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Abstract. Previous study on the characteristics of the Hidden Web has
largely been about the content residing on Hidden-Web sites. In this
paper we study how users access the Hidden Web by investigating the
Web traffic log recorded at the UCLA Computer Science Department.
For this purpose, we first develop a method that automatically analyzes
a Web traffic log and identifies the HT TP requests that correspond to the
Hidden-Web traffic. We then investigate the Hidden-Web traffic to study
the current usage and query patterns to the Hidden Web. Our analysis
suggests that the Hidden Web is currently being under-explored by the
users, given the size of the Hidden Web and its user traffic. Additionally,
we observe some interesting query patterns that can be utilized to provide
better searching services to the Hidden Web.

1 Introduction

The set of pages that are accessible only through search interfaces are often called
the Hidden Web or the Deep Web (e.g., the papers in PubMed! and CiteseerQ). This
is in contrast to the Surface Web which is the set of pages that can be reached by
clicking through static links. Due to their enormous estimated size and potentially
high-quality content, the Hidden Web has recently attracted significant attention from
the research community. For example, Chang et al.[1] have estimated that there exist
around 127,000 to 333,000 Hidden-Web sites on the Internet. Another independent
study [2] suggests that the amount of information in the Hidden Web is 400 to 550
times larger than that in the Surface Web.

Our work in this paper is motivated by recent research in building a more effective
metasearcher. A metasearcher is a program that simplifies the interaction between
the user and the Hidden Web. It functions like a “hub” to all the Hidden-Web sites
and automatically redirects users’ queries to the most relevant Hidden-Web site(s). To
collect data for building an effective metasearcher, a number of surveys [1, 2] have been
conducted from a “content-oriented” perspective by studying the information residing
on Hidden-Web sites. Different from these existing efforts, we take a “access-oriented”
perspective in this paper and explore how users access the Hidden Web and what
kinds of queries they ask. Our basic approach is to collect the Web traffic log from an
organization and design an automatic method to analyze the log. We believe that our
analysis of Hidden-Web access pattern will provide valuable data in building a more
useful metasearcher and in understanding the characteristics of each Hidden Web site.
More specifically, our analysis in this paper is centered around the following aspects:

! http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
http://citeseer.ist.psu.edu/



— Hidden-Web usage. How heavily is the Hidden Web used in users’ daily Web
surfing? That is, how much traffic goes to the Hidden Web, compared to the traffic
that goes to the Surface Web? Does the Hidden Web receive the amount of usage
proportional to the amount of information it contains, or is it currently under-
explored? What are the most heavily-used Hidden Web sites? The answers to
these questions help us better understand how significant a role the Hidden Web
is playing in today’s Web surfing activities.

— Hidden-Web query pattern. What kinds of regularities can we observe from
the way users issue queries to various Hidden-Web sites? In particular, we are
interested in the following two kinds of patterns:

e Temporal locality of queries. We expect some queries representing the
current “hot” topics are very likely to be asked again in a short period of time.
Given the temporal locality, the metasearcher may “cache” or even “pre-fetch”
relevant results from Hidden-Web sites, thus reducing the response time and
potentially improving the quality of metasearching.

e Topical locality of queries. Usually a Hidden-Web site has a strong topical
focus and most queries issued to the site are relevant to the topic. Thus, if
two Hidden-Web sites have similar topical focus, they will get many common
queries from the users, while two sites of completely different topical focus will
not share many queries. We may exploit this correlation between the queries
and the sites to identify clusters of Hidden-Web sites on a particular topic and
clusters of queries relevant to the topic.

The prerequisite to these studies is the accurate and fully automated analysis of the
Hidden-Web traffic, which is a nontrivial task. For example, how do we define Hidden-
Web traffic and how do we precisely separate it from the rest of the Web traffic?
Further, how can we extract queries from the log without any human intervention,
since presumably every Hidden-Web site has its own query format?

The rest of the paper is organized as follows: In Section 2 we review related works.
We then answer the above questions and propose our Hidden-Web-traffic-identification
as well as query-extraction methods in Section 3. In Section 4 we study the current
Hidden-Web usage, and in Section 5 we explore Hidden-Web query patterns. Section 6
concludes the paper.

