Semantic Type Qualifiers

\author{
Brian Chin Shane Markstrum Todd Millstein
 Computer Science Department
 University of California, Los Angeles
 \{naerbnic,smarkstr, todd\}@cs.ucla.edu\}

}

Technical Report CSD-TR-040045
November 2004

This technical report provides the formal details of our framework for semantic type qualifiers, which is described in a PLDI 2005 paper of the same name. We defer to that paper for the high-level description of the framework. This report formalizes the case when all user-defined type qualifiers are value qualifiers. Sections 1 and 2 respectively formalize the syntax and semantics of our formal language, and section 3 presents a proof of "semantic" soundness of the language's type system.

1 Syntax

The language is a fairly standard simply-typed lambda calculus, augmented with references and user-defined type qualifiers. For convenience, we separate side-effect-free expressions (called expressions) from potentially side-effecting expressions (called statements). This separation causes no loss of expressiveness.

Stmts	s	$::=e\left\|s_{1} s_{2}\right\|$ let $x=s_{1}$ in $s_{2} \mid$ ref $s \mid s_{1}:=s_{2}$
Exprs	e	$::=c\|()\| x\|\lambda x . s\|!e$
Consts	$c::=$ integer constants	
Vars	x	$::=$ variable names
Types	$\tau::=$ unit \mid int $\left\|\tau_{1} \rightarrow \tau_{2}\right\|$ ref $\tau \mid q \tau$	
Qualifiers	q	$::=$ user-defined value qualifiers

We restrict the above syntax of types slightly: for any type containing a component of the form $q \tau$, we require that τ not be of the form $\tau_{1} \rightarrow \tau_{2}$. This restriction is consistent with our implementation of semantic type qualifiers for C , and it makes the soundness proof cleaner. Note that types such as $\left(q \tau_{1}\right) \rightarrow\left(q^{\prime} \tau_{2}\right)$ and $q\left(\operatorname{ref}\left(\tau_{1} \rightarrow \tau_{2}\right)\right)$ are still supported.

We also need a notion of values, which are the legal results of expressions:

$$
\begin{array}{lll:l}
\text { Values } & v & ::=c|()| \lambda x . s \mid l \\
\text { Locations } & l::=\text { location constants (i.e., addresses) }
\end{array}
$$

Note that locations are not directly available at source level.

2 Semantics

2.1 Static Semantics

The base type system is standard and is defined by the following rules. As usual, metavariable Γ ranges over type environments, which are finite functions from variable names to types. Also, we assume that bound variables are α-renamed as necessary.
$\Gamma \vdash s: \tau$

$$
\begin{aligned}
& \frac{\Gamma \vdash s_{1}: \tau_{2} \rightarrow \tau \quad \Gamma \vdash s_{2}: \tau_{2}}{\Gamma \vdash s_{1} s_{2}: \tau} \text { T-APP } \quad \frac{\Gamma \vdash s_{1}: \tau_{1} \quad \Gamma, x: \tau_{1} \vdash s_{2}: \tau}{\Gamma \vdash \operatorname{let} x=s_{1} \text { in } s_{2}: \tau} \text { T-LET } \\
& \frac{\Gamma \vdash s: \tau}{\Gamma \vdash \operatorname{ref} s: \operatorname{ref} \tau} \text { T-REF } \frac{\Gamma \vdash s_{1}: \operatorname{ref} \tau \quad \Gamma \vdash s_{2}: \tau}{\Gamma \vdash s_{1}:=s_{2}: \text { unit }} \text { T-ASSGN } \\
& \overline{\Gamma \vdash c: \text { int }}{ }^{\text {T-Int }} \quad \overline{\Gamma \vdash(): \text { unit }} \text { T-Unit } \frac{\Gamma(x)=\tau}{\Gamma \vdash x: \tau} \text { T-VAR } \\
& \frac{\Gamma, x: \tau_{1} \vdash s: \tau_{2}}{\Gamma \vdash \lambda x . s: \tau_{1} \rightarrow \tau_{2}} \text { T-FuN } \quad \frac{\Gamma \vdash e: \operatorname{ref} \tau}{\Gamma \vdash!e: \tau} \text { T-DEREF }
\end{aligned}
$$

In addition to these rules, users can provide a set of introduction rules for value-qualified types. Each rule is assumed to match the following template:

$$
\begin{gathered}
\Gamma \vdash e: \tau \\
\Gamma \vdash e_{1}: q_{1} \tau_{1} \quad \ldots \\
\text { each } e_{i} \text { is a subexpression of } e \\
\Gamma \vdash e: q \tau
\end{gathered}
$$

This template formalizes the case rules in our implementation for C. For example, here is an introduction rule indicating that the product of two positive expressions is also positive.

$$
\frac{\Gamma \vdash e_{1} * e_{2}: \bar{q}(\text { int }) \quad \Gamma \vdash e_{1}: \text { pos int } \quad \Gamma \vdash e_{2}: \text { pos int }}{\Gamma \vdash e_{1} * e_{2}: \operatorname{pos} \bar{q}(\text { int })} \text { PosMulT }
$$

In addition to the user-defined rules of the form specified by T-QualCase, we provide a "base case" introduction rule for all qualified types. We assume that the definition of each qualifier q includes a unary predicate $[[q]]$ on values, which is used below to formalize a qualifier's semantics. The base case says that any value satisfying $[[q]]$ may have a type qualified with q :

$$
\frac{[[q]](v) \quad \Gamma \vdash v: \tau}{\Gamma \vdash v: q \tau} \text { T-QUALVAL }
$$

This natural rule facilitates the proof of our soundness theorem, described below.
Finally, we include a subsumption rule and an associated subtyping relation for types, defined by the following rules:

$$
\frac{\Gamma \vdash s: \tau^{\prime} \quad \tau^{\prime} \leq \tau}{\Gamma \vdash s: \tau} \mathrm{T}-\mathrm{SUB}
$$

$\tau \leq \tau^{\prime}$

$$
\begin{gathered}
\overline{q \tau \leq \tau} \text { SuBVALQUAL } \overline{q_{1} q_{2} \tau \leq q_{2} q_{1} \tau} \text { SUBQUALREORDER } \\
\overline{\tau \leq \tau} \text { SUBREF } \frac{\tau \leq \tau^{\prime \prime} \quad \tau^{\prime \prime} \leq \tau^{\prime}}{\tau \leq \tau^{\prime}} \text { SUBTRANS } \\
\frac{\tau_{1}^{\prime} \leq \tau_{1} \quad \tau_{2} \leq \tau_{2}^{\prime}}{\tau_{1} \rightarrow \tau_{2} \leq \tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}} \text { SUBFUN }
\end{gathered}
$$

2.2 Dynamic Semantics

The dynamic semantics describes how to evaluate programs. Metavariable σ ranges over stores, which are finite functions from locations to values. We define an abstract machine for our language. A machine configuration $\langle\sigma, s\rangle$ is a pair of a store and a statement to be evaluated. The steps of the machine are defined by the following inference rules:

$$
\begin{aligned}
& <\sigma, s>\rightarrow<\sigma^{\prime}, v> \\
& \frac{<\sigma, s_{1}>\rightarrow<\sigma_{1}, \lambda x . s>\quad<\sigma_{1}, s_{2}>\rightarrow<\sigma_{2}, v_{2}>\quad<\sigma_{2}, s\left[x \mapsto v_{2}\right]>\rightarrow<\sigma^{\prime}, v>}{<\sigma, s_{1} s_{2}>\rightarrow<\sigma^{\prime}, v>} \text { E-APP } \\
& \frac{<\sigma, s_{1}>\rightarrow<\sigma_{1}, v_{1}>\quad<\sigma_{1}, s_{2}\left[x \mapsto v_{1}\right]>\rightarrow<\sigma_{2}, v_{2}>}{<\sigma, \text { let } x=s_{1} \text { in } s_{2}>\rightarrow<\sigma_{2}, v_{2}>} \text { E-LET } \\
& \frac{<\sigma, s>\rightarrow<\sigma^{\prime}, v>\quad l \text { fresh in } \sigma^{\prime}}{<\sigma, \text { ref } s>\rightarrow<\sigma^{\prime}[l \mapsto v], l>} \text { E-REF } \\
& \frac{<\sigma, s_{1}>\rightarrow<\sigma_{1}, l>\quad<\sigma_{1}, s_{2}>\rightarrow<\sigma_{2}, v>\quad l \in \operatorname{dom}\left(\sigma_{1}\right)}{<\sigma, s_{1}:=s_{2}>\rightarrow<\sigma_{2}[l \mapsto v],()>} \text { E-ASSGN } \\
& \frac{<\sigma, e>\rightarrow v}{<\sigma, e>\rightarrow<\sigma, v>} \mathrm{E}-\mathrm{EXPR}
\end{aligned}
$$

$<\sigma, e>\rightarrow v$

$$
\frac{<}{<\sigma, v>\rightarrow v} \text { E-VAL } \quad \frac{<\sigma, e>\rightarrow l \quad \sigma(l)=v}{<\sigma,!e>\rightarrow v} \text { E-DEREF }
$$

3 Soundness

We use a qualifier q 's associated predicate $[[q]$ to formalize a local soundness condition on userdefined type rules. This formalization makes use of an overloading of the $[[q]]$ notation that lifts these predicates from values to arbitrary expressions:

$$
[[q]](\sigma, e, v) \equiv(<\sigma, e>\rightarrow v \Rightarrow[[q]](v))
$$

Definition 3.1 A type rule matching the template T-QualCase is locally sound if the following proof obligation is true:
$\forall \sigma, v_{1}, \ldots, v_{n}, v .\left(\left[\left[q_{1}\right]\right]\left(\sigma, e_{1}, v_{1}\right) \wedge \ldots \wedge\left[\left[q_{n}\right]\right]\left(\sigma, e_{n}, v_{n}\right)\right) \Rightarrow[[q]](\sigma, e, v)$
Intuitively, (global) soundness means that, if all user-defined type rules are locally sound, then any well-typed program fragment will satisfy its qualifiers' invariants at run time. We formalize this notion of type soundness via a few auxiliary definitions.
$\Gamma ; \tau \vdash<\sigma, v>$

$$
\begin{gathered}
\overline{\Gamma ; \text { int } \vdash<\sigma, c>} \text { Q-InT } \frac{\Gamma}{\Gamma ; \text { unit } \vdash<\sigma,()>} \text { Q-Unit } \frac{\Gamma \vdash \lambda x . s: \tau_{1} \rightarrow \tau_{2}}{\Gamma ; \tau_{1} \rightarrow \tau_{2} \vdash<\sigma, \lambda x . s>} \text { Q-FuN } \\
\frac{\Gamma \vdash l: \operatorname{ref} \tau \quad \Gamma ; \tau \vdash<\sigma, \sigma(l)>}{\Gamma ; \operatorname{ref} \tau \vdash<\sigma, l>} \quad l \in \operatorname{dom}(\sigma) \\
\text { Q-REF } \\
\frac{[[q]](v) \quad \Gamma ; \tau \vdash<\sigma, v>}{\Gamma ; q \tau \vdash<\sigma, v>} \text { Q-QUAL }
\end{gathered}
$$

The relation $\Gamma ; \tau \vdash<\sigma, v>$ represents semantic conformance of a value to a type. Intuitively, $\Gamma ; \tau \vdash<\sigma, v>$ holds if $\Gamma \vdash v: \tau$ and v additionally satisfies all of the associated invariants for qualifiers in τ. The first three rules are the standard typechecking rules for integers, unit, and functions, respectively. Rule Q-Qual checks that a value of qualified type satisfies the qualifier's invariant. Rule Q-Ref checks that a location l is well-typed and recursively checks semantic conformance of the value that l points to in the given store. For purposes of the static semantics we treat locations as variables.

