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Abstract

We propose a simple model of human motion as a switching dynamical system where the switches correspond to contact
forces with the ground. This significantly improves the modeling performance when compared to simpler linear systems, with
only marginal increase in complexity. We introduce a novel closed-form (non-iterative) algorithm to estimate the switches
and learn the model parameters in between switches. We validate our model qualitatively by simulation, and quantitatively
by computing prediction errors that show significant improvements over previous approaches using linear models.

1. Introduction
Detection, classification and recognition of human activity has become a topic of strategic importance in recent years, and
the computer vision community is contributing significantly to develop technology to automate the process. “Activity” in this
context indicates a distribution of statistics that can be inferred from a time series; in other words, the “information” resides in
the temporal characteristics of the data. As in all inference problems, the choice of underlying model for the phenomenon of
interest plays a crucial role in human motion analysis. In exercising the art of modeling, one can choose complex models that
capture the global temporal statistics of the data, or choose a simple class of models and infer the local statistics, together with
the “segments” of data where such a model is a good fit. For instance, each segment could represent a portion of the data that
exhibit some form of (statistical) stationarity. The choice of model ultimately has to balance parsimony in the representation
with fidelity in the inference task, in our case classification.

We are interested in developing local models of human motion that can support classification tasks: We restrict our atten-
tion to stationary segments, calledgaits, and we aim at our models beingdiscriminativein the sense of supporting statistical
decision tasks. However, faithful reproduction of the statistics of the data is always a good measure of modeling performance,
so we will usesynthesisto validate our models using prediction-error criteria. We want our models to capture the underlying
dynamics(high-order temporal statistics) of the data, in addition to the kinematics of the human body. Eventually, spatial
and temporal models will have to be integrated into a higher-level discrete-event model to determine the segments and the
transition between them.

While much of the attention of the human motion community has been on such higher-level (“activity”) models as of
late, and some authors have suggested that low-level modeling of gaits is easily solved, we maintain that there are some
fundamental issues that have not been adequately addressed, yielding overall models that do not support fine classification
or recognition. Chief among these is the modeling of external forces, that are key in determining the dynamic properties
of human motion.We present the simplest possible statistical model that captures contact forces and, to the best of our
knowledge, the only one so far.

The reader should not let the word “forces” induce her to believe that we use physical models. Such models, often used in
computer graphics, are too complex for inference (inverse dynamics), although their generative power is naturally superior.
Our approach is purely statistical, as we aim at capturing the phenomenology of contact forces to the extent in which it affects
the discriminative power of the model. In our models we emphasize the need to capture truedynamics(not just kinematics),
as well as to make use of the wide body of training data available in the form of motion capture sequences. While some
readers may object to that on the grounds that the actual “data” are images, not position of marker points, contact forces
manifest themselves as discontinuities in the dynamics at every level of the modeling hierarchy, all the way to the images.
Therefore, in order to not dilute our message, we use the simplest possible scenario to illustrate it, hencewe operate directly
on motion capture data.
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1.1. State of the art and contributions
The literature on modeling human motion is too broad for us to review here. However, we provide a brief synopsis of
alternative approaches that can guide the reader to place our contribution into context.

Computer graphics and physical simulations:. generative approaches to realistic human motion synthesis include
designing controllers driving physical simulations of the body dynamics [15, 12] and constrained optimization [32, 26]. In
simulations contact forces are modeled with stiff springs, knowing the ground. This solution is not appropriate for vision
applications, because these models cannot be efficiently “learned” (they contain parameters that cannot be identified from
data, hence are not “observable”). Alternative methods are procedural models, that produce synthesis by concatenation and
interpolation of measured data [17, 1]. This is not suitable for detection and recognition tasks.

Robotics literature: most of the work focus on physical models of biped mechanisms [31, 24, 9]. These models are
simpler than human body because of rigidity of the links, fewer joint degrees of freedoms, and simplification on ground
contact modeling. There, hybrid models have been in use for some time [7], although with an emphasis on control and
stability. The model is identified separately in controlled experiments where all the external forces are known. Unfortunately
in the case of the human body we do not have access to the mechanism to learn the model. Moreover we want to be able to
handle variability due to different individuals and different gaits.

Vision literature: simple statistical models of stationary gaits have been proposed by several authors, for instance in the
form of linear dynamical systems [3, 5, 18]. While these models capture the temporal statistics in between contacts with the
ground, and their generative capability is remarkable considering their simplicity, they fail the perceptual test miserably at or
around contacts (Figure 1).