2 Related work

Recent Hidden-Web research [1-11] has largely concentrated on enhancing the effec-
tiveness of a metasearcher by exploring the content residing on each Hidden-Web site.
In contrast, this paper explores the Hidden-Web access and query patterns.

General searching behavior of Web users has been intensively studied over the
past few years. While existing works have largely focused on how Web users query
commercial search engines to gain access to the Surface Web, few have investigated
how Web users access the Hidden Web. A comprehensive review of the existing works
can be found in [12] and here we only highlight a few representative ones. In works of
Hoelscher [13], Silverstein et al. [14] and Jansen et al. [15, 16] the following issues have
been studied: 1) the general query length, 2) use of boolean operators, 3) query behavior
within a session, 4) correlation among single query words, 5) how much percentage of
search results is delivered to the user, etc. Beyond simple query statistics, Broder [17]
and Rose et al. [18] have studied and classified the intentions behind Web users’ queries.
Further, Beeferman et al. [19] and Davison et al. [20] have proposed to mine the Web
query log to discover clusters of similar queries and similar URL’s.



HTTP traffic log has also been intensively explored in the research area
of Web caching. A comprehensive list of literature articles can be found at
web-caching.com [21]. Existing Web caching research typically focuses on utilizing
HTTP traffic incurred by visiting static Web pages, i.e., Surface-Web traffic, whereas
we in this paper concentrate on Hidden-Web traffic.

3 Experimental setup and methods

Our method is to study an organization’s Web traffic log and identify Hidden-Web
access patterns embedded in the log. For this purpose, we have collected the log from
the UCLA Computer Science Department from May 21 2003 till August 6 2003, over
a period of 11 weeks. Our log involves 601 Web clients in the department and 65,000
different WeDb sites from outside. To explain how we analyze the log, in Section 3.1 we
first introduce the related terminology. In Section 3.2 we formally define “Hidden-Web
traffic.” Based on the definition, we propose our method to identify Hidden-Web traffic,
a two-stage process described in Section 3.3 and Section 3.4.

3.1 Content of the HTTP traffic log

To better illustrate our method, it is necessary to introduce related HTTP terminology.
Readers familiar with the HT'TP protocol [22] may skip this section.

Each HTTP message has two components, a header and a body. Due to storage
constraints, our log only records only the headers of HTTP requests.

1) Time: 1083258012.860049 1) Time: 1083232999.662768

2) Method: GET 2) Method: GET

3) Requested URL : citeseer.ist.psu.eduw/cs?adddoc=Yes 3) Requested URL : citeseer.ist.psu.edw/cs?g=HTTP
4) Referer: citeseer.ist.psu.edu/cs +log& submit=Search+Documents& cs=1

4) Referer: citeseer.ist.psu.edu/cs
(a) A reguest generated by clicking a static link (b) A request generated by submitting a query

Fig. 1. Sample headers of GET requests

Header content. For each request header we keep 1) the time stamp when the query
was issued, 2) the method used by the request, i.e., GET or POST, 3) the URL on the
remote Web site that is being requested, and 4) the URL of the referrer page. Due to
privacy concerns, all client-related information (client’s IP and port) are anonymized.
Figure 1(a) and Figure 1(b) show sample headers that use the GET method.

Referrer. The referrer field will be heavily exploited later by our proposed methods,
so we explain it in more detail. The referrer of a HT'TP request represents a Web page
through which the current request is initiated. For example, from the homepage of
Citeseer (citeseer.ist.psu.edu/cs), a user clicks on the link “Submit Documents,” which
results in the request shown in Figure 1(a). Since this request is initiated through
Citeseer’s homepage, “citeseer.ist.psu.edu/cs” is the referrer.