Next we lift this notion of semantic conformance to a relation between a store and a type environment:

Definition 3.2 We say that $\Gamma \sim \sigma$ if both of the following conditions hold:

1. $\operatorname{dom}(\Gamma)=\operatorname{dom}(\sigma)$
2. $\forall l \in \operatorname{dom}(\Gamma) .(\Gamma ; \Gamma(l) \vdash<\sigma, l>)$

In other words, $\Gamma \sim \sigma$ if every memory location is well typed and satisfies its qualifiers' invariants.
Finally we can state our type soundness theorem, which is a variant of the standard type preservation theorem:

Theorem 3.1 If $\Gamma \sim \sigma$ and $\Gamma \vdash s: \tau$ and $\langle\sigma, s\rangle \rightarrow\left\langle\sigma^{\prime}, v\right\rangle$ and all user-defined type rules are locally sound, then there exists some $\Gamma^{\prime} \supseteq \Gamma$ such that $\Gamma^{\prime} \sim \sigma^{\prime}$ and $\Gamma^{\prime} ; \tau \vdash<\sigma^{\prime}, v>$.

To prove this theorem, it is helpful to make use of (un)reachability properties of well-formed stores. The following judgment and associated inference rules formalize when a value cannot reach a location through a given store.
$\sigma \vdash v \nprec \rightarrow l$

$$
\overline{\sigma \vdash c \not \nsim l} \text { UnReachint } \overline{\sigma \vdash() \nVdash l} \text { UnReachUnit } \overline{\sigma \vdash \lambda x . s \not 九 \longleftrightarrow l} \text { UnREACHFUN }
$$

$$
\frac{l^{\prime} \neq l \quad l^{\prime} \in \operatorname{dom}(\sigma) \Rightarrow \sigma \vdash \sigma\left(l^{\prime}\right) \nLeftarrow l}{\sigma \vdash l^{\prime} \nLeftarrow>l} \text { UnREACHLOC }
$$

Finally we prove Theorem 3.1:
Proof By induction on the depth of the derivation of $\langle\sigma, s\rangle \rightarrow\left\langle\sigma^{\prime}, v\right\rangle$. Case analysis of the last rule used in the derivation.

- E-App: Then $s=s_{1} s_{2}$ and $<\sigma, s_{1}>\rightarrow<\sigma_{1}, \lambda x . s^{\prime}>$ and $<\sigma_{1}, s_{2}>\rightarrow<\sigma_{2}, v_{2}>$ and $<\sigma_{2}, s^{\prime}\left[x \mapsto v_{2}\right]>\rightarrow<\sigma^{\prime}, v>$. We prove this case by induction on the depth of the derivation of $\Gamma \vdash s: \tau$. Case analysis of the last rule used in the derivation.
- T-App: Then $\Gamma \vdash s_{1}: \tau_{2} \rightarrow \tau$ and $\Gamma \vdash s_{2}: \tau_{2}$. By (outer) induction there exists $\Gamma_{1} \supseteq \Gamma$ such that $\Gamma_{1} \sim \sigma_{1}$ and $\Gamma_{1} ; \tau_{2} \rightarrow \tau \vdash<\sigma_{1}, \lambda x . s^{\prime}>$. Since $\Gamma \vdash s_{2}: \tau_{2}$, by Lemma 3.6 also $\Gamma_{1} \vdash s_{2}: \tau_{2}$. Then by (outer) induction there exists $\Gamma_{2} \supseteq \Gamma_{1}$ such that $\Gamma_{2} \sim \sigma_{2}$ and $\Gamma_{2} ; \tau_{2} \vdash<\sigma_{2}, v_{2}>$.
Since $\Gamma_{1} ; \tau_{2} \rightarrow \tau \vdash<\sigma_{1}, \lambda x . s^{\prime}>$, by Q-Fun also $\Gamma_{1} \vdash \lambda x . s^{\prime}: \tau_{2} \rightarrow \tau$, so by Lemma 3.6 we have $\Gamma_{2} \vdash \lambda x . s^{\prime}: \tau_{2} \rightarrow \tau$. Then by Lemma 3.12 we have $\Gamma_{2}, x: \tau_{2}^{\prime} \vdash s^{\prime}: \tau^{\prime}$, where $\tau_{2} \leq \tau_{2}^{\prime}$ and $\tau^{\prime} \leq \tau$. Then by T-SuB also $\Gamma_{2}, x: \tau_{2}^{\prime} \vdash s^{\prime}: \tau$. Since $\Gamma_{2} ; \tau_{2} \vdash<\sigma_{2}, v_{2}>$ and $\tau_{2} \leq \tau_{2}^{\prime}$, by Lemma 3.4 also $\Gamma_{2} ; \tau_{2}^{\prime} \vdash<\sigma_{2}, v_{2}>$. So we have $\Gamma_{2}, x: \tau_{2}^{\prime} \vdash s^{\prime}: \tau$ and $\Gamma_{2} ; \tau_{2}^{\prime} \vdash<\sigma_{2}, v_{2}>$, and by Lemma 3.2 also $\Gamma_{2} \vdash s^{\prime}\left[x \mapsto v_{2}\right]: \tau$. Since also $\Gamma_{2} \sim \sigma_{2}$ and $<\sigma_{2}, s^{\prime}\left[x \mapsto v_{2}\right]>\rightarrow<\sigma^{\prime}, v>$, by (outer) induction there exists some $\Gamma^{\prime} \supseteq \Gamma_{2}$ such that $\Gamma^{\prime} \sim \sigma^{\prime}$ and $\Gamma^{\prime} ; \tau \vdash<\sigma^{\prime}, v>$.
- T-Sub: Then $\Gamma \vdash s: \tau^{\prime}$ and $\tau^{\prime} \leq \tau$. By inner induction, there exists some $\Gamma^{\prime} \supseteq \Gamma$ such that $\Gamma^{\prime} \sim \sigma^{\prime}$ and $\Gamma^{\prime} ; \tau^{\prime} \vdash<\sigma^{\prime}, v>$. Then by Lemma 3.4 also $\left.\Gamma^{\prime} ; \tau \vdash<\sigma^{\prime}, v\right\rangle$.
- E-LET: Then $s=$ let $x=s_{1}$ in s_{2} and $<\sigma, s_{1}>\rightarrow<\sigma_{1}, v_{1}>$ and $<\sigma_{1}, s_{2}\left[x \mapsto v_{1}\right]>\rightarrow<$ $\sigma^{\prime}, v>$. We prove this case by induction on the depth of the derivation of $\Gamma \vdash s: \tau$. Case analysis of the last rule used in the derivation.
- T-Let: Then $\Gamma \vdash s_{1}: \tau_{1}$ and $\Gamma, x: \tau_{1} \vdash s_{2}: \tau$. By (outer) induction there exists $\Gamma_{1} \supseteq \Gamma$ such that $\Gamma_{1} \sim \sigma_{1}$ and $\Gamma_{1} ; \tau_{1} \vdash<\sigma_{1}, v_{1}>$. Since $\Gamma, x: \tau_{1} \vdash s_{2}: \tau$, by Lemma 3.6 also $\Gamma_{1}, x: \tau_{1} \vdash s_{2}: \tau$. Then since $\Gamma_{1} ; \tau_{1} \vdash<\sigma_{1}, v_{1}>$, by Lemma 3.2 also $\Gamma_{1} \vdash s_{2}\left[x \mapsto v_{1}\right]: \tau$. Finally, since $<\sigma_{1}, s_{2}\left[x \mapsto v_{1}\right]>\rightarrow\left\langle\sigma^{\prime}, v>\right.$, by (outer) induction there exists some $\Gamma^{\prime} \supseteq \Gamma_{1}$ such that $\Gamma^{\prime} \sim \sigma^{\prime}$ and $\Gamma^{\prime} ; \tau \vdash<\sigma^{\prime}, v>$.
- T-Sub: See the proof of the T-Sub case within the case for E-App.
- E-REF: Then $s=$ ref s_{0} and $<\sigma, s_{0}>\rightarrow<\sigma_{0}, v_{0}>$ and l fresh in σ_{0} and $\sigma^{\prime}=\sigma_{0}\left[l \mapsto v_{0}\right]$ and $v=l$. We prove this case by induction on the depth of the derivation of $\Gamma \vdash s: \tau$. Case analysis of the last rule used in the derivation.
- T-Ref: Then $\tau=$ ref τ_{0} and $\Gamma \vdash s_{0}: \tau_{0}$. By (outer) induction there exists some $\Gamma_{0} \supseteq \Gamma$ such that $\Gamma_{0} \sim \sigma_{0}$ and $\Gamma_{0} ; \tau_{0} \vdash<\sigma_{0}, v_{0}>$. Let $\Gamma^{\prime}=\Gamma_{0}\left[l \mapsto\right.$ ref $\left.\tau_{0}\right]$. Since l fresh in σ_{0} and $\Gamma_{0} \sim \sigma_{0}$, also $l \notin \operatorname{dom}\left(\Gamma_{0}\right)$, so $\Gamma^{\prime} \supseteq \Gamma_{0}$. To complete this case we show that $\Gamma^{\prime} \sim \sigma^{\prime}$ and Γ^{\prime}; ref $\tau_{0} \vdash<\sigma^{\prime}, l>$.
First we prove Γ^{\prime}; ref $\tau_{0} \vdash<\sigma^{\prime}, l>$. We're given $\Gamma_{0} ; \tau_{0} \vdash<\sigma_{0}, v_{0}>$. Since l fresh in σ_{0}, also $l \notin \operatorname{dom}\left(\sigma_{0}\right)$, so $\sigma^{\prime} \supseteq \sigma_{0}$. We also saw above that $\Gamma^{\prime} \supseteq \Gamma_{0}$. Then by Lemma 3.5 we have $\Gamma^{\prime} ; \tau_{0} \vdash<\sigma^{\prime}, v_{0}>$. By T-VAR and the definition of Γ^{\prime} we have $\Gamma^{\prime} \vdash l:$ ref τ_{0}. Finally, by definition of σ^{\prime} we have that $l \in \operatorname{dom}\left(\sigma^{\prime}\right)$ and $\sigma^{\prime}(l)=v_{0}$. Therefore by Q-REF we have $\Gamma^{\prime} ;$ ref $\tau_{0} \vdash<\sigma^{\prime}, l>$.

