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This technical report provides the formal details of our framework for semantic type qualifiers,
which is described in a PLDI 2005 paper of the same name. We defer to that paper for the high-level
description of the framework. This report formalizes the case when all user-defined type qualifiers
are value qualifiers. Sections 1 and 2 respectively formalize the syntax and semantics of our formal
language, and section 3 presents a proof of “semantic” soundness of the language’s type system.

1 Syntax

The language is a fairly standard simply-typed lambda calculus, augmented with references and
user-defined type qualifiers. For convenience, we separate side-effect-free expressions (called ez-
pressions) from potentially side-effecting expressions (called statements). This separation causes
no loss of expressiveness.

Stmts s u= e]|s1 s2|letx =351 in sy | ref s| s := 59
Exprs e == c|()|z]|xs|le

Consts ¢ = integer constants

Vars x = variable names

Types 7 == unit|int |7 — 7 |ref 7|gr

Qualifiers q ::= user-defined value qualifiers

We restrict the above syntax of types slightly: for any type containing a component of the
form g7, we require that 7 not be of the form 71 — 75. This restriction is consistent with our
implementation of semantic type qualifiers for C, and it makes the soundness proof cleaner. Note
that types such as (¢71) — (¢'m2) and g(ref (11 — 72)) are still supported.

We also need a notion of values, which are the legal results of expressions:

Values v o= c| ()] s |l
Locations 1 := location constants (i.e., addresses)

Note that locations are not directly available at source level.



2 Semantics

2.1 Static Semantics

The base type system is standard and is defined by the following rules. As usual, metavariable I
ranges over type environments, which are finite functions from variable names to types. Also, we
assume that bound variables are a-renamed as necessary.

I'ksiim—r1 I'ksy:m ks Dx:mbsy:T
1:72 2 2T—APP 1:71 ) 1 2 T-LET
I'ksyso:7 I'Fletx=s1inso: 7T

I'ks:r I'ksy:ref 7 I'ksy:r
T-REF T-ASSGN
I'Fref s:ref 1 'k sy :=s9:unit

INz)="71
— T-INT —— T-UNniT —— — T-VAR
I'Fc:int 'k ():unit FFa:r

Te:mbs:m I'ke:refr
T-FUN ——— T-DEREF
F'FXrs:m— 1 T'He:r

In addition to these rules, users can provide a set of introduction rules for value-qualified types.
Each rule is assumed to match the following template:

I'ke:r
I'te:qm I'ke,:qnm
each e; is a subexpression of e
T-QUALCASE
I'ke:qr

This template formalizes the case rules in our implementation for C. For example, here is an
introduction rule indicating that the product of two positive expressions is also positive.

'k e; *xep:g(int) 't ep : pos int 't ey : pos int
PosMuLt

' ey xey:pos g(int)

In addition to the user-defined rules of the form specified by T-QUALCASE, we provide a “base
case” introduction rule for all qualified types. We assume that the definition of each qualifier ¢
includes a unary predicate [[¢]] on values, which is used below to formalize a qualifier’s semantics.
The base case says that any value satisfying [[¢]] may have a type qualified with g¢:

lgll(v) Thw:7
I'Fo:gr

T-QUALVAL

This natural rule facilitates the proof of our soundness theorem, described below.
Finally, we include a subsumption rule and an associated subtyping relation for types, defined
by the following rules:

T'ks:7 <7
I'ks:t

T-SuB




SUBVALQUAL ——  — SUBQUALREORDER
qr < T Q1927 < Qa1 T
T S 7_// 7_// S 7_/
SUBREF ; SUBTRANS

T<T T<T

/ /

T1<T T2 < Ty

— SUBFUN

2.2 Dynamic Semantics

The dynamic semantics describes how to evaluate programs. Metavariable o ranges over stores,
which are finite functions from locations to values. We define an abstract machine for our language.
A machine configuration < o,s > is a pair of a store and a statement to be evaluated. The steps
of the machine are defined by the following inference rules:

<o0,8>—<o,v>

< 0,8 >—< 01, A\x.8 > < 01,89 >—< 09,09 > < 09, 8[x > vo] >—< o', v >

; E-Aprp
< 0,81 S9 >—>< 0,V >

< 0,81 >—< 01,01 > < 01, 8$2lx > v1] >—< 09,09 >
E-LET

< og,let x =51 in 89 >—< 02,V >

<o,8>—=<o,v> [ fresh in o’

7 E-REF
< o,ref s >—=< o[l —v],l >

< 0,81 >—<o01,l > < 01,89 >—< 09,V > [ € dom(oq)
E-AssaN

< 0,81 1= 83 >—< oa[l — v],() >

<0,e>—0
E-EXPRr

<o e>—< 0,0 >

<o,e>—1 o(l)
——  E-VAL E-DEREF
< 0,0 >—> v <ole>—v

I
S]

3 Soundness

We use a qualifier ¢’s associated predicate [[g]] to formalize a local soundness condition on user-
defined type rules. This formalization makes use of an overloading of the [[¢]] notation that lifts
these predicates from values to arbitrary expressions:

(g}, e,0) = (< 0,6 >= v = [[g]](v))



Definition 3.1 A type rule matching the template T-QUALCASE is locally sound if the following
proof obligation is true:

Vo1, ... 0, v.([[(1]](0,e1,v1) A ... Allgn]l(o, en,vn)) = [[q]] (o, €, v)

Intuitively, (global) soundness means that, if all user-defined type rules are locally sound, then
any well-typed program fragment will satisfy its qualifiers’ invariants at run time. We formalize
this notion of type soundness via a few auxiliary definitions.