3.2 Definition of Hidden-Web traffic

We define Hidden-Web traffic as the set of all “search requests” that carry user queries
issued to various Hidden-Web sites, plus the requests “spawned” from these “search
requests.” We illustrate this definition with an example scenario in Figure 2:

In the figure, user Joe Bruin first loads his homepage (request A, the first figure).
Once he loads the homepage, he clicks on one of the links “Citeseer,” which generates
the HTTP request for “citeseer.ist.psu.edu/cs” (request B, the second figure). After
loading the Citeseer homepage, he submits a query “HTTP log” through its search
box, which generates request C. Among the search results returned by Citeseer, the
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Fig. 2. A series of requests containing both Surface-Web and Hidden-Web traffic

user clicks on one link to view the literature article he is interested in (request D). The
returned article may also contain further links to other articles, and by clicking on the
links, Joe reaches another one (request E). We classify request A and B as Surface-
Web traffic because they are incurred by following static links. We classify request C
as Hidden-Web traffic because it contains the user query. Further, although request
D and E are generated through static-link clicking, we classify them as Hidden-Web
traffic because they are consequences of searching, “spawned” from request C. Two
concerns may arise regarding this definition.

1. Since request B leads to the display of Citeseer’s search box, it may be classified as
either Surface-Web or Hidden-Web traffic. We feel that viewing a search box is still
not a definitive sign that the user has started accessing the Hidden-Web, because
that user may further click static links in the page and thus keep herself within the
scope of the Surface Web. Therefore in our study we start counting Hidden-Web
traffic only when we observe a query-embedded request (such as request C), and
classify request B as Surface-Web traffic.



2. The way we classify request D and E might lead to the inclusion of Surface-Web
traffic, because a user may navigate from a search-result page (e.g. the result of
request C) to some other Surface-Web sites if the page contains a link to the
Surface Web. To address this issue, we consider a “spawned” request as part of
the Hidden-Web traffic only if the request is sent to the same Web site that has
spawned it.

Given this definition, we can decompose the task of identifying Hidden-Web traffic
into the following two subtasks:

— Identify the “search request” (e.g., request C). In Section 3.3 we explain our
method to handle this subtask.

— Identify requests “spawned” from a “search request” (e.g., request D and
E). Section 3.4 presents our method for this subtask.

3.3 Identifying search requests

Formally, we define a search request as a HTTP request that carries a user’s query,
e.g., request C in Figure 2. A search request may use either the GET or the POST
method. In this paper, we primarily focus on the requests that use the GET method.
Our preliminary investigation indicates that the majority of POST requests are used
for authentication purposes (since the site administrators do not want to explicitly
show the user ids and passwords as part of a URL, which is the case for the GET
method), while many of the search boxes use the GET method.

To identify GET search requests, we need to distinguish them from the rest of the
non-search requests, which is a nontrivial task. For example, the requests in Figure 1(b)
is a search request, whereas the one in Figure 1(a) is not. However the two requests look
very much alike, making it hard for the program to distinguish. We first considered the
following two heuristics as a way to distinguish the Hidden-Web traffic, but we found
that they led to too many false-positives:

— Classify based on domain names. The URL of a search request must at least
starts with the domain name of some Hidden-Web site, e.g. citeseer.ist.psu.edu.
Thus we might classify requests based on their domain names. However this heuris-
tic will result in too many false-positives because a typical Hidden-Web site also
provides static links pointing to some of its Web pages. When users click on these
static links, they will incur requests (e.g. Figure 1(a)) that start with a quali-
fied domain name but do not belong to search requests. In addition this heuristic
requires compiling a list of Hidden-Web sites, which might not be fully automatic.

— Classify based on request format. To carry the user-issued query to the remote
Hidden-Web site, a search request follows a special format (e.g. Figure 1(b)): It
consists of two parts, divided by a “?” symbol, with the second part being a list
of parameters embedding the user’s query. However, a great number of non-search
requests generated by clicking static links also follow this format (e.g. Figure 1(a)),
making this format a non-unique feature to detect search requests. As our results
will show, in our dataset only about 4% of the requests following this format are
genuine search requests.

To remedy the shortcomings of these heuristics, we design the following automatic
two-phase procedure. In phase one, we exploit the format of search requests, same as
the second naive heuristic. In phase two, we filter out false-positive cases that pass the
test in phrase one. In the following we explain this procedure in more details.



Phase one, detecting candidate search requests with the desirable format.
In analyzing the format, we note the URL of a search request consists of two parts:

— A base URL. The base URL is the part before the “?” symbol, e.g., “cite-
seer.ist.psu.edu/cs” in Figure 1(b). The base URL corresponds to a search interface
on the Hidden-Web site that gets user queries, processes them and dynamically
generates search results. Note that it is possible for a Hidden-Web site to host
several of such base URL’s, each representing a different search function.

