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Abstract 
Wireless sensor network applications interact with 

the physical world through analog sensors. However, 
decisions derived from flawed sensor measurements can 
adversely impact the correctness of the overall sensor 
network findings. To improve the reliability of decisions 
and minimize the impact of faulty sensor measurements, it 
is important to have a distributed scheme that enhances 
the trustworthiness of result by exploiting the presence of 
redundant data. In this paper, we present Confidence 
Weighted Voting (CWV), a distributed technique that can 
improve the underlying data reliability and fault toler-
ance of various sensor network applications. We exam-
ined CWV against Majority Voting (MV) and Distance 
Weighted Voting (DWV) techniques, and contrasted the 
level of data reliability of each approach in the prevalent 
presence of flawed sensors. The results show that CWV 
can consistently and substantially outperform the other 
two distributed schemes by providing as much as 49% 
more resiliency against faulty sensor measurements.  

 
1. Introduction 

With the rapid advances in wireless communication 
and embedded micro-sensing MEMS technologies, Wire-
less Sensor Network (WSN) has inspired many applica-
tions ideas that will fundamentally improve our under-
standing of our surrounding physical environment  [2] [5]. 
A set of applications such as hazardous environment ex-
ploration, environmental monitoring, military tracking and 
reconnaissance are just some key motivations for many 
recent research efforts in this area.  

Since sensors are often deployed under inhospitable 
conditions, false readings from damaged sensors can ad-
versely affect the correctness of sensor network findings.  
Therefore, to improve the reliability of network decisions, 
it is important for applications to have access to trustwor-
thy data.  Additionally, sensors are usually very limited in 
terms of computational power, memory, and energy.  An 
energy conserving solution should achieve decisions via a 
distributed approach, thus avoiding the excessive amount 
of message overhead associated with the centralized tech-
nique. Other energy conserving schemes have also been 
studied by  [16] [18] [19]. 

Realizing that multiple sensors monitoring the same 
location at the same time can ensure higher monitoring 
quality  [6] [19], and the fact that data from neighboring 
nodes can be used to distinguish the correctness of local 

data. It’s clear that redundant information can be utilized 
to improve the underlying reliability of local data. These 
highly localized results can be aggregated by methods 
such as  [3]  [17] to provide higher data reliability to re-
questing applications such as event/target detection 
 [1] [3] [4] [11].   

Minimizing the impact of faulty sensor measurements 
is related to the Byzantine problem  [10]. Previous re-
search used classification techniques such as neutral net-
works or Bayesian classifier  [11] to accomplish better 
results. Other solutions such as  [1] [3] rely on higher level 
data collaboration schemes that aimed to accomplish bet-
ter reliability without using redundant information from 
the network.  However, these solutions often require ex-
cessive amount of states, memory, message overhead, or 
computational cost, and are consider unfitting for sensor 
network purposes.  

In this paper, we present Confidence Weighted Vot-
ing (CWV), a simple distributed technique that improves 
the reliability of underlying data by exploiting redundant 
information. Since CWV uses neighboring data to discern 
the correctness of local data, it is capable of improving the 
baseline reliability of many applications such as  [3] 
 [11] [14]. We examined CWV against the classical Major-
ity Voting (MV)  [9] and Distance Weighted Voting 
(DWV)  [9] techniques, and contrasted the level of data 
reliability of each approach in the prevalent presence of 
flawed sensors. We simulated the basic behaviors of 
CWV on top of k-cover deployment strategy (which guar-
antee redundancy when k>2), we also used an analytical 
model to prove the effectiveness of CWV over the other 
two schemes. Finally, we showed that CWV can outper-
form the other distributed voting schemes by providing as 
much as 49% more resiliency to sensor errors.  

The rest of this paper is organized as follows. In sec-
tion 2, we present the system model, the metrics used to 
evaluate our algorithms, and the k-coverage placement 
strategies used in our experiments. Section 3 elaborates on 
the details of Confidence Weighted Voting algorithm, and 
briefly describes the baselines algorithms to which we 
compare our work. Section 4 present simulation results 
and related analysis. We conclude the paper in Section 5. 