F;T|—<O',U>‘

I'Azs:m — 7
Q-INT Q-UNIT Q-Fun
Iint < o,¢ > [unitF< o, () > I'im - mnbE<o ) v.s >

FHl:refr it kE<o,0(l) > [ € dom(o)
Iiref 1< 0,1 >

Q-REF

lg]l(v) TyrkE<ov>
Iigr < o,v >

Q-QuaAL

The relation I'; 7 =< o, v > represents semantic conformance of a value to a type. Intuitively,
I's7 H< o,v > holds if I' F v : 7 and v additionally satisfies all of the associated invariants for
qualifiers in 7. The first three rules are the standard typechecking rules for integers, unit, and
functions, respectively. Rule Q-QUAL checks that a value of qualified type satisfies the qualifier’s
invariant. Rule Q-REF checks that a location [ is well-typed and recursively checks semantic
conformance of the value that [ points to in the given store. For purposes of the static semantics
we treat locations as variables.

Next we lift this notion of semantic conformance to a relation between a store and a type
environment:

Definition 3.2 We say that I' ~ ¢ if both of the following conditions hold:
1. dom(T") = dom(o)
2. Vi € dom(").(T;T'(1) k< 0,1 >)

In other words, I' ~ ¢ if every memory location is well typed and satisfies its qualifiers’ invariants.
Finally we can state our type soundness theorem, which is a variant of the standard type
preservation theorem:

Theorem 3.1 If '~ocand '+ s:7 and < 0,5 >—< o’,v > and all user-defined type rules are
locally sound, then there exists some IV O T such that IV ~ ¢’ and I; 7 F< o/, v >.

To prove this theorem, it is helpful to make use of (un)reachability properties of well-formed
stores. The following judgment and associated inference rules formalize when a value cannot reach
a location through a given store.

UNREACHINT ———— UNREACHUNIT ——— UNREACHFUN

ohkchl ok ()1 ok Ax.s,l



I'#1 I'edom(c) = ok o(l')»1
o1 Al

UNREACHLOC

Finally we prove Theorem 3.1:
Proof By induction on the depth of the derivation of < 0,5 >—< ¢’,v >. Case analysis of the
last rule used in the derivation.

e E-ArPp: Then s = s1 s9 and < 0,51 >—< o01,A\x.s' > and < 01,82 >—< 09,09 > and
< 09,8 [x — v9] >—< o’,v >. We prove this case by induction on the depth of the derivation
of I' - s : 7. Case analysis of the last rule used in the derivation.

— T-App: Then 't 81 : 79 — 7 and T' F s5 : 79. By (outer) induction there exists I'y O T

such that I'y ~ 01 and I'1;79 — 7 F< 01, Ax.s’ >. Since I' - s5 : 75, by Lemma 3.6 also
I'y F so : 7o. Then by (outer) induction there exists I'y O I'y such that I'y ~ o9 and
T'o;mo bF< 09,19 >.
Since I'1; 79 — 7 F< 01, \x.s' >, by Q-FUN also I'1 - A\z.s’ : 9 — 7, so by Lemma 3.6
we have I'y b Az.s’ : 9 — 7. Then by Lemma 3.12 we have I's,z : 75 b s’ : 7/, where
7 < 75 and 77 < 7. Then by T-SUB also I'g,z : 75 F ¢’ : 7. Since I'9; 1o < 09,02 >
and 7o < 75, by Lemma 3.4 also I'y; 75 F< 09,v2 >. So we have I'y,z : 75 - ¢’ : 7 and
Ty; 75 F< 0g,v92 >, and by Lemma 3.2 also I's - §'[x — vy : 7. Since also I'y ~ 09 and
< 09,8 [z — vy] >—=< o’,v >, by (outer) induction there exists some IV D I'y such that
I"~¢ and I'";7 F< o/, v >.

— T-SuB: Then I' s : 7/ and 7/ < 7. By inner induction, there exists some I’ D I" such
that IV ~ ¢’ and I'; 7/ =< ¢’,v >. Then by Lemma 3.4 also I'/;7 F< o/, v >.

e E-LET: Then s = let = 51 in sy and < 0,81 >—< 01,01 > and < 01, s3[x — v1] >—<
o’,v >. We prove this case by induction on the depth of the derivation of I' - s : 7. Case
analysis of the last rule used in the derivation.

— T-LET: Then '+ 51 : 7y and I,z : 71 - s : 7. By (outer) induction there exists I'y O T
such that I'y ~ o1 and I'1; 7 < o1,v1 >. Since I',x : 71 F s5 : 7, by Lemma 3.6 also
',z : 7 F s :7. Then since I'1; 71 F< 01,v1 >, by Lemma 3.2 also I'y F so[z +— vq] : 7.
Finally, since < o1, s2[z — v1] >—< ¢’,v >, by (outer) induction there exists some
IV DT such that IV ~ ¢/ and I'V; 7 F< o/, v >.

— T-SuB: See the proof of the T-SUB case within the case for E-APP.

e E-REF: Then s = ref sy and < 0,s9 >—< 0g,vg > and [ fresh in o9 and ¢/ = o[l — vg]
and v = [. We prove this case by induction on the depth of the derivation of I' - s : 7. Case
analysis of the last rule used in the derivation.

— T-REF: Then 7 =ref 79 and I' F sg : 79. By (outer) induction there exists some I'g 2 T’

such that Ty ~ o and ;79 < 0g,vp >. Let IV = T'y[l — ref 79]. Since [ fresh in oy
and Ty ~ 0g, also [ € dom(I'y), so I'" D T'g. To complete this case we show that I'' ~ ¢
and I'V;ref 1o F< o/, >.
First we prove I'';ref 19 < o/,1 >. We're given I'g; 79 =< 0¢,v9 >. Since [ fresh in oy,
also | ¢ dom(oy), so o/ 2 opg. We also saw above that IV D T'y. Then by Lemma 3.5
we have I'; 79 F< ¢/,v9 >. By T-VAR and the definition of I we have I'' - [ : ref 7.
Finally, by definition of ¢’ we have that | € dom(¢’) and ¢’(l) = vg. Therefore by Q-REF
we have I'V;ref 19 F< o/, >.



