Semantic Type Qualifiers

Brian Chin Shane Markstrum Todd Millstein Computer Science Department University of California, Los Angeles {naerbnic,smarkstr,todd}@cs.ucla.edu}

> Technical Report CSD-TR-040045 November 2004

This technical report provides the formal details of our framework for semantic type qualifiers, which is described in a PLDI 2005 paper of the same name. We defer to that paper for the high-level description of the framework. This report formalizes the case when all user-defined type qualifiers are *value* qualifiers. Sections 1 and 2 respectively formalize the syntax and semantics of our formal language, and section 3 presents a proof of "semantic" soundness of the language's type system.

1 Syntax

The language is a fairly standard simply-typed lambda calculus, augmented with references and user-defined type qualifiers. For convenience, we separate side-effect-free expressions (called *expressions*) from potentially side-effecting expressions (called *statements*). This separation causes no loss of expressiveness.

Stmts	s	::=	$e \mid s_1 \mid s_2 \mid \texttt{let} \mid x = s_1 \mid \texttt{in} \mid s_2 \mid \texttt{ref} \mid s \mid s_1 := s_2$
Exprs	e	::=	$c \mid () \mid x \mid \lambda x.s \mid !e$
Consts	c	::=	integer constants
Vars	x	::=	variable names
Types	au	::=	$ extsf{unit} \mid extsf{int} \mid au_1 o au_2 \mid extsf{ref} \; au \mid q au$
Qualifiers	q	::=	user-defined value qualifiers

We restrict the above syntax of types slightly: for any type containing a component of the form $q\tau$, we require that τ not be of the form $\tau_1 \to \tau_2$. This restriction is consistent with our implementation of semantic type qualifiers for C, and it makes the soundness proof cleaner. Note that types such as $(q\tau_1) \to (q'\tau_2)$ and $q(\text{ref}(\tau_1 \to \tau_2))$ are still supported.

We also need a notion of *values*, which are the legal results of expressions:

Values $v ::= c \mid () \mid \lambda x.s \mid l$ Locations l ::= location constants (i.e., addresses)

Note that locations are not directly available at source level.

2 Semantics

2.1 Static Semantics

The base type system is standard and is defined by the following rules. As usual, metavariable Γ ranges over *type environments*, which are finite functions from variable names to types. Also, we assume that bound variables are α -renamed as necessary.

$$\begin{array}{c} \overline{\Gamma \vdash s:\tau} \\ \hline \hline \Gamma \vdash s_1:\tau_2 \to \tau \quad \overline{\Gamma \vdash s_2:\tau_2} \\ \overline{\Gamma \vdash s_1 \ s_2:\tau} \end{array} T-APP \quad \begin{array}{c} \overline{\Gamma \vdash s_1:\tau_1} & \overline{\Gamma}, x:\tau_1 \vdash s_2:\tau \\ \overline{\Gamma \vdash 1et \ x=s_1 \ in \ s_2:\tau} \end{array} T-LET \\ \hline \hline \hline \overline{\Gamma \vdash ref \ s:ref \ \tau} \end{array} T-REF \quad \begin{array}{c} \overline{\Gamma \vdash s_1:ref \ \tau} & \overline{\Gamma \vdash s_2:\tau} \\ \overline{\Gamma \vdash s_2:\tau} \end{array} T-ASSGN \\ \hline \hline \overline{\Gamma \vdash c:int} \end{array} T-INT \quad \begin{array}{c} \overline{\Gamma \vdash s_1:ref \ \tau} & \overline{\Gamma \vdash s_2:\tau} \\ \overline{\Gamma \vdash s_1:=s_2:unit} \end{array} T-VAR \\ \hline \hline \hline \overline{\Gamma \vdash c:int} \end{array} T-INT \quad \begin{array}{c} \overline{\Gamma \vdash ():unit} \end{array} T-UNIT \quad \begin{array}{c} \overline{\Gamma(x)=\tau} \\ \overline{\Gamma \vdash x:\tau} \end{array} T-VAR \\ \hline \hline \hline \overline{\Gamma \vdash \lambda x.s:\tau_1 \to \tau_2} \end{array} T-FUN \quad \begin{array}{c} \overline{\Gamma \vdash e:ref \ \tau} \\ \overline{\Gamma \vdash e:\tau} \end{array} T-DEREF \end{array}$$

In addition to these rules, users can provide a set of *introduction* rules for value-qualified types. Each rule is assumed to match the following template:

$$\frac{\Gamma \vdash e: \tau}{\Gamma \vdash e_1: q_1 \tau_1 \qquad \dots \qquad \Gamma \vdash e_n: q_n \tau_n}$$
each e_i is a subexpression of e

$$\frac{\Gamma \vdash e: q\tau}{\Gamma \vdash e: q\tau}$$
T-QUALCASE

This template formalizes the **case** rules in our implementation for C. For example, here is an introduction rule indicating that the product of two positive expressions is also positive.

$$\frac{\Gamma \vdash e_1 * e_2 : \overline{q}(\texttt{int}) \qquad \Gamma \vdash e_1 : \texttt{pos int} \qquad \Gamma \vdash e_2 : \texttt{pos int}}{\Gamma \vdash e_1 * e_2 : \texttt{pos } \overline{q}(\texttt{int})} \text{ PosMult}$$

In addition to the user-defined rules of the form specified by T-QUALCASE, we provide a "base case" introduction rule for all qualified types. We assume that the definition of each qualifier q includes a unary predicate [[q]] on values, which is used below to formalize a qualifier's semantics. The base case says that any value satisfying [[q]] may have a type qualified with q:

$$\frac{[[q]](v) \qquad \Gamma \vdash v : \tau}{\Gamma \vdash v : q\tau} \text{ T-QUALVAL}$$

This natural rule facilitates the proof of our soundness theorem, described below.

Finally, we include a subsumption rule and an associated subtyping relation for types, defined by the following rules:

$$\frac{\Gamma \vdash s : \tau' \qquad \tau' \leq \tau}{\Gamma \vdash s : \tau} \text{ T-Sub}$$

 $\tau \leq \tau'$

$$\overline{q\tau \leq \tau} \text{ SubValQual } \overline{q_1 q_2 \tau \leq q_2 q_1 \tau} \text{ SubQualReorder}$$

$$\overline{\tau \leq \tau} \text{ SubRef } \frac{\tau \leq \tau'' \quad \tau'' \leq \tau'}{\tau \leq \tau'} \text{ SubTrans}$$

$$\frac{\tau'_1 \leq \tau_1 \quad \tau_2 \leq \tau'_2}{\tau_1 \to \tau_2 \leq \tau'_1 \to \tau'_2} \text{ SubFun}$$

2.2 Dynamic Semantics

The dynamic semantics describes how to evaluate programs. Metavariable σ ranges over *stores*, which are finite functions from locations to values. We define an abstract machine for our language. A machine configuration $\langle \sigma, s \rangle$ is a pair of a store and a statement to be evaluated. The steps of the machine are defined by the following inference rules:

$$<\sigma,s> \rightarrow <\sigma',v>$$

$$\frac{\langle \sigma, s_1 \rangle \rightarrow \langle \sigma_1, \lambda x.s \rangle}{\langle \sigma, s_1 | s_2 \rangle \rightarrow \langle \sigma_2, v_2 \rangle} \langle \sigma_2, s[x \mapsto v_2] \rangle \rightarrow \langle \sigma', v \rangle}{\langle \sigma, s_1 | s_2 \rangle \rightarrow \langle \sigma', v \rangle} \text{E-APP}$$

$$\frac{\langle \sigma, s_1 \rangle \rightarrow \langle \sigma_1, v_1 \rangle}{\langle \sigma, \text{let } x = s_1 \text{ in } s_2 \rangle \rightarrow \langle \sigma_2, v_2 \rangle}{\langle \sigma, \text{ref } s \rangle \rightarrow \langle \sigma', v \rangle} \text{E-LET}$$

$$\frac{\langle \sigma, s_1 \rangle \rightarrow \langle \sigma_1, l \rangle}{\langle \sigma, s_1 := s_2 \rangle \rightarrow \langle \sigma_2, v \rangle} l \text{ fresh in } \sigma'}{\langle \sigma, e \rangle \rightarrow \langle \sigma_2, v \rangle} \text{E-ASSGN}$$

$$\frac{\langle \sigma, e \rangle \rightarrow v}{\langle \sigma, e \rangle \rightarrow \langle \sigma, v \rangle} \text{E-EXPR}$$

 $<\sigma, e> \rightarrow v$

$$\frac{\langle \sigma, v \rangle \rightarrow v}{\langle \sigma, v \rangle \rightarrow v} \text{ E-VAL } \frac{\langle \sigma, e \rangle \rightarrow l}{\langle \sigma, !e \rangle \rightarrow v} \text{ E-Deref}$$

3 Soundness

We use a qualifier q's associated predicate [[q]] to formalize a local soundness condition on userdefined type rules. This formalization makes use of an overloading of the [[q]] notation that lifts these predicates from values to arbitrary expressions:

$$[[q]](\sigma, e, v) \equiv (<\sigma, e > \rightarrow v \Rightarrow [[q]](v))$$

Definition 3.1 A type rule matching the template T-QUALCASE is *locally sound* if the following proof obligation is true:

 $\forall \sigma, v_1, \dots, v_n, v.([[q_1]](\sigma, e_1, v_1) \land \dots \land [[q_n]](\sigma, e_n, v_n)) \Rightarrow [[q]](\sigma, e, v)$