— A parameter list. This is the part after the “?” symbol, e.g., “q=HTTP+log&
submit=Search+Documents&cs=1" in Figure 1(b). A parameter list consists of
multiple “(parameter name) = (value)” pairs, separated by “&” symbols. One of
the pairs carries the user-issued query.

<search request> ::= <base URL> *?’ <parameter list>
<parameter list> ::= <parameter item> {‘&’ <parameter item>}
<parameter item> ::= <parameter name> ‘=" <value>

Fig. 3. A simple grammar to parse search requests

Given this format, we can design a simple grammar to parse the search requests as
shown in Figure 3. In phase one, only those requests whose URL’s can be parsed by
this grammar will be considered as potential search requests.

Phase two, filtering out false-positives. Requests that pass the test of phase
one may be non-search requests generated from static-link clicking (e.g., Figure 1(a)),
representing false-positive cases. To filter them out, we propose a “simulated-query-
submission” technique as follows: A genuine Hidden-Web search request is generated
only when a user interacts with a Web page containing a search box (more precisely,
an HTML form) and issues a query through that box. Therefore, any search request
will have a referrer URL pointing back to the page with the HTML form where the
request was originated. Hence, once we find an HTML form in the referrer page, our
program can “simulate” submitting a query by pressing the submit button without
filling any text boxes. If the HTML form is indeed the from that the user have used,
our “simulated request” should have the same format as the user’s request. All static
URLSs embedded in a page that have passed our phase-one test (e.g., Figure 1(a)) would
not pass this test, because the request formats would be different.

To implement this criterion, our program first downloads the referrer Web page.
We then use HttpUnit [23], an open-source Web page parsing and testing tool, to parse
the referrer Web page and find out the HTML forms. For each form we use HttpUnit
to “simulate” a submission, without filling in any query terms. This “simulated sub-
mission” will generate a “simulated request” which can be captured by our program.
If the simulated request matches with the actual request in the log, except that the
simulated request has empty parameters (because we have not filled them in during
simulation), then we classify the actual request in the log as a search request; otherwise
it is a false positive.

Extracting the base URL and the query from a search request. After we
identify a search request, we can extract the following two pieces of information critical
to our later analysis.

— The base URL. Studying the base URL’s allows us to observe the subject distri-
bution and popularity of the Hidden-Web sites currently being accessed. The base
URL can be easily extracted by using the grammatical rules in Figure 3.



— The user-issued query. This is for the study of Hidden-Web query pattern.
The query is embedded in the second part, the parameter list (Figure 3). The
challenge for query extraction is, from the parameter list alone, a program cannot
decide which parameter item contains the query. For example, the three items
in Figure 1(b) “q=HTTP+log,” “submit=Search+Documents” and “cs=1" looks
identical. To solve this problem, we again exploit the extra information provided
by the referrer Web page. There is a one-to-one correspondence between 1) each
text input box in the referrer Web page to which the user types in a query and
2) each parameter item in the search request carrying the query. Detecting that
correspondence allows our program to identify the correct item in the parameter
list and further extract the query.

3.4 Identifying “spawned” requests

Given that we are able to detect search requests, our next task is to detect requests
“spawned” from a search request (e.g., request D and E in Figure 2). To detect such
requests, conceptually we can backtrace the path of referrers, and see whether eventu-
ally we hit a search request. In practice, to save computation, we implement a method
similar to the standard forward inferencing in executing logic programs (e.g. Datalog)
[24].

4 Hidden-Web usage

In this section we first study the scale of current Hidden-Web usage, by quantifying
the amount of Hidden-Web traffic. We further investigate the topic and popularity of
the Hidden-Web sites that appear in the traffic.

