidφi (35)

If the exponent c → ∞, only one point on the light surface S2 contributes to the radiance emitted from
the point p. Since the distribution dE is uniform on L, we conclude that, if we exclude occlusions and cast
shadows, this term is a constant. This can be considered as a limit argument to the conjecture that, in the
presence of ambient illumination, the specular term is negligible compared to the diffuse albedo. Naturally,
if an object is perfectly specular, it renders the viewer an image of the light source, so in this case inter-
reflection is the dominant contribution, and the ambient illumination approximation is no longer justified.
See for instance Figure 11.
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Figure 11: In the presence of strongly specular materials, the image is essentially a distorted version of the
light source. In this case, modeling inter-reflections with an ambient illumination term is inadequate.

Point light(s)

In the presence of point light sources, the specular component of the Phong models becomes∑
i

Eiρs(p)

〈
g−1(t)x+ Li/‖Li‖, νp

〉c

〈g−1(t)x, νp〉
(36)

where the arguments of the inner products are normalized. In this case, assuming that a portion of the
scene is Lambertian and therefore motion and shape can be recovered, one can invert the equation above to
estimate the position and intensity of the light sources. This is called “inverse global illumination” and was
addressed by Yu and Malik [54]. If the scene is dominantly specular, so no correspondence can be established
from image to image, we are not aware of any general result that describes under what condition shape,
motion and illumination can be recovered. Savarese and Perona [45] study the case when assumptions on the
position and density of the light, such as the presence of straight edges at known position, can be exploited
to recover shape.

General light

In general, one cannot separate reflectance properties of the scene with distribution properties of the light
sources. Jin et al. [26] showed that one can recover shape S as well as the radiance of the scene, which mixes
the effects of reflectance and illumination.

B.3.2 Constant viewpoint

In the presence of multiple point light sources, Many have studied the conditions under which one can
recover the position and intensity of the light sources, see for instance [41] and references therein. Variations
of photometric stereo have also been developed for this case, starting from [23].

B.3.3 Reciprocal viewpoint and light source

Zickler et al. [56] have developed techniques to exploit a very peculiar imaging setup where a point light
source and the camera are switched in pairs of images, which allows us to eliminate the BRDF from the
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imaging equation.

Remark 5 It is possible to approximate to an arbitrary degree any positive real-valued function by a sum a
(spherical) Gaussians plus a constant. Therefore, it is possible that, given an illumination dE(q) = (E0 +∑n

i=1G(q − Li;σi))dL and a BRDF β belonging to one of the phenomenological models here described that
generate a given set of images {Ij}, there exists another BRDF β̃ belonging to the same class such that the
illumination dẼ(q) = E0dL+

∑n
i=1 δ(q − Li) generates the same collection of images {Ij}.

Remark 6 (Illumination variability of a Lambertian plane) Consider an image generated by a model
(24). We are interested in modeling the variability induced in two images of the same scene under different
illumination. We will assume that illumination can be approximated by an ambient term E0 and a con-
centrated point source with intensity E1 located at L, so that each image I(xi, ti) can be approximated by
ρd(p)(E0(tii) + E1(ti)〈νp, L(tii)〉 + β(i) where the latter term lumps together the effects of non-Lambertian
reflection. The relationship between two images, the, can be obtained by eliminating the diffuse reflection ρd,
so as to obtain

I(x1, t1) = I(x2, t2)
E1(t1) + E1(t1)〈νp, L(t1)〉
E0(t2) + E1(t2)〈νp, L(t2)〉

− −β(t1)
E0(t2) + E1(t2)〈νp, L(t2)〉

+ β(t2). (37)

Now, if the scene is a plane, then the first fraction on the right hand side does not depend on p, i.e. it
is a constant, say α. The second and third term depend on p if the scene is non-Lambertian. However,
if non-Lambertian effects are negligible, or absent like in our assumptions, then the second term can also
be approximated by a constant, say β. Furthermore, for the case of a plane x1 and x2 are related by a
homography, x1 = Hx2 where x1 and x2 are intended in homogeneous coordinates. Therefore, the relationship
between the two images can be expressed as

I(x2, t2) = αI(Hx2, t2) + β. (38)

One can therefore think of one of the images (e.g. I(·, t0)
.= ρ) as the scene, and the images are obtained by a

warping H of the domain and a scaling α and offset β of the range. All the nuisances, H,α, β are invertible,
and therefore a planar Lambertian scene one can construct an invariant descriptor. H can be moded-out by
fixing 4 points, and α and β by normalizing the image intensity histogram. Images for which H,α, β cannot
be computed are already nuisance-invariant.
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