Finally we prove I ~ ¢’. Since dom(I'g) = dom(oy), also dom(I"”) = dom(c’), so part
1 is proven. Now consider some I’ € dom(I"”). To prove part 2 we must show that
;110" < o', I >. If I = I, then we must show that I';ref 79 F< o', >, which
was proven above. Otherwise I’ # [. Then I’ € dom(T'g) and since 'y ~ oy, we have
To; To(l') < 09,1l >. Since I’ # 1, we have To(I') = T'('), so T'p; I(I') < 0¢,I" >. Then
by Lemma 3.5 we have I'; T(I') F< o/, 1" >.

— T-SuB: See the proof of the T-SUB case within the case for E-APP.

e E-AssGN: Then s = s1 := s9 and < 0,51 >—< 01,1 > and < 01,89 >—< 09,02 > and
l; € dom(oq) and ¢’ = o3[l; — wvy] and v = (). We prove this case by induction on the depth
of the derivation of I' - s : 7. Case analysis of the last rule used in the derivation.

— T-AssaN: Then 7 = unit and I' F s; : ref 7/ and ' F s9 : 7/. By (outer) induction
there exists some I'1 D I' such that I'1 ~ o1 and I'y;ref 7/ < 01,01 >. Since ' F s : 7/
and I'; D T, by Lemma 3.6 also I'y - so : 7. Then by (outer) induction there exists
some I'y D I'y such that I's ~ 09 and T'y; 7/ F< 09, v >.

To prove this case, we must show that there exists IV O T such that IV ~ ¢’ and
I;unit F< o/, () >. We will show that I's ~ ¢’ and I'g;unit F< o/, () >. I'y;unit F<
o', () > follows from Q-UNIT, so it remains to prove I'y ~ o’

First we show that dom(I'y) = dom(c’). Since I'y ~ 03, we know that dom(I's)
dom(oy). Since I3 € dom(o;) and < 01,82 >—< 09,v2 >, by Lemma 3.7 also [;
dom(oy). Therefore, dom(oa) = dom(oz[ly — ve]) = dom(c’). Therefore dom(I's)
dom(o”).

Second, we must show that for each | € dom(I'y) we have I'y;T'9(l) F< ¢’,1 >. Since
'y ~ oy we have I'y;T'9(l) F< 09,1l >. Suppose o2 b | v ;. Then by Lemma 3.15
we have I'g;T'9(l) < o/,1 > as desired. Suppose instead that it is not the case that
o9 1+ 1. Then since 'y ~ 09, by Lemma 3.16 there exists a nonnegative integer k
such that o5(I) = Iy. Since T'1;ref 7/ F< 01,11 >, by Q-REF we have T'y I Iy : ref 7/,
and by Lemma 3.6 also I's - [; : ref 7/. Then the result follows by Lemma 3.19.

hm 1

— T-SuB: See the proof of the T-SUB case within the case for E-APP.

e E-ExPR: Then s = ¢ and < o,e >— v and ¢/ = 0. We're given that I' ~ o, and by
Lemma 3.1 we have I'; 7 =< o,v >, so the result follows by taking I'' =T".

O

Lemma 3.1 f T~candI'te:7and <o,e > v, then I'; 7 F< 0,v >.
Proof By induction on the depth of the derivation of I' - e : 7. Case analysis of the last rule used
in the derivation.

e T-INT: Then e = ¢ and 7 = int. Since < 0,e¢ >— v, by E-VAL we have v = ¢. Then by
Q-INT we have I'; 7 F< 0,v >.

e T-UNIT: Then e = () and 7 = unit. Since < 0,e >— v, by E-VAL we have v = (). Then by
Q-UNIT we have I'; 7 F< o,v >.

e T-VAR: Then e = z and I'(x) = 7. Since I' ~ o, we have that dom(I") = dom(o), so x
must be a location [. Since < g,e >— v, by E-VAL we have v =[. Then by I' ~ ¢ we have
Iirk<o,l >.



T-DEREF: Then e =!¢/ and I' F €' : ref 7. Since < 0,e >— v, by E-DEREF we have
< 0,/ >— [ and o(l) = v. By induction we have I';ref 7 F< o,] >, so by Q-REF also
IirhkE<o,v>.

T-QUALCASE: Then 7 = g7’ and'Fe: 7 and 'Fey : iy ... ' F e, @ ¢,7. By induction
we have I'; 7/ F< o,v >. Therefore, I';7 F< o,v > follows from Q-QUAL if we can show

[[gl}(v).

Consider one of the e; subexpressions of e, and let v; be some value. If it is not the case
that < o,e; >— v;, then [[¢;]](0, €;,v;) holds trivially. Otherwise, if < o,e; >— v;, then by
induction we have I'; ¢;7; F< o,v; >. Then by Q-QUAL we have [[¢;]](v;), so also [[¢i]] (o, €;,v;)
holds. Since we assume that T-QUALCASE is locally sound, and since we can find a v; for
each e; such that [[¢]](o,e;,v;) holds, by Definition 3.1 we have [[g]](o,e,v). Then since
< 0,e >— v, we have [[¢]](v).

T-QUALVAL: Then e = v' and 7 = ¢7’ and [[¢]](v') and T F v’ : 7. Since < g,e¢ >— v, by
E-VAL we have v = v’. So we have [[¢]](v) and T' F v : 7/. By induction I'; 7' F< o,v >, and
by Q-QUAL also I';g7' F< o,v >.

T-SuB: Then I' - e : 7 and 7 < 7. By induction we have I'; 7/ < o,v >, and the result
follows from Lemma 3.4.

O

Lemma 3.2 If I',zg : 7o b s: 7 and T'; 79 < 0,09 >, then I' - s[zg — vg] : 7.
Proof By induction on the depth of the derivation of I';xg : 79 - s : 7. Case analysis of the last
rule used in the derivation.