Intuitively, (global) soundness means that, if all user-defined type rules are locally sound, then any well-typed program fragment will satisfy its qualifiers' invariants at run time. We formalize this notion of type soundness via a few auxiliary definitions.

$$\Gamma; \tau \vdash <\sigma, v>$$

$$\frac{\Gamma \vdash \lambda x.s : \tau_1 \to \tau_2}{\Gamma; \operatorname{unit} \vdash < \sigma, () >} \operatorname{Q-UNIT} \quad \frac{\Gamma \vdash \lambda x.s : \tau_1 \to \tau_2}{\Gamma; \tau_1 \to \tau_2 \vdash < \sigma, \lambda x.s >} \operatorname{Q-Fun}$$

$$\frac{\Gamma \vdash l : \operatorname{ref} \tau \quad \Gamma; \tau \vdash < \sigma, \sigma(l) > \quad l \in \operatorname{dom}(\sigma)}{\Gamma; \operatorname{ref} \tau \vdash < \sigma, l >} \operatorname{Q-ReF}$$

$$\frac{[[q]](v) \quad \Gamma; \tau \vdash < \sigma, v >}{\Gamma; q\tau \vdash < \sigma, v >} \operatorname{Q-Qual}$$

The relation $\Gamma; \tau \vdash < \sigma, v >$ represents *semantic conformance* of a value to a type. Intuitively, $\Gamma; \tau \vdash < \sigma, v >$ holds if $\Gamma \vdash v : \tau$ and v additionally satisfies all of the associated invariants for qualifiers in τ . The first three rules are the standard typechecking rules for integers, unit, and functions, respectively. Rule Q-QUAL checks that a value of qualified type satisfies the qualifier's invariant. Rule Q-REF checks that a location l is well-typed and recursively checks semantic conformance of the value that l points to in the given store. For purposes of the static semantics we treat locations as variables.

Next we lift this notion of semantic conformance to a relation between a store and a type environment:

Definition 3.2 We say that $\Gamma \sim \sigma$ if both of the following conditions hold:

- 1. $\operatorname{dom}(\Gamma) = \operatorname{dom}(\sigma)$
- 2. $\forall l \in \operatorname{dom}(\Gamma).(\Gamma; \Gamma(l) \vdash <\sigma, l >)$

In other words, $\Gamma \sim \sigma$ if every memory location is well typed and satisfies its qualifiers' invariants.

Finally we can state our type soundness theorem, which is a variant of the standard type preservation theorem:

Theorem 3.1 If $\Gamma \sim \sigma$ and $\Gamma \vdash s : \tau$ and $\langle \sigma, s \rangle \rightarrow \langle \sigma', v \rangle$ and all user-defined type rules are locally sound, then there exists some $\Gamma' \supseteq \Gamma$ such that $\Gamma' \sim \sigma'$ and $\Gamma'; \tau \vdash \langle \sigma', v \rangle$.

To prove this theorem, it is helpful to make use of (un)reachability properties of well-formed stores. The following judgment and associated inference rules formalize when a value cannot reach a location through a given store.

$$\sigma \vdash v \not \leadsto l$$

$$\frac{1}{\sigma \vdash c \not\leadsto l} \text{ UNREACHINT } \frac{1}{\sigma \vdash () \not\leadsto l} \text{ UNREACHUNIT } \frac{1}{\sigma \vdash \lambda x.s \not\leadsto l} \text{ UNREACHFUN}$$

$$\frac{l' \neq l \qquad l' \in \operatorname{dom}(\sigma) \Rightarrow \sigma \vdash \sigma(l') \not \to l}{\sigma \vdash l' \not \to l} \text{ UNREACHLOC}$$

Finally we prove Theorem 3.1:

Proof By induction on the depth of the derivation of $\langle \sigma, s \rangle \rightarrow \langle \sigma', v \rangle$. Case analysis of the last rule used in the derivation.

- E-APP: Then $s = s_1 \ s_2$ and $\langle \sigma, s_1 \rangle \rightarrow \langle \sigma_1, \lambda x. s' \rangle$ and $\langle \sigma_1, s_2 \rangle \rightarrow \langle \sigma_2, v_2 \rangle$ and $\langle \sigma_2, s'[x \mapsto v_2] \rangle \rightarrow \langle \sigma', v \rangle$. We prove this case by induction on the depth of the derivation of $\Gamma \vdash s : \tau$. Case analysis of the last rule used in the derivation.
 - T-APP: Then $\Gamma \vdash s_1 : \tau_2 \to \tau$ and $\Gamma \vdash s_2 : \tau_2$. By (outer) induction there exists $\Gamma_1 \supseteq \Gamma$ such that $\Gamma_1 \sim \sigma_1$ and $\Gamma_1; \tau_2 \to \tau \vdash < \sigma_1, \lambda x. s' >$. Since $\Gamma \vdash s_2 : \tau_2$, by Lemma 3.6 also $\Gamma_1 \vdash s_2 : \tau_2$. Then by (outer) induction there exists $\Gamma_2 \supseteq \Gamma_1$ such that $\Gamma_2 \sim \sigma_2$ and $\Gamma_2; \tau_2 \vdash < \sigma_2, v_2 >$.

Since $\Gamma_1; \tau_2 \to \tau \vdash < \sigma_1, \lambda x.s' >$, by Q-FUN also $\Gamma_1 \vdash \lambda x.s' : \tau_2 \to \tau$, so by Lemma 3.6 we have $\Gamma_2 \vdash \lambda x.s' : \tau_2 \to \tau$. Then by Lemma 3.12 we have $\Gamma_2, x : \tau'_2 \vdash s' : \tau'$, where $\tau_2 \leq \tau'_2$ and $\tau' \leq \tau$. Then by T-SUB also $\Gamma_2, x : \tau'_2 \vdash s' : \tau$. Since $\Gamma_2; \tau_2 \vdash < \sigma_2, v_2 >$ and $\tau_2 \leq \tau'_2$, by Lemma 3.4 also $\Gamma_2; \tau'_2 \vdash < \sigma_2, v_2 >$. So we have $\Gamma_2, x : \tau'_2 \vdash s' : \tau$ and $\Gamma_2; \tau'_2 \vdash < \sigma_2, v_2 >$, and by Lemma 3.2 also $\Gamma_2 \vdash s' [x \mapsto v_2] : \tau$. Since also $\Gamma_2 \sim \sigma_2$ and $< \sigma_2, s'[x \mapsto v_2] > \rightarrow < \sigma', v >$, by (outer) induction there exists some $\Gamma' \supseteq \Gamma_2$ such that $\Gamma' \sim \sigma'$ and $\Gamma'; \tau \vdash < \sigma', v >$.

- T-SUB: Then $\Gamma \vdash s : \tau'$ and $\tau' \leq \tau$. By inner induction, there exists some $\Gamma' \supseteq \Gamma$ such that $\Gamma' \sim \sigma'$ and $\Gamma'; \tau' \vdash < \sigma', v >$. Then by Lemma 3.4 also $\Gamma'; \tau \vdash < \sigma', v >$.
- E-LET: Then $s = \text{let } x = s_1 \text{ in } s_2$ and $\langle \sigma, s_1 \rangle \rightarrow \langle \sigma_1, v_1 \rangle$ and $\langle \sigma_1, s_2[x \mapsto v_1] \rangle \rightarrow \langle \sigma', v \rangle$. We prove this case by induction on the depth of the derivation of $\Gamma \vdash s : \tau$. Case analysis of the last rule used in the derivation.
 - T-LET: Then $\Gamma \vdash s_1 : \tau_1$ and $\Gamma, x : \tau_1 \vdash s_2 : \tau$. By (outer) induction there exists $\Gamma_1 \supseteq \Gamma$ such that $\Gamma_1 \sim \sigma_1$ and $\Gamma_1; \tau_1 \vdash < \sigma_1, v_1 >$. Since $\Gamma, x : \tau_1 \vdash s_2 : \tau$, by Lemma 3.6 also $\Gamma_1, x : \tau_1 \vdash s_2 : \tau$. Then since $\Gamma_1; \tau_1 \vdash < \sigma_1, v_1 >$, by Lemma 3.2 also $\Gamma_1 \vdash s_2[x \mapsto v_1] : \tau$. Finally, since $< \sigma_1, s_2[x \mapsto v_1] > \rightarrow < \sigma', v >$, by (outer) induction there exists some $\Gamma' \supseteq \Gamma_1$ such that $\Gamma' \sim \sigma'$ and $\Gamma'; \tau \vdash < \sigma', v >$.
 - T-SUB: See the proof of the T-SUB case within the case for E-APP.
- E-REF: Then $s = \operatorname{ref} s_0$ and $\langle \sigma, s_0 \rangle \rightarrow \langle \sigma_0, v_0 \rangle$ and l fresh in σ_0 and $\sigma' = \sigma_0[l \mapsto v_0]$ and v = l. We prove this case by induction on the depth of the derivation of $\Gamma \vdash s : \tau$. Case analysis of the last rule used in the derivation.
 - T-REF: Then $\tau = \operatorname{ref} \tau_0$ and $\Gamma \vdash s_0 : \tau_0$. By (outer) induction there exists some $\Gamma_0 \supseteq \Gamma$ such that $\Gamma_0 \sim \sigma_0$ and $\Gamma_0; \tau_0 \vdash < \sigma_0, v_0 >$. Let $\Gamma' = \Gamma_0[l \mapsto \operatorname{ref} \tau_0]$. Since *l* fresh in σ_0 and $\Gamma_0 \sim \sigma_0$, also $l \notin \operatorname{dom}(\Gamma_0)$, so $\Gamma' \supseteq \Gamma_0$. To complete this case we show that $\Gamma' \sim \sigma'$ and $\Gamma': \operatorname{ref} \tau_0 \vdash < \sigma', l >$.