We propose the next simplest thing, that is aswitching model where contact is represented as switch between two linear
models, each of which models an inter-contact segment.

Switching linear models have been used in the graphics literature to model and synthesize human motion [18], where each
linear model represents an “action” or “moveme” and switches represent the transition between actions. In such models the
emphasis was synthesis, that was performed semi-procedurally by interpolating (through a controller) between data segments.
Switching systems have also been used for tracking and classification [5].

Inference of switching linear systems is a topic that has received considerable attention in the learning and system iden-
tification communities during the past few years, but all the algorithms proposed there either provide iterative approximated
solutions or, when non-iterative [30], they only cover the auto-regressive case, which is not general enough to capture our
model. Most attention in the identification literature has been devoted to Jump Markov Linear Systems, hybrid systems
where the discrete state evolution is modeled by a Markov chain. For these models the common approach to the learning
problem is the Expectation Maximization (E-M) algorithm, where the Expectation step amounts to computing the posterior
probability of the states given measurements and parameters. A variety of solutions have been proposed for this NP-hard
filtering problem, including approximating distributions [14, 4, 28, 21, 23], E-M [19], particle filters [22, 16] and other Monte
Carlo sampling techniques [2, 11, 8]. We need a more efficient inference procedure (closed form, non-iterative), although we
can afford to deviate from optimality, as long as our models have discriminative power, which can be measured in simulation.

Therefore, we proposean efficient (non-iterative) learning algorithm to detect the switches and identify the model param-
eters.

Our contribution is 3-fold: (a) we propose a very simple switching linear system to model human gaits (walking, running,
hopping etc.); (b) we introduce a novel, closed-form algorithm to estimate the switches, as well as identify the models in
between switches, (c) we validate our models empirically by generating simulations with the model and showing that humans
cannot distinguish them from the original data, obtained with a motion capture system.

One limitation of our work is that we model motion capture data, which is relatively “clean.” In practice one must go from
images to a representation that is suitable to represent dynamics. These can be joint positions or angles if an explicit skeletal
model is present, or an articulated region-based model otherwise. For this, however, there are many valid approaches, and
we refer the reader to the literature [25, 27, 6]. We concentrate on a specific, narrow but very important aspect of modeling
the dynamics of human motion, namely external contact forces.

What we do not do is to test our model for classification. We are confident that this will significantly improve the
discriminative power over simple linear system, but a thorough experimental test is well beyond the scope of this paper and
will be presented separately. Instead, we perform simulation to validate the phenomenology of the model qualitatively (see
uploaded movies) and quantitatively using prediction-error.
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2. A simple model of human motion
The motion of biped organisms such as humans involves great dynamical complexity, even if it is idealized to a system of
rigid levers with torques acting at the joints. If we want to use physical models to study the effect of contact forces on gait
motions it is therefore necessary to consider simplified systems. The model must be simple enough for analytic treatment,
yet able to produce motion that is perceptually close to a human gait.

Models with these properties have been proposed in the robotics literature. Passive walkers [20, 10, 13] are a special kind
of unactuated biped robots that can be made to walk down a slight slope only by the effect of gravity and produce naturally
looking motion. The simplest of these models is the one proposed in [13]. It is a 2D two-link model, with rigid massless legs
hinged at the hip and infinitesimal point masses at the feet.

The general equations of one-step motion for these robots are: ẋ(t) = f(x(t)) , x =
[

qT q̇T
]T

∈ Rn , x(0) = x0

y(t) = Cλ(t)x(t) , y ∈ Rm , λ ∈ {1, 2}
(1)

whereq ∈ Rm is the vector of generalized coordinates (for the simple walker the two angles between the legs and the
vertical) andC1, C2 ∈ Rm×n are permutations of the firstm rows of then× n identity matrix . Basicallyλ(t) select at each
step which ones are the swing and stance legs. The attentive reader will notice that if we exclude singular cases equation(1)
is just a rewriting of the familiar equation of motion for rigid bodiesM(q)q̈ + C(q, q̇)q̇ + G(q) = 0.

If we linearize(1) around an operating pointx0 and discretize with sampling timeTs, we obtain the following linear
system: {

xk+1 = Axk + B , xk ∈ Rn

yk = Cxk , yk ∈ Rm
(2)

A = eJ0Ts , J0 =
∂f

∂x
(x0)

B = (eJ0Ts − I)J−1
0 f(x0)− eJ0Tsx0 + x0

A system of the form(2) can be used to approximate the evolution of the original nonlinear system(1), and experiments
show that in the case of the simple walker the quality of the approximation is remarkably good (Figure 1).