T-AppP: Then s =51 sgand I',zg : 1o 81 : 70 — 7and I',zg : 79 F s2 : 72. By induction we
have ' s1[xg — wvg] : 0 — 7 and T' F s9[zg — vg] : 72, and the result follows by T-APP.

T-LET: Then s =let x =s;insys and I'yzg: 79k s1 :mand I',xg : 79,2 : i b so : 7. By
induction we have I' b sy[xg +— vo] : 71 and ',z : 71 b sa[xg — vg] : 7, and the result follows
by T-LET.

T-REF: Then s = ref s’ and 7 = ref 7/ and I',z9 : 79 - s’ : 7. By induction we have

'k s'[xg — vg] : 7/, and the result follows by T-REF.

T-ASSGN: Then s = s1 :=sgand 7 =unit and I',zg : 7o F s1 : ref 7 and ', 29 : 79 - 59 : 7.
By induction we have I' - s1[xg — vg] : ref 7" and T' - so[xg — vg] : 7/, and the result follows
by T-ASSGN.

T-INT: Then s = ¢ and 7 = int, and the result follows by T-INT.
T-UNIT: Then s = () and 7 = unit, and the result follows by T-UNIT.

T-VAR: Then s =z and (I, z¢ : 79)(x) = 7. Suppose zo = z. Then 79 = 7 and z[z¢ — vo] =
Vg, so we must prove I' F vy : 79. Since I'; 79 F< o, vy >, the result follows by Lemma 3.3.
Otherwise, suppose o # z. Then z[xg — wvg] = =, so we must prove I' - x : 7. Since
(T',zp : 10)(x) = 7 and xg # x, also I'(x) = 7, so the result follows by T-VAR.

T-FuN: Then s = Az.s’ and 7 =7 — mp and I',zg : 79,2 : 71 F s’ : 7o. By induction we have
I,z :7 b s'[zg — o] : 72, and the result follows by T-FUN.



T-DEREF: Then s =leand I',zg : 79 I e : ref 7. By induction we have I' F e[z +— vg] : ref T,
and the result follows by T-DEREF.

T-QUALCASE: Then 7 = g7’ and I',zg : o e: 7 and T,xg : o ey :qumy ... Dymg : 10
€n : qnTn. By induction we have I' - e[zg — vg] : 7/ and T' - e1[zg — vo] : 171 ... T F ep[zg —
Vo] : gnTn, and the result follows by T-QUALCASE.

T-QUALVAL: Then s = v and 7 = ¢7" and [[¢]](v) and T',z¢ : 70 - v : 7/. By induction also
I' b v[xg +— o] : 7. Since arrow types may not be qualified, 7" is not of the form g(m; — 72).
Then by Lemma 3.10 v is not of the form Az.s’. Therefore v[xg — vg] = v, so [[q]](v[xg — vo)).
Then the result follows by T-QUALVAL.

T-SuB: Then I',zg : 7o F e : 7/ and 7" < 7. By induction we have I' b e[z¢ — vg] : 7/, and
the result follows by T-SUB.

O

Lemma 3.3 If ;7 < o,v >, then 'Fov: 7.
Proof By induction on the depth of the derivation of I';7 F< o,v >. Case analysis of the last
rule used in the derivation.

Q-INT: Then 7 = int and v = ¢, and the result follows by T-INT.

Q-UNIT: Then 7 = unit and v = (), and the result follows by T-UNIT.
Q-FUuN: Then v = Ax.s and I' - Ax.s : 7, which is what we wanted to prove.
Q-REF: Then v =1 and I' F [ : 7, which is what we wanted to prove.

Q-QuAL: Then 7 = g7’ and [[¢]](v) and T';7' F< o,v >. By induction we have T' - v : 7’.
Then since [[¢]](v), by T-QUALVAL also I' - v : 7.

O

Lemma 3.4 If ;7 F< o,v > and 7/ < 7, then I'; 7 F< 0, v >.
Proof By induction on the derivation of 7/ < 7. Case analysis of the last rule used in the derivation.

SUBVALQUAL: Then 7/ = ¢g7. Since I'; 7/ F< o,v >, by Q-QUAL we have I'; 7 < o, v >.

SUBQUALREORDER: Then 7/ = qiqam0 and 7 = ¢oq179. Since I';7/ < o,v >, by Q-
QuUAL we have [[¢1]](v) and T'; g279 F< o,v >. Then again by Q-QUAL we have [[g2]](v) and
I'; 79 F< 0,v >. Therefore, by Q-QUAL we have I'; q179 F< 0,v >, and again by Q-QUAL we
have I'; gaq179 F< 0,v >.

SUBREF: Then 7 = 7 and the result follows.

SUBTRANS: Then 7/ < 7”7 and 77 < 7. By induction I'; 7"/ < o¢,v >, and by induction again
i kE<o,v >.

SUBFUN: Then 7/ = 7f — 7 and 7 = 71 — 72. Since I';7’ < o,v >, by Q-FUN we have
that v = Az.s and I' - Az.s : 7] — 74. Since 7/ < 7, by T-SUB we have I' - Az.s : 71 — T2, so
by Q-FUNI'; 1y —» m F< 0, A\z.s >.

O



Lemma 3.5 If I';7F<o,v > and IV DT and ¢’ D o, then I'';7 < o/, v >.
Proof By induction on the depth of the derivation of I';7 < o,v >. Case analysis of the last
rule used in the derivation.

Q-INT: Then 7 = int and v = ¢, and the result follows by Q-INT.
Q-UNIT: Then 7 = unit and v = (), and the result follows by Q-UNIT.

Q-Fun: Then 7 =7 — mand v = Az.sand ' H Az.s : 71 — 7. By Lemma 3.6 also
I+ Az.s : 71 — 7o, and the result follows by Q-FUN.

