A Simplified Formal Specification for BGP

Dan Pei!, Dan Massey? and Lixia Zhang'

UCLA! Colorado State University?
{peidan,lixia}@cs.ucla.edu massey@Qcs.colostate.edu
UCLA CSD Technical Report TR040044

November 8, 2004

Abstract

As with those of other protocols, BGP protocol standard[1] specifies the protocol details using lan-
guage description. However, language description can be ambiguous. In this technical report, we present
a formal and short specification for BGP protocol such that most of the important BGP standard details
are captured precisely using mathematic language. This report can be a quick and concise reference of
BGP standard for those who have some basic BGP background.

In this report, we first define the several terminologies in Section 1. Then in Section 2, we define three
categories of protocol functions at one router: operational environment, route filtering and aggregation
policies, and path attribute manipulation policies. Then we use these functions to define the BGP
protocol syntax and semantics requirements in Section 3.

1 Terminology Definitions

e AS Number: a 2-octet non-negative integer
IP address: a 4-octet non-negative integer
IP prefix: IP address/netmask, such as 131.179.0.0/16. Define ipp; < ippy iff ipp; is included by

ipp2.

e BGP path attribute set: attributes=(origin, as_path, next_hop, med, local_pref, atomic_aggregate,
aggregator, community), such that:

origin : € {IGP =0,EGP =1,INCOMPLETE =2}
as_path : is a sequence(assegi,assegs, ... ,asseg,),n > 0 such that:
Vi, 1<i<mn
asseg; = (AS_SET =1,{a1,...,am}),m > 1,
a; = one AS Number, 1 < j < m,where {ai,...,an} is an unordered set, OR

asseg; = (AS_SEQUENCE =2, (by,...,b)),l > 1,
bj = one AS Number, 1 < j < [,where (bi,...,b) is an ordered sequence.

next_hop : IP address

med : four-octet non-negative integer
local _pref : four-octet non-negative integer
atomic_aggregate : € {0,1}

aggregator : AS Number:IP address
community : a set of four-octet values.

2 Functions Given by Administrators and Vendors

BGP provides vendors and administrators with a great flexibility. The vendor may select from a broad
range of implementation options and the administrator can further refine these options and add additional
local policies. For example, the BGP specification imposes some constraints on the route selection process,
but leaves most decisions up to the vendors and administrators. One BGP router may choose to select
routes based on the shortest AS path length, but a second BGP router may ignore the AS path length
altogether and select routes based on the some other local policies. Both routers fully comply with the
BGP specification. In order to capture the full range of BGP in mathematical description, the following
functions must be provided by the vendors and/or administrators.

These given functions fall into three categories. The first category lists the AS numbers for the router
and its peers, the corresponding IP addresses, and other local network topology information. The second
category lists the route filtering and aggregation policies for the router. The third category lists policies
for updating individual BGP path attributes.

2.1 Operational Environment

For a BGP router b, we are given the following:

e Peers(b) = {0,..., P}: a set of potential BGP peer routers. In our notation, Peer 0 will be used to
represent static routes and routes learned from IGP.

e as(z): the AS Number of z, Vz € Peers(b) U {b}. Define as(0)=as(b).

e interfaces(z): a subset of x’s interface IP addresses such that they are known by b.
Define inter faces(0) = inter faces(b).

e ip(p): the IP address of p that is used in the peering session between b and p,
where ip(p) € inter faces(p),Vp € Peers(b) — {0}.

e ipb(p): the IP address of b that is used in the peering session between b and p,
where ipb(p) € inter faces(b),Vp € Peers(b) — {0}.

¢ Function same_subnet(addri,...,addr,) — {0,1} such that addri,...,addr, are IP addresses
and same_subnet(addri, ... ,addrs) = 1 iff addri, ..., addry, all share the same subnet.

e Function multihop(b,p) = 0 iff Yaddr; € inter faces(b),addry € inter faces(p),
same_subnet(addry, addry) = 0.

e EBGP(p): — {0,1} such that EBGP(p)=1, iff as(b) # as(p)

e Internalcost(addr)= the IGP cost from b to addr, which is an integer, and maximum value is
max_internal_cost.

e Length(aspath)=the length of aspath.

