
1

Finite State Machines for BGP
Dan Pei1, Dan Massey2 and Lixia Zhang1

UCLA1 Colorado State University2

{peidan,lixia}@cs.ucla.edu massey@cs.colostate.edu
UCLA CSD Technical Report TR040047

Abstract

This report presents the finite state machines for the BGP decision process, and uses these finite state
machines to BGP protocol syntax checking. The routing protocol syntax defines the legitimate sequence
of messages and is used to reject invalid messages. If the protocol syntax is well defined, syntax checking
can be very effective at detecting hardware faults, implementation bugs, and so forth. To better capture
the protocol syntax, from the finite state machines we derive protocol assertions the rules that must hold
true when the BGP protocol is functioning properly. This approach formalizes the protocol specification
and only legitimate sequence of routing update messages are allowed by the corresponding state machine.
Illegitimate message sequences resulting from implementation bugs, hardware faults can be detected by
violations of the finite state machine transitions. We demonstrate that some pathological updates(false
withdrawals) in the early Internet [2] would’ve been detected should one of our assertion checking had
been deployed.

I. INTRODUCTION

The routing protocol syntax defines the legitimate sequence of messages and is used to reject invalid mes-
sages. A common approach taken by routing protocols is to use heart beat messages to detect whether a
neighbor is reachable (i.e. Hello in OSPF, Keep-Alive in BGP). BGP neighbor to neighbor peering also uses
extensive syntax checking. However, broader syntax checking involving more than peer to peer communi-
cation is seldom used in a distributed system such as a routing protocol.

If the protocol syntax is well defined, syntax checking can be very effective at detecting hardware faults,
implementation bugs, and so forth. We use the protocol specification to construct finite state machines for
BGP. This approach formalizes the protocol specification and only legitimate sequence of routing update
messages are allowed by the corresponding state machine. Illegitimate message sequences resulting from
implementation bugs, hardware faults can be detected by violations of the finite state machine transitions.

For example, the BGP protocol uses a withdrawal update message to notify neighbors when a prefix is
no longer reachable. Intuitively, a router should not withdraw a route it has never advertised. However,
[2] measured BGP updates and observed that a majority of BGP updates in the Internet were pathological
update such as withdrawal messages for routes that were never advertised. Furthermore, a popular router
implementation would further propagate the withdrawal messages. One of our assertions(Assertion 3) de-
rived from our Finite State Machine would immediately identify this type of illegitimate syntax and would
have detected these pathological updates.

II. STATE MACHINES FOR ONE SINGLE PREFIX

In this section, we develop Finite State Machines for BGP protocol[3]. A state machine for the whole de-
cision process of a BGP speaker is quite complex, and we would like to take as our first step developing state
machines for a BGP speaker’s processing of a single prefix, without considering aggregation. Furthermore,
we divide the state machines into three parts of communicating state machines[1], illustrated in Figure 1.

Policy Changes

BGP Input State Machine

for Peer nPolicy Changes

Policy Changes

BGP Input State Machine

for Peer 1

IGP Import State Machine
Policy Changes

...
...

...
...

Withdraw[i] BGP Input State Machine
for Peer i

Announce[i]=R

RIB−In[0] Changed

RIB−In[i] Changed

Selection State Machine

...
...

...
...

IGP Export State Machine

eBGP Output State Machine
for eBGP peer i (i=1,, Ne)
(Ni + Ne = n)

eBGP New_Route(R)

iBGP New_Route(R)

for iBGP Peer i (i=1, ..., Ni)
iBGP Output State Machine

...
...

...
...

iBGP Null_Route

IGP Null_Route

IGP New_Route(R)

eBGP Null_Route

Policy Changes

Policy Changes

Announe[n]=R

Withdraw[n]
RIB−In[n] Changed

Input State Machines Output State Machines

Policy Changes

MinRouteAdver Timer [i] Expired

RIB−In[1] Changed

Withdraw[1]

Announce[1]=R

New Route(R)

Null_Route

Static_C
hanged

Fig. 1. Relationship of the State Machines

These state machines include input State Machines, a Selection State Machine(Figure 4, and Output State
Machines. Input State Machines include one IGP Import State Machine(Figure 3), and one BGP Input State
Machine for each peer(Figure 2). Output State Machines include one iBGP Output State Machine for each
iBGP peer(Figure 5), one eBGP Output State Machine for each eBGP peer(Figure 6) and Timer State Ma-
chine for each eBGP peer(Figure 7). These state machines interact with each other through the events they
trigger.