First we prove Γ' ; ref $\tau_0 \vdash < \sigma', l >$. We're given $\Gamma_0; \tau_0 \vdash < \sigma_0, v_0 >$. Since l fresh in σ_0 , also $l \notin \operatorname{dom}(\sigma_0)$, so $\sigma' \supseteq \sigma_0$. We also saw above that $\Gamma' \supseteq \Gamma_0$. Then by Lemma 3.5 we have $\Gamma'; \tau_0 \vdash < \sigma', v_0 >$. By T-VAR and the definition of Γ' we have $\Gamma' \vdash l$: ref τ_0 . Finally, by definition of σ' we have that $l \in \operatorname{dom}(\sigma')$ and $\sigma'(l) = v_0$. Therefore by Q-REF we have Γ' ; ref $\tau_0 \vdash < \sigma', l >$.

Finally we prove $\Gamma' \sim \sigma'$. Since $\operatorname{dom}(\Gamma_0) = \operatorname{dom}(\sigma_0)$, also $\operatorname{dom}(\Gamma') = \operatorname{dom}(\sigma')$, so part 1 is proven. Now consider some $l' \in \operatorname{dom}(\Gamma')$. To prove part 2 we must show that $\Gamma'; \Gamma'(l') \vdash < \sigma', l' >$. If l' = l, then we must show that $\Gamma'; \operatorname{ref} \tau_0 \vdash < \sigma', l >$, which was proven above. Otherwise $l' \neq l$. Then $l' \in \operatorname{dom}(\Gamma_0)$ and since $\Gamma_0 \sim \sigma_0$, we have $\Gamma_0; \Gamma_0(l') \vdash < \sigma_0, l' >$. Since $l' \neq l$, we have $\Gamma_0(l') = \Gamma'(l')$, so $\Gamma_0; \Gamma'(l') \vdash < \sigma_0, l' >$. Then by Lemma 3.5 we have $\Gamma'; \Gamma'(l') \vdash < \sigma', l' >$.

- T-SUB: See the proof of the T-SUB case within the case for E-APP.
- E-AssGN: Then $s = s_1 := s_2$ and $\langle \sigma, s_1 \rangle \rightarrow \langle \sigma_1, l_1 \rangle$ and $\langle \sigma_1, s_2 \rangle \rightarrow \langle \sigma_2, v_2 \rangle$ and $l_1 \in \text{dom}(\sigma_1)$ and $\sigma' = \sigma_2[l_1 \mapsto v_2]$ and v = (). We prove this case by induction on the depth of the derivation of $\Gamma \vdash s : \tau$. Case analysis of the last rule used in the derivation.
 - T-ASSGN: Then $\tau = \text{unit}$ and $\Gamma \vdash s_1 : \text{ref } \tau'$ and $\Gamma \vdash s_2 : \tau'$. By (outer) induction there exists some $\Gamma_1 \supseteq \Gamma$ such that $\Gamma_1 \sim \sigma_1$ and $\Gamma_1; \text{ref } \tau' \vdash < \sigma_1, l_1 >$. Since $\Gamma \vdash s_2 : \tau'$ and $\Gamma_1 \supseteq \Gamma$, by Lemma 3.6 also $\Gamma_1 \vdash s_2 : \tau'$. Then by (outer) induction there exists some $\Gamma_2 \supseteq \Gamma_1$ such that $\Gamma_2 \sim \sigma_2$ and $\Gamma_2; \tau' \vdash < \sigma_2, v_2 >$.

To prove this case, we must show that there exists $\Gamma' \supseteq \Gamma$ such that $\Gamma' \sim \sigma'$ and Γ' ; unit $\vdash < \sigma', () >$. We will show that $\Gamma_2 \sim \sigma'$ and Γ_2 ; unit $\vdash < \sigma', () >$. Γ_2 ; unit $\vdash < \sigma', () >$. Follows from Q-UNIT, so it remains to prove $\Gamma_2 \sim \sigma'$.

First we show that $\operatorname{dom}(\Gamma_2) = \operatorname{dom}(\sigma')$. Since $\Gamma_2 \sim \sigma_2$, we know that $\operatorname{dom}(\Gamma_2) = \operatorname{dom}(\sigma_2)$. Since $l_1 \in \operatorname{dom}(\sigma_1)$ and $\langle \sigma_1, s_2 \rangle \to \langle \sigma_2, v_2 \rangle$, by Lemma 3.7 also $l_1 \in \operatorname{dom}(\sigma_2)$. Therefore, $\operatorname{dom}(\sigma_2) = \operatorname{dom}(\sigma_2[l_1 \mapsto v_2]) = \operatorname{dom}(\sigma')$. Therefore $\operatorname{dom}(\Gamma_2) = \operatorname{dom}(\sigma')$.

Second, we must show that for each $l \in \operatorname{dom}(\Gamma_2)$ we have $\Gamma_2; \Gamma_2(l) \vdash \langle \sigma', l \rangle$. Since $\Gamma_2 \sim \sigma_2$ we have $\Gamma_2; \Gamma_2(l) \vdash \langle \sigma_2, l \rangle$. Suppose $\sigma_2 \vdash l \not \to l_1$. Then by Lemma 3.15 we have $\Gamma_2; \Gamma_2(l) \vdash \langle \sigma', l \rangle$ as desired. Suppose instead that it is not the case that $\sigma_2 \vdash l \not \to l_1$. Then since $\Gamma_2 \sim \sigma_2$, by Lemma 3.16 there exists a nonnegative integer k such that $\sigma_2^k(l) = l_1$. Since Γ_1 ; ref $\tau' \vdash \langle \sigma_1, l_1 \rangle$, by Q-REF we have $\Gamma_1 \vdash l_1$: ref τ' , and by Lemma 3.6 also $\Gamma_2 \vdash l_1$: ref τ' . Then the result follows by Lemma 3.19.

- T-SUB: See the proof of the T-SUB case within the case for E-APP.
- E-EXPR: Then s = e and $\langle \sigma, e \rangle \rightarrow v$ and $\sigma' = \sigma$. We're given that $\Gamma \sim \sigma$, and by Lemma 3.1 we have $\Gamma; \tau \vdash \langle \sigma, v \rangle$, so the result follows by taking $\Gamma' = \Gamma$.

Lemma 3.1 If $\Gamma \sim \sigma$ and $\Gamma \vdash e : \tau$ and $\langle \sigma, e \rangle \rightarrow v$, then $\Gamma; \tau \vdash \langle \sigma, v \rangle$.

Proof By induction on the depth of the derivation of $\Gamma \vdash e : \tau$. Case analysis of the last rule used in the derivation.

- T-INT: Then e = c and $\tau = \text{int.}$ Since $\langle \sigma, e \rangle \rightarrow v$, by E-VAL we have v = c. Then by Q-INT we have $\Gamma; \tau \vdash \langle \sigma, v \rangle$.
- T-UNIT: Then e = () and $\tau = \text{unit.}$ Since $\langle \sigma, e \rangle \rightarrow v$, by E-VAL we have v = (). Then by Q-UNIT we have $\Gamma; \tau \vdash \langle \sigma, v \rangle$.
- T-VAR: Then e = x and $\Gamma(x) = \tau$. Since $\Gamma \sim \sigma$, we have that dom $(\Gamma) = \text{dom}(\sigma)$, so x must be a location l. Since $\langle \sigma, e \rangle \rightarrow v$, by E-VAL we have v = l. Then by $\Gamma \sim \sigma$ we have $\Gamma; \tau \vdash \langle \sigma, l \rangle$.

- T-DEREF: Then e = !e' and $\Gamma \vdash e'$: ref τ . Since $\langle \sigma, e \rangle \rightarrow v$, by E-DEREF we have $\langle \sigma, e' \rangle \rightarrow l$ and $\sigma(l) = v$. By induction we have Γ ; ref $\tau \vdash \langle \sigma, l \rangle$, so by Q-REF also Γ ; $\tau \vdash \langle \sigma, v \rangle$.
- T-QUALCASE: Then $\tau = q\tau'$ and $\Gamma \vdash e : \tau'$ and $\Gamma \vdash e_1 : q_1\tau_1 \dots \Gamma \vdash e_n : q_n\tau_n$. By induction we have $\Gamma; \tau' \vdash < \sigma, v >$. Therefore, $\Gamma; \tau \vdash < \sigma, v >$ follows from Q-QUAL if we can show [[q]](v).

Consider one of the e_i subexpressions of e, and let v_i be some value. If it is not the case that $\langle \sigma, e_i \rangle \rightarrow v_i$, then $[[q_i]](\sigma, e_i, v_i)$ holds trivially. Otherwise, if $\langle \sigma, e_i \rangle \rightarrow v_i$, then by induction we have $\Gamma; q_i \tau_i \vdash \langle \sigma, v_i \rangle$. Then by Q-QUAL we have $[[q_i]](v_i)$, so also $[[q_i]](\sigma, e_i, v_i)$ holds. Since we assume that T-QUALCASE is locally sound, and since we can find a v_i for each e_i such that $[[q_i]](\sigma, e_i, v_i)$ holds, by Definition 3.1 we have $[[q]](\sigma, e, v)$. Then since $\langle \sigma, e \rangle \rightarrow v$, we have [[q]](v).