Finally we prove $\Gamma^{\prime} \sim \sigma^{\prime}$. Since $\operatorname{dom}\left(\Gamma_{0}\right)=\operatorname{dom}\left(\sigma_{0}\right)$, also $\operatorname{dom}\left(\Gamma^{\prime}\right)=\operatorname{dom}\left(\sigma^{\prime}\right)$, so part 1 is proven. Now consider some $l^{\prime} \in \operatorname{dom}\left(\Gamma^{\prime}\right)$. To prove part 2 we must show that $\Gamma^{\prime} ; \Gamma^{\prime}\left(l^{\prime}\right) \vdash<\sigma^{\prime}, l^{\prime}>$. If $l^{\prime}=l$, then we must show that $\Gamma^{\prime} ;$ ref $\tau_{0} \vdash<\sigma^{\prime}, l>$, which was proven above. Otherwise $l^{\prime} \neq l$. Then $l^{\prime} \in \operatorname{dom}\left(\Gamma_{0}\right)$ and since $\Gamma_{0} \sim \sigma_{0}$, we have $\Gamma_{0} ; \Gamma_{0}\left(l^{\prime}\right) \vdash<\sigma_{0}, l^{\prime}>$. Since $l^{\prime} \neq l$, we have $\Gamma_{0}\left(l^{\prime}\right)=\Gamma^{\prime}\left(l^{\prime}\right)$, so $\Gamma_{0} ; \Gamma^{\prime}\left(l^{\prime}\right) \vdash<\sigma_{0}, l^{\prime}>$. Then by Lemma 3.5 we have $\left.\Gamma^{\prime} ; \Gamma^{\prime}\left(l^{\prime}\right) \vdash<\sigma^{\prime}, l^{\prime}\right\rangle$.

- T-Sub: See the proof of the T-Sub case within the case for E-App.
- E-Assgn: Then $s=s_{1}:=s_{2}$ and $\left\langle\sigma, s_{1}>\rightarrow<\sigma_{1}, l_{1}>\right.$ and $<\sigma_{1}, s_{2}>\rightarrow<\sigma_{2}, v_{2}>$ and $l_{1} \in \operatorname{dom}\left(\sigma_{1}\right)$ and $\sigma^{\prime}=\sigma_{2}\left[l_{1} \mapsto v_{2}\right]$ and $v=()$. We prove this case by induction on the depth of the derivation of $\Gamma \vdash s: \tau$. Case analysis of the last rule used in the derivation.
- T-Assgn: Then $\tau=$ unit and $\Gamma \vdash s_{1}:$ ref τ^{\prime} and $\Gamma \vdash s_{2}: \tau^{\prime}$. By (outer) induction there exists some $\Gamma_{1} \supseteq \Gamma$ such that $\Gamma_{1} \sim \sigma_{1}$ and $\Gamma_{1} ;$ ref $\tau^{\prime} \vdash<\sigma_{1}, l_{1}>$. Since $\Gamma \vdash s_{2}: \tau^{\prime}$ and $\Gamma_{1} \supseteq \Gamma$, by Lemma 3.6 also $\Gamma_{1} \vdash s_{2}: \tau^{\prime}$. Then by (outer) induction there exists some $\Gamma_{2} \supseteq \Gamma_{1}$ such that $\Gamma_{2} \sim \sigma_{2}$ and $\Gamma_{2} ; \tau^{\prime} \vdash<\sigma_{2}, v_{2}>$.
To prove this case, we must show that there exists $\Gamma^{\prime} \supseteq \Gamma$ such that $\Gamma^{\prime} \sim \sigma^{\prime}$ and Γ^{\prime}; unit $\vdash<\sigma^{\prime},()>$. We will show that $\Gamma_{2} \sim \sigma^{\prime}$ and Γ_{2}; unit $\vdash<\sigma^{\prime},()>$. Γ_{2}; unit $\vdash<$ $\sigma^{\prime},()>$ follows from Q-Unit, so it remains to prove $\Gamma_{2} \sim \sigma^{\prime}$.
First we show that $\operatorname{dom}\left(\Gamma_{2}\right)=\operatorname{dom}\left(\sigma^{\prime}\right)$. Since $\Gamma_{2} \sim \sigma_{2}$, we know that $\operatorname{dom}\left(\Gamma_{2}\right)=$ $\operatorname{dom}\left(\sigma_{2}\right)$. Since $l_{1} \in \operatorname{dom}\left(\sigma_{1}\right)$ and $\left.\left\langle\sigma_{1}, s_{2}\right\rangle \rightarrow<\sigma_{2}, v_{2}\right\rangle$, by Lemma 3.7 also $l_{1} \in$ $\operatorname{dom}\left(\sigma_{2}\right)$. Therefore, $\operatorname{dom}\left(\sigma_{2}\right)=\operatorname{dom}\left(\sigma_{2}\left[l_{1} \mapsto v_{2}\right]\right)=\operatorname{dom}\left(\sigma^{\prime}\right)$. Therefore $\operatorname{dom}\left(\Gamma_{2}\right)=$ $\operatorname{dom}\left(\sigma^{\prime}\right)$.
Second, we must show that for each $l \in \operatorname{dom}\left(\Gamma_{2}\right)$ we have $\Gamma_{2} ; \Gamma_{2}(l) \vdash<\sigma^{\prime}, l>$. Since $\Gamma_{2} \sim \sigma_{2}$ we have $\Gamma_{2} ; \Gamma_{2}(l) \vdash<\sigma_{2}, l>$. Suppose $\sigma_{2} \vdash l \nLeftarrow \rightarrow l_{1}$. Then by Lemma 3.15 we have $\Gamma_{2} ; \Gamma_{2}(l) \vdash<\sigma^{\prime}, l>$ as desired. Suppose instead that it is not the case that $\sigma_{2} \vdash l \nsim l_{1}$. Then since $\Gamma_{2} \sim \sigma_{2}$, by Lemma 3.16 there exists a nonnegative integer k such that $\sigma_{2}^{k}(l)=l_{1}$. Since $\Gamma_{1} ;$ ref $\tau^{\prime} \vdash<\sigma_{1}, l_{1}>$, by Q-Ref we have $\Gamma_{1} \vdash l_{1}:$ ref τ^{\prime}, and by Lemma 3.6 also $\Gamma_{2} \vdash l_{1}$: ref τ^{\prime}. Then the result follows by Lemma 3.19.
- T-Sub: See the proof of the T-Sub case within the case for E-App.
- E-Expr: Then $s=e$ and $\left\langle\sigma, e>\rightarrow v\right.$ and $\sigma^{\prime}=\sigma$. We're given that $\Gamma \sim \sigma$, and by Lemma 3.1 we have $\Gamma ; \tau \vdash\langle\sigma, v\rangle$, so the result follows by taking $\Gamma^{\prime}=\Gamma$.

Lemma 3.1 If $\Gamma \sim \sigma$ and $\Gamma \vdash e: \tau$ and $\langle\sigma, e\rangle \rightarrow v$, then $\Gamma ; \tau \vdash\langle\sigma, v\rangle$.
Proof By induction on the depth of the derivation of $\Gamma \vdash e: \tau$. Case analysis of the last rule used in the derivation.

- T-Int: Then $e=c$ and $\tau=$ int. Since $\langle\sigma, e>\rightarrow v$, by E-VAL we have $v=c$. Then by Q-Int we have $\Gamma ; \tau \vdash\langle\sigma, v\rangle$.
- T-Unit: Then $e=()$ and $\tau=$ unit. Since $\langle\sigma, e\rangle \rightarrow v$, by E-VAL we have $v=()$. Then by Q-Unit we have $\Gamma ; \tau \vdash\langle\sigma, v\rangle$.
- T-VAR: Then $e=x$ and $\Gamma(x)=\tau$. Since $\Gamma \sim \sigma$, we have that $\operatorname{dom}(\Gamma)=\operatorname{dom}(\sigma)$, so x must be a location l. Since $\langle\sigma, e>\rightarrow v$, by E-Val we have $v=l$. Then by $\Gamma \sim \sigma$ we have $\Gamma ; \tau \vdash<\sigma, l>$.
- T-Deref: Then $e=!e^{\prime}$ and $\Gamma \vdash e^{\prime}$: ref τ. Since $\langle\sigma, e>\rightarrow v$, by E-Deref we have $<\sigma, e^{\prime}>\rightarrow l$ and $\sigma(l)=v$. By induction we have Γ; ref $\tau \vdash<\sigma, l>$, so by Q-Ref also $\Gamma ; \tau \vdash<\sigma, v>$.
- T-QualCase: Then $\tau=q \tau^{\prime}$ and $\Gamma \vdash e: \tau^{\prime}$ and $\Gamma \vdash e_{1}: q_{1} \tau_{1} \ldots \Gamma \vdash e_{n}: q_{n} \tau_{n}$. By induction we have $\Gamma ; \tau^{\prime} \vdash<\sigma, v>$. Therefore, $\Gamma ; \tau \vdash<\sigma, v>$ follows from Q-Qual if we can show $[[q]](v)$.
Consider one of the e_{i} subexpressions of e, and let v_{i} be some value. If it is not the case that $\left\langle\sigma, e_{i}>\rightarrow v_{i}\right.$, then $\left[\left[q_{i}\right]\right]\left(\sigma, e_{i}, v_{i}\right)$ holds trivially. Otherwise, if $<\sigma, e_{i}>\rightarrow v_{i}$, then by induction we have $\Gamma ; q_{i} \tau_{i} \vdash<\sigma, v_{i}>$. Then by Q-Qual we have $\left[\left[q_{i}\right]\right]\left(v_{i}\right)$, so also $\left[\left[q_{i}\right]\right]\left(\sigma, e_{i}, v_{i}\right)$ holds. Since we assume that T-QualCase is locally sound, and since we can find a v_{i} for each e_{i} such that $\left[\left[q_{i}\right]\right]\left(\sigma, e_{i}, v_{i}\right)$ holds, by Definition 3.1 we have $[[q]](\sigma, e, v)$. Then since $\langle\sigma, e\rangle \rightarrow v$, we have $[[q]](v)$.
- T-QualVal: Then $e=v^{\prime}$ and $\tau=q \tau^{\prime}$ and $[[q]]\left(v^{\prime}\right)$ and $\Gamma \vdash v^{\prime}: \tau^{\prime}$. Since $<\sigma, e>\rightarrow v$, by E-VAL we have $v=v^{\prime}$. So we have $[[q]](v)$ and $\Gamma \vdash v: \tau^{\prime}$. By induction $\Gamma ; \tau^{\prime} \vdash<\sigma, v>$, and by Q-Qual also $\Gamma ; q \tau^{\prime} \vdash\langle\sigma, v\rangle$.
- T-Sub: Then $\Gamma \vdash e: \tau^{\prime}$ and $\tau^{\prime} \leq \tau$. By induction we have $\Gamma ; \tau^{\prime} \vdash<\sigma, v>$, and the result follows from Lemma 3.4.

Lemma 3.2 If $\Gamma, x_{0}: \tau_{0} \vdash s: \tau$ and $\Gamma ; \tau_{0} \vdash<\sigma, v_{0}>$, then $\Gamma \vdash s\left[x_{0} \mapsto v_{0}\right]: \tau$.
Proof By induction on the depth of the derivation of $\Gamma, x_{0}: \tau_{0} \vdash s: \tau$. Case analysis of the last rule used in the derivation.