The system evolves according to(1) until landing timeτ , when the swing leg touches the ground. Atτ a switch occurs:
the role of swing and stance leg are swapped, and there is a discontinuity in the velocity. The state is mapped according to a
linear functiong:

x(τ+) = g(x(τ−)) , λ(τ+) = {1, 2} \ λ(τ−) (3)

Equations(1) and (3) describe the dynamics of a class of mechanisms more general than the simple passive walker
considered here. The walking motion of any legged robot with point foot-ground contacts, such as [24, 9], can be written in
this way. The approximating linearization of the hybrid system(1), (3) is the switching model:{

xk+1 = A1xk + B1 , x0 = x0,1 k < τ − 1
yk = C1xk{

xk+1 = A2xk + B2 , xτ = x0,2 k ≥ τ

yk = C2xk

Based on these considerations, we propose a novel switching system for representing walking gaits. The model is composed
of two linear systems(2) representing the alternating stance and swing role assumed by the legs, the initial states of the
systems and a condition for the model switch. Distinctive properties of such hybrid models are the possibility to have
unstable systems as components and the ability to produce periodic motion without the need of constraining the poles of the
systems to the unit circle.
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Figure 1:Linear models fail to capture perceptually important details: (a) The joint trajectories of synthetic data used
to learn a linear model (solid) superimposed with the trajectory simulated from the model (dashed). Although the coarse
structure of the data is captured, the small deviations around the contacts causes the simulation to fail the perceptual test,
as the simulated walk appears to penetrate the ground and slip (see uploaded movie walk-linear.mov ). The switching
linear model captures these details quite faithfully: (b) shows the prediction error residual for the linear model (dashed) and
for the switching linear model (solid).
3. Learning
As anticipated in the previous sections, exact inference of a general linear switching system of the form(2) is NP-complete,
and all approximated solutions proposed in the literature are iterative.

In this work we present a closed-form suboptimal identification algorithm. We separate the learning process in two
independent steps: detection of the switch instants and estimation of the parameters of the two linear systems from the
segmented data.

For switch detection we propose a novel algorithm based on subspace identification concepts [29]. The main idea can be
explained in four steps:

(a) For linear systems, the hypothesis is that future data are a linear function of past data. This hypothesis is violated at
switches.

(b) We can therefore pose the problem of switch detection as a hypothesis testing problem.
(c) However, we have to do so without knowing the model parameters. We will implicitly eliminate the model parameters

by linear projections, which yields a simple thresholding solution to detect the switches.
(d) Once switches are detected, the data can be arranged so that the linear assumption is satisfied, at which point the

problem becomes standard identification which we solve with established methods.

3.1. Switch Detection
For ease of notation and in order to simplify the derivations, in what follows we consider systems which do not include an
explicit noise model. We will tacitly assume that the noise is Gaussian and is, inL2 norm, significantly smaller than the state
switch. An explicit noise model will be introduced later in the identification step.

Consider a system of the form(2) where the pair(A,C) is observable. Let us construct the following block Hankel
matrices:
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Yp =


y0 y1 y2

... yj−1

y1 y2 y3

... yj

...
...

...
...

...

yi−1 yi yi+1

... yi+j−2



Yf =


yi yi+1 yi+2

... yi+j−1

yi+1 yi+2 yi+3

... yi+j

...
...

...
...

...

y2i−1 y2i y2i+1

... y2i+j−2


Xp =

[
x0 x1 x2 · · · xj−1

]
Xf =

[
xi xi+1 xi+2 · · · xi+j−1

]

Γi =


C

CA
CA2

...
CAi−1

 , Ji =


0

CB
CB + CAB

...∑i−2
k=0 CAkB


Hi =

i−1∑
k=0

AkB (4)

wherej is large (ideallyj →∞) andi is not smaller than the observability index, i.e. rank(Γi) = n. The system(2) can be
rewritten as:

Yf = ΓiXf + Ji1 , Yp = ΓiXp + Ji1

Xf = AiXp + Hi1 (5)

where1 =
[

1 1 1 · · · 1
]

is a row vector ofj elements. From subspace identification, we know that we can express
the future outputsYf as a linear combination of past outputsYp and constant inputs:

Yf = ΓiXf + Ji1 = ΓiA
iXp + ΓiHi1 + Ji1 =

= ΓiA
iΓ†iYp − ΓiA

iΓ†iJi1 + ΓiHi1 + Ji1 =
= MWp

M =
[

ΓiA
iΓ†i ΓiHi − ΓiA

iΓ†iJi + Ji

]
,

Wp =
[

Yp

1

]
(6)

Consider the model(2) with a switch occurring at timeτ . This hybrid system is equivalent to a single linear system with a
state jump atτ :

xs
k+1 = Axs

k + B + Sδ(k + 1− τ) (7)

ys
k = Cxs

k

A =

 A1 0 −B1

0 A2 B2

0 0 1

 B =

 B1

0
0


C =

[
C1 C2 0

]
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The output matricesY s
f , Y s

p of system(7) are related to the matricesYf , Yp of the system(2) by:

Y s
f = Yf + ∆f Y s

p = Yp + ∆p

∆f =


0

... 0 0
...

...
...

...
...

...
...

... ΓiS ΓiAS
... ΓiA

i−1S
...

0
... 0 Γ2S

...
...

...

0
... Γ1S

...
...

...



∆p =


0

... 0 0
... 0 0

... 0
...

0
... 0 0

... 0 0
...

...
...

...
...

...
...

...
...

... Γi−1S
...

0
... 0 0

... 0 Γ1S
...

...


Let E = Y s

f −MW s
p . We have:

E =



0
... 0 0

...
... 0

...

0
... 0 0

...
... 0

...
...

...
...

...
... ΓiS G1S

... Gi−1S 0
...

0
... 0 Γ2S

...
... 0

...

0
... Γ1S

...
... 0

...


Gj = ΓiA

j(In − Γ†jΓj)

E has2i−1 nonzero columns fromτ −2i+1 to τ −1. Their norm increases fromτ −2i+1 to τ − i. If we assumeA stable
and exclude pathological cases, the norm ofGjS decreases with increasingj, and is null whenj reaches the observability
index. Therefore the norm of the columns ofE has an impulsive character, with peak atτ − i and impulse width smaller than
2i.

Let Ê be the projection of the rows ofY s
f onto the space orthogonal to the rows ofW s

p :

Ê = Y s
f /W s⊥

p , Y s
f − YfY †

p Yp (8)

We have:
Ê = Y s

f − M̂W s
p = (E + MW s

p )/W s⊥
p = E/W s⊥

p (9)

Since a basis ofW s
p is given by the modes of the system(2) which are exponentially damped oscillations, the projection

of an impulse atτ − i onto the space orthogonal toW s
p will still have an impulsive form with the same peak location.

Superimposed to the impulse there will be small oscillations whose magnitude is proportional to the fraction of energy of the
modes concentrated inτ − i.

Based on the previous considerations we propose the following state switch detection algorithm:

• Construct the matricesYf andYp from the outputyk, t = 0...T , with an appropriate choice ofi.

• ComputeÊ as in(8).

• Apply a threshold on the norm of the columns ofÊ. Each peakt identifies a state jump occurring at timet + i.

The choice ofi is important for the success for the algorithm. Ifi is smaller than the observability index then all the
columns ofÊ will be nonzero and the proposed algorithm will fail. Ifi is large, the width of the impulse on the columns of
Ê will be large andÊ may not have clear peaks.
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3.2. Identification of the linear systems
Once we have segmented the input by detecting the switch instants, we identify the parameters of the two linear systems that
model the dynamics of the walking gait. The segments are grouped in two classes, one for each system, with every other
segment belonging to the same class.

The identification problem is, given a number of segmentsy(t), τi ≤ t < τi+1 generated by the linear systemMλ :

{
xk+1 = Aλxk + Bλ + Kλe(t)

yk = Cλxk + e(t) , e ∈ N (0, Rλ)
(10)

estimate the values of the parametersAλ, Bλ, Cλ,Kλ, Rλ and the initial conditionsxτi that maximize the likelihood of the
errorse(t). A closed-form solution to this problem is provided by subspace identification techniques. The main idea of these
algorithms, used also in our switch detection method, is to project future outputs onto the space spanned by past inputs and
past outputs. These algorithms are asymptotically optimal, in the sense that they give unbiased estimates of the maximum
likelihood values of the system parameters as the number of observations goes to infinity. Unfortunately the segments that
we extract from motion data are relatively short, typically less than 100 frames. Therefore, in order to refine the quality
of the estimates, the subspace identification procedure is followed by a standard iterative optimization algorithm based on
prediction error minimization. The algorithm minimizes:

VN (θ) =
1
T

T∑
k=1

yk − ŷk|k−1 (11)

whereŷk|k−1 is the prediction of the output at timek, given information up to timek − 1.