Q-REF: Then 7 =ref 7 andv=1]and '+ 1[:ref 7" and I';7 F< 0,0(l) > and | € dom(0).
By Lemma 3.6 we have IV - [ : ref 7/. Since | € dom(o) and ¢’ D o, also | € dom(c’) and
o(l) = ¢’(1). Finally, by induction I''; 7/ F< o', 0'(l) >, and the result follows by Q-REF.

Q-QuAL: Then 7 = ¢’ and [[¢]](v) and ;7' F< o,v >. By induction we have I''; 7" F<
o’,v >, and the result follows by Q-QUAL.

O

Lemma 3.6 If 'Fs:7and IV DT, then IV - s: 7.
Proof By induction on the depth of the derivation of I' - s : 7. Case analysis of the last rule used
in the derivation.

T-App: Then s = sy ssand I' - 81 : 9 — 7 and ' F 89 : 9. By induction we have
Ik sy :7 — 7 and IV F sy : 79, and the result follows by T-APP.

T-LET: Then s =letx =syinsgoand 'k sy :m and I,z : 7y F s9 : 7. By induction we
have IV s : 7y and IV, 2 : 71  so : 7, and the result follows by T-LET.

T-REF: Then s = ref s’ and 7 = ref 7/ and I' s’ : 7/. By induction we have I I s" : 7/,

and the result follows by T-REF.

T-ASSGN: Then s = s1 := 5o and 7 = unit and ' - 51 : ref 7/ and I' I s5 : 7/. By induction
we have I" F s1 : ref 7/ and IV I s : 7/, and the result follows by T-ASSGN.

T-INT: Then s = ¢ and 7 = int, and the result follows by T-INT.
T-UNIT: Then s = () and 7 = unit, and the result follows by T-UNIT.

T-VAR: Then s = x and I'(x) = 7. Since IV D T, also I'(z) = 7, and the result follows by
T-VAR.

T-FuN: Then s = Az.s’ and 7 = 71 — m and ',z : 7y s’ : 75. By induction we have
Iz : 71 F s : 79, and the result follows by T-FUN.

T-DEREF: Then s =le and I' - e : ref 7. By induction we have I'V I~ e : ref 7, and the result
follows by T-DEREF.

T-QUALVAL: Then s = v and 7 = ¢7’ and [[¢]](v) and T F v : 7/. By induction also I - v : 7/,
and the result follows by T-QUALVAL.

T-SuB: Then I' - s : 7/ and 7/ < 7. By induction we have I'' I s : 7/, and the result follows
by T-SUB.



e T-QUALCASE: Then 7 =g’ and'Fe:7 and 'k ey : iy ...'F e, : ¢,7. By induction
wehave IV s: 7/ and IV F ey : q111...1T" e, @ guTyn, and the result follows by T-QUALCASE.

O

Lemma 3.7 If | € dom(o) and < 0,s >—< ¢’,v >, then [ € dom(o”).
Proof By induction on the depth of the derivation of < 0,5 >—< ¢’,v >. Case analysis of the
last rule used in the derivation.

e E-ArPp: Then s = s1 s9 and < 0,51 >—< o01,A\x.s' > and < 01,80 >—< 09,09 > and
< 09,8 [x — v3] >—>< ¢’,v >. By induction | € dom(o1). By induction again, | € dom(os).
By induction again, [ € dom(c”).

E-LET: Then s = let x = s1 in s and < 0,81 >—< 01,v; > and < 01, s2[x — v1] >—<
o’,v >. By induction [ € dom(cy) and by induction again, [ € dom(c”’).

E-REF: Then s = ref s’ and < 0,8 >—< 01,9 > and ¢/ = oy[l' — ¢']. By induction
l € dom(oy), so also | € dom(o1[l" — v')).

E-ASSGN: Then s = s1 := sy and < 0,81 >—< o1,! > < 01,89 >—< 09,0 > and
o' = o3[l' — ']. By induction I € dom(oy), by induction again | € dom(osz), so also

l € dom(oa[l' — 2']).

E-ExPR: Then ¢’ = o, so since [ € dom(o), also [ € dom(c”).

Lemma 3.8 If I' - [ : g(ref 7), then there exists g’ such that I'(l) = ¢'(ref 7).
Proof By induction on the depth of the derivation of I' - [ : g(ref 7). Case analysis of the last
rule in the derivation.

e T-VAR: Then I'(l) = g(ref 7), so the result follows, where g’ = 7.

e T-QUALCASE: Then ¢ =¢¢” and '+ 1 : ¢ (ref 7), so by induction there exists g’ such that
(1) =¢ (ref 7).

e T-QUALVAL: Then § = ¢g” and ' - [ : §’(ref 7), so by induction there exists g’ such that
(1) =¢ (ref 7).

e T-SuB: Then I' -1 : 7/ and 7/ < g(ref 7). By Lemma 3.9 7’ has the form g”(ref 7). Then
by induction there exists g’ such that I'(l) = @’ (ref 7).

O

Lemma 3.9 If 7p < g(ref 7), then 7y has the form §'(ref 7).
Proof By induction on the depth of the derivation of 79 < g(ref 7). Case analysis of the last rule
in the derivation.

e SUBVALQUAL: Then 7y = gg(ref 7), and the result follows.
e SUBQUALREORDER: Then § = ¢2¢:1§" and 19 = q1¢2q" (ref 7), and the result follows.

e SUBREF: Then 79 = g(ref 7), and the result follows.
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e SUBTRANS: Then 79 < 7’ and 7/ < G(ref 7). By induction 7/ has the form g’(ref 7). By
induction again 7y has the form gq’(ref 7).