4.1 Number of search requests and base URL’s involved

Our traffic log over the 11 weeks contains a total number of 3,556,000 HTTP requests.
Using the method described in Section 3.3 we first detect 90249 search requests. In
these search requests 511 distinct base URL’s are involved. Some base URL’s represent
general search engines (e.g. Google or AltaVista), not providing the content of any
Hidden-Web site, but rather serving as a “gateway” to the Surface Web. Therefore, we
further exclude these base URL’s and the corresponding search requests by manually
compiling a list of general search engines. This exclusion reduces the number of base
URL’s to 457, and the number of search requests to 8847.

4.2 Hidden-Web usage

Using the method in Section 3.4 we identify 21667 requests “spawned” from the 8847
search requests. Combining these two parts leads to 30514 requests in total, which are
counted as the Hidden-Web traffic. Thus, among the 3,556,000 requests in total, 0.86%
percent belongs to the Hidden-Web, and the other 99.14% belongs to the Surface Web.
This result shows that the Hidden Web is far under-explored considering the amount
of information in the Hidden Web — it is estimated that the Hidden Web contains as
much information as the Surface Web or even larger [2]. We may have observed this
disproportionately small access to the Hidden Web due to one of the following reasons.

— The lack of a convenient, centralized portal to the Hidden Web (analogous to
Google in the case of the Surface Web) might have hindered its wide usage. Without
convenient central portal like Google, it can be just too cumbersome for Web users
to memorize a comprehensive list of Hidden-Web sites that are relevant to the
user’s information need and visit them individually in their daily Web surfing.



— The poor performance of certain Hidden-Web sites in retrieving relevant informa-
tion (or the low quality of their contents) might have prevented the popularity
of these sites from growing rapidly. Currently the searching capabilities of some
Hidden-Web sites are still quite primitive. Given such primitive capabilities, Web
users tend to stay within the Surface Web, where they can get their queries an-
swered by general search engines that have implemented much more advanced and
sophisticated searching techniques.

We have also studied statistics on the evolution of Hidden-web usage. Roughly, our
results show the average amount of Hidden-Web traffic remains constant within the
11 weeks, but there exist significant fluctuations between different times of the day
and between different times of the week. For example, we have found the Hidden-Web
usage on a weekday is generally twice to three times heavier than that on a weekend
day. Within a day, we observe the heaviest Hidden-Web traffic occurs from 12pm to
8pm and the lightest from 4am to 8am.

4.3 Popularity and topics of Hidden-Web sites

In the next task we study which portion of the Hidden Web has been the “hottest.”
To do that, we quantify the popularity of each Hidden-Web site by the number of
queries it receives. We have listed the top-five Hidden-Web sites in terms of the total
number of queries and the number of distinct queries they receive in Figure 4 and
Figure 5, respectively. As the results show, Citeseer and dictionary Web sites represent
the “killing applications” inside the Computer Science Department. A possible reason
is users from our specific domain are largely exploring the Hidden-Web to assist their
research and paper writing. We also have studied the relationship between each site’s
popularity and its ranking, and expectedly the relationship exhibits a power law, a
characteristic similar to what has been reported about the Surface Web [25].

Base URL Total # Base URL # of distinct
of queries queries
citeseer.nj.nec.com/cs 954 webster.com/cgi-bin/dictionary 812
webster.com/cgi-bin/dictionary 862 citeseer.nj.nec.com/cs 757
dictionary.reference.com/search 671 dictionary.reference.com/search 637
dictionary.cambridge.org/results.asp|224 dictionary.cambridge.org/results.asp[211
yp.yahoo.com/py/ypResults.py 209 thesaurus.reference.com/search 185

Fig. 4. Top base URL’s ranked by the total ~Fig.5. Top base URL’s ranked by the
number of queries received number of distinct queries received

4.4 Topic distribution

In the next task, we study the topics of the 457 search interfaces. We use the first
two levels of Yahoo! directory as our “taxonomy.” We randomly sample one third of
the 457 search interfaces and manually identify the topic of each interface. Figure 6
shows the topic distribution of the sampled interfaces. For instance, 11.04% of the
search interfaces belong to “Business > Shopping.” The top-five topics are highlighted
in bold. Note the search interfaces in these five topics may not be the most “popular”
ones in terms of receiving the most queries. The latter type of popularity is explored

UeBt- Popularity of search interfaces

We quantify the popularity of each search interface by the number of queries it receives.
To do that, we use the procedure described in Section 3.3 to extract the queries issued