4. Experimental validation
We applied the proposed modeling and learning framework to the identification of switching models from motion capture
data. Our goal is to learn models that can capture the details of human gait motions and that can be used for tracking,
detection, recognition and synthesis.

In this work we focus on experimentally validating the modeling power of the proposed systems by using them to syn-
thesize new motion and comparing the results with the original data. In future work we plan to investigate the possibility of
applying these models to the problem of recognition and classification of human gaits.

As first preliminary experiment, we learned a switching model from synthetic motion data of the simple passive walker
proposed in [13]. Figure 1 shows the joint angle data and the prediction errors for switching and linear models. We see
how the switching system models with high accuracy the signal, while the linear system deviates sensibly from the original
trajectories. In Figure 2 we show the norm of the residual of the switch detection algorithm. The peaks have conspicuous
impulsive character and are located exactlyi steps before the actual switch, wherei is the parameter of the switch detection
algorithm and defines the number of measurements stacked in the observation matrices(4).

In the experiments with real data we used the motion database freely distributed by the Carnegie Mellon Graphics group.
The data consists of short clips of walking and running gaits, collected at 60 Hz with the VICON optical motion capture
systems. The motion is represented as joint angle trajectories of a skeletal model of the performer.

For each frame, the pose is specified by position and orientation of the body reference frame and56 angles describing the
configuration of the29 joints of the skeletal model.

As first preprocessing step, we removed the linear trend in the coordinates by subtracting from the(x, y, z) position of the
body reference frame the least squares linear fit.

Then we selected a number of joint angles to detect the ground contact instants. The more informative angles are hip and
knee joint rotation in the sagittal plane. We did not use the angle of the feet for switch detection because these measurements
appear to be very noisy in the available sequences, in particular for the swinging foot. Figure 3 displays the evolution of the
leg joint angles for a sample gait together with the residual of the switch detection algorithm. The switches are detected as
the maxima on windows of11 frames that are larger than a predefined threshold.

Once switches are detected, the data is segmented and the two linear systemsMλ , λ ∈ {1, 2} of the form (10) are
identified.

Because of the short duration of the segments, identification of the system is possible only after dimensionality reduction.
For this purpose we applied PCA, and experimentally determined that8 components are sufficient to reproduce motion that
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Figure 2:Switch detection on synthetic data:Results of the switch detection algorithm applied on simple walker data of
figure 1. Plotted the switch detection residuals (norm of columns of Ê, i = 3). Switches are very prominent and easy to
detect by simple thresholding. Their peak is exactly i steps before the actual switch instants.

is perceptually indistinguishable from the original. From the reduced data, we learned the linear systemMλ as described
in section(3.2), using the implementations of the identification algorithms provided in the Matlab System Identification
Toolbox. In the all the simulations with motion capture data, we used models with dimension of the staten = 12.

Together with the model parameters, we estimated the initial statexi
0,λ for each segmenti, meanµλ and varianceσλ of

the segment lengths.
In order to generate new motion, we repeat the following procedure, starting withλ = 1 :

• select an initial statex0 ∈ {xi
0,λ}.

• run the linear systemMλ for T steps to generate the motion segment, withT ∼ N (µλ, σλ).

• switch to the other linear system,λ = {1, 2} \ λ.

The synthetic motion is obtained as linear combination of the PCA basis, where the coefficients are given by the switching
system output. Finally, the estimated linear trend is added to the position coordinates.

In figure 4 we show the results of the synthesis with models learned from walking and running motions. Figure5 shows
the prediction errors for these models on the training data. On these plots we can also see the prediction errors obtained with
standard linear systems of the same order. It is clear how the proposed switching systems capture distinctive traits of the
signal that cannot be modeled by simple linear systems. For qualitative comparison between original and synthesized motion
see also the uploaded movies.

5. Conclusions
In this work we have proposed a novel switching system for modeling human gaits that captures the effect of ground contact
forces on the motion dynamics. We have introduced a novel closed form identification algorithm for detecting system
switches corresponding to ground contact forces and derived an algorithm for learning the model parameters. We have
validated the modeling power of our system empirically by measuring the prediction error on the training data and showing
that motion synthesized by this system is perceptually equivalent to the original learning sequence.
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