- T-QUALVAL: Then e = v' and $\tau = q\tau'$ and [[q]](v') and $\Gamma \vdash v' : \tau'$. Since $\langle \sigma, e \rangle \rightarrow v$, by E-VAL we have v = v'. So we have [[q]](v) and $\Gamma \vdash v : \tau'$. By induction $\Gamma; \tau' \vdash \langle \sigma, v \rangle$, and by Q-QUAL also $\Gamma; q\tau' \vdash \langle \sigma, v \rangle$.
- T-SUB: Then $\Gamma \vdash e : \tau'$ and $\tau' \leq \tau$. By induction we have $\Gamma; \tau' \vdash < \sigma, v >$, and the result follows from Lemma 3.4.

Lemma 3.2 If $\Gamma, x_0 : \tau_0 \vdash s : \tau$ and $\Gamma; \tau_0 \vdash < \sigma, v_0 >$, then $\Gamma \vdash s[x_0 \mapsto v_0] : \tau$.

Proof By induction on the depth of the derivation of $\Gamma, x_0 : \tau_0 \vdash s : \tau$. Case analysis of the last rule used in the derivation.

- T-APP: Then $s = s_1 \ s_2$ and $\Gamma, x_0 : \tau_0 \vdash s_1 : \tau_2 \to \tau$ and $\Gamma, x_0 : \tau_0 \vdash s_2 : \tau_2$. By induction we have $\Gamma \vdash s_1[x_0 \mapsto v_0] : \tau_2 \to \tau$ and $\Gamma \vdash s_2[x_0 \mapsto v_0] : \tau_2$, and the result follows by T-APP.
- T-LET: Then $s = \text{let } x = s_1 \text{ in } s_2$ and $\Gamma, x_0 : \tau_0 \vdash s_1 : \tau_1$ and $\Gamma, x_0 : \tau_0, x : \tau_1 \vdash s_2 : \tau$. By induction we have $\Gamma \vdash s_1[x_0 \mapsto v_0] : \tau_1$ and $\Gamma, x : \tau_1 \vdash s_2[x_0 \mapsto v_0] : \tau$, and the result follows by T-LET.
- T-REF: Then $s = \operatorname{ref} s'$ and $\tau = \operatorname{ref} \tau'$ and $\Gamma, x_0 : \tau_0 \vdash s' : \tau'$. By induction we have $\Gamma \vdash s'[x_0 \mapsto v_0] : \tau'$, and the result follows by T-REF.
- T-ASSGN: Then $s = s_1 := s_2$ and $\tau = \text{unit}$ and $\Gamma, x_0 : \tau_0 \vdash s_1 : \text{ref } \tau'$ and $\Gamma, x_0 : \tau_0 \vdash s_2 : \tau'$. By induction we have $\Gamma \vdash s_1[x_0 \mapsto v_0] : \text{ref } \tau'$ and $\Gamma \vdash s_2[x_0 \mapsto v_0] : \tau'$, and the result follows by T-ASSGN.
- T-INT: Then s = c and $\tau = int$, and the result follows by T-INT.
- T-UNIT: Then s = () and $\tau = \text{unit}$, and the result follows by T-UNIT.
- T-VAR: Then s = x and $(\Gamma, x_0 : \tau_0)(x) = \tau$. Suppose $x_0 = x$. Then $\tau_0 = \tau$ and $x[x_0 \mapsto v_0] = v_0$, so we must prove $\Gamma \vdash v_0 : \tau_0$. Since $\Gamma; \tau_0 \vdash < \sigma, v_0 >$, the result follows by Lemma 3.3. Otherwise, suppose $x_0 \neq x$. Then $x[x_0 \mapsto v_0] = x$, so we must prove $\Gamma \vdash x : \tau$. Since $(\Gamma, x_0 : \tau_0)(x) = \tau$ and $x_0 \neq x$, also $\Gamma(x) = \tau$, so the result follows by T-VAR.
- T-FUN: Then $s = \lambda x.s'$ and $\tau = \tau_1 \to \tau_2$ and $\Gamma, x_0 : \tau_0, x : \tau_1 \vdash s' : \tau_2$. By induction we have $\Gamma, x : \tau_1 \vdash s'[x_0 \mapsto v_0] : \tau_2$, and the result follows by T-FUN.

- T-DEREF: Then s = !e and $\Gamma, x_0 : \tau_0 \vdash e : \texttt{ref } \tau$. By induction we have $\Gamma \vdash e[x_0 \mapsto v_0] : \texttt{ref } \tau$, and the result follows by T-DEREF.
- T-QUALCASE: Then $\tau = q\tau'$ and $\Gamma, x_0 : \tau_0 \vdash e : \tau'$ and $\Gamma, x_0 : \tau_0 \vdash e_1 : q_1\tau_1 \dots \Gamma, x_0 : \tau_0 \vdash e_n : q_n\tau_n$. By induction we have $\Gamma \vdash e[x_0 \mapsto v_0] : \tau'$ and $\Gamma \vdash e_1[x_0 \mapsto v_0] : q_1\tau_1 \dots \Gamma \vdash e_n[x_0 \mapsto v_0] : q_n\tau_n$, and the result follows by T-QUALCASE.
- T-QUALVAL: Then s = v and $\tau = q\tau'$ and [[q]](v) and $\Gamma, x_0 : \tau_0 \vdash v : \tau'$. By induction also $\Gamma \vdash v[x_0 \mapsto v_0] : \tau'$. Since arrow types may not be qualified, τ' is not of the form $\overline{q}(\tau_1 \to \tau_2)$. Then by Lemma 3.10 v is not of the form $\lambda x.s'$. Therefore $v[x_0 \mapsto v_0] = v$, so $[[q]](v[x_0 \mapsto v_0])$. Then the result follows by T-QUALVAL.
- T-SUB: Then $\Gamma, x_0 : \tau_0 \vdash e : \tau'$ and $\tau' \leq \tau$. By induction we have $\Gamma \vdash e[x_0 \mapsto v_0] : \tau'$, and the result follows by T-SUB.

Lemma 3.3 If $\Gamma; \tau \vdash < \sigma, v >$, then $\Gamma \vdash v : \tau$.

Proof By induction on the depth of the derivation of $\Gamma; \tau \vdash < \sigma, v >$. Case analysis of the last rule used in the derivation.

- Q-INT: Then $\tau = \text{int}$ and v = c, and the result follows by T-INT.
- Q-UNIT: Then $\tau = \text{unit}$ and v = (), and the result follows by T-UNIT.
- Q-FUN: Then $v = \lambda x.s$ and $\Gamma \vdash \lambda x.s : \tau$, which is what we wanted to prove.
- Q-REF: Then v = l and $\Gamma \vdash l : \tau$, which is what we wanted to prove.
- Q-QUAL: Then $\tau = q\tau'$ and [[q]](v) and $\Gamma; \tau' \vdash < \sigma, v >$. By induction we have $\Gamma \vdash v : \tau'$. Then since [[q]](v), by T-QUALVAL also $\Gamma \vdash v : \tau$.

Lemma 3.4 If $\Gamma; \tau' \vdash <\sigma, v > \text{ and } \tau' \leq \tau$, then $\Gamma; \tau \vdash <\sigma, v >$. **Proof** By induction on the derivation of $\tau' \leq \tau$. Case analysis of the last rule used in the derivation.

- SUBVALQUAL: Then $\tau' = q\tau$. Since $\Gamma; \tau' \vdash <\sigma, v>$, by Q-QUAL we have $\Gamma; \tau \vdash <\sigma, v>$.
- SUBQUALREORDER: Then $\tau' = q_1 q_2 \tau_0$ and $\tau = q_2 q_1 \tau_0$. Since $\Gamma; \tau' \vdash < \sigma, v >$, by Q-QUAL we have $[[q_1]](v)$ and $\Gamma; q_2 \tau_0 \vdash < \sigma, v >$. Then again by Q-QUAL we have $[[q_2]](v)$ and $\Gamma; \tau_0 \vdash < \sigma, v >$. Therefore, by Q-QUAL we have $\Gamma; q_1 \tau_0 \vdash < \sigma, v >$, and again by Q-QUAL we have $\Gamma; q_2 q_1 \tau_0 \vdash < \sigma, v >$.
- SUBREF: Then $\tau' = \tau$ and the result follows.
- SUBTRANS: Then $\tau' \leq \tau''$ and $\tau'' \leq \tau$. By induction $\Gamma; \tau'' \vdash <\sigma, v>$, and by induction again $\Gamma; \tau \vdash <\sigma, v>$.
- SUBFUN: Then $\tau' = \tau'_1 \to \tau'_2$ and $\tau = \tau_1 \to \tau_2$. Since $\Gamma; \tau' \vdash < \sigma, v >$, by Q-FUN we have that $v = \lambda x.s$ and $\Gamma \vdash \lambda x.s : \tau'_1 \to \tau'_2$. Since $\tau' \leq \tau$, by T-SUB we have $\Gamma \vdash \lambda x.s : \tau_1 \to \tau_2$, so by Q-FUN $\Gamma; \tau_1 \to \tau_2 \vdash < \sigma, \lambda x.s >$.

Lemma 3.5 If $\Gamma; \tau \vdash < \sigma, v > \text{ and } \Gamma' \supseteq \Gamma \text{ and } \sigma' \supseteq \sigma, \text{ then } \Gamma'; \tau \vdash < \sigma', v >.$

Proof By induction on the depth of the derivation of $\Gamma; \tau \vdash < \sigma, v >$. Case analysis of the last rule used in the derivation.