 

2. System Model  
In this section, we introduce the model of sensor net-

work used in section 2.1. We then discuss the metrics used 
to evaluate the system performance in section 2.2. Lastly, 
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we described the k-coverage placement strategy used in 
our experiments in section 2.3.  
 

2.1 Sensor Network Model 
First, we assume that the sensor node knows its own 

location  [7] and nodes are stationary. The nodes can also 
obtain their own location through location process de-
scribed in  [15]. For simplicity, we refer to the sensing area 
of a node as a circle with a nominal radius r centered at 
the location of the node itself. With a set of sensors de-
ployed in a region instructed to provide reliable discrete 
data, we are also assuming that an event can be detected 
by multiple sensors nodes due to our k-coverage sensor 
placement scheme described in section 2.3. The sensor 
performed event detection based on pre-established 
thresholds. We deploy the sensor nodes in a two-
dimensional Euclidean plane. However, the technique can 
be extended to a three-dimensional space without much 
difficulty. Lastly, we assume that the nodes can directly 
communication with the neighboring nodes within a radius 
larger than 2r (r is nominal sensing radius). All the above 
are common assumptions for many sensor network appli-
cations.  
 

2.2 Performance Metrics 
The performance of the algorithms can be measured 

in terms of data reliability against varying level of faulty 
sensors. Each node is given a failure probability, which 
defines how likely the sensor will report an incorrect 
value. The behavior of these faulty sensors is assumed to 
be arbitrary. Error occurrences are assumed to be uni-
formly distributed. Reliability of the network is then 
measured by how likely we can achieve the correct repre-
sentation of the environment given our deployment strat-
egy, algorithm, and sensor failure rate. We used an 
event/target scenario to test our algorithm  [3]. Since sen-
sors need to combine their sensed values to reach a repre-
sentative decision for the region in question, and results 
computed based on these incorrect measurements can 
radically impact the correctness of sensor network find-
ings. The network will likely contain some faulty sensors, 
while we need to arrive at a correct decision regardless of 
the distortion from the flawed sensors.  
 

2.3 k-coverage Placement Strategy 
Several coverage models  [8] [12] [13] have been pro-

posed for different application scenarios. In this paper, we 
assume that a point p is monitored if their Euclidian dis-
tance to a sensor is less than the sensing range of r. The 
coverage configuration problem bares close resemblance 
to the Art Gallery Problem, which deals with determining 
the number of observers necessary to cover an art gallery 
room such that every point in the art gallery in monitored 
by at least one observer. This problem is optimally solved 
in a 2D plane, but in shown to be NP-hard when extended 

to a 3D space. Based on the coverage model, an area is 
having a coverage degree of k (i.e., being k-covered) if 
every location inside A is covered by at least k nodes. 
Practically speaking, a network with higher degree of cov-
erage can achieve higher sensing accuracy and be more 
robust against sensing failures.  

In this paper, we used a close approximation of the k-
coverage scheme. The details of our implementation are 
summarized in Table 1. Since random deployment and 
k>3 scenarios can be roughly approximately by a combi-
nation of basic k-coverage cases, we only used three basic 
k-coverage cases to reveal the fundamental properties of 
our algorithms.  
 
3. Distributed Voting Algorithms 

In this section, we present the algorithm for MV in sec-
tion 3.1, DWV in section 3.2, and CWV in section 3.3. 
All three distributed algorithms shares the same character-
istics in their simplicity, speed, scalability, and low mes-
sage overhead.  

 

 
Figure 1: Venn diagram of sensor coverage 

3.1. Majority Voting Algorithm 
To realize a distributed Majority Voting (MV) scheme, 

sensor readings are first gather from neighboring sensor 
nodes, and local decisions are achieved based on the ma-
jority opinion of the collected data.  For instance, the de-
cision for area A in Figure 1 is reached through majority 
voting on result gathered from sensor 1, 2, and 3 (Since A 
is covered by 3 sensors). Similarly, the decision reached 
in area B came from majority voting on result reported by 
sensor 1 and 3. Whenever a tied for majority occurs, the 
final decision is randomly chosen.  

