
Semantic Type Qualifiers

Brian Chin Shane Markstrum Todd Millstein

Computer Science Department

University of California, Los Angeles

{naerbnic,smarkstr,todd}@cs.ucla.edu}

Technical Report CSD-TR-040045
November 2004

This technical report provides the formal details of our framework for semantic type qualifiers,
which is described in a PLDI 2005 paper of the same name. We defer to that paper for the high-level
description of the framework. This report formalizes the case when all user-defined type qualifiers
are value qualifiers. Sections 1 and 2 respectively formalize the syntax and semantics of our formal
language, and section 3 presents a proof of “semantic” soundness of the language’s type system.

1 Syntax

The language is a fairly standard simply-typed lambda calculus, augmented with references and
user-defined type qualifiers. For convenience, we separate side-effect-free expressions (called ex-

pressions) from potentially side-effecting expressions (called statements). This separation causes
no loss of expressiveness.

Stmts s ::= e | s1 s2 | let x = s1 in s2 | ref s | s1 := s2

Exprs e ::= c | () | x | λx.s |!e
Consts c ::= integer constants
Vars x ::= variable names
Types τ ::= unit | int | τ1 → τ2 | ref τ | qτ

Qualifiers q ::= user-defined value qualifiers

We restrict the above syntax of types slightly: for any type containing a component of the
form qτ , we require that τ not be of the form τ1 → τ2. This restriction is consistent with our
implementation of semantic type qualifiers for C, and it makes the soundness proof cleaner. Note
that types such as (qτ1) → (q′τ2) and q(ref (τ1 → τ2)) are still supported.

We also need a notion of values, which are the legal results of expressions:

Values v ::= c | () | λx.s | l

Locations l ::= location constants (i.e., addresses)

Note that locations are not directly available at source level.

1

2 Semantics

2.1 Static Semantics

The base type system is standard and is defined by the following rules. As usual, metavariable Γ
ranges over type environments, which are finite functions from variable names to types. Also, we
assume that bound variables are α-renamed as necessary.

Γ ` s : τ

Γ ` s1 : τ2 → τ Γ ` s2 : τ2

Γ ` s1 s2 : τ
T-App

Γ ` s1 : τ1 Γ, x : τ1 ` s2 : τ

Γ ` let x = s1 in s2 : τ
T-Let

Γ ` s : τ

Γ ` ref s : ref τ
T-Ref

Γ ` s1 : ref τ Γ ` s2 : τ

Γ ` s1 := s2 : unit
T-Assgn

Γ ` c : int
T-Int

Γ ` () : unit
T-Unit

Γ(x) = τ

Γ ` x : τ
T-Var

Γ, x : τ1 ` s : τ2

Γ ` λx.s : τ1 → τ2

T-Fun
Γ ` e : ref τ

Γ `!e : τ
T-Deref

In addition to these rules, users can provide a set of introduction rules for value-qualified types.
Each rule is assumed to match the following template:

Γ ` e : τ

Γ ` e1 : q1τ1 . . . Γ ` en : qnτn

each ei is a subexpression of e

Γ ` e : qτ
T-QualCase

This template formalizes the case rules in our implementation for C. For example, here is an
introduction rule indicating that the product of two positive expressions is also positive.

Γ ` e1 ∗ e2 : q(int) Γ ` e1 : pos int Γ ` e2 : pos int

Γ ` e1 ∗ e2 : pos q(int)
PosMult

In addition to the user-defined rules of the form specified by T-QualCase, we provide a “base
case” introduction rule for all qualified types. We assume that the definition of each qualifier q

includes a unary predicate [[q]] on values, which is used below to formalize a qualifier’s semantics.
The base case says that any value satisfying [[q]] may have a type qualified with q:

[[q]](v) Γ ` v : τ

Γ ` v : qτ
T-QualVal

This natural rule facilitates the proof of our soundness theorem, described below.
Finally, we include a subsumption rule and an associated subtyping relation for types, defined

by the following rules:

Γ ` s : τ ′ τ ′ ≤ τ

Γ ` s : τ
T-Sub

2

τ ≤ τ ′

qτ ≤ τ
SubValQual

q1q2τ ≤ q2q1τ
SubQualReorder

τ ≤ τ
SubRef

τ ≤ τ ′′ τ ′′ ≤ τ ′

τ ≤ τ ′
SubTrans

τ ′

1 ≤ τ1 τ2 ≤ τ ′

2

τ1 → τ2 ≤ τ ′

1 → τ ′

2

SubFun

2.2 Dynamic Semantics

The dynamic semantics describes how to evaluate programs. Metavariable σ ranges over stores,
which are finite functions from locations to values. We define an abstract machine for our language.
A machine configuration < σ, s > is a pair of a store and a statement to be evaluated. The steps
of the machine are defined by the following inference rules:

< σ, s >→< σ′, v >

< σ, s1 >→< σ1, λx.s > < σ1, s2 >→< σ2, v2 > < σ2, s[x 7→ v2] >→< σ′, v >

< σ, s1 s2 >→< σ′, v >
E-App

< σ, s1 >→< σ1, v1 > < σ1, s2[x 7→ v1] >→< σ2, v2 >

< σ, let x = s1 in s2 >→< σ2, v2 >
E-Let

< σ, s >→< σ′, v > l fresh in σ′

< σ, ref s >→< σ′[l 7→ v], l >
E-Ref

< σ, s1 >→< σ1, l > < σ1, s2 >→< σ2, v > l ∈ dom(σ1)

< σ, s1 := s2 >→< σ2[l 7→ v], () >
E-Assgn

< σ, e >→ v

< σ, e >→< σ, v >
E-Expr

< σ, e >→ v

< σ, v >→ v
E-Val

< σ, e >→ l σ(l) = v

< σ, !e >→ v
E-Deref

3 Soundness

We use a qualifier q’s associated predicate [[q]] to formalize a local soundness condition on user-
defined type rules. This formalization makes use of an overloading of the [[q]] notation that lifts
these predicates from values to arbitrary expressions:

[[q]](σ, e, v) ≡ (< σ, e >→ v ⇒ [[q]](v))

3

Definition 3.1 A type rule matching the template T-QualCase is locally sound if the following
proof obligation is true:

∀σ,v1, . . . , vn, v.([[q1]](σ, e1, v1) ∧ . . . ∧ [[qn]](σ, en, vn)) ⇒ [[q]](σ, e, v)

Intuitively, (global) soundness means that, if all user-defined type rules are locally sound, then
any well-typed program fragment will satisfy its qualifiers’ invariants at run time. We formalize
this notion of type soundness via a few auxiliary definitions.