III. ASSERTIONS DERIVED FROM FINITE STATE MACHINES

Following the transition rules of state machines, the outputs of these state machines are correct if the
inputs are correct. Therefore, an incorrect output is a clear indication that something is wrong in the input,
assuming the state machines are implemented correctly. Our approach is based on this observation, and
derives protocol assertions that must hold true in any correct execution of the protocol. Figure 8 lists the
assertions that derived from state machines.

We classify the assertions into following 4 types:

2

ROUTE_FILTERED
Policy Checking

Due to Policy change

 RIB−In[i] fails
Input Policy/ none

RIB−In[i] matches input policy
/ Clear mark,trigger
"RIB−In[i] Changed" Event

Input Events:
 "Announce[i]=R" Event: triggered by the receiving of an announcement for prefix p from peer i

Internal Events: (Which are triggered by the "Policy Checking" states, and such an event could only be used by the state that trigger it.)

 "RIB−In[i] Changed" Event, which will be used by the Selection State Machine

 "Withdraw[i]" Event: triggered by the receiving of a withdrawal for prefix p from peer i, or triggered by the loss of the BGP session with peer i

"

Note: "Policy Checking" States are intermediate states, and the process that" a trasition goes to state, and a following trasition goes out of it
is atomic. Only the Internal Events shown above could occur when the machine is in the "Policy Checking" state.

Output Events:

Side Effects:

 "Policy Changes" Event: triggered when the Policy is changed in user interface

 "RIB−In[i] matches Input Policy"
 "RIB−In[i] fails Input Policy"

 Modifications on RIB−In[i],including marking and unmarking a RIB−In[i] as filtered

 input policy / none
RIB−In[i] matches

RIB−In[i] fails input Policy /
mark RIB−In[i] as filtered,
trigger "RIB−In[i] Changed" Event

Policy Checking
NO_ROUTE_

R
 fails input Policy / m

ark R
 as filtered

Policy Checking

A
nnounce[i]=

R
 /R

IB
−

In[i]=
R

Announce[i]=R /RIB−In[i]=R

ROUTE_CANDIDATE_

NO_ROUTE

ROUTE_FILTERED

R matches input Policy / trigger "RIB−In[i] Changed" Event

R matches input Policy / trigger "RIB−In[i] Changed" Event

Policy Changes

ROUT_CANDIATE
Policy Checking

due to Policy Change

R
 fails input Policy / m

ark R
IB

−
In[i] as filtered,

trigger "R
IB

−
In[i] C

hanged" E
vent

ROUTE_CANDIDATE

W
ithdraw

[i]/R
IB

−
In[i]=

N
U

L
L

Withdraw[i]/RIB−In[i]=NULL,
trigger "RIB−In[i] Changed" Event

Announce[i] =R/RIB−In[i]=R

Fig. 2. Input State Machine for Route to prefix p that is received from BGP peer i.

3

ROUTE_FILTERED
Policy Checking

Due to Policy change

 RIB−In[0] fails
Import Policy/ none

RIB−In[0] matches Import policy
/ Clear mark,trigger
"RIB−In[0] Changed" Event

 Import policy / none
RIB−In[0] matches

RIB−In[0] fails Import Policy /
mark RIB−In[0] as filtered,
trigger "RIB−In[0] Changed" Event

 In order for ease of describtion in Selection State Machine, we use RIB−In[0] to refer to the IGP route to prefix p.

Output Events:
 "RIB−In[0] Changed" Event, which will be used by the Selection State Machine

Note: "Policy Checking" States are intermediate states, and the process that" a trasition goes to state, and a following trasition goes out of it
is atomic. Only the Internal Events shown above could occur when the machine is in the "Policy Checking" state.

Input Events:
 "New_Route(R)" Event: triggered when a new route R is imported from IGP

 "Null_Route" Event: triggered when IGP becomes to have no route to prefix p

Internal Events: (Which are triggered by the "Policy Checking" states, and such an event could only be used by the state that triggered it.)

 "RIB−In[0] matches Import Policy"
 "RIB−In[0] fails Import Policy"

 "Import Policy Changes" Event: triggered when the Import Policy is changed in user interface.