- Q-INT: Then $\tau = \text{int}$ and v = c, and the result follows by Q-INT.
- Q-UNIT: Then $\tau = \text{unit}$ and v = (), and the result follows by Q-UNIT.
- Q-FUN: Then $\tau = \tau_1 \to \tau_2$ and $v = \lambda x.s$ and $\Gamma \vdash \lambda x.s : \tau_1 \to \tau_2$. By Lemma 3.6 also $\Gamma' \vdash \lambda x.s : \tau_1 \to \tau_2$, and the result follows by Q-FUN.
- Q-REF: Then $\tau = \operatorname{ref} \tau'$ and v = l and $\Gamma \vdash l : \operatorname{ref} \tau'$ and $\Gamma; \tau' \vdash \langle \sigma, \sigma(l) \rangle$ and $l \in \operatorname{dom}(\sigma)$. By Lemma 3.6 we have $\Gamma' \vdash l : \operatorname{ref} \tau'$. Since $l \in \operatorname{dom}(\sigma)$ and $\sigma' \supseteq \sigma$, also $l \in \operatorname{dom}(\sigma')$ and $\sigma(l) = \sigma'(l)$. Finally, by induction $\Gamma'; \tau' \vdash \langle \sigma', \sigma'(l) \rangle$, and the result follows by Q-REF.
- Q-QUAL: Then $\tau = q\tau'$ and [[q]](v) and $\Gamma; \tau' \vdash < \sigma, v >$. By induction we have $\Gamma'; \tau' \vdash < \sigma', v >$, and the result follows by Q-QUAL.

Lemma 3.6 If $\Gamma \vdash s : \tau$ and $\Gamma' \supseteq \Gamma$, then $\Gamma' \vdash s : \tau$.

Proof By induction on the depth of the derivation of $\Gamma \vdash s : \tau$. Case analysis of the last rule used in the derivation.

- T-APP: Then $s = s_1 \ s_2$ and $\Gamma \vdash s_1 : \tau_2 \to \tau$ and $\Gamma \vdash s_2 : \tau_2$. By induction we have $\Gamma' \vdash s_1 : \tau_2 \to \tau$ and $\Gamma' \vdash s_2 : \tau_2$, and the result follows by T-APP.
- T-LET: Then $s = \text{let } x = s_1 \text{ in } s_2$ and $\Gamma \vdash s_1 : \tau_1$ and $\Gamma, x : \tau_1 \vdash s_2 : \tau$. By induction we have $\Gamma' \vdash s_1 : \tau_1$ and $\Gamma', x : \tau_1 \vdash s_2 : \tau$, and the result follows by T-LET.
- T-REF: Then $s = \operatorname{ref} s'$ and $\tau = \operatorname{ref} \tau'$ and $\Gamma \vdash s' : \tau'$. By induction we have $\Gamma' \vdash s' : \tau'$, and the result follows by T-REF.
- T-ASSGN: Then $s = s_1 := s_2$ and $\tau = \text{unit}$ and $\Gamma \vdash s_1 : \text{ref } \tau'$ and $\Gamma \vdash s_2 : \tau'$. By induction we have $\Gamma' \vdash s_1 : \text{ref } \tau'$ and $\Gamma' \vdash s_2 : \tau'$, and the result follows by T-ASSGN.
- T-INT: Then s = c and $\tau = int$, and the result follows by T-INT.
- T-UNIT: Then s = () and $\tau = \text{unit}$, and the result follows by T-UNIT.
- T-VAR: Then s = x and $\Gamma(x) = \tau$. Since $\Gamma' \supseteq \Gamma$, also $\Gamma'(x) = \tau$, and the result follows by T-VAR.
- T-FUN: Then $s = \lambda x.s'$ and $\tau = \tau_1 \to \tau_2$ and $\Gamma, x : \tau_1 \vdash s' : \tau_2$. By induction we have $\Gamma', x : \tau_1 \vdash s' : \tau_2$, and the result follows by T-FUN.
- T-DEREF: Then s = !e and $\Gamma \vdash e : ref \tau$. By induction we have $\Gamma' \vdash e : ref \tau$, and the result follows by T-DEREF.
- T-QUALVAL: Then s = v and $\tau = q\tau'$ and [[q]](v) and $\Gamma \vdash v : \tau'$. By induction also $\Gamma' \vdash v : \tau'$, and the result follows by T-QUALVAL.
- T-SUB: Then $\Gamma \vdash s : \tau'$ and $\tau' \leq \tau$. By induction we have $\Gamma' \vdash s : \tau'$, and the result follows by T-SUB.

• T-QUALCASE: Then $\tau = q\tau'$ and $\Gamma \vdash e : \tau'$ and $\Gamma \vdash e_1 : q_1\tau_1 \dots \Gamma \vdash e_n : q_n\tau_n$. By induction we have $\Gamma' \vdash s : \tau'$ and $\Gamma' \vdash e_1 : q_1\tau_1 \dots \Gamma' \vdash e_n : q_n\tau_n$, and the result follows by T-QUALCASE.

Lemma 3.7 If $l \in dom(\sigma)$ and $\langle \sigma, s \rangle \rightarrow \langle \sigma', v \rangle$, then $l \in dom(\sigma')$.

Proof By induction on the depth of the derivation of $\langle \sigma, s \rangle \rightarrow \langle \sigma', v \rangle$. Case analysis of the last rule used in the derivation.

- E-APP: Then $s = s_1 \ s_2$ and $\langle \sigma, s_1 \rangle \rightarrow \langle \sigma_1, \lambda x. s' \rangle$ and $\langle \sigma_1, s_2 \rangle \rightarrow \langle \sigma_2, v_2 \rangle$ and $\langle \sigma_2, s'[x \mapsto v_2] \rangle \rightarrow \langle \sigma', v \rangle$. By induction $l \in \operatorname{dom}(\sigma_1)$. By induction again, $l \in \operatorname{dom}(\sigma_2)$. By induction again, $l \in \operatorname{dom}(\sigma')$.
- E-LET: Then $s = \text{let } x = s_1 \text{ in } s_2 \text{ and } < \sigma, s_1 > \rightarrow < \sigma_1, v_1 > \text{ and } < \sigma_1, s_2[x \mapsto v_1] > \rightarrow < \sigma', v >$. By induction $l \in \text{dom}(\sigma_1)$ and by induction again, $l \in \text{dom}(\sigma')$.
- E-REF: Then $s = \operatorname{ref} s'$ and $\langle \sigma, s' \rangle \to \langle \sigma_1, v' \rangle$ and $\sigma' = \sigma_1[l' \mapsto v']$. By induction $l \in \operatorname{dom}(\sigma_1)$, so also $l \in \operatorname{dom}(\sigma_1[l' \mapsto v'])$.
- E-ASSGN: Then $s = s_1 := s_2$ and $\langle \sigma, s_1 \rangle \rightarrow \langle \sigma_1, l' \rangle \langle \sigma_1, s_2 \rangle \rightarrow \langle \sigma_2, v' \rangle$ and $\sigma' = \sigma_2[l' \mapsto v']$. By induction $l \in \operatorname{dom}(\sigma_1)$, by induction again $l \in \operatorname{dom}(\sigma_2)$, so also $l \in \operatorname{dom}(\sigma_2[l' \mapsto v'])$.
- E-EXPR: Then $\sigma' = \sigma$, so since $l \in \text{dom}(\sigma)$, also $l \in \text{dom}(\sigma')$.

Lemma 3.8 If $\Gamma \vdash l : \overline{q}(\operatorname{ref} \tau)$, then there exists \overline{q}' such that $\Gamma(l) = \overline{q}'(\operatorname{ref} \tau)$.

Proof By induction on the depth of the derivation of $\Gamma \vdash l : \overline{q}(\texttt{ref } \tau)$. Case analysis of the last rule in the derivation.

- T-VAR: Then $\Gamma(l) = \overline{q}(\text{ref } \tau)$, so the result follows, where $\overline{q}' = \overline{q}$.
- T-QUALCASE: Then $\overline{q} = q\overline{q}''$ and $\Gamma \vdash l : \overline{q}''(\operatorname{ref} \tau)$, so by induction there exists \overline{q}' such that $\Gamma(l) = \overline{q}'(\operatorname{ref} \tau)$.
- T-QUALVAL: Then $\overline{q} = q\overline{q}''$ and $\Gamma \vdash l : \overline{q}''(\operatorname{ref} \tau)$, so by induction there exists \overline{q}' such that $\Gamma(l) = \overline{q}'(\operatorname{ref} \tau)$.
- T-SUB: Then $\Gamma \vdash l : \tau'$ and $\tau' \leq \overline{q}(\operatorname{ref} \tau)$. By Lemma 3.9 τ' has the form $\overline{q}''(\operatorname{ref} \tau)$. Then by induction there exists \overline{q}' such that $\Gamma(l) = \overline{q}'(\operatorname{ref} \tau)$.

Lemma 3.9 If $\tau_0 \leq \overline{q}(\operatorname{ref} \tau)$, then τ_0 has the form $\overline{q}'(\operatorname{ref} \tau)$. **Proof** By induction on the depth of the derivation of $\tau_0 \leq \overline{q}(\operatorname{ref} \tau)$. Case analysis of the last rule in the derivation.

- SUBVALQUAL: Then $\tau_0 = q\overline{q}(\text{ref } \tau)$, and the result follows.
- SUBQUALREORDER: Then $\overline{q} = q_2 q_1 \overline{q}''$ and $\tau_0 = q_1 q_2 \overline{q}''(\text{ref } \tau)$, and the result follows.
- SUBREF: Then $\tau_0 = \overline{q}(\text{ref } \tau)$, and the result follows.