Suppose the number of deployed sensors in the investi-
gating area is m and the possible report value of each sen-
sor is an integer from 1 to n, the Majority Voting scheme 
can be formulized by the following equations: 
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3.2. Distance Weighted Voting Algorithm 
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Distance Weighted Voting (DWV) is a weighted vari-
ant of MV.  DWV is motivated by the assumption that the 
sensor nearest to the point in question has the most accu-
rate data. Therefore, data closes to the point in question 
bares more weight in terms of decision making. Suppose 
dj,(x,y) is the distance from point (x,y) to sensor j, the num-
ber of deployed sensors is m, and the possible report value 
from each sensor is an integer from 1 to n. DWV can be 
formulized by the following equation: 

niC
d

yxDWV
m

j
yxjij

yxj
i

,...2,1;
1

max),(
1

),(,
),(,

== ∑
=

δ  

where δij and Cj,(x,y) shares the same definition as in MV.  
 

3.3. Confidence Weighted Voting Algorithm 
Like DWV, Confidence Weighted Voting (CWV) is 

another weighted variant of MV. Yet, instead of granting 
the nearest sensors higher weights, CWV gives higher 
weights to those sensors that are more likely to be correct 
(i.e. with higher confidence of correctness). The confi-
dence value of each sensor can be determined in a distrib-
uted manner by comparing its sensing results with its sens-
ing neighbors that share overlapping coverage area. The 
confidence value of sensor i, conf(i) is then defined as: 
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and CWV is then formulized as: 

niCjconfyxCWV
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where δij and Cj,(x,y) shares  the same definition as in MV. 
 

4. Simulation Results 
In this section, we evaluated the reliability of the three 

distributed voting algorithms described in section 3 ac-
cording to the metrics presented in section 2.2.  The ro-
bustness of the algorithms is assessed against varying de-
gree of sensor failure rate and k-cover strategy. We used 
Monte Carlo simulations in section 4.1 to contrast the 
reliability of the three schemes, and we used an analytical 
model to prove the effectiveness of CWV against MV in 
section 4.2. 

 

4.1. Reliability of Different Voting Algorithms  
Figure 2 illustrates the reliabilities of different distrib-

uted voting algorithms under different degree of coverage 
and sensor error rate. The reliability of the three schemes 
clearly decreases as the sensor error rate increases, and 
reliability increases as the degree of sensor coverage in-

creases. It is obvious that reliability increases with data 
redundancy. In particularly, when the sensor error rate is 
at 40%, MV improved 7% in reliability when degree of 
coverage increased from 1 to 2, additionally, when the 
degree of coverage increased from 2 to 3, MV experience 
another 17% in improvement. For CWV, it gained 33% in 
improvement in reliability when degree of coverage in-
creased from 1 to 2, it also experience another 10% in 
improvement when degree of coverage increase from 2 to 
3. This indicates that CWV can better utilize the added 
redundancy and achieved higher reliability. On the other 
hand, DWV scheme improves very little from the increase 
in degree of coverage. This is partly due to the fact that 
DWV rely heavily on the nearest neighbor’s result; there-
fore it is more likely to be biased when its nearest 
neighbor‘s data is incorrect. 
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Figure 2: Reliabilities of different voting algorithms  

using (a) k=1 (b) k=2 (c) k=3 

In general, regardless of the degree of coverage and the 
sensor error rate, CWV can consistently outperform MV, 
and MV outperforms DWV. In particular, when error rate 
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is at 40%, CWV outperforms MV by 7%, 34%, and 28% 
when the degree of coverage is 1, 2, and 3 respectively.  

From the simulation results, it is clear that higher de-
gree of coverage can achieve better data reliability. How-
ever, since high degree of coverage usually requires more 
sensor nodes and deployment cost. The design tradeoff 
between reliability and degree of coverage should be con-
sidered when deploying such a technique. From a com-
munication overhead perspective, CWV algorithm incurs 
roughly twice the amount of overhead as would MV; 
therefore, reliability trade-off with communication over-
head should also be considered when a distributed voting 
algorithm is to be used. 

Notice that when majority of the sensors are reporting 
incorrect values (sensor error rate greater than 0.5), none 
of the schemes are expected to provide acceptable reliabil-
ity in those scenarios.  Therefore, discussion on those 
cases is not very meaningful.  
 