Policy Checking
NO_ROUTE_

R
 fails Im

port Policy / m
ark R

 as filtered

Policy Checking

A
nnounce[0]=

R
 /R

IB
−

In[0]=
R

Announce[0]=R /RIB−In[0]=R

ROUTE_CANDIDATE_

NO_ROUTE

ROUTE_FILTERED

R matches Import Policy / trigger "RIB−In[0] Changed" Event

R matches Import Policy / trigger "RIB−In[0] Changed" Event

ROUT_CANDIATE
Policy Checking

due to Policy Change

R
 fails Im

port Policy / m
ark R

IB
−

In[0] as filtered,

trigger "R
IB

−
In[0] C

hanged" E
vent

ROUTE_CANDIDATE

W
ithdraw

[0]/R
IB

−
In[0]=

N
U

L
L

Withdraw[0]/RIB−In[0]=NULL,
trigger "RIB−In[0] Changed" Event

Announce[0] =R/RIB−In[0]=R

Import Policy Changes

Import Policy Changes

"

Fig. 3. State Machine for Route to prefix p that are imported from IGP

4

N!=NULL / Action 1*

 j<−k, unlock RIBs−In; Trigger eBGP "New_Route(RIB−In[j])" event

 if peer i is eBGP peer, Trigger iBGP "New_Route(RIB−In[j]" event

Note* Action 1: install RIB[k] in Loc−RIB, FIB and IGP;

Input Events:
 "RIB−In[i]=R" Event: triggered by the Input State Machine for peer i,

 eBGP "New_Route(<Route>)" Event: which will be used by eBGP Output State Machine

iBGP "New_Route(<Route>)" Event: which will be used by iBGP Output State Machine
iBGP "Null_Route" Event: which will be used by iBGP Output State Machine

eBGP "Null_Route" Event: which will be used by eBGP Output State Machine

Internal Events: (Which are triggered by the "Ranking" states, and such an event could only be used by the state that triggered it.)
 All the other events other than the Input Events and Output Events listed above.

Output Events:

is atomic. Only the Internal Events shown above could occur when the machine is in the "Policy Checking" state.
Note: "Ranking" States are intermediate states, and the process that" a trasition goes to state, and a following trasition goes out of it"

Side Effects:
 Modifications on RIB−Loc, FIB, IGP

No Route Selected

RIB_In[j] Selected

R
IB

−
In[i] C

hanged, i=
j / L

ock R
IB

−
In,

k=j /none

2

 (1)

k=NULL

/unlock RIB−In

(2)

(4)

(5)

(5)

No_Route Ranking

Selected Route Changed
Ranking

(RIB−In[k] ranked first)

(RIB−In[k] ranked first)

Non−selected Route
Changed Ranking
(RIB−In[k] ranked first)

R
IB

−
In[i] C

hanged / L
ock R

IB
−

In

RIB−In[i] Changed, i!=j / Lock RIB−In

k!=j/ Action 1 *

k!=
N

U
L

L
 &

 K
!=

j /A
ction 1*

or triggered by Input State Machine for Static/IGP

k=
j / A

ction 1*

k=NULL/ remove RIB−In[i] from Loc−RIB,Trigger eBGP "Null_Route" event
, if peer i is eBGP peer, Trigger iBGP "Null_Route" event, unlock RIBs−In

Fig. 4. Selection State Machine for Route to prefix p: this state machine describes state changes in a BGP speaker that are
associated with the route to prefix p.

5

ROUTE_FILTERED
Policy Checking

Due to Policy change

RIB−Out[i] matches Output policy
/ Clear mark, send iBGP announce
to peer i

 RIB−Out[i] fails
Output Policy/ none

RIB−Out[i] fails Output Policy /
mark RIB−Out[i] as filtered,
send iBGP withdrwal to peer i

 Output policy / none
RIB−Out[i] matches

Policy Checking
NO_ROUTE_

New_Route(R) /RIB−Out[i]=R

R matches output Policy / send iBGP announce to peer i

ROUTE_ADVERTISED_
Policy Checking

R matches output Policy / Send iBGP announce to peer i

Null_Route/RIB−Out[i]=NULL,
Send iBGP withdrawal to peer i

New_Route(R) /RIB−Out[i]=R

N
ew

_R
oute(R

) /R
IB

−
O

ut[i]=
R

N
ull_R

oute/R
IB

−
O

ut[i]=
N

U
L

L

Note: Events New_Route(R) and Null_Route are triggered by Selection State Machine
send iB

G
P w

ithdraw
al to peer i

R
 fails O

utput Policy / m
ark R

IB
−

O
ut[i] as filtered,

Policy Changes

NO_ROUTE

ROUTE_FILTERED

ROUTE_ADVERTISED

Policy Changes

Input Events:
 "iBGP New_Route(R)" Event: triggered by Selection State Machine
 "iBGP Null_Route(R)" Event: triggered by Selection State Machine

Output Events:
 None

 "Policy Changes" Event: triggered when the Policy is changed in user interface

Internal Events: (Which are triggered by the "Policy Checking" states, and such an event could only be used by the state that trigger it.)