- T-App: Then $s=s_{1} s_{2}$ and $\Gamma, x_{0}: \tau_{0} \vdash s_{1}: \tau_{2} \rightarrow \tau$ and $\Gamma, x_{0}: \tau_{0} \vdash s_{2}: \tau_{2}$. By induction we have $\Gamma \vdash s_{1}\left[x_{0} \mapsto v_{0}\right]: \tau_{2} \rightarrow \tau$ and $\Gamma \vdash s_{2}\left[x_{0} \mapsto v_{0}\right]: \tau_{2}$, and the result follows by T-App.
- T-LET: Then $s=$ let $x=s_{1}$ in s_{2} and $\Gamma, x_{0}: \tau_{0} \vdash s_{1}: \tau_{1}$ and $\Gamma, x_{0}: \tau_{0}, x: \tau_{1} \vdash s_{2}: \tau$. By induction we have $\Gamma \vdash s_{1}\left[x_{0} \mapsto v_{0}\right]: \tau_{1}$ and $\Gamma, x: \tau_{1} \vdash s_{2}\left[x_{0} \mapsto v_{0}\right]: \tau$, and the result follows by T-Let.
- T-Ref: Then $s=$ ref s^{\prime} and $\tau=$ ref τ^{\prime} and $\Gamma, x_{0}: \tau_{0} \vdash s^{\prime}: \tau^{\prime}$. By induction we have $\Gamma \vdash s^{\prime}\left[x_{0} \mapsto v_{0}\right]: \tau^{\prime}$, and the result follows by T-REF.
- T-Assgn: Then $s=s_{1}:=s_{2}$ and $\tau=$ unit and $\Gamma, x_{0}: \tau_{0} \vdash s_{1}:$ ref τ^{\prime} and $\Gamma, x_{0}: \tau_{0} \vdash s_{2}: \tau^{\prime}$. By induction we have $\Gamma \vdash s_{1}\left[x_{0} \mapsto v_{0}\right]$: ref τ^{\prime} and $\Gamma \vdash s_{2}\left[x_{0} \mapsto v_{0}\right]: \tau^{\prime}$, and the result follows by T-Assgn.
- T-Int: Then $s=c$ and $\tau=$ int, and the result follows by T-Int.
- T-Unit: Then $s=()$ and $\tau=$ unit, and the result follows by T-Unit.
- T-VAR: Then $s=x$ and $\left(\Gamma, x_{0}: \tau_{0}\right)(x)=\tau$. Suppose $x_{0}=x$. Then $\tau_{0}=\tau$ and $x\left[x_{0} \mapsto v_{0}\right]=$ v_{0}, so we must prove $\Gamma \vdash v_{0}: \tau_{0}$. Since $\Gamma ; \tau_{0} \vdash<\sigma, v_{0}>$, the result follows by Lemma 3.3. Otherwise, suppose $x_{0} \neq x$. Then $x\left[x_{0} \mapsto v_{0}\right]=x$, so we must prove $\Gamma \vdash x: \tau$. Since $\left(\Gamma, x_{0}: \tau_{0}\right)(x)=\tau$ and $x_{0} \neq x$, also $\Gamma(x)=\tau$, so the result follows by T-VAR.
- T-Fun: Then $s=\lambda x \cdot s^{\prime}$ and $\tau=\tau_{1} \rightarrow \tau_{2}$ and $\Gamma, x_{0}: \tau_{0}, x: \tau_{1} \vdash s^{\prime}: \tau_{2}$. By induction we have $\Gamma, x: \tau_{1} \vdash s^{\prime}\left[x_{0} \mapsto v_{0}\right]: \tau_{2}$, and the result follows by T-Fun.
- T-Deref: Then $s=!e$ and $\Gamma, x_{0}: \tau_{0} \vdash e:$ ref τ. By induction we have $\Gamma \vdash e\left[x_{0} \mapsto v_{0}\right]:$ ref τ, and the result follows by T-Deref.
- T-QualCase: Then $\tau=q \tau^{\prime}$ and $\Gamma, x_{0}: \tau_{0} \vdash e: \tau^{\prime}$ and $\Gamma, x_{0}: \tau_{0} \vdash e_{1}: q_{1} \tau_{1} \ldots \Gamma, x_{0}: \tau_{0} \vdash$ $e_{n}: q_{n} \tau_{n}$. By induction we have $\Gamma \vdash e\left[x_{0} \mapsto v_{0}\right]: \tau^{\prime}$ and $\Gamma \vdash e_{1}\left[x_{0} \mapsto v_{0}\right]: q_{1} \tau_{1} \ldots \Gamma \vdash e_{n}\left[x_{0} \mapsto\right.$ $\left.v_{0}\right]: q_{n} \tau_{n}$, and the result follows by T-QualCase.
- T-QualVal: Then $s=v$ and $\tau=q \tau^{\prime}$ and $[[q]](v)$ and $\Gamma, x_{0}: \tau_{0} \vdash v: \tau^{\prime}$. By induction also $\Gamma \vdash v\left[x_{0} \mapsto v_{0}\right]: \tau^{\prime}$. Since arrow types may not be qualified, τ^{\prime} is not of the form $\bar{q}\left(\tau_{1} \rightarrow \tau_{2}\right)$. Then by Lemma $3.10 v$ is not of the form $\lambda x . s^{\prime}$. Therefore $v\left[x_{0} \mapsto v_{0}\right]=v$, so $[[q]]\left(v\left[x_{0} \mapsto v_{0}\right]\right)$. Then the result follows by T-QualVal.
- T-Sub: Then $\Gamma, x_{0}: \tau_{0} \vdash e: \tau^{\prime}$ and $\tau^{\prime} \leq \tau$. By induction we have $\Gamma \vdash e\left[x_{0} \mapsto v_{0}\right]: \tau^{\prime}$, and the result follows by T-Sub.

Lemma 3.3 If $\Gamma ; \tau \vdash\langle\sigma, v\rangle$, then $\Gamma \vdash v: \tau$.
Proof By induction on the depth of the derivation of $\Gamma ; \tau \vdash\langle\sigma, v\rangle$. Case analysis of the last rule used in the derivation.

- Q-Int: Then $\tau=\operatorname{int}$ and $v=c$, and the result follows by T-Int.
- Q-Unit: Then $\tau=$ unit and $v=()$, and the result follows by T-Unit.
- Q-Fun: Then $v=\lambda x . s$ and $\Gamma \vdash \lambda x . s: \tau$, which is what we wanted to prove.
- Q-Ref: Then $v=l$ and $\Gamma \vdash l: \tau$, which is what we wanted to prove.
- Q-Qual: Then $\tau=q \tau^{\prime}$ and $[[q]](v)$ and $\Gamma ; \tau^{\prime} \vdash<\sigma, v>$. By induction we have $\Gamma \vdash v: \tau^{\prime}$. Then since $[[q]](v)$, by T-QualVal also $\Gamma \vdash v: \tau$.

Lemma 3.4 If $\Gamma ; \tau^{\prime} \vdash<\sigma, v>$ and $\tau^{\prime} \leq \tau$, then $\Gamma ; \tau \vdash<\sigma, v>$.
Proof By induction on the derivation of $\tau^{\prime} \leq \tau$. Case analysis of the last rule used in the derivation.

- SubValQual: Then $\tau^{\prime}=q \tau$. Since $\Gamma ; \tau^{\prime} \vdash\langle\sigma, v\rangle$, by Q-Qual we have $\left.\Gamma ; \tau \vdash<\sigma, v\right\rangle$.
- SubQualReorder: Then $\tau^{\prime}=q_{1} q_{2} \tau_{0}$ and $\tau=q_{2} q_{1} \tau_{0}$. Since $\Gamma ; \tau^{\prime} \vdash<\sigma, v>$, by QQual we have $\left[\left[q_{1}\right]\right](v)$ and $\Gamma ; q_{2} \tau_{0} \vdash\langle\sigma, v\rangle$. Then again by Q-Qual we have $\left[\left[q_{2}\right]\right](v)$ and $\Gamma ; \tau_{0} \vdash\langle\sigma, v\rangle$. Therefore, by Q-Qual we have $\Gamma ; q_{1} \tau_{0} \vdash\langle\sigma, v\rangle$, and again by Q-Qual we have $\Gamma ; q_{2} q_{1} \tau_{0} \vdash<\sigma, v>$.
- SubRef: Then $\tau^{\prime}=\tau$ and the result follows.
- SubTrans: Then $\tau^{\prime} \leq \tau^{\prime \prime}$ and $\tau^{\prime \prime} \leq \tau$. By induction $\left.\Gamma ; \tau^{\prime \prime} \vdash<\sigma, v\right\rangle$, and by induction again $\Gamma ; \tau \vdash<\sigma, v>$.
- SubFun: Then $\tau^{\prime}=\tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}$ and $\tau=\tau_{1} \rightarrow \tau_{2}$. Since $\Gamma ; \tau^{\prime} \vdash<\sigma, v>$, by Q-Fun we have that $v=\lambda x . s$ and $\Gamma \vdash \lambda x . s: \tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}$. Since $\tau^{\prime} \leq \tau$, by T-SuB we have $\Gamma \vdash \lambda x . s: \tau_{1} \rightarrow \tau_{2}$, so by Q-Fun $\Gamma ; \tau_{1} \rightarrow \tau_{2} \vdash<\sigma, \lambda x . s>$.

Lemma 3.5 If $\Gamma ; \tau \vdash<\sigma, v>$ and $\Gamma^{\prime} \supseteq \Gamma$ and $\sigma^{\prime} \supseteq \sigma$, then $\Gamma^{\prime} ; \tau \vdash<\sigma^{\prime}, v>$.
Proof By induction on the depth of the derivation of $\Gamma ; \tau \vdash<\sigma, v>$. Case analysis of the last rule used in the derivation.

- Q-Int: Then $\tau=$ int and $v=c$, and the result follows by Q-Int.
- Q-Unit: Then $\tau=$ unit and $v=()$, and the result follows by Q-Unit.
- Q-Fun: Then $\tau=\tau_{1} \rightarrow \tau_{2}$ and $v=\lambda$ x.s and $\Gamma \vdash \lambda x . s: \tau_{1} \rightarrow \tau_{2}$. By Lemma 3.6 also $\Gamma^{\prime} \vdash \lambda x . s: \tau_{1} \rightarrow \tau_{2}$, and the result follows by Q-FUN.
- Q-REF: Then $\tau=$ ref τ^{\prime} and $v=l$ and $\Gamma \vdash l$: ref τ^{\prime} and $\Gamma ; \tau^{\prime} \vdash<\sigma, \sigma(l)>$ and $l \in \operatorname{dom}(\sigma)$. By Lemma 3.6 we have $\Gamma^{\prime} \vdash l$: ref τ^{\prime}. Since $l \in \operatorname{dom}(\sigma)$ and $\sigma^{\prime} \supseteq \sigma$, also $l \in \operatorname{dom}\left(\sigma^{\prime}\right)$ and $\sigma(l)=\sigma^{\prime}(l)$. Finally, by induction $\Gamma^{\prime} ; \tau^{\prime} \vdash<\sigma^{\prime}, \sigma^{\prime}(l)>$, and the result follows by Q-REF.
- Q-Qual: Then $\tau=q \tau^{\prime}$ and $[[q]](v)$ and $\Gamma ; \tau^{\prime} \vdash<\sigma, v>$. By induction we have $\Gamma^{\prime} ; \tau^{\prime} \vdash<$ $\sigma^{\prime}, v>$, and the result follows by Q-QuaL.

Lemma 3.6 If $\Gamma \vdash s: \tau$ and $\Gamma^{\prime} \supseteq \Gamma$, then $\Gamma^{\prime} \vdash s: \tau$.
Proof By induction on the depth of the derivation of $\Gamma \vdash s: \tau$. Case analysis of the last rule used in the derivation.