• SUBTRANS: Then $\tau_0 \leq \tau'$ and $\tau' \leq \overline{q}(\operatorname{ref} \tau)$. By induction τ' has the form $\overline{q}''(\operatorname{ref} \tau)$. By induction again τ_0 has the form $\overline{q}'(\operatorname{ref} \tau)$.

Lemma 3.10 If $\Gamma \vdash \lambda x.s : \tau$, then τ has the form $\overline{q}(\tau_1 \rightarrow \tau_2)$.

Proof By induction on the depth of the derivation of $\Gamma \vdash \lambda x.s : \tau$. Case analysis of the last rule in the derivation.

- T-FUN: Then τ has the form $\tau_1 \to \tau_2$ and the result is shown, with \overline{q} being empty.
- T-QUALCASE: Then τ has the form $q\tau'$ and $\Gamma \vdash \lambda x.s : \tau'$. By induction τ' has the form $\overline{q}(\tau_1 \to \tau_2)$, so $\tau = q\overline{q}(\tau_1 \to \tau_2)$ and the result follows.
- T-QUALVAL: Then τ has the form $q\tau'$ and $\Gamma \vdash \lambda x.s : \tau'$. By induction τ' has the form $\overline{q}(\tau_1 \to \tau_2)$, so $\tau = q\overline{q}(\tau_1 \to \tau_2)$ and the result follows.
- T-SUB: Then $\Gamma \vdash \lambda x.s : \tau'$ and $\tau' \leq \tau$. By induction τ' has the form $\overline{q}(\tau_1 \to \tau_2)$ and the result follows from Lemma 3.11.

Lemma 3.11 If $\overline{q}(\tau_1 \to \tau_2) \leq \tau'$, then τ' has the form $\overline{q}'(\tau_1' \to \tau_2')$.

Proof By induction on the depth of the derivation of $\overline{q}(\tau_1 \to \tau_2) \leq \tau'$. Case analysis of the last rule used in the derivation.

- SUBVALQUAL: Then $\overline{q} = q\overline{q}'$ and $\tau' = \overline{q}'(\tau_1 \to \tau_2)$, so the result follows.
- SUBQUALREORDER: Then $\overline{q} = q_1 q_2 \overline{q}'$ and $\tau' = q_2 q_1 \overline{q}' (\tau_1 \to \tau_2)$, so the result follows.
- SUBREF: Then $\tau' = \overline{q}(\tau_1 \to \tau_2)$, so the result follows.
- SUBTRANS: Then $\overline{q}(\tau_1 \to \tau_2) \leq \tau''$ and $\tau'' \leq \tau'$. By induction τ'' has the form $\overline{q}''(\tau_1'' \to \tau_2'')$. Then by induction again, τ' has the form $\overline{q}'(\tau_1' \to \tau_2')$.
- SUBFUN: Then τ' has the form $\tau'_1 \to \tau'_2$, so the result follows with \overline{q}' as the empty sequence.

Lemma 3.12 If $\Gamma \vdash \lambda x.s : \overline{q}(\tau_1 \to \tau_2)$, then there exist τ'_1 and τ'_2 such that $\Gamma, x : \tau'_1 \vdash s : \tau'_2$, where $\tau_1 \leq \tau'_1$ and $\tau'_2 \leq \tau_2$.

Proof By induction on the depth of the derivation of $\Gamma \vdash \lambda x.s : \overline{q}(\tau_1 \to \tau_2)$. Case analysis of the last rule used in the derivation.

- T-FUN: Then \overline{q} is empty and $\Gamma, x : \tau_1 \vdash s : \tau_2$. By SUBREF we have $\tau_1 \leq \tau_1$ and $\tau_2 \leq \tau_2$, so the result follows.
- T-QUALCASE: Then $\overline{q} = q\overline{q}'$ and $\Gamma \vdash \lambda x.s : \overline{q}'(\tau_1 \to \tau_2)$, so the result follows by induction.
- T-QUALVAL: Then $\overline{q} = q\overline{q}'$ and $\Gamma \vdash \lambda x.s : \overline{q}''(\tau_1 \to \tau_2)$, so the result follows by induction.
- T-SUB: Then $\Gamma \vdash \lambda x.s : \tau'$ and $\tau' \leq \overline{q}(\tau_1 \to \tau_2)$. By Lemma 3.13 τ' has the form $\overline{q}'(\tau_1'' \to \tau_2'')$, where $\tau_1 \leq \tau_1''$ and $\tau_2'' \leq \tau_2$. By induction $\Gamma, x : \tau_1' \vdash s : \tau_2'$, where $\tau_1'' \leq \tau_1'$ and $\tau_2' \leq \tau_2''$. Then by SUBTRANS also $\tau_1 \leq \tau_1'$ and $\tau_2' \leq \tau_2$, so the result follows.

Lemma 3.13 If $\tau' \leq \overline{q}(\tau_1 \to \tau_2)$, then τ' has the form $\overline{q}'(\tau'_1 \to \tau'_2)$, where $\tau_1 \leq \tau'_1$ and $\tau'_2 \leq \tau_2$. **Proof** By induction on the depth of the derivation of $\tau' \leq \overline{q}(\tau_1 \to \tau_2)$. Case analysis of the last rule used in the derivation.

- SUBVALQUAL: Then $\tau' = q\overline{q}(\tau_1 \to \tau_2)$. By SUBREF we have $\tau_1 \leq \tau_1$ and $\tau_2 \leq \tau_2$, so the result follows.
- SUBQUALREORDER: Then $\overline{q} = q_2 q_1 \overline{q}'$ and $\tau' = q_1 q_2 \overline{q}'(\tau_1 \to \tau_2)$. By SUBREF we have $\tau_1 \leq \tau_1$ and $\tau_2 \leq \tau_2$, so the result follows.
- SUBREF: Then $\tau' = \overline{q}(\tau_1 \to \tau_2)$. By SUBREF we have $\tau_1 \leq \tau_1$ and $\tau_2 \leq \tau_2$, so the result follows.
- SUBTRANS: Then $\tau' \leq \tau''$ and $\tau'' \leq \overline{q}(\tau_1 \to \tau_2)$. By induction τ'' has the form $\overline{q}''(\tau_1'' \to \tau_2'')$, where $\tau_1 \leq \tau_1''$ and $\tau_2'' \leq \tau_2$. Then by induction again, τ' has the form $\overline{q}'(\tau_1' \to \tau_2')$, where $\tau_1'' \leq \tau_1'$ and $\tau_2' \leq \tau_2''$. Then by SUBTRANS we have $\tau_1 \leq \tau_1'$ and $\tau_2' \leq \tau_2$, so the result follows.
- SUBFUN: Then \overline{q} is empty and $\tau' = \tau'_1 \to \tau'_2$, where $\tau_1 \leq \tau'_1$ and $\tau'_2 \leq \tau_2$, so the result follows with \overline{q}' as the empty sequence.

Lemma 3.14 If $\Gamma; \tau' \vdash < \sigma, v > \text{and } \Gamma; \text{ref } \tau \vdash < \sigma, l > \text{and } \tau' \text{ is a component of } \tau, \text{ then } \sigma \vdash v \not \sim l.$ **Proof** By induction on the depth of the derivation of $\Gamma; \tau' \vdash < \sigma, v >$. Case analysis of the last rule used in the derivation.

- Q-INT: Then v = c and the result follows from UNREACHINT.
- Q-UNIT: Then v = () and the result follows from UNREACHUNIT.
- Q-FUN: Then $v = \lambda x.s$ and the result follows from UNREACHFUN.
- Q-REF: Then v = l' and $\tau' = \operatorname{ref} \tau''$ and $\Gamma \vdash l' : \operatorname{ref} \tau''$ and $\Gamma; \tau'' \vdash < \sigma, \sigma(l') >$ and $l' \in \operatorname{dom}(\sigma)$.

First we show that $l' \neq l$. Suppose not, so l' = l. Since $\Gamma \vdash l'$: ref τ'' , by Lemma 3.8 $\Gamma(l') = \Gamma(l)$ has the form $\overline{q}(\text{ref }\tau'')$. We're given that $\Gamma; \text{ref }\tau \vdash < \sigma, l >$, so by Q-REF we have $\Gamma \vdash l$: ref τ , so again by Lemma 3.8 $\Gamma(l)$ also has the form $\overline{q}'(\text{ref }\tau)$. Therefore, it must be the case that $\tau = \tau''$. But we know that ref τ'' is a component of τ , so we have a contradiction.

Since ref τ'' is a component of τ , so is τ'' . Since $\Gamma; \tau'' \vdash \langle \sigma, \sigma(l') \rangle$ and $\Gamma; \text{ref } \tau \vdash \langle \sigma, l \rangle$, by induction we have $\sigma \vdash \sigma(l') \not \rightarrow l$. Therefore, we have shown $l' \neq l$ and $l' \in \text{dom}(\sigma)$ and $\sigma \vdash \sigma(l') \not \rightarrow l$, so by UNREACHLOC we have $\sigma \vdash l' \not \rightarrow l$.

• Q-QUAL: Then $\tau' = q\tau''$ and $\Gamma; \tau'' \vdash <\sigma, v >$. Since τ' is a component of τ , so is τ'' . Then by induction we have $\sigma \vdash v \not\rightarrow l$.

Lemma 3.15 If $\Gamma; \tau \vdash <\sigma, v > \text{ and } \sigma \vdash v \not \rightarrow l$, then $\Gamma; \tau \vdash <\sigma[l \mapsto v'], v > .$

Proof By induction on the depth of the derivation of $\Gamma; \tau \vdash < \sigma, v >$. Case analysis of the last rule used in the derivation.