O

Lemma 3.10 If I' F Az.s : 7, then 7 has the form g(7; — 72).
Proof By induction on the depth of the derivation of I' - Ax.s : 7. Case analysis of the last rule
in the derivation.

e T-FuN: Then 7 has the form 7, — 75 and the result is shown, with § being empty.

e T-QUALCASE: Then 7 has the form ¢7’ and ' - Az.s : 7/. By induction 7’ has the form
q(m1 — 1), so T = qq(m1 — 72) and the result follows.

e T-QUALVAL: Then 7 has the form ¢7’ and T' - Az.s : 7/. By induction 7’ has the form
q(m1 — 1), so T = qq(m1 — 72) and the result follows.

e T-SuB: Then I' F Az.s : 7/ and 7/ < 7. By induction 7/ has the form g(7 — 72) and the
result follows from Lemma 3.11.

O

Lemma 3.11 If g(r; — 72) < 7/, then 7/ has the form @' (7{ — 73).
Proof By induction on the depth of the derivation of g(t1 — 72) < 7. Case analysis of the last
rule used in the derivation.

e SUBVALQUAL: Then § = ¢qg’ and 7’ =@ (71 — 72), so the result follows.

SUBQUALREORDER: Then § = ¢1¢2¢ and 7" = ¢2q17 (11 — 72), so the result follows.

SUBREF: Then 7/ = q(71 — 72), so the result follows.

SUBTRANS: Then g(1; — 72) < 7”7 and 7”7 < 7/. By induction 7" has the form g” (7 — 7).
Then by induction again, 7" has the form g’ (7] — 73).

SUBFUN: Then 7’ has the form 7{ — 74, so the result follows with g’ as the empty sequence.

O

Lemma 3.12 If I' - Az.s : g(11 — 72), then there exist 7 and 75 such that I,z : 7{ - s : 7}, where
71 <71 and 75 < To.

Proof By induction on the depth of the derivation of I - Az.s : g(71 — 72). Case analysis of the
last rule used in the derivation.

e T-FuN: Then q is empty and ',z : 71 - s : /9. By SUBREF we have 71 < 7 and 7 < 7, so
the result follows.

e T-QUALCASE: Then § = q¢’ and T' - Az.s : §'(11 — 72), so the result follows by induction.
e T-QUALVAL: Then § = q¢’ and T'+ Az.s : §’(71 — 72), so the result follows by induction.

e T-SuB: ThenI'+ A\z.s: 7" and 7/ < q(r1 — 72). By Lemma 3.13 7/ has the form ¢ (7]’ — 7),
where 71 < 7{" and 75 < 7. By induction I',z : 7{ F s : 7, where 77 < 7{ and 75 < 7). Then
by SUBTRANS also 71 < 7] and 74 < 79, so the result follows.
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O

Lemma 3.13 If 7/ <G(m — 72), then 7/ has the form §'(7] — 73), where 71 < 7] and 75 < 7o.
Proof By induction on the depth of the derivation of 7/ < g(r; — 7). Case analysis of the last
rule used in the derivation.

e SUBVALQUAL: Then 7/ = ¢g(m1 — 72). By SUBREF we have 71 < 71 and 75 < 73, so the
result follows.

e SUBQUALREORDER: Then § = g2¢1¢ and 7/ = ¢q1¢2q' (11 — 72). By SUBREF we have 7y < 7
and 79 < 7o, so the result follows.

e SUBREF: Then 7/ = g(1; — 72). By SUBREF we have 73 < 7y and 7o < 79, so the result
follows.

e SUBTRANS: Then 7/ < 7”7 and 7" < q(m1 — 72). By induction 7" has the form g”’(r{ — 7),
where 71 < 71 and 7§ < 75. Then by induction again, 7’ has the form q'(7{ — 75), where
71 <71 and 75 < 74/. Then by SUBTRANS we have 71 < 71 and 74 < 79, so the result follows.

e SUBFUN: Then q is empty and 7" = 7{ — 74, where 71 < 7{ and 75 < 79, so the result follows
with g’ as the empty sequence.

O

Lemma 3.14 If I'; 7' F< o,v > and I';ref 7 < 0,1 > and 7’ is a component of 7, then o - v + [.
Proof By induction on the depth of the derivation of I';7/ =< o,v >. Case analysis of the last
rule used in the derivation.

e Q-INT: Then v = ¢ and the result follows from UNREACHINT.

e Q-UNIT: Then v = () and the result follows from UNREACHUNIT.

e Q-FUN: Then v = Ax.s and the result follows from UNREACHFUN.

e Q-REF: Then v =1" and 7/ = ref 7" and ' - I’ : ref 7" and I';7" < o,0(') > and
' € dom(o).

First we show that I’ # . Suppose not, so I’ = 1. Since I' I’ : ref 7, by Lemma 3.8
I'(") = T'(I) has the form g(ref 7”). We're given that I';ref 7 < 0,1 >, so by Q-REF we
have I' [ : ref 7, so again by Lemma 3.8 T'(l) also has the form §'(ref 7). Therefore, it
must be the case that 7 = 7”7. But we know that ref 7" is a component of 7, so we have a
contradiction.

Since ref 7" is a component of 7, so is 7”. Since I';7” F< 0,0(l') > and I';ref 7 -< 0,1 >,
by induction we have o - o(I’) + . Therefore, we have shown I’ # [ and I’ € dom(o) and
ot o(l') % 1, so by UNREACHLOC we have o 1" % [.

e Q-QuAL: Then 7/ = ¢7” and I';7” F< o,v >. Since 7’ is a component of 7, so is 7”. Then
by induction we have o - v + [.