- T-App: Then $s=s_{1} s_{2}$ and $\Gamma \vdash s_{1}: \tau_{2} \rightarrow \tau$ and $\Gamma \vdash s_{2}: \tau_{2}$. By induction we have $\Gamma^{\prime} \vdash s_{1}: \tau_{2} \rightarrow \tau$ and $\Gamma^{\prime} \vdash s_{2}: \tau_{2}$, and the result follows by T-APP.
- T-Let: Then $s=$ let $x=s_{1}$ in s_{2} and $\Gamma \vdash s_{1}: \tau_{1}$ and $\Gamma, x: \tau_{1} \vdash s_{2}: \tau$. By induction we have $\Gamma^{\prime} \vdash s_{1}: \tau_{1}$ and $\Gamma^{\prime}, x: \tau_{1} \vdash s_{2}: \tau$, and the result follows by T-LET.
- T-Ref: Then $s=$ ref s^{\prime} and $\tau=$ ref τ^{\prime} and $\Gamma \vdash s^{\prime}: \tau^{\prime}$. By induction we have $\Gamma^{\prime} \vdash s^{\prime}: \tau^{\prime}$, and the result follows by T-REF.
- T-Assgn: Then $s=s_{1}:=s_{2}$ and $\tau=$ unit and $\Gamma \vdash s_{1}:$ ref τ^{\prime} and $\Gamma \vdash s_{2}: \tau^{\prime}$. By induction we have $\Gamma^{\prime} \vdash s_{1}$: ref τ^{\prime} and $\Gamma^{\prime} \vdash s_{2}: \tau^{\prime}$, and the result follows by T-ASSGN.
- T-Int: Then $s=c$ and $\tau=$ int, and the result follows by T-Int.
- T-Unit: Then $s=()$ and $\tau=$ unit, and the result follows by T-Unit.
- T-VAR: Then $s=x$ and $\Gamma(x)=\tau$. Since $\Gamma^{\prime} \supseteq \Gamma$, also $\Gamma^{\prime}(x)=\tau$, and the result follows by T-VAR.
- T-Fun: Then $s=\lambda x . s^{\prime}$ and $\tau=\tau_{1} \rightarrow \tau_{2}$ and $\Gamma, x: \tau_{1} \vdash s^{\prime}: \tau_{2}$. By induction we have $\Gamma^{\prime}, x: \tau_{1} \vdash s^{\prime}: \tau_{2}$, and the result follows by T-FUN.
- T-Deref: Then $s=$!e and $\Gamma \vdash e:$ ref τ. By induction we have $\Gamma^{\prime} \vdash e$: ref τ, and the result follows by T-DEREF.
- T-QualVal: Then $s=v$ and $\tau=q \tau^{\prime}$ and $[[q]](v)$ and $\Gamma \vdash v: \tau^{\prime}$. By induction also $\Gamma^{\prime} \vdash v: \tau^{\prime}$, and the result follows by T-QualVal.
- T-Sub: Then $\Gamma \vdash s: \tau^{\prime}$ and $\tau^{\prime} \leq \tau$. By induction we have $\Gamma^{\prime} \vdash s: \tau^{\prime}$, and the result follows by T-SuB.
- T-QualCase: Then $\tau=q \tau^{\prime}$ and $\Gamma \vdash e: \tau^{\prime}$ and $\Gamma \vdash e_{1}: q_{1} \tau_{1} \ldots \Gamma \vdash e_{n}: q_{n} \tau_{n}$. By induction we have $\Gamma^{\prime} \vdash s: \tau^{\prime}$ and $\Gamma^{\prime} \vdash e_{1}: q_{1} \tau_{1} \ldots \Gamma^{\prime} \vdash e_{n}: q_{n} \tau_{n}$, and the result follows by T-QuaLCASE.

Lemma 3.7 If $l \in \operatorname{dom}(\sigma)$ and $\left\langle\sigma, s>\rightarrow\left\langle\sigma^{\prime}, v\right\rangle\right.$, then $l \in \operatorname{dom}\left(\sigma^{\prime}\right)$.
Proof By induction on the depth of the derivation of $\langle\sigma, s\rangle \rightarrow\left\langle\sigma^{\prime}, v\right\rangle$. Case analysis of the last rule used in the derivation.

- E-App: Then $s=s_{1} s_{2}$ and $<\sigma, s_{1}>\rightarrow<\sigma_{1}, \lambda x . s^{\prime}>$ and $<\sigma_{1}, s_{2}>\rightarrow<\sigma_{2}, v_{2}>$ and $<\sigma_{2}, s^{\prime}\left[x \mapsto v_{2}\right]>\rightarrow<\sigma^{\prime}, v>$. By induction $l \in \operatorname{dom}\left(\sigma_{1}\right)$. By induction again, $l \in \operatorname{dom}\left(\sigma_{2}\right)$. By induction again, $l \in \operatorname{dom}\left(\sigma^{\prime}\right)$.
- E-Let: Then $s=$ let $x=s_{1}$ in s_{2} and $<\sigma, s_{1}>\rightarrow<\sigma_{1}, v_{1}>$ and $<\sigma_{1}, s_{2}\left[x \mapsto v_{1}\right]>\rightarrow<$ $\sigma^{\prime}, v>$. By induction $l \in \operatorname{dom}\left(\sigma_{1}\right)$ and by induction again, $l \in \operatorname{dom}\left(\sigma^{\prime}\right)$.
- E-Ref: Then $s=$ ref s^{\prime} and $<\sigma, s^{\prime}>\rightarrow<\sigma_{1}, v^{\prime}>$ and $\sigma^{\prime}=\sigma_{1}\left[l^{\prime} \mapsto v^{\prime}\right]$. By induction $l \in \operatorname{dom}\left(\sigma_{1}\right)$, so also $l \in \operatorname{dom}\left(\sigma_{1}\left[l^{\prime} \mapsto v^{\prime}\right]\right)$.
- E-Assgn: Then $s=s_{1}:=s_{2}$ and $\left\langle\sigma, s_{1}>\rightarrow\left\langle\sigma_{1}, l^{\prime}><\sigma_{1}, s_{2}>\rightarrow<\sigma_{2}, v^{\prime}>\right.\right.$ and $\sigma^{\prime}=\sigma_{2}\left[l^{\prime} \mapsto v^{\prime}\right]$. By induction $l \in \operatorname{dom}\left(\sigma_{1}\right)$, by induction again $l \in \operatorname{dom}\left(\sigma_{2}\right)$, so also $l \in \operatorname{dom}\left(\sigma_{2}\left[l^{\prime} \mapsto v^{\prime}\right]\right)$.
- E-Expr: Then $\sigma^{\prime}=\sigma$, so since $l \in \operatorname{dom}(\sigma)$, also $l \in \operatorname{dom}\left(\sigma^{\prime}\right)$.

Lemma 3.8 If $\Gamma \vdash l: \bar{q}($ ref $\tau)$, then there exists \bar{q}^{\prime} such that $\Gamma(l)=\bar{q}^{\prime}($ ref $\tau)$.
Proof By induction on the depth of the derivation of $\Gamma \vdash l: \bar{q}($ ref $\tau)$. Case analysis of the last rule in the derivation.

- T-Var: Then $\Gamma(l)=\bar{q}($ ref $\tau)$, so the result follows, where $\bar{q}^{\prime}=\bar{q}$.
- T-QualCase: Then $\bar{q}=q \bar{q}^{\prime \prime}$ and $\Gamma \vdash l: \bar{q}^{\prime \prime}($ ref $\tau)$, so by induction there exists \bar{q}^{\prime} such that $\Gamma(l)=\bar{q}^{\prime}($ ref $\tau)$.
- T-QualVal: Then $\bar{q}=q \bar{q}^{\prime \prime}$ and $\Gamma \vdash l: \bar{q}^{\prime \prime}($ ref $\tau)$, so by induction there exists \bar{q}^{\prime} such that $\Gamma(l)=\bar{q}^{\prime}($ ref $\tau)$.
- T-Sub: Then $\Gamma \vdash l: \tau^{\prime}$ and $\tau^{\prime} \leq \bar{q}($ ref $\tau)$. By Lemma $3.9 \tau^{\prime}$ has the form $\bar{q}^{\prime \prime}($ ref $\tau)$. Then by induction there exists \bar{q}^{\prime} such that $\Gamma(l)=\bar{q}^{\prime}($ ref $\tau)$.

Lemma 3.9 If $\tau_{0} \leq \bar{q}(\operatorname{ref} \tau)$, then τ_{0} has the form $\bar{q}^{\prime}($ ref $\tau)$.
Proof By induction on the depth of the derivation of $\tau_{0} \leq \bar{q}($ ref $\tau)$. Case analysis of the last rule in the derivation.

- SubValQual: Then $\tau_{0}=q \bar{q}($ ref $\tau)$, and the result follows.
- SubQualReorder: Then $\bar{q}=q_{2} q_{1} \bar{q}^{\prime \prime}$ and $\tau_{0}=q_{1} q_{2} \bar{q}^{\prime \prime}($ ref $\tau)$, and the result follows.
- SubRef: Then $\tau_{0}=\bar{q}($ ref $\tau)$, and the result follows.
- SubTrans: Then $\tau_{0} \leq \tau^{\prime}$ and $\tau^{\prime} \leq \bar{q}($ ref $\tau)$. By induction τ^{\prime} has the form $\bar{q}^{\prime \prime}(\operatorname{ref} \tau)$. By induction again τ_{0} has the form $\bar{q}^{\prime}($ ref $\tau)$.

Lemma 3.10 If $\Gamma \vdash \lambda x . s: \tau$, then τ has the form $\bar{q}\left(\tau_{1} \rightarrow \tau_{2}\right)$.
Proof By induction on the depth of the derivation of $\Gamma \vdash \lambda x . s: \tau$. Case analysis of the last rule in the derivation.

- T-Fun: Then τ has the form $\tau_{1} \rightarrow \tau_{2}$ and the result is shown, with \bar{q} being empty.
- T-QualCase: Then τ has the form $q \tau^{\prime}$ and $\Gamma \vdash \lambda x . s: \tau^{\prime}$. By induction τ^{\prime} has the form $\bar{q}\left(\tau_{1} \rightarrow \tau_{2}\right)$, so $\tau=q \bar{q}\left(\tau_{1} \rightarrow \tau_{2}\right)$ and the result follows.
- T-QualVal: Then τ has the form $q \tau^{\prime}$ and $\Gamma \vdash \lambda x$.s : τ^{\prime}. By induction τ^{\prime} has the form $\bar{q}\left(\tau_{1} \rightarrow \tau_{2}\right)$, so $\tau=q \bar{q}\left(\tau_{1} \rightarrow \tau_{2}\right)$ and the result follows.
- T-Sub: Then $\Gamma \vdash \lambda$ x.s $: \tau^{\prime}$ and $\tau^{\prime} \leq \tau$. By induction τ^{\prime} has the form $\bar{q}\left(\tau_{1} \rightarrow \tau_{2}\right)$ and the result follows from Lemma 3.11.

Lemma 3.11 If $\bar{q}\left(\tau_{1} \rightarrow \tau_{2}\right) \leq \tau^{\prime}$, then τ^{\prime} has the form $\bar{q}^{\prime}\left(\tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}\right)$.
Proof By induction on the depth of the derivation of $\bar{q}\left(\tau_{1} \rightarrow \tau_{2}\right) \leq \tau^{\prime}$. Case analysis of the last rule used in the derivation.