4.2. Analysis 
In this section, we present an analytical mode for the 

Majority Voting scheme, and used the modeling result to 
discuss the reliability issue associated with different de-
grees of coverage and sensor error rates. For simplicity, 
we use a 1-cover placement strategy discussed in section 
2.3, and the knowledge that k-cover can be roughly 
achieved by overlapping k 1-cover placements on the in-
vestigating rectangle area. 

 
Figure 3: Analysis of 1-coverage placement 

The analytical model of 1-cover placement can be de-
rived by dividing the investigating rectangular area into 
several smaller equilateral triangles with side length 
equals to r, which is the same r as the a sensor’s sensing 
radius, this is also illustrated in Figure 3. Furthermore, in 
each equilateral triangle, the gray-color area is covered by 
exactly one sensor, and the white-color area is covered by 
two sensors. The overall system reliability can then be 
approximated by modeling the reliability of one equilat-
eral triangle area; this is assuming that the width and 
length of the investigating area is much greater than sen-
sors’ sensing range. 

Suppose that 1-covered area within the equilateral tri-
angle (gray-color area) is A1, the 2-covered area within the 
equilateral triangle (white-color area) is A2, and let the 
sensor error rate to be e. The system reliability R1 (reli-
ability of 1-covered area) can be modeled as:  
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In order to model k=n, n 1-covered placements are 
overlapped on the same investigating rectangle area. Error 
is reported in this model when either 1) the majority of the 
covered sensors are erroneous, or 2) half of the sensors 
are faulty and the random decision outputs the incorrect 
information. Therefore, the overall system reliability can 
be modeled with two cases: 
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Based the analytical model above, Figure 4 depicts the 
relation of reliability against different sensor error rates. 
From the graph, we observed decreasing marginal gain in 
reliability as degree of sensor coverage increases. This is 
further evidence that placement strategy and reliability 
requirement is a design tradeoff that need to be considered 
before deployment. 
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Figure 4: Reliability of MV with different coverage degrees 

Note that the analytical mode in this section is based on 
the simplified assumption that allows modeling k-cover 
placement by overlapping k 1-covered placements. If a 
better placement technique is used (e.g. through combina-
tion of 2-cover and 3-cover placement method discussed 
in section 2.3), it is possible to obtain better reliabilities 
than our analytical model, although the difference between 
the real reliability and the modeling one should be moder-
ately small. 

Figure 5 illustrates the relationship between of system 
reliability and different degree of coverage at 0.3 and 0.4 
sensor error rate respectively. To achieve a 90% reliability 
with 0.3 sensor error rate, the degree of coverage must be 
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at least 9 using MV; whereas to provide 80% reliability 
with 0.4 sensor error rate, the coverage degree must be 
larger than 17 if MV is used. From this figure, it is obvi-
ous that sensor deployment cost can easily reach unac-
ceptable level if MV scheme is used. 

However, recalling the simulation results depicted in 
Figure 2, CWV can easily achieve 95% reliability with 3-
covered placement at 0.4 sensor error rates. It is evident 
that although redundancy in coverage can improve data 
reliability for MV scheme, a well-designed voting strategy 
(e.g. CWV) can achieve even better reliability at a much 
lower cost. As a result, CWV indeed outperforms MV in 
terms of effectiveness.  
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Figure 5: Reliability of MV with different coverage 
degree when sensor error rate is fixed 
 

5. Conclusions 
To improve the reliability of decisions and minimize 

the impact of faulty sensor measurements, it is important 
to have a distributed scheme that enhances the trustwor-
thiness of result by exploiting the presence of redundant 
data. In this paper, we present Confidence Weighted Vot-
ing (CWV), a simple distributed technique that improves 
the reliability of underlying data by exploiting redundant 
information. Since CWV uses neighboring data to discern 
the correctness of local data, it is capable of improving the 
baseline reliability of many applications. We examined 
CWV against the MV and DWV techniques, and con-
trasted the level of data reliability of each approach in the 
prevalent presence of flawed sensors. We simulated the 
basic behaviors of CWV via Monte Carlo simulations, and 
created an analytical model to prove the effectiveness of 
CWV over the other two schemes. Our results showed that 
CWV can consistently outperform the other distributed 
voting schemes by providing as much as 49% more resil-
iency to sensor errors.  
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