O

Lemma 3.15 If ;7 F< o,v > and o - v v [, then T'; 7 < o[l — v'], v >.
Proof By induction on the depth of the derivation of I';7 < o,v >. Case analysis of the last
rule used in the derivation.
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e Q-INT: Then 7 = int and v = ¢, and the result follows by Q-INT.
e Q-UNIT: Then 7 =unit and v = (), and the result follows by Q-UNIT.

e Q-FUN: Then 7 =71 — @ and v = Az.s and ' F Ax.s : 7y — 7». Then the result follows by
Q-Fun.

e Q-REF: Then 7 = ref 7/ and v =" and ' + I’ : ref 7/ and ;7" < o,0(') > and
' € dom(c). Then also I’ € dom(c[l — v']). The result follows by Q-REF if we can prove
L7 < oll = V'],ol = V'](I') >. Since o F 1’ % | and I’ € dom(c), by UNREACHLOC we
have I # 1 and o F o(I') ¥ [. Since I';7" F< 0,0(l') > and o + o(I') % [, by induction
7 B< ol = v'],0(l") >. Since I" # 1, o(l') = o[l — V'](I'), so we have proven I';7" F<
o[l = V], ofl = V(1) >.

e Q-QuAL: Then 7 = g7’ and [[g]](v) and T';7' F< o,v >. By induction we have I''; 7" F<
o[l — v'],v >, and the result follows by Q-QUAL.

O

Lemma 3.16 If I' ~ ¢ and it is not the case that o F v + [, then there exists a location [’ such
that v = I’ and a nonnegative integer k such that o*(I’') = I.

Proof We prove this lemma by induction on the depth of v, which we define as follows. If v is
not a location, then depth(v) = 0. Otherwise v has the form I’. If I’ & dom(c) then depth(l’) = 0.
Otherwise I’ € dom(o). Since I' ~ ¢, by Lemma 3.24 we have o - o(I’) + I'. Then by Lemma 3.17
there exists a positive integer &’ and a value v’ such that o (I') = o/, where ' is not a location,
and depth(l’) is defined to be k’. Note that £k’ is unique.

e v has depth 0: Then either v is not a location or v = I’ and I’ € dom(o). If v is not a
location, then it is either an integer constant ¢, the unit value (), or a function value Az.s.
But then ¢ F v 4 [ by UNREACHINT, UNREACHUNIT, and UNREACHFUN, contradicting
our initial assumptions. Therefore v = I’ and I’ € dom(c). Since it is not the case that
o 1" v 1, by UNREACHLOC we have that either I’ =1 or I’ € dom(o) and it is not the case
that o F o(I’) % 1. Therefore I’ =1, so 0°(I') = [ and the result follows with k& = 0.

e v has depth d > 0: Then v = !’ and I’ € dom(o) and there exists a value v' such that
od(I"y = o', where v' is not a location. Since it is not the case that o I I’ 4 I, by UNREACHLOC
we have that either I’ =1 or I’ € dom(o) and it is not the case that o - o(I') 4 . If I =1
then o(I') = [ and the result follows with k = 0. Otherwise I’ € dom(o) and it is not the case
that o - o(I') 4 I. If we can show that o(I’) has a smaller depth than !’, then by induction
we have that there exists a location I” such that o(I’) = 1" and a nonnegative integer k" such
that o*” (I") = I, so o*"+1(I') = | and the result follows.

To see that o(I’) has smaller depth than I’, we analyze the form of o(I’). If it is a value other
than a location or it is a location that is not in dom(c), then depth(o(l’)) = 0. Since the
depth of I’ is d > 0, the result follows. Otherwise, o (1) is some location " € dom(c). Since
there exists a value v’ such that ¢?(I’) = v/, where v’ is not a location, also c4~1(I") = v/, so
the depth of I” is d — 1, which is smaller than d.

O

Lemma 3.17 If T ~ ¢ and | € dom(c) and o F ¢%(I) + [ for some nonnegative integer k, then
there exists a positive integer k&’ and a value v such that o (I) = v, where v is not a location.
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Proof By induction on the depth of the derivation of o - 0*(1) + I. Case analysis of the last rule
used in the derivation.

e UNREACHINT, UNREACHUNIT, or UNREACHFUN: Then o*(I) is not a location. Since I is a
location, k > 0, so the result follows with k' = k.

e UNREACHLOC: Then o*(l) = I’ and I’ # | and I’ € dom(c) = o F o(I') % I. Then by
Lemma 3.18 I’ € dom(c). Therefore we have o - o(I’) # [, or equivalently o F o¥T1(1) + 1.
Then by induction there exists a positive integer k' and a value v such that o*' (1) = v, where
v is not a location.

O

Lemma 3.18 If I' ~ ¢ and | € dom(o) and o*(I) = I’ for some nonnegative integer k, then
I € dom(o).
Proof By induction on k.

e &k =0: Then | =" and since | € dom(c) also I’ € dom(o).

e k> 0: Let c*~1(I) = I”. By induction I” € dom(c). Since I' ~ o, we have I'; T'(I") F< o,1" >.
By Lemma 3.22, T'(I”) has the form g(ref 7), and by Lemma 3.23 we have I'; 7 -< 0,1’ >. By
Lemma 3.22 again, 7 has the form g’(ref 7’), and by Lemma 3.23 again we have I’ € dom(o).

O

Lemma 3.19 If I's ~ 09 and I'9;T3(1) F< 09,0 > and alg(l) = [; for some nonnegative integer
k and o' = o3[l — w9] and T'y;7" < o9,v9 > and [y € dom(oy) and T's F [; : ref 7/, then
FQ;FQ(Z) F< O'/,l >.

Proof Assume WLOG that k is the smallest nonnegative integer such that o5(I) = I;. We prove
this lemma by induction on k.

e k = 0: Then | = I, so we must show I'9;T9(l1) F< ¢’,l; >. Since I's F I; : ref 7/, by
Lemma 3.8, there exists some g such that I's(l1) = g(ref 7/). Since I's ~ 09, we know that
I'y;G(ref 7') F< 09,13 >. Then by Lemma 3.20 also I'y;q(ref 7/) F< o/l >.

e k& > 0: Since I'g;T'5(l) F< 09,1 >, by Lemma 3.22 I'y(I) has the form g(ref 7”). Then the
result follows by Lemma 3.21.