e MinRouteAdver(p): the time between two successive advertisements(from b to p) of routes to a
particular destination

e MinRouteOrig(p): the time between two successive advertisements(from b to p) of routes to a desti-
nation in local AS

2.2

Route Filtering and Aggregation Policies
e Function filter(p, direction, nlri, attributes) — {0,1} such that
— p € Peers(b)
direction € {IN,OUT}

nlri is an IP prefix

attributes is a set of BGP attributes

— filter(p, IN,nlri, attributes) = 1 iff the route (niri, attributes) will be accepted from peer p
— filter(p, OUT,nlri, attributes) = 1 iff the route (nlri,attributes) will be advertised to peer p

e aggregates(b) = a set of IP prefixes to be aggregated by b

e Function aggregate(agnlri, p, nlriy, attributesy, ..., nrli,, attributes,) — (attributes,include, exclude)
such that
— agnlri € aggregates(b)
— p € Peers(b)
— Vi,nlri; < agnlri, AND nlri € exclude or nlri € include
— exclude Ninclude = 0
— Vnlri; € include, attributes.med = attributes;.med
— Vnlri; € include, attributes.nexthop = attributes;.nexthop
— if attributes.origin = IGP, then VYnlri; € include, attributes;.origin = IGP

— if attributes.origin = EGP, then Iniri; € include such that attributes;.origin = EGP and
Vnlri; € include, attributes;.origin € {EGP,IGP}

— if attributes.origin = INCOMPLETE, then dnlri; € include such that attributes;.origin =
INCOMPLETE

— attributes.community = any set of community values
— attributes.aggregator = 0, or as(b) : addr such that addr € inter faces(b)

— attributes.atomic_aggregate = 1 if Anlri; € includes such that attributes;.atomic_aggregate =
1

— attributes.med=any med value
— attributes.local_pref=any local_pref value

— attributes.as_path = (assegi, ...,assegy),n > 0 such that

* ifVnlri;, nlri; € include, attributes;.as_path = attributes;.as_path, then attributes.as_path =
attributes;.as_path, nlri; € include

x if a € as_seq such that (AS_SEQUENCE,as_seq) € attributes.as_path, then Vnlri; €
include, a € attributes;.as_path

x if a € as_set such that (AS_SET,as_set) € attributes.as_path, then Inlri; € include,a €
attributes;, as_path

* if @ = a;,1 < i < m, such that (AS_.SEQUENCE, (a1, a, ...,am)) = asseg;, then: Vb =
ar,t <k <m OR b€ assegy,j <k <mn,
if b="b;,1 <z < s, such that (AS_.SEQUENCE, (b1, bs,...,bs)) = assegs AND 1 <t <
u, (assegi,assegs, . ..asseg,) = attributes,.as_path, nlri, € include, then a =b,,1 <y <
z OR a € asseg,,1 < z < t.

* if a = a;,1 <4 < m, such that (AS_SET OR AS_.SEQUENCE, (a1, a2, -..,an)) = asseg;,
then a # ay,V1 <k <m,k #i AND a ¢ assegx,V1 < k <n,k # j.

2.3 Path Attribute Manipulation Policies

e In all of the following function definitions:

p € Peers(b), fp € Peers(b)

— nlri is an IP prefix

direction € {IN,OUT}

attributes is a set of BGP attributes

— function(0, OUT, nlri, attributes) is not defined.

¢ Function setorigin(0, IN,nlri, attributes) — {0, 1,2} and
setorigin(p>0, IN/OUT, nlri, attributes)=attributes.origin.

¢ Function setmed(p, direction, nlri, attributes) — non-negative integer

e Function setlocalpref (p, direction, nlri, attributes) — four-octet non-negative integer such that
attributes.local _pref,if as(b) = as(p)

setlocalpref(p, OUT, nlri, attributes)z{ 0. otherwise

e Function setcommunity(p, direction, nlri, attributes) — a set of four-octet values such that
setcommunity (p>0, IN, nlri, attributes)=attributes.community
If as(p) # as(b),attributes.med # 0, then setcommunity(p, OUT,nlri, attributes)’s default value
must be 0.

e Function setaspath(p, direction, nlri, attributes) — as_path such that

— setaspath(0, IN, nlri, attributes) = 0, setaspath(p > 0, IN, nlri, attributes) = attributes.aspath
— if as(p) = as(b) then setaspath(p, OUT,nlri, attributes) = attributes.aspath
— if as(p) # as(b) then setaspath(p, OUT, nlri, attributes) = (as(b))™ - attributes.aspath

e Function setnexthop(p, fp, direction, nlri, attributes) — IP address, where fp is the the peer from
which the route is learned, such that

— setnexthop(0,0, IN, nlri, attributes) € inter faces(b), setnexthop(p > 0, fp = p, IN, nlri, attributes) =
attributes.nexthop.