1% level topic 2" level topic Distribution 1% level topic 2" |evel topic Distribution
Art na 1.30% News Newspapers 1.95%
Business Shopping 11.04% Web Directory 0.65%
B2B 10.39% Weather 1.30%
Finance 5.19% Health General 1.30%
Employment 1.30% Recreation Travel 3.90%
Computer Programming 5.84% Auto 2.60%
Software 3.90% Reference Dictionary 14.29%
Products 2.60% Phone & Address 1.30%
Entertainment Music 5.19% Society Cultural 1.95%
Movie 2.60% Religious 1.30%
Education Higher Edu 8.44% Events 0.65%
Government U.S. 3.25% Relationships 0.65%

Fig. 6. Topic category distribution of the search interfaces visited

to every search interface. We then rank the search interfaces in a descending order
of their popularity, and show the result in Figure 7 and Figure 8. In both figures, the
relationships exhibit a power law. In fact, in Figure 7, only 4.6% of the search interfaces
receives more than one query per day, whereas 43.1% of the search interfaces receives
only one query in the entire period of 11 weeks. We observe the exponent to be 1.38
and 1.33, for the two graphs, respectively.

/lg(y) = -1.38xIg(x) +3.55 Ig(y) = -1.33x Ig(x) + 3.42

1000,

total # ot queries
# of distinct queries

1

10 100, 1«
rank of search interfaces

rank &f search iffterfaces

Fig. 8. The number of distinct queries re-
ceived by each search interface vs. its rank

Fig. 7. The total number of queries re-
ceived by each search interface vs. its rank

To take a closer look at the data, we listed the top five search interfaces either by
the total numbers of queries they receive (Figure 4), or the number of distinct queries
(Figure 5). Interestingly, besides Citeseer, the “killer applications” inside the Computer
Science Department are Yahoo! yellow page and online dictionaries.

4.6 Query arrival pattern

In the next experiment, we verify whether the Poisson process adequately models the
query arrival pattern. We know that if the query arrival pattern follows the Poisson
process, the query-interarrival time (the length of the interval between two consecutive
queries) follows the exponential distribution, and vice versa [26]. To verify, we first
identify all the query-interarrival time for the search interface Citeseer. We then show
the histogram of the query-interarrival time in Figure 9(a), with the frequency (y-
axis) shown in logarithmic scale. We expect to see a linear curve in order to verify
the exponential distribution. However, Figure 9(a) fails to exhibit this linear trend.
Suspecting the distribution may again follow the Zipf-law, we redraw the data by
changing both the x-axis and the y-axis to logarithmic scale, as shown in Figure 9(b).
Surprisingly, we observe a linear trend which suggests the power-law distribution fits
the data better. To obtain stronger support for our finding, we repeat this process
on Webster, and show the distribution in Figure 9(c). Citeseer and Webster are the
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most “popular” search interfaces and have more sufficient statistics than other search
interfaces. To check the distribution on those with less significant statistics, we focus
on the group of search interfaces that receive 20 to 30 queries, which is 21 in number.
Because of potentially insufficent data, we merge the distributions generated for each
of these 21 search interfaces, as shown in Figure 9(d). In all figures, we observe a strong
evidence that queries in our study may not follow the Poisson arrival process. Instead,
a power-law distribution seems to better model the query-interarrival time.

5 Hidden-Web query pattern

In this section we study Hidden-Web query patterns, and in particular, the temporal
locality and topical locality of queries. We first report general statistics about the query
words in Section 5.1, and then explore the two patterns in Section 5.2 and Section 5.3
respectively.
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5.1 General statistics

As reported before, from the 11-week log we have extracted 8774 multi-word queries.
We segment these multi-word queries into single words using space, comma, ‘-,” ‘+’ and
quotation marks as delimiters. 10298 single words are identified, among which 5853 are
unique. For each unique word, we count the times it occurs in the log. We rank the
words in a descending order of their frequency, and show the relation of frequency vs.
rank in Figure 10. Not surprisingly the distribution exhibits a power law, with the
exponent being 0.51. The points in the lower-right flat segment represents words that
occur only once (frequency = 1), which are 4093 in number. This accounts for 39.7%
among all the 10298 occurrences of words, 69.9% among all the 5853 unique words. The
other 1760 unique words reoccur in the log, making up 60.3% of all the occurrences of
words.