- SubValQual: Then $\bar{q}=q \bar{q}^{\prime}$ and $\tau^{\prime}=\bar{q}^{\prime}\left(\tau_{1} \rightarrow \tau_{2}\right)$, so the result follows.
- SubQualReorder: Then $\bar{q}=q_{1} q_{2} \bar{q}^{\prime}$ and $\tau^{\prime}=q_{2} q_{1} \bar{q}^{\prime}\left(\tau_{1} \rightarrow \tau_{2}\right)$, so the result follows.
- SubRef: Then $\tau^{\prime}=\bar{q}\left(\tau_{1} \rightarrow \tau_{2}\right)$, so the result follows.
- SubTrans: Then $\bar{q}\left(\tau_{1} \rightarrow \tau_{2}\right) \leq \tau^{\prime \prime}$ and $\tau^{\prime \prime} \leq \tau^{\prime}$. By induction $\tau^{\prime \prime}$ has the form $\bar{q}^{\prime \prime}\left(\tau_{1}^{\prime \prime} \rightarrow \tau_{2}^{\prime \prime}\right)$. Then by induction again, τ^{\prime} has the form $\bar{q}^{\prime}\left(\tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}\right)$.
- SubFun: Then τ^{\prime} has the form $\tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}$, so the result follows with \bar{q}^{\prime} as the empty sequence.

Lemma 3.12 If $\Gamma \vdash \lambda x . s: \bar{q}\left(\tau_{1} \rightarrow \tau_{2}\right)$, then there exist τ_{1}^{\prime} and τ_{2}^{\prime} such that $\Gamma, x: \tau_{1}^{\prime} \vdash s: \tau_{2}^{\prime}$, where $\tau_{1} \leq \tau_{1}^{\prime}$ and $\tau_{2}^{\prime} \leq \tau_{2}$.
Proof By induction on the depth of the derivation of $\Gamma \vdash \lambda x \cdot s: \bar{q}\left(\tau_{1} \rightarrow \tau_{2}\right)$. Case analysis of the last rule used in the derivation.

- T-Fun: Then \bar{q} is empty and $\Gamma, x: \tau_{1} \vdash s: \tau_{2}$. By SubRef we have $\tau_{1} \leq \tau_{1}$ and $\tau_{2} \leq \tau_{2}$, so the result follows.
- T-QualCase: Then $\bar{q}=q \bar{q}^{\prime}$ and $\Gamma \vdash \lambda x . s: \bar{q}^{\prime}\left(\tau_{1} \rightarrow \tau_{2}\right)$, so the result follows by induction.
- T-QualVal: Then $\bar{q}=q \bar{q}^{\prime}$ and $\Gamma \vdash \lambda x$.s $: \bar{q}^{\prime \prime}\left(\tau_{1} \rightarrow \tau_{2}\right)$, so the result follows by induction.
- T-Sub: Then $\Gamma \vdash \lambda x . s: \tau^{\prime}$ and $\tau^{\prime} \leq \bar{q}\left(\tau_{1} \rightarrow \tau_{2}\right)$. By Lemma $3.13 \tau^{\prime}$ has the form $\bar{q}^{\prime}\left(\tau_{1}^{\prime \prime} \rightarrow \tau_{2}^{\prime \prime}\right)$, where $\tau_{1} \leq \tau_{1}^{\prime \prime}$ and $\tau_{2}^{\prime \prime} \leq \tau_{2}$. By induction $\Gamma, x: \tau_{1}^{\prime} \vdash s: \tau_{2}^{\prime}$, where $\tau_{1}^{\prime \prime} \leq \tau_{1}^{\prime}$ and $\tau_{2}^{\prime} \leq \tau_{2}^{\prime \prime}$. Then by SubTrans also $\tau_{1} \leq \tau_{1}^{\prime}$ and $\tau_{2}^{\prime} \leq \tau_{2}$, so the result follows.

Lemma 3.13 If $\tau^{\prime} \leq \bar{q}\left(\tau_{1} \rightarrow \tau_{2}\right)$, then τ^{\prime} has the form $\bar{q}^{\prime}\left(\tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}\right)$, where $\tau_{1} \leq \tau_{1}^{\prime}$ and $\tau_{2}^{\prime} \leq \tau_{2}$.
Proof By induction on the depth of the derivation of $\tau^{\prime} \leq \bar{q}\left(\tau_{1} \rightarrow \tau_{2}\right)$. Case analysis of the last rule used in the derivation.

- SubValQual: Then $\tau^{\prime}=q \bar{q}\left(\tau_{1} \rightarrow \tau_{2}\right)$. By SubRef we have $\tau_{1} \leq \tau_{1}$ and $\tau_{2} \leq \tau_{2}$, so the result follows.
- SubQualReorder: Then $\bar{q}=q_{2} q_{1} \bar{q}^{\prime}$ and $\tau^{\prime}=q_{1} q_{2} \bar{q}^{\prime}\left(\tau_{1} \rightarrow \tau_{2}\right)$. By SubRef we have $\tau_{1} \leq \tau_{1}$ and $\tau_{2} \leq \tau_{2}$, so the result follows.
- SubRef: Then $\tau^{\prime}=\bar{q}\left(\tau_{1} \rightarrow \tau_{2}\right)$. By SubRef we have $\tau_{1} \leq \tau_{1}$ and $\tau_{2} \leq \tau_{2}$, so the result follows.
- SubTrans: Then $\tau^{\prime} \leq \tau^{\prime \prime}$ and $\tau^{\prime \prime} \leq \bar{q}\left(\tau_{1} \rightarrow \tau_{2}\right)$. By induction $\tau^{\prime \prime}$ has the form $\bar{q}^{\prime \prime}\left(\tau_{1}^{\prime \prime} \rightarrow \tau_{2}^{\prime \prime}\right)$, where $\tau_{1} \leq \tau_{1}^{\prime \prime}$ and $\tau_{2}^{\prime \prime} \leq \tau_{2}$. Then by induction again, τ^{\prime} has the form $\bar{q}^{\prime}\left(\tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}\right)$, where $\tau_{1}^{\prime \prime} \leq \tau_{1}^{\prime}$ and $\tau_{2}^{\prime} \leq \tau_{2}^{\prime \prime}$. Then by SubTrans we have $\tau_{1} \leq \tau_{1}^{\prime}$ and $\tau_{2}^{\prime} \leq \tau_{2}$, so the result follows.
- SubFun: Then \bar{q} is empty and $\tau^{\prime}=\tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}$, where $\tau_{1} \leq \tau_{1}^{\prime}$ and $\tau_{2}^{\prime} \leq \tau_{2}$, so the result follows with \bar{q}^{\prime} as the empty sequence.

Lemma 3.14 If $\Gamma ; \tau^{\prime} \vdash<\sigma, v>$ and Γ; ref $\tau \vdash<\sigma, l>$ and τ^{\prime} is a component of τ, then $\sigma \vdash v \nLeftarrow \sim l$. Proof By induction on the depth of the derivation of $\Gamma ; \tau^{\prime} \vdash\langle\sigma, v\rangle$. Case analysis of the last rule used in the derivation.

- Q-Int: Then $v=c$ and the result follows from UnreachInt.
- Q-Unit: Then $v=()$ and the result follows from UnreachUnit.
- Q-Fun: Then $v=\lambda x . s$ and the result follows from UnreachFun.
- Q-Ref: Then $v=l^{\prime}$ and $\tau^{\prime}=\operatorname{ref} \tau^{\prime \prime}$ and $\Gamma \vdash l^{\prime}$: ref $\tau^{\prime \prime}$ and $\Gamma ; \tau^{\prime \prime} \vdash<\sigma, \sigma\left(l^{\prime}\right)>$ and $l^{\prime} \in \operatorname{dom}(\sigma)$.
First we show that $l^{\prime} \neq l$. Suppose not, so $l^{\prime}=l$. Since $\Gamma \vdash l^{\prime}$: ref $\tau^{\prime \prime}$, by Lemma 3.8 $\Gamma\left(l^{\prime}\right)=\Gamma(l)$ has the form $\bar{q}\left(\right.$ ref $\left.\tau^{\prime \prime}\right)$. We're given that Γ; ref $\tau \vdash<\sigma, l>$, so by Q-Ref we have $\Gamma \vdash l$: ref τ, so again by Lemma $3.8 \Gamma(l)$ also has the form $\bar{q}^{\prime}($ ref $\tau)$. Therefore, it must be the case that $\tau=\tau^{\prime \prime}$. But we know that ref $\tau^{\prime \prime}$ is a component of τ, so we have a contradiction.
Since ref $\tau^{\prime \prime}$ is a component of τ, so is $\tau^{\prime \prime}$. Since $\Gamma ; \tau^{\prime \prime} \vdash<\sigma, \sigma\left(l^{\prime}\right)>$ and Γ; ref $\tau \vdash<\sigma, l>$, by induction we have $\sigma \vdash \sigma\left(l^{\prime}\right) \nprec l$. Therefore, we have shown $l^{\prime} \neq l$ and $l^{\prime} \in \operatorname{dom}(\sigma)$ and $\sigma \vdash \sigma\left(l^{\prime}\right) \nLeftarrow \rightarrow l$, so by UnreachLoc we have $\sigma \vdash l^{\prime} \nprec \rightarrow l$.
- Q-Qual: Then $\tau^{\prime}=q \tau^{\prime \prime}$ and $\Gamma ; \tau^{\prime \prime} \vdash\langle\sigma, v\rangle$. Since τ^{\prime} is a component of τ, so is $\tau^{\prime \prime}$. Then by induction we have $\sigma \vdash v \nLeftarrow l$.

Lemma 3.15 If $\Gamma ; \tau \vdash<\sigma, v>$ and $\sigma \vdash v \nLeftarrow l$, then $\Gamma ; \tau \vdash<\sigma\left[l \mapsto v^{\prime}\right], v>$.
Proof By induction on the depth of the derivation of $\Gamma ; \tau \vdash<\sigma, v\rangle$. Case analysis of the last rule used in the derivation.

- Q-Int: Then $\tau=$ int and $v=c$, and the result follows by Q-Int.
- Q-Unit: Then $\tau=$ unit and $v=()$, and the result follows by Q-Unit.
- Q-Fun: Then $\tau=\tau_{1} \rightarrow \tau_{2}$ and $v=\lambda x$.s and $\Gamma \vdash \lambda x . s: \tau_{1} \rightarrow \tau_{2}$. Then the result follows by Q-Fun.
- Q-REF: Then $\tau=$ ref τ^{\prime} and $v=l^{\prime}$ and $\Gamma \vdash l^{\prime}$: ref τ^{\prime} and $\Gamma ; \tau^{\prime} \vdash<\sigma, \sigma\left(l^{\prime}\right)>$ and $l^{\prime} \in \operatorname{dom}(\sigma)$. Then also $l^{\prime} \in \operatorname{dom}\left(\sigma\left[l \mapsto v^{\prime}\right]\right)$. The result follows by Q-Ref if we can prove $\Gamma ; \tau^{\prime} \vdash<\sigma\left[l \mapsto v^{\prime}\right], \sigma\left[l \mapsto v^{\prime}\right]\left(l^{\prime}\right)>$. Since $\sigma \vdash l^{\prime} \nLeftarrow \rightarrow l$ and $l^{\prime} \in \operatorname{dom}(\sigma)$, by UnreachLoc we have $l^{\prime} \neq l$ and $\sigma \vdash \sigma\left(l^{\prime}\right) \not \nrightarrow l$. Since $\Gamma ; \tau^{\prime} \vdash<\sigma, \sigma\left(l^{\prime}\right)>$ and $\sigma \vdash \sigma\left(l^{\prime}\right) \nLeftarrow \rightarrow l$, by induction $\Gamma ; \tau^{\prime} \vdash<\sigma\left[l \mapsto v^{\prime}\right], \sigma\left(l^{\prime}\right)>$. Since $l^{\prime} \neq l, \sigma\left(l^{\prime}\right)=\sigma\left[l \mapsto v^{\prime}\right]\left(l^{\prime}\right)$, so we have proven $\Gamma ; \tau^{\prime} \vdash<$ $\sigma\left[l \mapsto v^{\prime}\right], \sigma\left[l \mapsto v^{\prime}\right]\left(l^{\prime}\right)>$.
- Q-Qual: Then $\tau=q \tau^{\prime}$ and $[[q]](v)$ and $\Gamma ; \tau^{\prime} \vdash<\sigma, v>$. By induction we have $\Gamma^{\prime} ; \tau^{\prime} \vdash<$ $\sigma\left[l \mapsto v^{\prime}\right], v>$, and the result follows by Q-Qual.