O

Lemma 3.20 If I'y;g(ref 7) F< 09,1 > and I'y;7" F< 09,v3 > and o’ = o3[l; — wv9] and
l1 € dom(oy), then I'y;q(ref 7/) F< o/, 1 >.
Proof By induction on the length of .

e ¢ has length 0: So I'g;ref 7/ F< 09,11 >. Then by Q-REF, I's - [; : ref 7/. Since ¢’ =
o9[ly — v9], we have l; € dom(c’). Since ¢/(l1) = vg, if we can show that T'a; 7' F< o/ vg >,
then by Q-REF we have I's;ref 7/ < ¢/,1; >, which is what we are trying to prove.

Since I'y; 7/ F< 09,v9 > and I'g;ref 7/ < 09,17 >, by Lemma 3.14 we have o9 F vy % [y.
Then by Lemma 3.15 we have I'y; 7/ F< 09[l; — v3],v9 >, or equivalently T'y; 7/ F< o/ vy >.

e 7 has length greater than zero: So g has the form ¢g’ and I'y; q7'(ref 7') F< 02,11 >. By Q-
QUAL we have [[q]](l1) and T'y; ¢ (ref 7') F< 02,11 >. By induction I'y; ¢ (ref ') F< o’ 11 >,
and by Q-QUAL also I'y; g (ref 7/) F< o/, 11 >.
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O

Lemma 3.21 If I'y ~ oy and Ty;G(ref 7”) F< 02,1 > and o5(l) = I; for some positive integer k
and ¢’ = o3[l1 — v3] and Lemma 3.19 holds for all nonnegative integers i such that 0 < i < k, then
y;q(ref 7" F< o)1 >.

Proof We prove this lemma by induction on the length of 7.

e 7 has length 0: So I'y;ref 77 < 09,1 >. By Q-REF, I's - [ : ref 77/ and | € dom(o3)
and I'y; 77 F< 09,09(1) >. Since k > 0 we have that [ # Iy, so o2(l) = ¢’(l) and I'y; 7" F<
o9,0'(l) >. Since | € dom(o3), by definition of o’ we have | € dom(o”). Then the result holds
by Q-REF if we can show that I'e; 7" F< o’ ,0'(1) >.

Since o (1) = I; we have o8~ (05(1)) = 11, and o5(I) must be some location I’. Then we have

Iy; 7" F< 09,1’ >, so by Lemma 3.22 7" has the form gy(ref 79), and by Lemma 3.23 we have
" € dom(oy). Since 'y ~ 09, also I’ € dom(T'y) and we have T'y; T5(I’) < 09,1’ >. Therefore
by induction on Lemma 3.19 we have I'g; Ty(I') F< o/, 1" >.

Since I'g; 7" F< 09,I' >, by Lemma 3.3 we have I'y - I’ : y(ref 79). Then by Lemma 3.8
we have T'a(l') = gj(ref 79). Then since I'y;'y(l') F< o’,1' >, by Lemma 3.25 we have
Iy;ref 79 F< o, >. Finally, since I's;Gy(ref 79) F< 092,I' > by Lemma 3.26 we also
Iy;qy(ref m9) F< o’,1' >, which is what we were trying to prove.

e 7 has length greater than zero, so g has the form ¢g’ and I'y; qq'(ref 7) F< 09,1 >. By Q-
QuAL we have [[¢]](]) and T'9; 7 (ref 7") F< 02,1 >. By induction I's;q (ref 7") F< o’,1 >,
and by Q-QUAL also I'y; ' (ref ") F< o/,1 > as desired.

O

Lemma 3.22 If I';7 F< 0,1 > then 7 has the form g(ref 7').
Proof By induction on the depth of the derivation of I'; 7 F< 0,1 >. Case analysis of the last rule
used in the derivation.

e Q-REF: Then 7 has the form ref 7/, so the result follows with g being empty.

e Q-QUAL: Then 7 = ¢7” and I'; 7”7 < 0,1 >. By induction 7" has the form q'(ref 7'), so 7
has the form g(ref 7’), where § = ¢7 .

O

Lemma 3.23 If I';g(ref 7) F< 0,1 >, then | € dom(o) and I';7 < 0,0(1) >.
Proof By induction on the depth of the derivation of I'; g(ref 7) < o,l >. Case analysis of the
last rule used in the derivation.

e Q-REF: Then @ is empty and [ € dom(o) and I'; 7 F< 0, 0() >.

e Q-QuAL: Then § = ¢¢’ and T';@ (ref 7) F< 0,1 >. By induction, | € dom(o) and T';7 F<
o,0(l) >.
O

Lemma 3.24 If I' ~ 0 and [ € dom(co) then o - o (1) + .

Proof Since I' ~ 0 and | € dom(o), also I € dom(I"). Then since I ~ o, we have I'; T'(I) F< 0,1 >.
Then by Lemma 3.22 I'(1) has the form g(ref 7), and by Lemma 3.23 also I'; 7 =< 0,0(l) >. Then
since 7 is a component of g(ref 7), by Lemma 3.14 we have o F o (1) v . O
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Lemma 3.25 If ;g7 F< o,v > then I'; 7 < o,v >.
Proof By induction on the length of .

e 7 has length 0: Then gr = 7 and the result follows.

e ghaslength k > 0: Thenq = ¢q’. SinceI';gr < 0,v >, by Q-QUAL we have I'; g'7 < o,v >,
and the result follows by induction.

O

Lemma 3.26 If I'; 7 F< 0,v > and I';g7 < ¢/,v >, then I'; g7 F< 0,v >.
Proof By induction on the length of .

e 7 has length 0: Then gr = 7 and the result follows.

e G has length k > 0: Then § = ¢g’. Since I';gr F< ¢’,v >, by Q-QUAL we have [[¢]](v) and
;77 F< o/,v >. Then by induction we have I';q'T =< o,v >, and the result follows by
Q-QUAL.

O
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