[Word [Frequency]

Iy (name, hidden) 55
Q ’
§ lg(y) = -0.51x Ig(x) + 1.83 90024 I8 1day 2 days
g (name, hidden) 32 & Y N
”‘;") wireless 29 WA Wa Wa
e ca 24 } 1 } >
5]
2 90095 22 We Ve time
8 computer 21
<]
o luke 21 1 day 2 hours
g i i o http 19

rank of query words (name, hidden) 17

Fig. 10. Word frequency Fig.11. Top-10 words Fig.12. Sample occur-
distribution that are frequently-asked rence intervals for two
words wa and wg

Figure 11 lists the top 10 words with their frequency. (Stop words [27] such as
“a,” “the,” etc. are filtered out from this list.) Some popular words are the names of
individuals in our department, so we choose not to show them. It is not surprising to
see UCLA’s zip code (“ca 90024” and “ca 90095”) appearing in the top-10 list, given
Yahoo! Yellow Pages is one of the “killer applications” (Figure 4).

5.2 Temporal locality

‘We may intuitively expect that the query words issued to Hidden-Web sites may exhibit
temporal locality: If a query word is just issued, it is likely to be issued again in the near
future. If the temporal locality indeed exists and if a metasearcher can “predict” the
queries that are likely to be issued again in the future, the metasearcher may “cache”
the results from previous queries or even “pre-fetch” related contents from Hidden-Web
sites, thus improving both the quality and response time of metasearching.

To study the temporal locality, we focus on the 1760 reoccurring words that account
for 60.3% of all the word occurrences. For each word, we compute the interval between
any of its two adjacent occurrences. For example, sample intervals of two words w4
and wp are shown in Figure 12. We combine the intervals of different words altogether
and show the distribution in Figure 13 in linear scale, and in Figure 14 in log scale. The
rightmost bars in both figures are significantly larger because they include all intervals
larger than 29 days. From the results we can make the following observations:

— The majority of the intervals are short. The 1760 reoccurring words altogether yield
4445 intervals, among which 2316 (52.1%) intervals are shorter than one day (rep-
resented by the leftmost bar in Figure 13). Roughly this means the metasearcher
expects to see 30% (60%x50%) of the words reoccurring in one day.
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— Figure 14 suggests the overall distribution might be resulted from one distribution
superimposed upon another: Excluding the leftmost bar, the distribution seems
to follow a log-linear trend, suggesting an exponential distribution. On top of
this distribution is the distribution of these short intervals (the leftmost bar),
representing the “burst arrival” of some “hot” queries.

This result leads to a very interesting future research topic, which is how the
metasearcher may accurately predict “hot” queries that frequently reoccur, so that
it may perform “caching” and “pre-metasearching” to improve its quality of result.

2316

Count

b 123456 7 8 9101112131415161718192021222324252627 2829-29
Interval (days)
Fig. 13. Interval distribu-

tion (linear scale)

2316

Count
5

T

Interval (days)
Fig. 14. Interval distribu-
tion (log scale)

communication

ieeexplore.ieee.org/
xpl/conferences.jsp

ieeexplore.ieee.org/
xpl/periodicals.jsp

Fig.15. A fragment of the
bipartite graph

5.3 Topical locality

We often observe multiple Hidden-Web sites that are created with a similar topical
focus, e.g., Citeseer and ieeexplore.ieee.org. When users issue queries to these sites, their
queries also tend to be related to this topical focus. Detecting this topical correlation
or topical locality embedded in users’ Hidden-Web usage allows us to discover similar
queries and similar Hidden-Web sites that have a strong correspondence among each
other. This helps the metasearcher to better understand the “semantics” of the queries
and the corresponding Hidden-Web sites.