Γ; τ `< σ, v >

Γ; int `< σ, c >
Q-Int

Γ; unit `< σ, () >
Q-Unit

Γ ` λx.s : τ1 → τ2

Γ; τ1 → τ2 `< σ, λx.s >
Q-Fun

Γ ` l : ref τ Γ; τ `< σ, σ(l) > l ∈ dom(σ)

Γ; ref τ `< σ, l >
Q-Ref

[[q]](v) Γ; τ `< σ, v >

Γ; qτ `< σ, v >
Q-Qual

The relation Γ; τ `< σ, v > represents semantic conformance of a value to a type. Intuitively,
Γ; τ `< σ, v > holds if Γ ` v : τ and v additionally satisfies all of the associated invariants for
qualifiers in τ . The first three rules are the standard typechecking rules for integers, unit, and
functions, respectively. Rule Q-Qual checks that a value of qualified type satisfies the qualifier’s
invariant. Rule Q-Ref checks that a location l is well-typed and recursively checks semantic
conformance of the value that l points to in the given store. For purposes of the static semantics
we treat locations as variables.

Next we lift this notion of semantic conformance to a relation between a store and a type
environment:

Definition 3.2 We say that Γ ∼ σ if both of the following conditions hold:

1. dom(Γ) = dom(σ)

2. ∀l ∈ dom(Γ).(Γ; Γ(l) `< σ, l >)

In other words, Γ ∼ σ if every memory location is well typed and satisfies its qualifiers’ invariants.
Finally we can state our type soundness theorem, which is a variant of the standard type

preservation theorem:

Theorem 3.1 If Γ ∼ σ and Γ ` s : τ and < σ, s >→< σ ′, v > and all user-defined type rules are
locally sound, then there exists some Γ′ ⊇ Γ such that Γ′ ∼ σ′ and Γ′; τ `< σ′, v >.

To prove this theorem, it is helpful to make use of (un)reachability properties of well-formed
stores. The following judgment and associated inference rules formalize when a value cannot reach
a location through a given store.

σ ` v 6 � l

σ ` c 6 � l
UnreachInt

σ ` () 6 � l
UnreachUnit

σ ` λx.s 6 � l
UnreachFun

4

l′ 6= l l′ ∈ dom(σ) ⇒ σ ` σ(l′) 6 � l

σ ` l′ 6 � l
UnreachLoc

Finally we prove Theorem 3.1:
Proof By induction on the depth of the derivation of < σ, s >→< σ ′, v >. Case analysis of the
last rule used in the derivation.

• E-App: Then s = s1 s2 and < σ, s1 >→< σ1, λx.s′ > and < σ1, s2 >→< σ2, v2 > and
< σ2, s

′[x 7→ v2] >→< σ′, v >. We prove this case by induction on the depth of the derivation
of Γ ` s : τ . Case analysis of the last rule used in the derivation.

– T-App: Then Γ ` s1 : τ2 → τ and Γ ` s2 : τ2. By (outer) induction there exists Γ1 ⊇ Γ
such that Γ1 ∼ σ1 and Γ1; τ2 → τ `< σ1, λx.s′ >. Since Γ ` s2 : τ2, by Lemma 3.6 also
Γ1 ` s2 : τ2. Then by (outer) induction there exists Γ2 ⊇ Γ1 such that Γ2 ∼ σ2 and
Γ2; τ2 `< σ2, v2 >.

Since Γ1; τ2 → τ `< σ1, λx.s′ >, by Q-Fun also Γ1 ` λx.s′ : τ2 → τ , so by Lemma 3.6
we have Γ2 ` λx.s′ : τ2 → τ . Then by Lemma 3.12 we have Γ2, x : τ ′

2 ` s′ : τ ′, where
τ2 ≤ τ ′

2 and τ ′ ≤ τ . Then by T-Sub also Γ2, x : τ ′

2 ` s′ : τ . Since Γ2; τ2 `< σ2, v2 >

and τ2 ≤ τ ′

2, by Lemma 3.4 also Γ2; τ
′

2 `< σ2, v2 >. So we have Γ2, x : τ ′

2 ` s′ : τ and
Γ2; τ

′

2 `< σ2, v2 >, and by Lemma 3.2 also Γ2 ` s′[x 7→ v2] : τ . Since also Γ2 ∼ σ2 and
< σ2, s

′[x 7→ v2] >→< σ′, v >, by (outer) induction there exists some Γ′ ⊇ Γ2 such that
Γ′ ∼ σ′ and Γ′; τ `< σ′, v >.

– T-Sub: Then Γ ` s : τ ′ and τ ′ ≤ τ . By inner induction, there exists some Γ′ ⊇ Γ such
that Γ′ ∼ σ′ and Γ′; τ ′ `< σ′, v >. Then by Lemma 3.4 also Γ′; τ `< σ′, v >.

• E-Let: Then s = let x = s1 in s2 and < σ, s1 >→< σ1, v1 > and < σ1, s2[x 7→ v1] >→<

σ′, v >. We prove this case by induction on the depth of the derivation of Γ ` s : τ . Case
analysis of the last rule used in the derivation.

– T-Let: Then Γ ` s1 : τ1 and Γ, x : τ1 ` s2 : τ . By (outer) induction there exists Γ1 ⊇ Γ
such that Γ1 ∼ σ1 and Γ1; τ1 `< σ1, v1 >. Since Γ, x : τ1 ` s2 : τ , by Lemma 3.6 also
Γ1, x : τ1 ` s2 : τ . Then since Γ1; τ1 `< σ1, v1 >, by Lemma 3.2 also Γ1 ` s2[x 7→ v1] : τ .
Finally, since < σ1, s2[x 7→ v1] >→< σ′, v >, by (outer) induction there exists some
Γ′ ⊇ Γ1 such that Γ′ ∼ σ′ and Γ′; τ `< σ′, v >.

– T-Sub: See the proof of the T-Sub case within the case for E-App.

• E-Ref: Then s = ref s0 and < σ, s0 >→< σ0, v0 > and l fresh in σ0 and σ′ = σ0[l 7→ v0]
and v = l. We prove this case by induction on the depth of the derivation of Γ ` s : τ . Case
analysis of the last rule used in the derivation.

– T-Ref: Then τ = ref τ0 and Γ ` s0 : τ0. By (outer) induction there exists some Γ0 ⊇ Γ
such that Γ0 ∼ σ0 and Γ0; τ0 `< σ0, v0 >. Let Γ′ = Γ0[l 7→ ref τ0]. Since l fresh in σ0

and Γ0 ∼ σ0, also l 6∈ dom(Γ0), so Γ′ ⊇ Γ0. To complete this case we show that Γ′ ∼ σ′

and Γ′; ref τ0 `< σ′, l >.

First we prove Γ′; ref τ0 `< σ′, l >. We’re given Γ0; τ0 `< σ0, v0 >. Since l fresh in σ0,
also l 6∈ dom(σ0), so σ′ ⊇ σ0. We also saw above that Γ′ ⊇ Γ0. Then by Lemma 3.5
we have Γ′; τ0 `< σ′, v0 >. By T-Var and the definition of Γ′ we have Γ′ ` l : ref τ0.
Finally, by definition of σ′ we have that l ∈ dom(σ′) and σ′(l) = v0. Therefore by Q-Ref

we have Γ′; ref τ0 `< σ′, l >.