— if as(p) = as(b) then setnexthop(p, OUT,nlri, attributes) = attributes.nexthop OR
setnexthop(p, OUT, nlri, attributes) € inter faces(b).

— ifas(p) # as(b) AN Dmultihop(p,b) = 0 then samezubnet(setnexthop(p, fp, OUT, nlri, attributes),ip(p)) =
1 and one of:

* setnexthop(p, fp, OUT, nlri, attributes)=ipb(p) OR

- subset(ip(p), addr)=1 AND addr € inter faces(b) AND setnexthop(p, fp, OUT,nlri, attributes) =
addr

- as(fp) = as(b) AND setnexthop(p, fp, OUT, nlri, attributes) € inter faces(fp)
- as(fp) # as(b) AND setnexthop(p, fp, OUT,nlri, attributes) = attributes.nexthop and
Jaddr € inter faces(b) such that samesubnet(addr,ip(p)) =1
— if as # as(b), multihop(p,b) = 1 then either:
x setnexthop(p, fp, OUT, nlri, attributes) = attributes.nexthop
x setnexthop(p, fp, OUT, nlri, attributes) = ipb(p).

3 Protocol Definition

This section will describe the protocol semantic definition and we assume that several protocol syntactic
functions will take care of the tasks such as maintaining peering section, reporting peer status, checking
the format of incoming update packets, formating the outbound update packets.

3.1

Protocol Syntactic Functions and Environment

T=the current time, and it is a integer.

Peering Session Function:

1, peering session between b and p is in ESTABLISHED STATE at time T,

UP(p>0,T)= { 0, otherwise.

Define UP(0, T)=1. Up(p,T) also maintains the peering session, including sending /processing
OPEN/KEEPALIVE/NOTIFICATION messages.

BGP route update=(wnlri, anlri, attributes, time), such that

wnlri : a set of IP prefixes of the routes to be withdrawn

anlri : a set of IP prefixes of the routes to be announced(wnlri N anlri = ()
attributes : BGP path attribute set.

time : the time the route is received or sent

Any changes of the routes learned from Peer 0 (static routes or routes learned from IGP) will be
translated to a BGP update format, applying any applicable given functions.

Last_Recv(p,T)=the last UPDATE message that b received from p prior to time T'
Time T will increase by 1 after any of the following;:

— Given Functions changed(including policy changes)
— receiving an update from a peer

— UP(p,T) function changes

3.2 Protocol Semantic Definition

These functions are conceptual, the implementation may choose any algorithm as long as they conform to
these definitions.

e Import(p,nlri,attributes) — path attributes such that attributes=

(0, if as(b) € attributes.as_path;
0, if filter(p, IN,nlri, attributes) = 1;
{setorigin(p, IN, nlri, attributes),
setaspath(p, IN, nlri, attributes),
setnexthop(p, p, IN, nlri, attributes)
setmed(p, IN, nlri, attributes),
setlocalpref(p, IN, nlri, attributes),
attributes.atomic_aggregate,
attributes.aggregator,

| attributes.community}, otherwise

e Select(p,attributes): — real number such that:

— Select(p,attributes)=0, iff RIB-Local(attributes.nexthop,T)=

*

_ . . . __ Length(attributes.aspath) __ attributes.origin
Select(p,attributes) =attributes.local_pref +(1 as_aspath _Tengtht)+ (1 W)

-1 __ attributes.med -2 EBGP(p) -3 __ Internalcost(attributes.nexthop) _4
10 + (1 (maz_med—f—l)) * 10 + 2 + 10 + (1 (mazx_internal_cost+1)) * 10 +

_ router_id -5
(1 (maw_router_id+1)) 10

e Export Policy function:{p, fp, niri, attributes} — path attributes such that Export(p,fp,nlri, at-
tributes)=

(0, if ip(p) = attributes.next_hop;

0, if filter(p, OUT,nlri,attributes) = 1;
{setorigin(p, OUT, nlri, attributes),

setaspath(p, OUT, nlri, attributes),

setnexthop(p, fp, OUT,nlri, attributes),

setmed(p, OUT, nlri, attributes),

setlocalpref(p, OUT, nlri, attributes),
attributes.atomic_aggregate,

attributes.aggregator,

setcommunity(p, OUT, nlri, attributes)}, otherwise.