This correspondence between queries and Hidden-Web sites can be mathematically
explored by formulating a bipartite graph, where the vertices on one side represent all
the query words, the vertices on the other side represent all the Hidden-Web sites. An
edge is drawn between a query word and a site if the word has been issued to that
site. A fragment of this bipartite graph is shown in Figure 15. The fan-out on the
left-hand-side is much smaller than that on the right: The number of different sites a
word is issued to is much small than the number of different words a site receives. In
our data, the maximum fan-out on the left is 16, whereas the maximum on the right
is 1154.

To discover the correspondence between words and sites from this bipartite graph,
we are particularly interested in the i-j cores [28] that are complete bipartite subgraphs
having ¢ words on the left and j sites on the right. An i-j core indicates a strong
correspondence because of the following intuition: When a cluster of, say 3, Hidden-
Web sites all receive a common query word, e.g. “processing” in Figure 15, it is still
unclear whether these sites share the same topic or they simply receive the same word
by chance. However, if additionally these sites all receive two other query words, e.g.
“communication” and “signal,” we are much more confident that they have the same
topical focus. Further, the fact that all these query words are issued to the same set of
sites is a reliable evidence that these words represent related topics. The correspondence
in this example can be identified by detecting 3-3 cores.
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Using a similar algorithm as described by Kumar et al. [28], we have detected all i-5
cores in the bipartite graph, with ¢ ranging from 3 to 10 and j from 3 to 6. The number
of these i-j cores are shown in Figure 16. Note that an i-j core has many “sub-cores,”
and such “sub-cores” are not counted for the numbers listed in Figure 16. In other
words, the only enlisted 9-3 core (i = 9,5 = 3) is not a subgraph of the enlisted 10-3
core (i = 10,5 = 3).

Manually inspecting the detected i-j cores reveals that the results are highly mean-
ingful. Some i-j cores with large i or j values are shown in Figure 17. The first core
includes computer or communication related query words and sites; The second core
is about music and entertainment; The third core includes dictionary-related sites and
the words being looked up in these dictionaries; The fourth core includes sites that
involves spatial queries. This result suggests that mining the bipartite graph with i-j
core detection is very promising in discovering similar query words, similar sites and
the correspondence between the two.

i (# of query words)
3 4 5 6 7 8 9 10
i 3 11 3 2 0 4 0 1 1
(# of base 4 2 2 0 1 0 0 0 0
URL’s) 5 1 0 0 0 0 0 0 0
6 1 0 0 0 0 0 0 0
Fig. 16. Number of i-j cores
[ [4] aset of words (of cardinality 4) | a set of base URL’s (of cardinality j) |
10|3| communication, signal, processing citeseer.nj.nec.com/cs,
computing, vlsi, systems, ieee ieeexplore.ieee.org/xpl/conferences.jsp,
computer, aided, design ieeexplore.ieee.org/xpl/periodicals.jsp
9 (3 stone, all, well, lopez, frankie search.launch.yahoo.com/search/lsearch/video,
11, madonna, pilots, temple search.launch.yahoo.com/search/lsearch/all,
search.launch.yahoo.com/lsearch
7 3| programmability, emerge, degrade webster.com/cgi-bin/dictionary,
but, prevalent, symmetric, parallelize dictionary.reference.com/search,
thesaurus.reference.com/search
3 |6 90024, 90025, 90034 autotrader.com/findacar/findacar_form2.jtmpl,
movies.yahoo.com/showtimes/showtimes.html,
verizonwireless.com/zip/plsql/vzw _zip.zip,
weather.yahoo.com/search/weather2,
carsdirect.com/used_cars/search,
carsdirect.com/build/style

Fig.17. Sample i-j cores

6 Conclusion and future work

In this paper we explored the current usage and query pattern of the Hidden Web. Our
preliminary study on a 11-week Web traffic log led to the following findings:

— In terms of the amount of usage, the Hidden Web is currently under-explored, and
the amount of Hidden-Web traffic is disproportional to the amount of information
in it.

— In terms of query pattern, we have observed both temporal locality and topi-
cal locality of query words from the log. Such patterns can be exploited by the
metasearcher to provide more effective guidance to Web users in accessing the
Hidden Web.

In our preliminary study we have excluded POST requests because of the limitation
of the dataset. Right now we are recording a more complete HTTP traffic log that
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permits us to study both GET and POST requests over a longer period of time. We
plan to extend our existing study to this enhanced dataset.
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