5

Finally we prove Γ′ ∼ σ′. Since dom(Γ0) = dom(σ0), also dom(Γ′) = dom(σ′), so part
1 is proven. Now consider some l′ ∈ dom(Γ′). To prove part 2 we must show that
Γ′; Γ′(l′) `< σ′, l′ >. If l′ = l, then we must show that Γ′; ref τ0 `< σ′, l >, which
was proven above. Otherwise l′ 6= l. Then l′ ∈ dom(Γ0) and since Γ0 ∼ σ0, we have
Γ0; Γ0(l

′) `< σ0, l
′ >. Since l′ 6= l, we have Γ0(l

′) = Γ′(l′), so Γ0; Γ
′(l′) `< σ0, l

′ >. Then
by Lemma 3.5 we have Γ′; Γ′(l′) `< σ′, l′ >.

– T-Sub: See the proof of the T-Sub case within the case for E-App.

• E-Assgn: Then s = s1 := s2 and < σ, s1 >→< σ1, l1 > and < σ1, s2 >→< σ2, v2 > and
l1 ∈ dom(σ1) and σ′ = σ2[l1 7→ v2] and v = (). We prove this case by induction on the depth
of the derivation of Γ ` s : τ . Case analysis of the last rule used in the derivation.

– T-Assgn: Then τ = unit and Γ ` s1 : ref τ ′ and Γ ` s2 : τ ′. By (outer) induction
there exists some Γ1 ⊇ Γ such that Γ1 ∼ σ1 and Γ1; ref τ ′ `< σ1, l1 >. Since Γ ` s2 : τ ′

and Γ1 ⊇ Γ, by Lemma 3.6 also Γ1 ` s2 : τ ′. Then by (outer) induction there exists
some Γ2 ⊇ Γ1 such that Γ2 ∼ σ2 and Γ2; τ

′ `< σ2, v2 >.

To prove this case, we must show that there exists Γ′ ⊇ Γ such that Γ′ ∼ σ′ and
Γ′; unit `< σ′, () >. We will show that Γ2 ∼ σ′ and Γ2; unit `< σ′, () >. Γ2; unit `<

σ′, () > follows from Q-Unit, so it remains to prove Γ2 ∼ σ′.

First we show that dom(Γ2) = dom(σ′). Since Γ2 ∼ σ2, we know that dom(Γ2) =
dom(σ2). Since l1 ∈ dom(σ1) and < σ1, s2 >→< σ2, v2 >, by Lemma 3.7 also l1 ∈
dom(σ2). Therefore, dom(σ2) = dom(σ2[l1 7→ v2]) = dom(σ′). Therefore dom(Γ2) =
dom(σ′).

Second, we must show that for each l ∈ dom(Γ2) we have Γ2; Γ2(l) `< σ′, l >. Since
Γ2 ∼ σ2 we have Γ2; Γ2(l) `< σ2, l >. Suppose σ2 ` l 6 � l1. Then by Lemma 3.15
we have Γ2; Γ2(l) `< σ′, l > as desired. Suppose instead that it is not the case that
σ2 ` l 6 � l1. Then since Γ2 ∼ σ2, by Lemma 3.16 there exists a nonnegative integer k

such that σk
2 (l) = l1. Since Γ1; ref τ ′ `< σ1, l1 >, by Q-Ref we have Γ1 ` l1 : ref τ ′,

and by Lemma 3.6 also Γ2 ` l1 : ref τ ′. Then the result follows by Lemma 3.19.

– T-Sub: See the proof of the T-Sub case within the case for E-App.

• E-Expr: Then s = e and < σ, e >→ v and σ′ = σ. We’re given that Γ ∼ σ, and by
Lemma 3.1 we have Γ; τ `< σ, v >, so the result follows by taking Γ′ = Γ.

�

Lemma 3.1 If Γ ∼ σ and Γ ` e : τ and < σ, e >→ v, then Γ; τ `< σ, v >.
Proof By induction on the depth of the derivation of Γ ` e : τ . Case analysis of the last rule used
in the derivation.

• T-Int: Then e = c and τ = int. Since < σ, e >→ v, by E-Val we have v = c. Then by
Q-Int we have Γ; τ `< σ, v >.

• T-Unit: Then e = () and τ = unit. Since < σ, e >→ v, by E-Val we have v = (). Then by
Q-Unit we have Γ; τ `< σ, v >.

• T-Var: Then e = x and Γ(x) = τ . Since Γ ∼ σ, we have that dom(Γ) = dom(σ), so x

must be a location l. Since < σ, e >→ v, by E-Val we have v = l. Then by Γ ∼ σ we have
Γ; τ `< σ, l >.

6

• T-Deref: Then e =!e′ and Γ ` e′ : ref τ . Since < σ, e >→ v, by E-Deref we have
< σ, e′ >→ l and σ(l) = v. By induction we have Γ; ref τ `< σ, l >, so by Q-Ref also
Γ; τ `< σ, v >.

• T-QualCase: Then τ = qτ ′ and Γ ` e : τ ′ and Γ ` e1 : q1τ1 . . . Γ ` en : qnτn. By induction
we have Γ; τ ′ `< σ, v >. Therefore, Γ; τ `< σ, v > follows from Q-Qual if we can show
[[q]](v).

Consider one of the ei subexpressions of e, and let vi be some value. If it is not the case
that < σ, ei >→ vi, then [[qi]](σ, ei, vi) holds trivially. Otherwise, if < σ, ei >→ vi, then by
induction we have Γ; qiτi `< σ, vi >. Then by Q-Qual we have [[qi]](vi), so also [[qi]](σ, ei, vi)
holds. Since we assume that T-QualCase is locally sound, and since we can find a vi for
each ei such that [[qi]](σ, ei, vi) holds, by Definition 3.1 we have [[q]](σ, e, v). Then since
< σ, e >→ v, we have [[q]](v).

• T-QualVal: Then e = v′ and τ = qτ ′ and [[q]](v′) and Γ ` v′ : τ ′. Since < σ, e >→ v, by
E-Val we have v = v′. So we have [[q]](v) and Γ ` v : τ ′. By induction Γ; τ ′ `< σ, v >, and
by Q-Qual also Γ; qτ ′ `< σ, v >.

• T-Sub: Then Γ ` e : τ ′ and τ ′ ≤ τ . By induction we have Γ; τ ′ `< σ, v >, and the result
follows from Lemma 3.4.

�

Lemma 3.2 If Γ, x0 : τ0 ` s : τ and Γ; τ0 `< σ, v0 >, then Γ ` s[x0 7→ v0] : τ .
Proof By induction on the depth of the derivation of Γ, x0 : τ0 ` s : τ . Case analysis of the last
rule used in the derivation.