\

e Adj-RIB-In(p, nlri,T) — path attributes such that attributes=

0, if UP(p,T) = 0;

0, if UP(p,T) =1 AND nlri € Last_Recv(p, T).wnlri;
Last_Recv(p, T).attributes, if UP(p,T) =1 AND nlri € Last_Recv(p,T).anlri,
AdjRIBIn(nlri,p,T — 1), otherwise.

e RIB-Local(nlri,T)=(fp, attributes)=(ppest, Adj-RIB-In(ppest, nlri, T')), prest € peers(b) such that:
select (ppest,Adj-RIB-In(ppest,nlri, T))= maxpepeers(s) {select(p, Import(p, nlri, Adj-RIB-In(p,nlri,T))}
> 0.

e Adj-RIB-Out(p,nlri,T):— path attributes such that

— Adj-RIB-Out(p,nlri,T)=Export(p,RIB-Local(nlri,T).fp, RIB-Local(nlri,T).attributes) iff niri ¢
aggregates(b) OR

— Adj-RIB-Out(p,nlri,T)=agattributes, if niri € aggregates(b) such that:

x aggregate(nlri, p, nlriy, attributesy, . .., nlriy,, attributes,) = (agattributes, include, exclude),
and

* |include| > 2.

e setatomicaggregate(p,nlri,attributes)=
1, if attributes.atomic_aggregate = 1
1, nlri € aggregates(b), and 3nlri;, < nlri, such that :
Adj — RIB — In(p,nlriy,, T) # 0, ANDAdj — RIB — Out(p, nlri,, T) =0
0, otherwise

e Adj-RIB-Out change sequence RibOutSeq(p,nlri,T) is a sequence of path attributes:
(attributesy,. .., attributes,,) such that:

— V1 < i < m,attributes; = Adj — RIB — Out(p, nlri, t;),t1 < ... < t,, <T, AND

— V1 < i < m, attributes; # attributes;+1 AND

— V1 < i < m, there is no Adj-RIB-Out(p,nlri) changes between ¢; and t;11 or between ¢,, and T.
¢ Advertisement sequence AdvSeq(p,nlri,T)=(ay,...,a,), such that:

— a; is the update that b sent to p, AND
— Vi, EITHER nlri € a;.anlri, OR nlri € a;.wnlri, AND
— ai.time < ... < an.time < T, AND

— V1 < i < n, there is no update a from b to p such that nlri € a.nlri AND:
a;.time < a.time < a;y1.time OR ay.time < a.time < T

3.3 Requirements
Vp > 0,nlri, T, AdvSeq(p,niri,T) = (a1, ..., a,) must satisfy:
R 1 Advertisement Frequency Requirements:

e if as(b) # as(p), then: V1 < i < n, if nlri € a;.anlri AND nlri € a;jy1.anlri, then
a;+1-time — a;.time > MinRoute Adver(p) * 0.75.

e V1 < i < mn, if aj11.attributes.aspath = (), then:
a;+1-time — a;.time > MinRouteOrig(p) x 0.75.

R 2 dB, such that:

e ifVi < B, Adj-RIB-Out(p,nlri, T) = Adj-RIB-Out(p,nlri,C—i) # 0, then nlri € an-anlri, AND ay,.attributes
Adj — RIB — Out(p, nlri, T).attributes.

e if Vi < B, Adj-RIB-Out(p,nlri,T) = Adj-RIB-Out(niri,C — i) = 0, then nlri € an.wnlri,AND
nlri € an_1.nlri.

R 3 Sequence (ay.attributes, ..., an.attributes) must be a subsequence of RibOutSeq(p,nlri,T).

References

[1] Y. Rekhter, T. Li, and S. Hares. Border Gateway Protocol 4. http://www.ietf.org/internet-drafts/draft-
ietf-idr-bgp4-26.txt, Oct 2004.