Side effects:
 Modification on RIB−Out[i], possibly sending of announcement or withdrawal to peer i

Note: "Policy Checking" States are intermediate states, and the process that" a trasition goes to state, and a following trasition goes out of it"

is atomic. Only the Internal Events shown above could occur when the machine is in the "Policy Checking" state.

ROUTE_ADVER..
Policy Checking

Due to Policy Change

R
 fails output Policy / m

ark R
IB

−
O

ut[i] as filtered

RIB−Out[i]=R meaning changing the flag.... see Internet Routing Architectures, 2nd. p154.

 RIB−Out[i] matches Output Policy

 RIB−Out[i] fails Output Policy

Fig. 5. Output State Machine for Route to prefix p that will be sent to iBGP peer i

6

RIB−Out[i] fails output policy /
mark RIB−Out[i] as filtered

fails output policy/m
ark R

IB
−

O
ut[i]

as filtered, send eB
G

P w
ithdraw

al
to peer i

R
IB

−
O

ut[i]

RIB−Out[i] matches
output policy/none

ADVERTISED
Policy Checking
due to policy
Change

Policy Changes/none

/mark RIB−Out[i] as filtered
as filtered, send eBGP
withdrawal to peer i

Proposed−RIB−Out[i] fails output policy/

mark RIB−Out[i] as filtered
Send eBGP withdrawal to peer i

R fails output policy / RIB−Out[i]=R

ADVERTISED
Policy Checking

New_Route(R) /none

R matches output policy/
Proposed−RIB−in[i]=R
Manuplate and Update its
Attriubtes

New_Route(R) /none
R matches output policy/
Proposed−RIB−in[i]=R
Manuplate and Update its
Attriubtes

output policy/none
Proposed−RIB−Out[i] matches

WAITING_NOT_

−

WAITING_

Null_Route / RIB−Out[i]=NULL

Null_Route / RIB−Out[i]=NULL

Timer[i] expire /none

Null_Route / RIB−Out[i]=NULL, Send eBGP withdrawal to peer i

T
im

er[i] expire / none

Input Events:

 "Policy Changes" Event: triggered when the Policy is changed in user interface

Side effects:
 Modification on RIB−Out[i], possibly sending of announcement or withdrawal to peer i

Note: "Policy Checking" States are intermediate states, and the process that" a trasition goes to state, and a following trasition goes out of it"

is atomic. Only the Internal Events shown above could occur when the machine is in the "Policy Checking" state.

RIB−Out[i]=R meaning changing the flag.... see Internet Routing Architectures, 2nd. p154.

 "eBGP New_Route(R)" Event: triggered by Selection State Machine
 "eBGP Null_Route(R)" Event: triggered by Selection State Machine

Internal Events: (Which are triggered by the "Policy Checking" states, and such an event could only be used by the state that triggered it.)

 RIB−Out[i] matches Output Policy

 RIB−Out[i] fails Output Policy

, restarting MinRouteAdver timer

Restart MinRouteAdver Timer i
Timer[i] expire /Send eBGP Update to peer i

Null_Route / RIB−Out[i]=NULL, Send eBGP withdrawal to peer i

NOT_ADVERTISED

ADVERTISED ADVERTISED

ADVERTISEDFILTERED

Policy Checking
NOT_ADVER

R matches Output Policy/

N
ew

_R
oute(R

) /none

N
ew

_R
oute(R

) /none

RIB−Out[i]=R
New_Route(R)/

Manuplate and Update Policy C
hanges / none

Policy C
hanges / none

attributes of RIB−Out[i]

Policy Changes/ none

Timer[i] expire / none

T
im

er[i] expire /Send eB
G

P U
pdate to peer i

Proposed−RIB−Out[i]

Yes/none

==RIB−Out[i]

No/none

R
estart M

inR
outeA

dver T
im

er i, R
IB

−
O

ut[i]=
Proposed−

R
IB

−
O

ut[i]

 None
Output Events:

"Timer[i] expired" Event: triggered when the MinRouteAdver timer for peer i expired.