• T-App: Then s = s1 s2 and Γ, x0 : τ0 ` s1 : τ2 → τ and Γ, x0 : τ0 ` s2 : τ2. By induction we
have Γ ` s1[x0 7→ v0] : τ2 → τ and Γ ` s2[x0 7→ v0] : τ2, and the result follows by T-App.

• T-Let: Then s = let x = s1 in s2 and Γ, x0 : τ0 ` s1 : τ1 and Γ, x0 : τ0, x : τ1 ` s2 : τ . By
induction we have Γ ` s1[x0 7→ v0] : τ1 and Γ, x : τ1 ` s2[x0 7→ v0] : τ , and the result follows
by T-Let.

• T-Ref: Then s = ref s′ and τ = ref τ ′ and Γ, x0 : τ0 ` s′ : τ ′. By induction we have
Γ ` s′[x0 7→ v0] : τ ′, and the result follows by T-Ref.

• T-Assgn: Then s = s1 := s2 and τ = unit and Γ, x0 : τ0 ` s1 : ref τ ′ and Γ, x0 : τ0 ` s2 : τ ′.
By induction we have Γ ` s1[x0 7→ v0] : ref τ ′ and Γ ` s2[x0 7→ v0] : τ ′, and the result follows
by T-Assgn.

• T-Int: Then s = c and τ = int, and the result follows by T-Int.

• T-Unit: Then s = () and τ = unit, and the result follows by T-Unit.

• T-Var: Then s = x and (Γ, x0 : τ0)(x) = τ . Suppose x0 = x. Then τ0 = τ and x[x0 7→ v0] =
v0, so we must prove Γ ` v0 : τ0. Since Γ; τ0 `< σ, v0 >, the result follows by Lemma 3.3.
Otherwise, suppose x0 6= x. Then x[x0 7→ v0] = x, so we must prove Γ ` x : τ . Since
(Γ, x0 : τ0)(x) = τ and x0 6= x, also Γ(x) = τ , so the result follows by T-Var.

• T-Fun: Then s = λx.s′ and τ = τ1 → τ2 and Γ, x0 : τ0, x : τ1 ` s′ : τ2. By induction we have
Γ, x : τ1 ` s′[x0 7→ v0] : τ2, and the result follows by T-Fun.

7

• T-Deref: Then s =!e and Γ, x0 : τ0 ` e : ref τ . By induction we have Γ ` e[x0 7→ v0] : ref τ ,
and the result follows by T-Deref.

• T-QualCase: Then τ = qτ ′ and Γ, x0 : τ0 ` e : τ ′ and Γ, x0 : τ0 ` e1 : q1τ1 . . . Γ, x0 : τ0 `
en : qnτn. By induction we have Γ ` e[x0 7→ v0] : τ ′ and Γ ` e1[x0 7→ v0] : q1τ1 . . . Γ ` en[x0 7→
v0] : qnτn, and the result follows by T-QualCase.

• T-QualVal: Then s = v and τ = qτ ′ and [[q]](v) and Γ, x0 : τ0 ` v : τ ′. By induction also
Γ ` v[x0 7→ v0] : τ ′. Since arrow types may not be qualified, τ ′ is not of the form q(τ1 → τ2).
Then by Lemma 3.10 v is not of the form λx.s′. Therefore v[x0 7→ v0] = v, so [[q]](v[x0 7→ v0]).
Then the result follows by T-QualVal.

• T-Sub: Then Γ, x0 : τ0 ` e : τ ′ and τ ′ ≤ τ . By induction we have Γ ` e[x0 7→ v0] : τ ′, and
the result follows by T-Sub.

�

Lemma 3.3 If Γ; τ `< σ, v >, then Γ ` v : τ .
Proof By induction on the depth of the derivation of Γ; τ `< σ, v >. Case analysis of the last
rule used in the derivation.

• Q-Int: Then τ = int and v = c, and the result follows by T-Int.

• Q-Unit: Then τ = unit and v = (), and the result follows by T-Unit.

• Q-Fun: Then v = λx.s and Γ ` λx.s : τ , which is what we wanted to prove.

• Q-Ref: Then v = l and Γ ` l : τ , which is what we wanted to prove.

• Q-Qual: Then τ = qτ ′ and [[q]](v) and Γ; τ ′ `< σ, v >. By induction we have Γ ` v : τ ′.
Then since [[q]](v), by T-QualVal also Γ ` v : τ .

�

Lemma 3.4 If Γ; τ ′ `< σ, v > and τ ′ ≤ τ , then Γ; τ `< σ, v >.
Proof By induction on the derivation of τ ′ ≤ τ . Case analysis of the last rule used in the derivation.

• SubValQual: Then τ ′ = qτ . Since Γ; τ ′ `< σ, v >, by Q-Qual we have Γ; τ `< σ, v >.

• SubQualReorder: Then τ ′ = q1q2τ0 and τ = q2q1τ0. Since Γ; τ ′ `< σ, v >, by Q-

Qual we have [[q1]](v) and Γ; q2τ0 `< σ, v >. Then again by Q-Qual we have [[q2]](v) and
Γ; τ0 `< σ, v >. Therefore, by Q-Qual we have Γ; q1τ0 `< σ, v >, and again by Q-Qual we
have Γ; q2q1τ0 `< σ, v >.

• SubRef: Then τ ′ = τ and the result follows.

• SubTrans: Then τ ′ ≤ τ ′′ and τ ′′ ≤ τ . By induction Γ; τ ′′ `< σ, v >, and by induction again
Γ; τ `< σ, v >.

• SubFun: Then τ ′ = τ ′

1 → τ ′

2 and τ = τ1 → τ2. Since Γ; τ ′ `< σ, v >, by Q-Fun we have
that v = λx.s and Γ ` λx.s : τ ′

1 → τ ′

2. Since τ ′ ≤ τ , by T-Sub we have Γ ` λx.s : τ1 → τ2, so
by Q-Fun Γ; τ1 → τ2 `< σ, λx.s >.

�

8

Lemma 3.5 If Γ; τ `< σ, v > and Γ′ ⊇ Γ and σ′ ⊇ σ, then Γ′; τ `< σ′, v >.
Proof By induction on the depth of the derivation of Γ; τ `< σ, v >. Case analysis of the last
rule used in the derivation.

• Q-Int: Then τ = int and v = c, and the result follows by Q-Int.

• Q-Unit: Then τ = unit and v = (), and the result follows by Q-Unit.

• Q-Fun: Then τ = τ1 → τ2 and v = λx.s and Γ ` λx.s : τ1 → τ2. By Lemma 3.6 also
Γ′ ` λx.s : τ1 → τ2, and the result follows by Q-Fun.