Lemma 3.16 If $\Gamma \sim \sigma$ and it is not the case that $\sigma \vdash v \nLeftarrow \rightarrow l$, then there exists a location l^{\prime} such that $v=l^{\prime}$ and a nonnegative integer k such that $\sigma^{k}\left(l^{\prime}\right)=l$.
Proof We prove this lemma by induction on the depth of v, which we define as follows. If v is not a location, then $\operatorname{depth}(v)=0$. Otherwise v has the form l^{\prime}. If $l^{\prime} \notin \operatorname{dom}(\sigma)$ then $\operatorname{depth}\left(l^{\prime}\right)=0$. Otherwise $l^{\prime} \in \operatorname{dom}(\sigma)$. Since $\Gamma \sim \sigma$, by Lemma 3.24 we have $\sigma \vdash \sigma\left(l^{\prime}\right) \nsim l^{\prime}$. Then by Lemma 3.17 there exists a positive integer k^{\prime} and a value v^{\prime} such that $\sigma^{k^{\prime}}\left(l^{\prime}\right)=v^{\prime}$, where v^{\prime} is not a location, and depth $\left(l^{\prime}\right)$ is defined to be k^{\prime}. Note that k^{\prime} is unique.

- v has depth 0: Then either v is not a location or $v=l^{\prime}$ and $l^{\prime} \notin \operatorname{dom}(\sigma)$. If v is not a location, then it is either an integer constant c, the unit value (), or a function value λ x.s. But then $\sigma \vdash v \nsim l$ by UnreachInt, UnreachUnit, and UnreachFun, contradicting our initial assumptions. Therefore $v=l^{\prime}$ and $l^{\prime} \notin \operatorname{dom}(\sigma)$. Since it is not the case that $\sigma \vdash l^{\prime}$ 必 l, by UnreachLoc we have that either $l^{\prime}=l$ or $l^{\prime} \in \operatorname{dom}(\sigma)$ and it is not the case that $\sigma \vdash \sigma\left(l^{\prime}\right) \nprec l$. Therefore $l^{\prime}=l$, so $\sigma^{0}\left(l^{\prime}\right)=l$ and the result follows with $k=0$.
- v has depth $d>0$: Then $v=l^{\prime}$ and $l^{\prime} \in \operatorname{dom}(\sigma)$ and there exists a value v^{\prime} such that $\sigma^{d}\left(l^{\prime}\right)=v^{\prime}$, where v^{\prime} is not a location. Since it is not the case that $\sigma \vdash l^{\prime} \nsim \rightarrow l$, by UnreachLoc we have that either $l^{\prime}=l$ or $l^{\prime} \in \operatorname{dom}(\sigma)$ and it is not the case that $\sigma \vdash \sigma\left(l^{\prime}\right) \nsim l$. If $l^{\prime}=l$ then $\sigma^{0}\left(l^{\prime}\right)=l$ and the result follows with $k=0$. Otherwise $l^{\prime} \in \operatorname{dom}(\sigma)$ and it is not the case that $\sigma \vdash \sigma\left(l^{\prime}\right) \nsim>l$. If we can show that $\sigma\left(l^{\prime}\right)$ has a smaller depth than l^{\prime}, then by induction we have that there exists a location $l^{\prime \prime}$ such that $\sigma\left(l^{\prime}\right)=l^{\prime \prime}$ and a nonnegative integer $k^{\prime \prime}$ such that $\sigma^{k^{\prime \prime}}\left(l^{\prime \prime}\right)=l$, so $\sigma^{k^{\prime \prime}+1}\left(l^{\prime}\right)=l$ and the result follows.
To see that $\sigma\left(l^{\prime}\right)$ has smaller depth than l^{\prime}, we analyze the form of $\sigma\left(l^{\prime}\right)$. If it is a value other than a location or it is a location that is not in $\operatorname{dom}(\sigma)$, then $\operatorname{depth}\left(\sigma\left(l^{\prime}\right)\right)=0$. Since the depth of l^{\prime} is $d>0$, the result follows. Otherwise, $\sigma\left(l^{\prime}\right)$ is some location $l^{\prime \prime} \in \operatorname{dom}(\sigma)$. Since there exists a value v^{\prime} such that $\sigma^{d}\left(l^{\prime}\right)=v^{\prime}$, where v^{\prime} is not a location, also $\sigma^{d-1}\left(l^{\prime \prime}\right)=v^{\prime}$, so the depth of $l^{\prime \prime}$ is $d-1$, which is smaller than d.

Lemma 3.17 If $\Gamma \sim \sigma$ and $l \in \operatorname{dom}(\sigma)$ and $\sigma \vdash \sigma^{k}(l) \nprec r l$ for some nonnegative integer k, then there exists a positive integer k^{\prime} and a value v such that $\sigma^{k^{\prime}}(l)=v$, where v is not a location.

Proof By induction on the depth of the derivation of $\sigma \vdash \sigma^{k}(l) \nLeftarrow \sim l$. Case analysis of the last rule used in the derivation.

- Unreachint, UnreachUnit, or UnreachFun: Then $\sigma^{k}(l)$ is not a location. Since l is a location, $k>0$, so the result follows with $k^{\prime}=k$.
- UnreachLoc: Then $\sigma^{k}(l)=l^{\prime}$ and $l^{\prime} \neq l$ and $l^{\prime} \in \operatorname{dom}(\sigma) \Rightarrow \sigma \vdash \sigma\left(l^{\prime}\right) \nLeftarrow l$. Then by Lemma $3.18 l^{\prime} \in \operatorname{dom}(\sigma)$. Therefore we have $\sigma \vdash \sigma\left(l^{\prime}\right) \nsim \rightarrow l$, or equivalently $\sigma \vdash \sigma^{k+1}(l) \nsim \rightarrow l$. Then by induction there exists a positive integer k^{\prime} and a value v such that $\sigma^{k^{\prime}}(l)=v$, where v is not a location.

Lemma 3.18 If $\Gamma \sim \sigma$ and $l \in \operatorname{dom}(\sigma)$ and $\sigma^{k}(l)=l^{\prime}$ for some nonnegative integer k, then $l^{\prime} \in \operatorname{dom}(\sigma)$.
Proof By induction on k.

- $k=0$: Then $l=l^{\prime}$ and since $l \in \operatorname{dom}(\sigma)$ also $l^{\prime} \in \operatorname{dom}(\sigma)$.
- $k>0$: Let $\sigma^{k-1}(l)=l^{\prime \prime}$. By induction $l^{\prime \prime} \in \operatorname{dom}(\sigma)$. Since $\Gamma \sim \sigma$, we have $\Gamma ; \Gamma\left(l^{\prime \prime}\right) \vdash<\sigma, l^{\prime \prime}>$. By Lemma 3.22, $\Gamma\left(l^{\prime \prime}\right)$ has the form $\bar{q}($ ref $\tau)$, and by Lemma 3.23 we have $\Gamma ; \tau \vdash<\sigma, l^{\prime}>$. By Lemma 3.22 again, τ has the form $\bar{q}^{\prime}\left(\operatorname{ref} \tau^{\prime}\right)$, and by Lemma 3.23 again we have $l^{\prime} \in \operatorname{dom}(\sigma)$.

Lemma 3.19 If $\Gamma_{2} \sim \sigma_{2}$ and $\Gamma_{2} ; \Gamma_{2}(l) \vdash<\sigma_{2}, l>$ and $\sigma_{2}^{k}(l)=l_{1}$ for some nonnegative integer k and $\sigma^{\prime}=\sigma_{2}\left[l_{1} \mapsto v_{2}\right]$ and $\Gamma_{2} ; \tau^{\prime} \vdash<\sigma_{2}, v_{2}>$ and $l_{1} \in \operatorname{dom}\left(\sigma_{2}\right)$ and $\Gamma_{2} \vdash l_{1}:$ ref τ^{\prime}, then $\Gamma_{2} ; \Gamma_{2}(l) \vdash<\sigma^{\prime}, l>$.
Proof Assume WLOG that k is the smallest nonnegative integer such that $\sigma_{2}^{k}(l)=l_{1}$. We prove this lemma by induction on k.

- $k=0$: Then $l=l_{1}$, so we must show $\Gamma_{2} ; \Gamma_{2}\left(l_{1}\right) \vdash<\sigma^{\prime}, l_{1}>$. Since $\Gamma_{2} \vdash l_{1}$: ref τ^{\prime}, by Lemma 3.8, there exists some \bar{q} such that $\Gamma_{2}\left(l_{1}\right)=\bar{q}\left(\right.$ ref $\left.\tau^{\prime}\right)$. Since $\Gamma_{2} \sim \sigma_{2}$, we know that $\Gamma_{2} ; \bar{q}\left(\right.$ ref $\left.\tau^{\prime}\right) \vdash<\sigma_{2}, l_{1}>$. Then by Lemma 3.20 also $\Gamma_{2} ; \bar{q}\left(\right.$ ref $\left.\tau^{\prime}\right) \vdash<\sigma^{\prime}, l_{1}>$.
- $k>0$: Since $\Gamma_{2} ; \Gamma_{2}(l) \vdash<\sigma_{2}, l>$, by Lemma $3.22 \Gamma_{2}(l)$ has the form $\bar{q}\left(\right.$ ref $\left.\tau^{\prime \prime}\right)$. Then the result follows by Lemma 3.21.

Lemma 3.20 If $\Gamma_{2} ; \bar{q}\left(\right.$ ref $\left.\tau^{\prime}\right) \vdash<\sigma_{2}, l_{1}>$ and $\Gamma_{2} ; \tau^{\prime} \vdash<\sigma_{2}, v_{2}>$ and $\sigma^{\prime}=\sigma_{2}\left[l_{1} \mapsto v_{2}\right]$ and $l_{1} \in \operatorname{dom}\left(\sigma_{2}\right)$, then $\Gamma_{2} ; \bar{q}\left(\right.$ ref $\left.\tau^{\prime}\right) \vdash<\sigma^{\prime}, l>$.
Proof By induction on the length of \bar{q}.

- \bar{q} has length 0: So Γ_{2}; ref $\tau^{\prime} \vdash<\sigma_{2}, l_{1}>$. Then by Q-REF, $\Gamma_{2} \vdash l_{1}$: ref τ^{\prime}. Since $\sigma^{\prime}=$ $\sigma_{2}\left[l_{1} \mapsto v_{2}\right]$, we have $l_{1} \in \operatorname{dom}\left(\sigma^{\prime}\right)$. Since $\sigma^{\prime}\left(l_{1}\right)=v_{2}$, if we can show that $\Gamma_{2} ; \tau^{\prime} \vdash<\sigma^{\prime}, v_{2}>$, then by Q-Ref we have Γ_{2}; ref $\tau^{\prime} \vdash<\sigma^{\prime}, l_{1}>$, which is what we are trying to prove.