- Q-INT: Then $\tau = \text{int}$ and v = c, and the result follows by Q-INT.
- Q-UNIT: Then $\tau = \text{unit}$ and v = (), and the result follows by Q-UNIT.
- Q-FUN: Then $\tau = \tau_1 \to \tau_2$ and $v = \lambda x.s$ and $\Gamma \vdash \lambda x.s : \tau_1 \to \tau_2$. Then the result follows by Q-FUN.
- Q-REF: Then $\tau = \operatorname{ref} \tau'$ and v = l' and $\Gamma \vdash l' : \operatorname{ref} \tau'$ and $\Gamma; \tau' \vdash < \sigma, \sigma(l') >$ and $l' \in \operatorname{dom}(\sigma)$. Then also $l' \in \operatorname{dom}(\sigma[l \mapsto v'])$. The result follows by Q-REF if we can prove $\Gamma; \tau' \vdash < \sigma[l \mapsto v'], \sigma[l \mapsto v'](l') >$. Since $\sigma \vdash l' \not \to l$ and $l' \in \operatorname{dom}(\sigma)$, by UNREACHLOC we have $l' \neq l$ and $\sigma \vdash \sigma(l') \not \to l$. Since $\Gamma; \tau' \vdash < \sigma, \sigma(l') >$ and $\sigma \vdash \sigma(l') \not \to l$, by induction $\Gamma; \tau' \vdash < \sigma[l \mapsto v'], \sigma(l') >$. Since $l' \neq l, \sigma(l') = \sigma[l \mapsto v'](l')$, so we have proven $\Gamma; \tau' \vdash < \sigma[l \mapsto v'], \sigma[l \mapsto v'](l') >$.
- Q-QUAL: Then $\tau = q\tau'$ and [[q]](v) and $\Gamma; \tau' \vdash < \sigma, v >$. By induction we have $\Gamma'; \tau' \vdash < \sigma[l \mapsto v'], v >$, and the result follows by Q-QUAL.

Lemma 3.16 If $\Gamma \sim \sigma$ and it is not the case that $\sigma \vdash v \not\prec l$, then there exists a location l' such that v = l' and a nonnegative integer k such that $\sigma^k(l') = l$.

Proof We prove this lemma by induction on the *depth* of v, which we define as follows. If v is not a location, then depth(v) = 0. Otherwise v has the form l'. If $l' \notin \text{dom}(\sigma)$ then depth(l') = 0. Otherwise $l' \in \text{dom}(\sigma)$. Since $\Gamma \sim \sigma$, by Lemma 3.24 we have $\sigma \vdash \sigma(l') \nleftrightarrow l'$. Then by Lemma 3.17 there exists a positive integer k' and a value v' such that $\sigma^{k'}(l') = v'$, where v' is not a location, and depth(l') is defined to be k'. Note that k' is unique.

- v has depth 0: Then either v is not a location or v = l' and $l' \notin \text{dom}(\sigma)$. If v is not a location, then it is either an integer constant c, the unit value (), or a function value $\lambda x.s.$ But then $\sigma \vdash v \not \rightarrow l$ by UNREACHINT, UNREACHUNIT, and UNREACHFUN, contradicting our initial assumptions. Therefore v = l' and $l' \notin \text{dom}(\sigma)$. Since it is not the case that $\sigma \vdash l' \not \rightarrow l$, by UNREACHLOC we have that either l' = l or $l' \in \text{dom}(\sigma)$ and it is not the case that $\sigma \vdash \sigma \vdash l' \not \rightarrow l$. Therefore l' = l, so $\sigma^0(l') = l$ and the result follows with k = 0.
- v has depth d > 0: Then v = l' and $l' \in \text{dom}(\sigma)$ and there exists a value v' such that $\sigma^d(l') = v'$, where v' is not a location. Since it is not the case that $\sigma \vdash l' \not \rightarrow l$, by UNREACHLOC we have that either l' = l or $l' \in \text{dom}(\sigma)$ and it is not the case that $\sigma \vdash \sigma(l') \not \rightarrow l$. If l' = l then $\sigma^0(l') = l$ and the result follows with k = 0. Otherwise $l' \in \text{dom}(\sigma)$ and it is not the case that $\sigma \vdash \sigma(l') \not \rightarrow l$. If v = l that $\sigma \vdash \sigma(l') \not \rightarrow l$. If we can show that $\sigma(l')$ has a smaller depth than l', then by induction we have that there exists a location l'' such that $\sigma(l') = l''$ and a nonnegative integer k'' such that $\sigma^{k''}(l'') = l$, so $\sigma^{k''+1}(l') = l$ and the result follows.

To see that $\sigma(l')$ has smaller depth than l', we analyze the form of $\sigma(l')$. If it is a value other than a location or it is a location that is not in dom (σ) , then depth $(\sigma(l')) = 0$. Since the depth of l' is d > 0, the result follows. Otherwise, $\sigma(l')$ is some location $l'' \in \text{dom}(\sigma)$. Since there exists a value v' such that $\sigma^d(l') = v'$, where v' is not a location, also $\sigma^{d-1}(l'') = v'$, so the depth of l'' is d - 1, which is smaller than d.

Lemma 3.17 If $\Gamma \sim \sigma$ and $l \in \text{dom}(\sigma)$ and $\sigma \vdash \sigma^k(l) \not \rightarrow l$ for some nonnegative integer k, then there exists a positive integer k' and a value v such that $\sigma^{k'}(l) = v$, where v is not a location.

Proof By induction on the depth of the derivation of $\sigma \vdash \sigma^k(l) \not\rightsquigarrow l$. Case analysis of the last rule used in the derivation.

- UNREACHINT, UNREACHUNIT, or UNREACHFUN: Then $\sigma^k(l)$ is not a location. Since l is a location, k > 0, so the result follows with k' = k.
- UNREACHLOC: Then $\sigma^k(l) = l'$ and $l' \neq l$ and $l' \in \operatorname{dom}(\sigma) \Rightarrow \sigma \vdash \sigma(l') \not\Rightarrow l$. Then by Lemma 3.18 $l' \in \operatorname{dom}(\sigma)$. Therefore we have $\sigma \vdash \sigma(l') \not\Rightarrow l$, or equivalently $\sigma \vdash \sigma^{k+1}(l) \not\Rightarrow l$. Then by induction there exists a positive integer k' and a value v such that $\sigma^{k'}(l) = v$, where v is not a location.

Lemma 3.18 If $\Gamma \sim \sigma$ and $l \in \text{dom}(\sigma)$ and $\sigma^k(l) = l'$ for some nonnegative integer k, then $l' \in \text{dom}(\sigma)$.

Proof By induction on k.

- k = 0: Then l = l' and since $l \in dom(\sigma)$ also $l' \in dom(\sigma)$.
- k > 0: Let $\sigma^{k-1}(l) = l''$. By induction $l'' \in \operatorname{dom}(\sigma)$. Since $\Gamma \sim \sigma$, we have $\Gamma; \Gamma(l'') \vdash < \sigma, l'' >$. By Lemma 3.22, $\Gamma(l'')$ has the form $\overline{q}(\operatorname{ref} \tau)$, and by Lemma 3.23 we have $\Gamma; \tau \vdash < \sigma, l' >$. By Lemma 3.22 again, τ has the form $\overline{q}'(\operatorname{ref} \tau')$, and by Lemma 3.23 again we have $l' \in \operatorname{dom}(\sigma)$.

Lemma 3.19 If $\Gamma_2 \sim \sigma_2$ and $\Gamma_2; \Gamma_2(l) \vdash \langle \sigma_2, l \rangle$ and $\sigma_2^k(l) = l_1$ for some nonnegative integer k and $\sigma' = \sigma_2[l_1 \mapsto v_2]$ and $\Gamma_2; \tau' \vdash \langle \sigma_2, v_2 \rangle$ and $l_1 \in \text{dom}(\sigma_2)$ and $\Gamma_2 \vdash l_1$: ref τ' , then $\Gamma_2; \Gamma_2(l) \vdash \langle \sigma', l \rangle$.

Proof Assume WLOG that k is the smallest nonnegative integer such that $\sigma_2^k(l) = l_1$. We prove this lemma by induction on k.

- k = 0: Then $l = l_1$, so we must show $\Gamma_2; \Gamma_2(l_1) \vdash < \sigma', l_1 >$. Since $\Gamma_2 \vdash l_1$: ref τ' , by Lemma 3.8, there exists some \overline{q} such that $\Gamma_2(l_1) = \overline{q}(\operatorname{ref} \tau')$. Since $\Gamma_2 \sim \sigma_2$, we know that $\Gamma_2; \overline{q}(\operatorname{ref} \tau') \vdash < \sigma_2, l_1 >$. Then by Lemma 3.20 also $\Gamma_2; \overline{q}(\operatorname{ref} \tau') \vdash < \sigma', l_1 >$.
- k > 0: Since $\Gamma_2; \Gamma_2(l) \vdash <\sigma_2, l >$, by Lemma 3.22 $\Gamma_2(l)$ has the form $\overline{q}(\operatorname{ref} \tau'')$. Then the result follows by Lemma 3.21.

Lemma 3.20 If $\Gamma_2; \overline{q}(\operatorname{ref} \tau') \vdash \langle \sigma_2, l_1 \rangle$ and $\Gamma_2; \tau' \vdash \langle \sigma_2, v_2 \rangle$ and $\sigma' = \sigma_2[l_1 \mapsto v_2]$ and $l_1 \in \operatorname{dom}(\sigma_2)$, then $\Gamma_2; \overline{q}(\operatorname{ref} \tau') \vdash \langle \sigma', l \rangle$. **Proof** By induction on the length of \overline{q} .