• Q-Ref: Then τ = ref τ ′ and v = l and Γ ` l : ref τ ′ and Γ; τ ′ `< σ, σ(l) > and l ∈ dom(σ).
By Lemma 3.6 we have Γ′ ` l : ref τ ′. Since l ∈ dom(σ) and σ′ ⊇ σ, also l ∈ dom(σ′) and
σ(l) = σ′(l). Finally, by induction Γ′; τ ′ `< σ′, σ′(l) >, and the result follows by Q-Ref.

• Q-Qual: Then τ = qτ ′ and [[q]](v) and Γ; τ ′ `< σ, v >. By induction we have Γ′; τ ′ `<

σ′, v >, and the result follows by Q-Qual.

�

Lemma 3.6 If Γ ` s : τ and Γ′ ⊇ Γ, then Γ′ ` s : τ .
Proof By induction on the depth of the derivation of Γ ` s : τ . Case analysis of the last rule used
in the derivation.

• T-App: Then s = s1 s2 and Γ ` s1 : τ2 → τ and Γ ` s2 : τ2. By induction we have
Γ′ ` s1 : τ2 → τ and Γ′ ` s2 : τ2, and the result follows by T-App.

• T-Let: Then s = let x = s1 in s2 and Γ ` s1 : τ1 and Γ, x : τ1 ` s2 : τ . By induction we
have Γ′ ` s1 : τ1 and Γ′, x : τ1 ` s2 : τ , and the result follows by T-Let.

• T-Ref: Then s = ref s′ and τ = ref τ ′ and Γ ` s′ : τ ′. By induction we have Γ′ ` s′ : τ ′,
and the result follows by T-Ref.

• T-Assgn: Then s = s1 := s2 and τ = unit and Γ ` s1 : ref τ ′ and Γ ` s2 : τ ′. By induction
we have Γ′ ` s1 : ref τ ′ and Γ′ ` s2 : τ ′, and the result follows by T-Assgn.

• T-Int: Then s = c and τ = int, and the result follows by T-Int.

• T-Unit: Then s = () and τ = unit, and the result follows by T-Unit.

• T-Var: Then s = x and Γ(x) = τ . Since Γ′ ⊇ Γ, also Γ′(x) = τ , and the result follows by
T-Var.

• T-Fun: Then s = λx.s′ and τ = τ1 → τ2 and Γ, x : τ1 ` s′ : τ2. By induction we have
Γ′, x : τ1 ` s′ : τ2, and the result follows by T-Fun.

• T-Deref: Then s =!e and Γ ` e : ref τ . By induction we have Γ′ ` e : ref τ , and the result
follows by T-Deref.

• T-QualVal: Then s = v and τ = qτ ′ and [[q]](v) and Γ ` v : τ ′. By induction also Γ′ ` v : τ ′,
and the result follows by T-QualVal.

• T-Sub: Then Γ ` s : τ ′ and τ ′ ≤ τ . By induction we have Γ′ ` s : τ ′, and the result follows
by T-Sub.

9

• T-QualCase: Then τ = qτ ′ and Γ ` e : τ ′ and Γ ` e1 : q1τ1 . . . Γ ` en : qnτn. By induction
we have Γ′ ` s : τ ′ and Γ′ ` e1 : q1τ1 . . . Γ′ ` en : qnτn, and the result follows by T-QualCase.

�

Lemma 3.7 If l ∈ dom(σ) and < σ, s >→< σ′, v >, then l ∈ dom(σ′).
Proof By induction on the depth of the derivation of < σ, s >→< σ ′, v >. Case analysis of the
last rule used in the derivation.

• E-App: Then s = s1 s2 and < σ, s1 >→< σ1, λx.s′ > and < σ1, s2 >→< σ2, v2 > and
< σ2, s

′[x 7→ v2] >→< σ′, v >. By induction l ∈ dom(σ1). By induction again, l ∈ dom(σ2).
By induction again, l ∈ dom(σ′).

• E-Let: Then s = let x = s1 in s2 and < σ, s1 >→< σ1, v1 > and < σ1, s2[x 7→ v1] >→<

σ′, v >. By induction l ∈ dom(σ1) and by induction again, l ∈ dom(σ′).

• E-Ref: Then s = ref s′ and < σ, s′ >→< σ1, v
′ > and σ′ = σ1[l

′ 7→ v′]. By induction
l ∈ dom(σ1), so also l ∈ dom(σ1[l

′ 7→ v′]).

• E-Assgn: Then s = s1 := s2 and < σ, s1 >→< σ1, l
′ > < σ1, s2 >→< σ2, v

′ > and
σ′ = σ2[l

′ 7→ v′]. By induction l ∈ dom(σ1), by induction again l ∈ dom(σ2), so also
l ∈ dom(σ2[l

′ 7→ v′]).

• E-Expr: Then σ′ = σ, so since l ∈ dom(σ), also l ∈ dom(σ ′).

�

Lemma 3.8 If Γ ` l : q(ref τ), then there exists q ′ such that Γ(l) = q′(ref τ).
Proof By induction on the depth of the derivation of Γ ` l : q(ref τ). Case analysis of the last
rule in the derivation.

• T-Var: Then Γ(l) = q(ref τ), so the result follows, where q ′ = q.

• T-QualCase: Then q = qq′′ and Γ ` l : q′′(ref τ), so by induction there exists q ′ such that
Γ(l) = q′(ref τ).

• T-QualVal: Then q = qq′′ and Γ ` l : q′′(ref τ), so by induction there exists q ′ such that
Γ(l) = q′(ref τ).

• T-Sub: Then Γ ` l : τ ′ and τ ′ ≤ q(ref τ). By Lemma 3.9 τ ′ has the form q′′(ref τ). Then
by induction there exists q′ such that Γ(l) = q′(ref τ).

�

Lemma 3.9 If τ0 ≤ q(ref τ), then τ0 has the form q′(ref τ).
Proof By induction on the depth of the derivation of τ0 ≤ q(ref τ). Case analysis of the last rule
in the derivation.

• SubValQual: Then τ0 = qq(ref τ), and the result follows.

• SubQualReorder: Then q = q2q1q
′′ and τ0 = q1q2q

′′(ref τ), and the result follows.

• SubRef: Then τ0 = q(ref τ), and the result follows.

10

• SubTrans: Then τ0 ≤ τ ′ and τ ′ ≤ q(ref τ). By induction τ ′ has the form q′′(ref τ). By
induction again τ0 has the form q′(ref τ).

�

Lemma 3.10 If Γ ` λx.s : τ , then τ has the form q(τ1 → τ2).
Proof By induction on the depth of the derivation of Γ ` λx.s : τ . Case analysis of the last rule
in the derivation.

• T-Fun: Then τ has the form τ1 → τ2 and the result is shown, with q being empty.

• T-QualCase: Then τ has the form qτ ′ and Γ ` λx.s : τ ′. By induction τ ′ has the form
q(τ1 → τ2), so τ = qq(τ1 → τ2) and the result follows.