Fig. 6. Output State Machine for Route to prefix p that will be sent to eBGP peer i

7

Expired_Originating

Count_Down_
Not_Originating

Count_Down

_Originating

Expired_Not_

_Originating

Update_Originating/Restart Timer[i] with max{MinRouteOrig, MinRouteAdver}

U
pdate_N

ot_O
riginating/R

estart T
im

er[i] w
ith M

inR
outeA

dver

Update_Not_Originating/Restart Timer[i] with MinRouteAdver

Expires/ Trigger "Timer[i] Expires" Event

Expires/ Trigger "Timer[i] Expires" Event

U
pdate_O

riginating/R
estart T

im
er[i] w

ith m
ax{M

inR
outeO

rig, M
inR

outeA
dver}

Fig. 7. State Machine for Timer of eBGP Output of prefix p to peer i.

state machine assertions derived
BGP input (Figure 2) Assertions 2, 3
iBGP output (Figure 5) Assertions 1, 3, 4
eBGP output (Figure 6) Assertions 1, 3, 5, 6

Fig. 8. Assertions

Assertion types:
• MUST: Specification says this assertion is a must.
• IMPLY: Specification implies this assertion, and this assertion is our interpretation.
• SHOULD: Specification says this assertion “should” be followed.
• AMBIGUOUS: Specification is ambiguous on this assertion, or specification should have implied this

assertion according to our understanding.
Furthermore, for each assertion, we will investigate their implications by looking at their impact on (some

or all of)following three aspects:
• packet forwarding: Whether (and how) packet forwarding will be affected if the assertion is not met.
• routing overhead: Whether failure to meet the assertion will lead to unnecessary routing overhead.

8

A. Assertion 1: New Information Assertion

[IMPLY]If no refresh is used, each inbound UPDATE from BGP speaker N to BGP speaker R should
consist of some new information different from what R already have.

Implications:
a. packet forwarding: not directly affected
b. routing overhead: if an UPDATE with no new information is allowed and it is not processed prop-

erly(update is propagated), large amount of BGP update messages could be generated.
c. Out-of-sync of BGP connection will be detected if the assertion fails.

B. Assertion 2: all the latest inbound UPDATE messages should be recorded

[AMBIGUOUS]All the information from the latest inbound UPDATE messages should be stored in RIB-
In, even if filtered.

Implications:
a.Usually, packet forwarding is not affected directly. In some rare cases, packet forwarding may be

affected. For example, router A receives a route from its neighbor B, and filters it according to the current
policy. But later, the policy changes and this route should be valid. If router A does not record the route, it
will have no way validate the route, because B will only advertise the route once.

b.Routing overhead is not affected directly.
c.Faulty/malicious withdrawal will be detected if the assertion is met by local BGP speaker.

C. Assertion 3: Withdrawal Assertion

[IMPLY] A BGP speaker should not withdraw a route that it never advertised previously, or a route that
was previously advertised but has already been withdrawn.

Implications:
a. Packet forwarding is not directly affected.
b. Unnecessary routing overhead will be led due to propagation of the withdrawals that withdraws the

route not previously advertised.
c.Detection of faulty/malicious withdrawal will become easier if the assertion is met by all the BGP

speakers.

D. Assertion 4: iBGP propagation Assertion

[MUST] If a new route is learned from external peer and it will be installed in the local BGP speaker’s
Loc-RIB, this route must be advertised to all other internal peers.

E. Assertion 5: MinRouteAdver Timer Assertion

[MUST] Two consecutive UPDATE messages sent from a single BGP speaker to a specific peer should
be separated by at least MinRouteAdvertisementInterval if all of follows are satisfied:

i) the two UPDATE messages are advertising some common set of destinations; and
ii) these two routes are received from EBGP neighbors.

F. Assertion 6: Latest Change Assertion

[SHOULD] Only the last selected route should be advertised at the end of MinRouteAdvertisementInterval.

REFERENCES

[1] D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM, 30(2):323–342, 1983.
[2] C. Labovitz, G. Malan, and F. Jahanian. Internet Routing Instability. In Proceedings of ACM Sigcomm, September 1997.
[3] Y. Rekhter, T. Li, and S. Hares. Border Gateway Protocol 4. http://www.ietf.org/internet-drafts/draft-ietf-idr-bgp4-26.txt, Oct

2004.

9