• \overline{q} has length 0: So Γ_2 ; ref $\tau' \vdash \langle \sigma_2, l_1 \rangle$. Then by Q-REF, $\Gamma_2 \vdash l_1$: ref τ' . Since $\sigma' = \sigma_2[l_1 \mapsto v_2]$, we have $l_1 \in \text{dom}(\sigma')$. Since $\sigma'(l_1) = v_2$, if we can show that $\Gamma_2; \tau' \vdash \langle \sigma', v_2 \rangle$, then by Q-REF we have Γ_2 ; ref $\tau' \vdash \langle \sigma', l_1 \rangle$, which is what we are trying to prove.

Since $\Gamma_2; \tau' \vdash < \sigma_2, v_2 > \text{ and } \Gamma_2; \text{ref } \tau' \vdash < \sigma_2, l_1 >$, by Lemma 3.14 we have $\sigma_2 \vdash v_2 \not \rightarrow l_1$. Then by Lemma 3.15 we have $\Gamma_2; \tau' \vdash < \sigma_2[l_1 \mapsto v_2], v_2 >$, or equivalently $\Gamma_2; \tau' \vdash < \sigma', v_2 >$.

• \overline{q} has length greater than zero: So \overline{q} has the form $q\overline{q'}$ and $\Gamma_2; q\overline{q'}(\operatorname{ref} \tau') \vdash < \sigma_2, l_1 >$. By Q-QUAL we have $[[q]](l_1)$ and $\Gamma_2; \overline{q'}(\operatorname{ref} \tau') \vdash < \sigma_2, l_1 >$. By induction $\Gamma_2; \overline{q'}(\operatorname{ref} \tau') \vdash < \sigma', l_1 >$, and by Q-QUAL also $\Gamma_2; q\overline{q'}(\operatorname{ref} \tau') \vdash < \sigma', l_1 >$.

Lemma 3.21 If $\Gamma_2 \sim \sigma_2$ and $\Gamma_2; \overline{q}(\operatorname{ref} \tau'') \vdash \langle \sigma_2, l \rangle$ and $\sigma_2^k(l) = l_1$ for some positive integer k and $\sigma' = \sigma_2[l_1 \mapsto v_2]$ and Lemma 3.19 holds for all nonnegative integers i such that $0 \leq i < k$, then $\Gamma_2; \overline{q}(\operatorname{ref} \tau'') \vdash \langle \sigma', l \rangle$.

Proof We prove this lemma by induction on the length of \overline{q} .

• \overline{q} has length 0: So Γ_2 ; ref $\tau'' \vdash < \sigma_2, l >$. By Q-REF, $\Gamma_2 \vdash l$: ref τ'' and $l \in \operatorname{dom}(\sigma_2)$ and $\Gamma_2; \tau'' \vdash < \sigma_2, \sigma_2(l) >$. Since k > 0 we have that $l \neq l_1$, so $\sigma_2(l) = \sigma'(l)$ and $\Gamma_2; \tau'' \vdash < \sigma_2, \sigma'(l) >$. Since $l \in \operatorname{dom}(\sigma_2)$, by definition of σ' we have $l \in \operatorname{dom}(\sigma')$. Then the result holds by Q-REF if we can show that $\Gamma_2; \tau'' \vdash < \sigma', \sigma'(l) >$.

Since $\sigma_2^k(l) = l_1$ we have $\sigma_2^{k-1}(\sigma_2(l)) = l_1$, and $\sigma_2(l)$ must be some location l'. Then we have Γ_2 ; $\tau'' \vdash < \sigma_2, l' >$, so by Lemma 3.22 τ'' has the form $\overline{q}_0(\operatorname{ref} \tau_0)$, and by Lemma 3.23 we have $l' \in \operatorname{dom}(\sigma_2)$. Since $\Gamma_2 \sim \sigma_2$, also $l' \in \operatorname{dom}(\Gamma_2)$ and we have Γ_2 ; $\Gamma_2(l') \vdash < \sigma_2, l' >$. Therefore by induction on Lemma 3.19 we have Γ_2 ; $\Gamma_2(l') \vdash < \sigma', l' >$.

Since $\Gamma_2; \tau'' \vdash < \sigma_2, l' >$, by Lemma 3.3 we have $\Gamma_2 \vdash l' : \overline{q}_0(\operatorname{ref} \tau_0)$. Then by Lemma 3.8 we have $\Gamma_2(l') = \overline{q}'_0(\operatorname{ref} \tau_0)$. Then since $\Gamma_2; \Gamma_2(l') \vdash < \sigma', l' >$, by Lemma 3.25 we have $\Gamma_2; \operatorname{ref} \tau_0 \vdash < \sigma', l' >$. Finally, since $\Gamma_2; \overline{q}_0(\operatorname{ref} \tau_0) \vdash < \sigma_2, l' >$ by Lemma 3.26 we also $\Gamma_2; \overline{q}_0(\operatorname{ref} \tau_0) \vdash < \sigma', l' >$, which is what we were trying to prove.

• \overline{q} has length greater than zero, so \overline{q} has the form $q\overline{q'}$ and $\Gamma_2; q\overline{q'}(\operatorname{ref} \tau'') \vdash < \sigma_2, l >$. By Q-QUAL we have [[q]](l) and $\Gamma_2; \overline{q'}(\operatorname{ref} \tau'') \vdash < \sigma_2, l >$. By induction $\Gamma_2; \overline{q'}(\operatorname{ref} \tau'') \vdash < \sigma', l >$, and by Q-QUAL also $\Gamma_2; q\overline{q'}(\operatorname{ref} \tau'') \vdash < \sigma', l >$ as desired.

Lemma 3.22 If $\Gamma; \tau \vdash <\sigma, l > \text{then } \tau \text{ has the form } \overline{q}(\text{ref } \tau').$

Proof By induction on the depth of the derivation of Γ ; $\tau \vdash < \sigma, l >$. Case analysis of the last rule used in the derivation.

- Q-REF: Then τ has the form ref τ' , so the result follows with \overline{q} being empty.
- Q-QUAL: Then $\tau = q\tau''$ and $\Gamma; \tau'' \vdash \langle \sigma, l \rangle$. By induction τ'' has the form $\overline{q}'(\operatorname{ref} \tau')$, so τ has the form $\overline{q}(\operatorname{ref} \tau')$, where $\overline{q} = q\overline{q}'$.

Lemma 3.23 If $\Gamma; \overline{q}(\operatorname{ref} \tau) \vdash \langle \sigma, l \rangle$, then $l \in \operatorname{dom}(\sigma)$ and $\Gamma; \tau \vdash \langle \sigma, \sigma(l) \rangle$. **Proof** By induction on the depth of the derivation of $\Gamma; \overline{q}(\operatorname{ref} \tau) \vdash \langle \sigma, l \rangle$. Case analysis of the last rule used in the derivation.

- Q-REF: Then \overline{q} is empty and $l \in \operatorname{dom}(\sigma)$ and $\Gamma; \tau \vdash <\sigma, \sigma(l) >$.
- Q-QUAL: Then $\overline{q} = q\overline{q}'$ and $\Gamma; \overline{q}'(\operatorname{ref} \tau) \vdash <\sigma, l >$. By induction, $l \in \operatorname{dom}(\sigma)$ and $\Gamma; \tau \vdash <\sigma, \sigma(l) >$.

Lemma 3.24 If $\Gamma \sim \sigma$ and $l \in \operatorname{dom}(\sigma)$ then $\sigma \vdash \sigma(l) \not\rightsquigarrow l$.

Proof Since $\Gamma \sim \sigma$ and $l \in \text{dom}(\sigma)$, also $l \in \text{dom}(\Gamma)$. Then since $\Gamma \sim \sigma$, we have $\Gamma; \Gamma(l) \vdash < \sigma, l >$. Then by Lemma 3.22 $\Gamma(l)$ has the form $\overline{q}(\text{ref } \tau)$, and by Lemma 3.23 also $\Gamma; \tau \vdash < \sigma, \sigma(l) >$. Then since τ is a component of $\overline{q}(\text{ref } \tau)$, by Lemma 3.14 we have $\sigma \vdash \sigma(l) \not \rightarrow l$.

Lemma 3.25 If $\Gamma; \overline{q}\tau \vdash <\sigma, v > \text{then } \Gamma; \tau \vdash <\sigma, v >$. **Proof** By induction on the length of \overline{q} .

- \overline{q} has length 0: Then $\overline{q}\tau = \tau$ and the result follows.
- \overline{q} has length k > 0: Then $\overline{q} = q\overline{q}'$. Since $\Gamma; \overline{q}\tau \vdash <\sigma, v >$, by Q-QUAL we have $\Gamma; \overline{q}'\tau \vdash <\sigma, v >$, and the result follows by induction.

Lemma 3.26 If $\Gamma; \tau \vdash < \sigma, v > \text{ and } \Gamma; \overline{q}\tau \vdash < \sigma', v >$, then $\Gamma; \overline{q}\tau \vdash < \sigma, v >$. **Proof** By induction on the length of \overline{q} .

- \overline{q} has length 0: Then $\overline{q}\tau = \tau$ and the result follows.
- \overline{q} has length k > 0: Then $\overline{q} = q\overline{q}'$. Since $\Gamma; \overline{q}\tau \vdash < \sigma', v >$, by Q-QUAL we have [[q]](v) and $\Gamma; \overline{q}'\tau \vdash < \sigma', v >$. Then by induction we have $\Gamma; \overline{q}'\tau \vdash < \sigma, v >$, and the result follows by Q-QUAL.