• T-QualVal: Then τ has the form qτ ′ and Γ ` λx.s : τ ′. By induction τ ′ has the form
q(τ1 → τ2), so τ = qq(τ1 → τ2) and the result follows.

• T-Sub: Then Γ ` λx.s : τ ′ and τ ′ ≤ τ . By induction τ ′ has the form q(τ1 → τ2) and the
result follows from Lemma 3.11.

�

Lemma 3.11 If q(τ1 → τ2) ≤ τ ′, then τ ′ has the form q′(τ ′

1 → τ ′

2).
Proof By induction on the depth of the derivation of q(τ1 → τ2) ≤ τ ′. Case analysis of the last
rule used in the derivation.

• SubValQual: Then q = qq′ and τ ′ = q′(τ1 → τ2), so the result follows.

• SubQualReorder: Then q = q1q2q
′ and τ ′ = q2q1q

′(τ1 → τ2), so the result follows.

• SubRef: Then τ ′ = q(τ1 → τ2), so the result follows.

• SubTrans: Then q(τ1 → τ2) ≤ τ ′′ and τ ′′ ≤ τ ′. By induction τ ′′ has the form q′′(τ ′′

1 → τ ′′

2).
Then by induction again, τ ′ has the form q′(τ ′

1 → τ ′

2).

• SubFun: Then τ ′ has the form τ ′

1 → τ ′

2, so the result follows with q′ as the empty sequence.

�

Lemma 3.12 If Γ ` λx.s : q(τ1 → τ2), then there exist τ ′

1 and τ ′

2 such that Γ, x : τ ′

1 ` s : τ ′

2, where
τ1 ≤ τ ′

1 and τ ′

2 ≤ τ2.
Proof By induction on the depth of the derivation of Γ ` λx.s : q(τ1 → τ2). Case analysis of the
last rule used in the derivation.

• T-Fun: Then q is empty and Γ, x : τ1 ` s : τ2. By SubRef we have τ1 ≤ τ1 and τ2 ≤ τ2, so
the result follows.

• T-QualCase: Then q = qq′ and Γ ` λx.s : q′(τ1 → τ2), so the result follows by induction.

• T-QualVal: Then q = qq′ and Γ ` λx.s : q′′(τ1 → τ2), so the result follows by induction.

• T-Sub: Then Γ ` λx.s : τ ′ and τ ′ ≤ q(τ1 → τ2). By Lemma 3.13 τ ′ has the form q′(τ ′′

1 → τ ′′

2),
where τ1 ≤ τ ′′

1 and τ ′′

2 ≤ τ2. By induction Γ, x : τ ′

1 ` s : τ ′

2, where τ ′′

1 ≤ τ ′

1 and τ ′

2 ≤ τ ′′

2 . Then
by SubTrans also τ1 ≤ τ ′

1 and τ ′

2 ≤ τ2, so the result follows.

11

�

Lemma 3.13 If τ ′ ≤ q(τ1 → τ2), then τ ′ has the form q′(τ ′

1 → τ ′

2), where τ1 ≤ τ ′

1 and τ ′

2 ≤ τ2.
Proof By induction on the depth of the derivation of τ ′ ≤ q(τ1 → τ2). Case analysis of the last
rule used in the derivation.

• SubValQual: Then τ ′ = qq(τ1 → τ2). By SubRef we have τ1 ≤ τ1 and τ2 ≤ τ2, so the
result follows.

• SubQualReorder: Then q = q2q1q
′ and τ ′ = q1q2q

′(τ1 → τ2). By SubRef we have τ1 ≤ τ1

and τ2 ≤ τ2, so the result follows.

• SubRef: Then τ ′ = q(τ1 → τ2). By SubRef we have τ1 ≤ τ1 and τ2 ≤ τ2, so the result
follows.

• SubTrans: Then τ ′ ≤ τ ′′ and τ ′′ ≤ q(τ1 → τ2). By induction τ ′′ has the form q′′(τ ′′

1 → τ ′′

2),
where τ1 ≤ τ ′′

1 and τ ′′

2 ≤ τ2. Then by induction again, τ ′ has the form q′(τ ′

1 → τ ′

2), where
τ ′′

1 ≤ τ ′

1 and τ ′

2 ≤ τ ′′

2 . Then by SubTrans we have τ1 ≤ τ ′

1 and τ ′

2 ≤ τ2, so the result follows.

• SubFun: Then q is empty and τ ′ = τ ′

1 → τ ′

2, where τ1 ≤ τ ′

1 and τ ′

2 ≤ τ2, so the result follows
with q′ as the empty sequence.

�

Lemma 3.14 If Γ; τ ′ `< σ, v > and Γ; ref τ `< σ, l > and τ ′ is a component of τ , then σ ` v 6 � l.
Proof By induction on the depth of the derivation of Γ; τ ′ `< σ, v >. Case analysis of the last
rule used in the derivation.

• Q-Int: Then v = c and the result follows from UnreachInt.

• Q-Unit: Then v = () and the result follows from UnreachUnit.

• Q-Fun: Then v = λx.s and the result follows from UnreachFun.

• Q-Ref: Then v = l′ and τ ′ = ref τ ′′ and Γ ` l′ : ref τ ′′ and Γ; τ ′′ `< σ, σ(l′) > and
l′ ∈ dom(σ).

First we show that l′ 6= l. Suppose not, so l′ = l. Since Γ ` l′ : ref τ ′′, by Lemma 3.8
Γ(l′) = Γ(l) has the form q(ref τ ′′). We’re given that Γ; ref τ `< σ, l >, so by Q-Ref we
have Γ ` l : ref τ , so again by Lemma 3.8 Γ(l) also has the form q ′(ref τ). Therefore, it
must be the case that τ = τ ′′. But we know that ref τ ′′ is a component of τ , so we have a
contradiction.

Since ref τ ′′ is a component of τ , so is τ ′′. Since Γ; τ ′′ `< σ, σ(l′) > and Γ; ref τ `< σ, l >,
by induction we have σ ` σ(l′) 6 � l. Therefore, we have shown l′ 6= l and l′ ∈ dom(σ) and
σ ` σ(l′) 6 � l, so by UnreachLoc we have σ ` l′ 6 � l.

• Q-Qual: Then τ ′ = qτ ′′ and Γ; τ ′′ `< σ, v >. Since τ ′ is a component of τ , so is τ ′′. Then
by induction we have σ ` v 6 � l.

�

Lemma 3.15 If Γ; τ `< σ, v > and σ ` v 6 � l, then Γ; τ `< σ[l 7→ v ′], v >.
Proof By induction on the depth of the derivation of Γ; τ `< σ, v >. Case analysis of the last
rule used in the derivation.

12

• Q-Int: Then τ = int and v = c, and the result follows by Q-Int.