Since $\Gamma_{2} ; \tau^{\prime} \vdash<\sigma_{2}, v_{2}>$ and $\Gamma_{2} ;$ ref $\tau^{\prime} \vdash<\sigma_{2}, l_{1}>$, by Lemma 3.14 we have $\sigma_{2} \vdash v_{2} \nsim \rightarrow l_{1}$. Then by Lemma 3.15 we have $\Gamma_{2} ; \tau^{\prime} \vdash<\sigma_{2}\left[l_{1} \mapsto v_{2}\right]$, $v_{2}>$, or equivalently $\Gamma_{2} ; \tau^{\prime} \vdash<\sigma^{\prime}, v_{2}>$.

- \bar{q} has length greater than zero: So \bar{q} has the form $q \bar{q}^{\prime}$ and $\Gamma_{2} ; q \bar{q}^{\prime}\left(\right.$ ref $\left.\tau^{\prime}\right) \vdash<\sigma_{2}, l_{1}>$. By QQual we have $[[q]]\left(l_{1}\right)$ and $\Gamma_{2} ; \bar{q}^{\prime}\left(\right.$ ref $\left.\tau^{\prime}\right) \vdash<\sigma_{2}, l_{1}>$. By induction $\Gamma_{2} ; \bar{q}^{\prime}\left(\right.$ ref $\left.\tau^{\prime}\right) \vdash<\sigma^{\prime}, l_{1}>$, and by Q-Qual also $\Gamma_{2} ; q \bar{q}^{\prime}\left(\right.$ ref $\left.\tau^{\prime}\right) \vdash<\sigma^{\prime}, l_{1}>$.

Lemma 3.21 If $\Gamma_{2} \sim \sigma_{2}$ and $\Gamma_{2} ; \bar{q}\left(\right.$ ref $\left.\tau^{\prime \prime}\right) \vdash<\sigma_{2}, l>$ and $\sigma_{2}^{k}(l)=l_{1}$ for some positive integer k and $\sigma^{\prime}=\sigma_{2}\left[l_{1} \mapsto v_{2}\right]$ and Lemma 3.19 holds for all nonnegative integers i such that $0 \leq i<k$, then $\Gamma_{2} ; \bar{q}\left(\right.$ ref $\left.\tau^{\prime \prime}\right) \vdash<\sigma^{\prime}, l>$.
Proof We prove this lemma by induction on the length of \bar{q}.

- \bar{q} has length 0 : So Γ_{2}; ref $\tau^{\prime \prime} \vdash<\sigma_{2}, l>$. By Q-Ref, $\Gamma_{2} \vdash l$: ref $\tau^{\prime \prime}$ and $l \in \operatorname{dom}\left(\sigma_{2}\right)$ and $\Gamma_{2} ; \tau^{\prime \prime} \vdash<\sigma_{2}, \sigma_{2}(l)>$. Since $k>0$ we have that $l \neq l_{1}$, so $\sigma_{2}(l)=\sigma^{\prime}(l)$ and $\Gamma_{2} ; \tau^{\prime \prime} \vdash<$ $\sigma_{2}, \sigma^{\prime}(l)>$. Since $l \in \operatorname{dom}\left(\sigma_{2}\right)$, by definition of σ^{\prime} we have $l \in \operatorname{dom}\left(\sigma^{\prime}\right)$. Then the result holds by Q-REF if we can show that $\Gamma_{2} ; \tau^{\prime \prime} \vdash<\sigma^{\prime}, \sigma^{\prime}(l)>$.
Since $\sigma_{2}^{k}(l)=l_{1}$ we have $\sigma_{2}^{k-1}\left(\sigma_{2}(l)\right)=l_{1}$, and $\sigma_{2}(l)$ must be some location l^{\prime}. Then we have $\Gamma_{2} ; \tau^{\prime \prime} \vdash<\sigma_{2}, l^{\prime}>$, so by Lemma $3.22 \tau^{\prime \prime}$ has the form $\bar{q}_{0}\left(\right.$ ref $\left.\tau_{0}\right)$, and by Lemma 3.23 we have $l^{\prime} \in \operatorname{dom}\left(\sigma_{2}\right)$. Since $\Gamma_{2} \sim \sigma_{2}$, also $l^{\prime} \in \operatorname{dom}\left(\Gamma_{2}\right)$ and we have $\Gamma_{2} ; \Gamma_{2}\left(l^{\prime}\right) \vdash<\sigma_{2}, l^{\prime}>$. Therefore by induction on Lemma 3.19 we have $\Gamma_{2} ; \Gamma_{2}\left(l^{\prime}\right) \vdash\left\langle\sigma^{\prime}, l^{\prime}\right\rangle$.
Since $\Gamma_{2} ; \tau^{\prime \prime} \vdash<\sigma_{2}, l^{\prime}>$, by Lemma 3.3 we have $\Gamma_{2} \vdash l^{\prime}: \bar{q}_{0}\left(\right.$ ref $\left.\tau_{0}\right)$. Then by Lemma 3.8 we have $\Gamma_{2}\left(l^{\prime}\right)=\bar{q}_{0}^{\prime}\left(\right.$ ref $\left.\tau_{0}\right)$. Then since $\Gamma_{2} ; \Gamma_{2}\left(l^{\prime}\right) \vdash<\sigma^{\prime}, l^{\prime}>$, by Lemma 3.25 we have $\Gamma_{2} ;$ ref $\tau_{0} \vdash<\sigma^{\prime}, l^{\prime}>$. Finally, since $\Gamma_{2} ; \bar{q}_{0}\left(\right.$ ref $\left.\tau_{0}\right) \vdash<\sigma_{2}, l^{\prime}>$ by Lemma 3.26 we also $\Gamma_{2} ; \bar{q}_{0}\left(\right.$ ref $\left.\tau_{0}\right) \vdash<\sigma^{\prime}, l^{\prime}>$, which is what we were trying to prove.
- \bar{q} has length greater than zero, so \bar{q} has the form $q \bar{q}^{\prime}$ and $\Gamma_{2} ; q \bar{q}^{\prime}\left(\right.$ ref $\left.\tau^{\prime \prime}\right) \vdash<\sigma_{2}, l>$. By QQual we have $[[q]](l)$ and $\Gamma_{2} ; \bar{q}^{\prime}\left(\right.$ ref $\left.\tau^{\prime \prime}\right) \vdash<\sigma_{2}, l>$. By induction $\Gamma_{2} ; \bar{q}^{\prime}\left(\right.$ ref $\left.\tau^{\prime \prime}\right) \vdash<\sigma^{\prime}, l>$, and by Q-Qual also $\Gamma_{2} ; q \bar{q}^{\prime}\left(\right.$ ref $\left.\tau^{\prime \prime}\right) \vdash<\sigma^{\prime}, l>$ as desired.

Lemma 3.22 If $\Gamma ; \tau \vdash<\sigma, l>$ then τ has the form $\bar{q}\left(\right.$ ref $\left.\tau^{\prime}\right)$.
Proof By induction on the depth of the derivation of $\Gamma ; \tau \vdash<\sigma, l>$. Case analysis of the last rule used in the derivation.

- Q-Ref: Then τ has the form ref τ^{\prime}, so the result follows with \bar{q} being empty.
- Q-Qual: Then $\tau=q \tau^{\prime \prime}$ and $\Gamma ; \tau^{\prime \prime} \vdash<\sigma, l>$. By induction $\tau^{\prime \prime}$ has the form $\bar{q}^{\prime}\left(\right.$ ref $\left.\tau^{\prime}\right)$, so τ has the form $\bar{q}\left(\right.$ ref $\left.\tau^{\prime}\right)$, where $\bar{q}=q \bar{q}^{\prime}$.

Lemma 3.23 If $\Gamma ; \bar{q}($ ref $\tau) \vdash<\sigma, l>$, then $l \in \operatorname{dom}(\sigma)$ and $\Gamma ; \tau \vdash<\sigma, \sigma(l)>$.
Proof By induction on the depth of the derivation of $\Gamma ; \bar{q}($ ref $\tau) \vdash<\sigma, l\rangle$. Case analysis of the last rule used in the derivation.

- Q-REF: Then \bar{q} is empty and $l \in \operatorname{dom}(\sigma)$ and $\Gamma ; \tau \vdash<\sigma, \sigma(l)>$.
- Q-Qual: Then $\bar{q}=q \bar{q}^{\prime}$ and $\Gamma ; \bar{q}^{\prime}(\operatorname{ref} \tau) \vdash<\sigma, l>$. By induction, $l \in \operatorname{dom}(\sigma)$ and $\Gamma ; \tau \vdash<$ $\sigma, \sigma(l)>$.

Lemma 3.24 If $\Gamma \sim \sigma$ and $l \in \operatorname{dom}(\sigma)$ then $\sigma \vdash \sigma(l) \nLeftarrow \neg l$.
Proof Since $\Gamma \sim \sigma$ and $l \in \operatorname{dom}(\sigma)$, also $l \in \operatorname{dom}(\Gamma)$. Then since $\Gamma \sim \sigma$, we have $\Gamma ; \Gamma(l) \vdash<\sigma, l>$. Then by Lemma $3.22 \Gamma(l)$ has the form $\bar{q}($ ref $\tau)$, and by Lemma 3.23 also $\Gamma ; \tau \vdash<\sigma, \sigma(l)>$. Then since τ is a component of $\bar{q}(\operatorname{ref} \tau)$, by Lemma 3.14 we have $\sigma \vdash \sigma(l) \nsim \rightarrow l$.

Lemma 3.25 If $\Gamma ; \bar{q} \tau \vdash<\sigma, v>$ then $\Gamma ; \tau \vdash<\sigma, v>$.
Proof By induction on the length of \bar{q}.

- \bar{q} has length 0 : Then $\bar{q} \tau=\tau$ and the result follows.
- \bar{q} has length $k>0$: Then $\bar{q}=q \bar{q}^{\prime}$. Since $\Gamma ; \bar{q} \tau \vdash\langle\sigma, v\rangle$, by Q-QUAL we have $\Gamma ; \bar{q}^{\prime} \tau \vdash<\sigma, v>$, and the result follows by induction.

Lemma 3.26 If $\Gamma ; \tau \vdash<\sigma, v>$ and $\left.\Gamma ; \bar{q} \tau \vdash<\sigma^{\prime}, v\right\rangle$, then $\left.\Gamma ; \bar{q} \tau \vdash<\sigma, v\right\rangle$.
Proof By induction on the length of \bar{q}.

- \bar{q} has length 0 : Then $\bar{q} \tau=\tau$ and the result follows.
- \bar{q} has length $k>0$: Then $\bar{q}=q \bar{q}^{\prime}$. Since $\Gamma ; \bar{q} \tau \vdash\left\langle\sigma^{\prime}, v>\right.$, by Q-Qual we have $[[q]](v)$ and $\Gamma ; \bar{q}^{\prime} \tau \vdash<\sigma^{\prime}, v>$. Then by induction we have $\Gamma ; \bar{q}^{\prime} \tau \vdash<\sigma, v>$, and the result follows by Q-Qual.