• Q-Unit: Then τ = unit and v = (), and the result follows by Q-Unit.

• Q-Fun: Then τ = τ1 → τ2 and v = λx.s and Γ ` λx.s : τ1 → τ2. Then the result follows by
Q-Fun.

• Q-Ref: Then τ = ref τ ′ and v = l′ and Γ ` l′ : ref τ ′ and Γ; τ ′ `< σ, σ(l′) > and
l′ ∈ dom(σ). Then also l′ ∈ dom(σ[l 7→ v′]). The result follows by Q-Ref if we can prove
Γ; τ ′ `< σ[l 7→ v′], σ[l 7→ v′](l′) >. Since σ ` l′ 6 � l and l′ ∈ dom(σ), by UnreachLoc we
have l′ 6= l and σ ` σ(l′) 6 � l. Since Γ; τ ′ `< σ, σ(l′) > and σ ` σ(l′) 6 � l, by induction
Γ; τ ′ `< σ[l 7→ v′], σ(l′) >. Since l′ 6= l, σ(l′) = σ[l 7→ v′](l′), so we have proven Γ; τ ′ `<

σ[l 7→ v′], σ[l 7→ v′](l′) >.

• Q-Qual: Then τ = qτ ′ and [[q]](v) and Γ; τ ′ `< σ, v >. By induction we have Γ′; τ ′ `<

σ[l 7→ v′], v >, and the result follows by Q-Qual.

�

Lemma 3.16 If Γ ∼ σ and it is not the case that σ ` v 6 � l, then there exists a location l ′ such
that v = l′ and a nonnegative integer k such that σk(l′) = l.
Proof We prove this lemma by induction on the depth of v, which we define as follows. If v is
not a location, then depth(v) = 0. Otherwise v has the form l ′. If l′ 6∈ dom(σ) then depth(l′) = 0.
Otherwise l′ ∈ dom(σ). Since Γ ∼ σ, by Lemma 3.24 we have σ ` σ(l′) 6 � l′. Then by Lemma 3.17
there exists a positive integer k′ and a value v′ such that σk′

(l′) = v′, where v′ is not a location,
and depth(l′) is defined to be k′. Note that k′ is unique.

• v has depth 0: Then either v is not a location or v = l ′ and l′ 6∈ dom(σ). If v is not a
location, then it is either an integer constant c, the unit value (), or a function value λx.s.
But then σ ` v 6 � l by UnreachInt, UnreachUnit, and UnreachFun, contradicting
our initial assumptions. Therefore v = l′ and l′ 6∈ dom(σ). Since it is not the case that
σ ` l′ 6 � l, by UnreachLoc we have that either l′ = l or l′ ∈ dom(σ) and it is not the case
that σ ` σ(l′) 6 � l. Therefore l′ = l, so σ0(l′) = l and the result follows with k = 0.

• v has depth d > 0: Then v = l′ and l′ ∈ dom(σ) and there exists a value v′ such that
σd(l′) = v′, where v′ is not a location. Since it is not the case that σ ` l ′ 6 � l, by UnreachLoc

we have that either l′ = l or l′ ∈ dom(σ) and it is not the case that σ ` σ(l′) 6 � l. If l′ = l

then σ0(l′) = l and the result follows with k = 0. Otherwise l′ ∈ dom(σ) and it is not the case
that σ ` σ(l′) 6 � l. If we can show that σ(l′) has a smaller depth than l′, then by induction
we have that there exists a location l′′ such that σ(l′) = l′′ and a nonnegative integer k′′ such
that σk′′

(l′′) = l, so σk′′+1(l′) = l and the result follows.

To see that σ(l′) has smaller depth than l′, we analyze the form of σ(l′). If it is a value other
than a location or it is a location that is not in dom(σ), then depth(σ(l ′)) = 0. Since the
depth of l′ is d > 0, the result follows. Otherwise, σ(l′) is some location l′′ ∈ dom(σ). Since
there exists a value v′ such that σd(l′) = v′, where v′ is not a location, also σd−1(l′′) = v′, so
the depth of l′′ is d − 1, which is smaller than d.

�

Lemma 3.17 If Γ ∼ σ and l ∈ dom(σ) and σ ` σk(l) 6 � l for some nonnegative integer k, then
there exists a positive integer k′ and a value v such that σk′

(l) = v, where v is not a location.

13

Proof By induction on the depth of the derivation of σ ` σk(l) 6 � l. Case analysis of the last rule
used in the derivation.

• UnreachInt, UnreachUnit, or UnreachFun: Then σk(l) is not a location. Since l is a
location, k > 0, so the result follows with k ′ = k.

• UnreachLoc: Then σk(l) = l′ and l′ 6= l and l′ ∈ dom(σ) ⇒ σ ` σ(l′) 6 � l. Then by
Lemma 3.18 l′ ∈ dom(σ). Therefore we have σ ` σ(l′) 6 � l, or equivalently σ ` σk+1(l) 6 � l.
Then by induction there exists a positive integer k ′ and a value v such that σk

′

(l) = v, where
v is not a location.

�

Lemma 3.18 If Γ ∼ σ and l ∈ dom(σ) and σk(l) = l′ for some nonnegative integer k, then
l′ ∈ dom(σ).
Proof By induction on k.

• k = 0: Then l = l′ and since l ∈ dom(σ) also l′ ∈ dom(σ).

• k > 0: Let σk−1(l) = l′′. By induction l′′ ∈ dom(σ). Since Γ ∼ σ, we have Γ; Γ(l′′) `< σ, l′′ >.
By Lemma 3.22, Γ(l′′) has the form q(ref τ), and by Lemma 3.23 we have Γ; τ `< σ, l ′ >. By
Lemma 3.22 again, τ has the form q′(ref τ ′), and by Lemma 3.23 again we have l′ ∈ dom(σ).

�

Lemma 3.19 If Γ2 ∼ σ2 and Γ2; Γ2(l) `< σ2, l > and σk
2 (l) = l1 for some nonnegative integer

k and σ′ = σ2[l1 7→ v2] and Γ2; τ
′ `< σ2, v2 > and l1 ∈ dom(σ2) and Γ2 ` l1 : ref τ ′, then

Γ2; Γ2(l) `< σ′, l >.
Proof Assume WLOG that k is the smallest nonnegative integer such that σk

2 (l) = l1. We prove
this lemma by induction on k.

• k = 0: Then l = l1, so we must show Γ2; Γ2(l1) `< σ′, l1 >. Since Γ2 ` l1 : ref τ ′, by
Lemma 3.8, there exists some q such that Γ2(l1) = q(ref τ ′). Since Γ2 ∼ σ2, we know that
Γ2; q(ref τ ′) `< σ2, l1 >. Then by Lemma 3.20 also Γ2; q(ref τ ′) `< σ′, l1 >.

• k > 0: Since Γ2; Γ2(l) `< σ2, l >, by Lemma 3.22 Γ2(l) has the form q(ref τ ′′). Then the
result follows by Lemma 3.21.

�

Lemma 3.20 If Γ2; q(ref τ ′) `< σ2, l1 > and Γ2; τ
′ `< σ2, v2 > and σ′ = σ2[l1 7→ v2] and

l1 ∈ dom(σ2), then Γ2; q(ref τ ′) `< σ′, l >.
Proof By induction on the length of q.

• q has length 0: So Γ2; ref τ ′ `< σ2, l1 >. Then by Q-Ref, Γ2 ` l1 : ref τ ′. Since σ′ =
σ2[l1 7→ v2], we have l1 ∈ dom(σ′). Since σ′(l1) = v2, if we can show that Γ2; τ

′ `< σ′, v2 >,
then by Q-Ref we have Γ2; ref τ ′ `< σ′, l1 >, which is what we are trying to prove.

Since Γ2; τ
′ `< σ2, v2 > and Γ2; ref τ ′ `< σ2, l1 >, by Lemma 3.14 we have σ2 ` v2 6 � l1.

Then by Lemma 3.15 we have Γ2; τ
′ `< σ2[l1 7→ v2], v2 >, or equivalently Γ2; τ

′ `< σ′, v2 >.

• q has length greater than zero: So q has the form qq ′ and Γ2; qq
′(ref τ ′) `< σ2, l1 >. By Q-

Qual we have [[q]](l1) and Γ2; q
′(ref τ ′) `< σ2, l1 >. By induction Γ2; q

′(ref τ ′) `< σ′, l1 >,
and by Q-Qual also Γ2; qq

′(ref τ ′) `< σ′, l1 >.

14

�

Lemma 3.21 If Γ2 ∼ σ2 and Γ2; q(ref τ ′′) `< σ2, l > and σk
2 (l) = l1 for some positive integer k

and σ′ = σ2[l1 7→ v2] and Lemma 3.19 holds for all nonnegative integers i such that 0 ≤ i < k, then
Γ2; q(ref τ ′′) `< σ′, l >.
Proof We prove this lemma by induction on the length of q.

• q has length 0: So Γ2; ref τ ′′ `< σ2, l >. By Q-Ref, Γ2 ` l : ref τ ′′ and l ∈ dom(σ2)
and Γ2; τ

′′ `< σ2, σ2(l) >. Since k > 0 we have that l 6= l1, so σ2(l) = σ′(l) and Γ2; τ
′′ `<

σ2, σ
′(l) >. Since l ∈ dom(σ2), by definition of σ′ we have l ∈ dom(σ′). Then the result holds

by Q-Ref if we can show that Γ2; τ
′′ `< σ′, σ′(l) >.

Since σk
2 (l) = l1 we have σk−1

2
(σ2(l)) = l1, and σ2(l) must be some location l′. Then we have

Γ2; τ
′′ `< σ2, l

′ >, so by Lemma 3.22 τ ′′ has the form q0(ref τ0), and by Lemma 3.23 we have
l′ ∈ dom(σ2). Since Γ2 ∼ σ2, also l′ ∈ dom(Γ2) and we have Γ2; Γ2(l

′) `< σ2, l
′ >. Therefore

by induction on Lemma 3.19 we have Γ2; Γ2(l
′) `< σ′, l′ >.

Since Γ2; τ
′′ `< σ2, l

′ >, by Lemma 3.3 we have Γ2 ` l′ : q0(ref τ0). Then by Lemma 3.8
we have Γ2(l

′) = q′0(ref τ0). Then since Γ2; Γ2(l
′) `< σ′, l′ >, by Lemma 3.25 we have

Γ2; ref τ0 `< σ′, l′ >. Finally, since Γ2; q0(ref τ0) `< σ2, l
′ > by Lemma 3.26 we also

Γ2; q0(ref τ0) `< σ′, l′ >, which is what we were trying to prove.

• q has length greater than zero, so q has the form qq ′ and Γ2; qq
′(ref τ ′′) `< σ2, l >. By Q-

Qual we have [[q]](l) and Γ2; q
′(ref τ ′′) `< σ2, l >. By induction Γ2; q

′(ref τ ′′) `< σ′, l >,
and by Q-Qual also Γ2; qq

′(ref τ ′′) `< σ′, l > as desired.

�

Lemma 3.22 If Γ; τ `< σ, l > then τ has the form q(ref τ ′).
Proof By induction on the depth of the derivation of Γ; τ `< σ, l >. Case analysis of the last rule
used in the derivation.

• Q-Ref: Then τ has the form ref τ ′, so the result follows with q being empty.

• Q-Qual: Then τ = qτ ′′ and Γ; τ ′′ `< σ, l >. By induction τ ′′ has the form q′(ref τ ′), so τ

has the form q(ref τ ′), where q = qq′.

�

Lemma 3.23 If Γ; q(ref τ) `< σ, l >, then l ∈ dom(σ) and Γ; τ `< σ, σ(l) >.
Proof By induction on the depth of the derivation of Γ; q(ref τ) `< σ, l >. Case analysis of the
last rule used in the derivation.

• Q-Ref: Then q is empty and l ∈ dom(σ) and Γ; τ `< σ, σ(l) >.

• Q-Qual: Then q = qq′ and Γ; q′(ref τ) `< σ, l >. By induction, l ∈ dom(σ) and Γ; τ `<

σ, σ(l) >.

�

Lemma 3.24 If Γ ∼ σ and l ∈ dom(σ) then σ ` σ(l) 6 � l.
Proof Since Γ ∼ σ and l ∈ dom(σ), also l ∈ dom(Γ). Then since Γ ∼ σ, we have Γ; Γ(l) `< σ, l >.
Then by Lemma 3.22 Γ(l) has the form q(ref τ), and by Lemma 3.23 also Γ; τ `< σ, σ(l) >. Then
since τ is a component of q(ref τ), by Lemma 3.14 we have σ ` σ(l) 6 � l.

�

15

Lemma 3.25 If Γ; qτ `< σ, v > then Γ; τ `< σ, v >.
Proof By induction on the length of q.

• q has length 0: Then qτ = τ and the result follows.

• q has length k > 0: Then q = qq′. Since Γ; qτ `< σ, v >, by Q-Qual we have Γ; q ′τ `< σ, v >,
and the result follows by induction.

�

Lemma 3.26 If Γ; τ `< σ, v > and Γ; qτ `< σ ′, v >, then Γ; qτ `< σ, v >.
Proof By induction on the length of q.

• q has length 0: Then qτ = τ and the result follows.

• q has length k > 0: Then q = qq′. Since Γ; qτ `< σ′, v >, by Q-Qual we have [[q]](v) and
Γ; q′τ `< σ′, v >. Then by induction we have Γ; q′τ `< σ, v >, and the result follows by
Q-Qual.

�

16

