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Abstract

Applications that span both data streams and databases
provide a sound reason for using SQL for continu-
ous queries on data streams as well as for ad-hoc queries
on database tables. However, SQL was designed for per-
sistent data on secondary store, and not for transient
data on the wire; therefore, SQL is facing major prob-
lems in this new role—particularly in the domains of
expressive power and extensibility that constitute noto-
rious weakness areas for relational languages. For in-
stance, SQL cannot support sequence queries, approximate
queries, and mining queries that represent important appli-
cations for data stream management systems (DSMS). The
fact that blocking operators cannot be used on continu-
ous queries further impairs the effectiveness of SQL on data
streams applications. Our Stream Mill solves these prob-
lems with the Expressive Query Language (ESL) designed
to maximize the power and flexibility of DSMS through
minimal extensions of, and maximal compatibility with,
SQL:2003. ESL supports (i) continuous user-defined ag-
gregates (UDAs) that are nonblocking and very effec-
tive on data streams, (ii) efficient delta-based maintenance
for UDAs on windows, (iii) table expressions to create ta-
ble snapshots from data streams. With these constructs,
we achieve full integration of database and stream queries
while retaining a simple semantics which makes it crys-
tal clear which queries run as snapshot queries and which
run as continuous queries, and which constructs are al-
lowed for each kind. The paper discusses the benefits of the
power of ESL (which is Turing-complete) in advanced ap-
plications and its ability to support efficient memory-saving
computations.

1. Introduction

There is much ongoing research work on data streams
and continuous queries [2, 15]. The Tapestry project [5, 38]
was the first to focus on the problem of ‘queries that run
continuously over a growing database’. Recent work in the
Telegraph project [7, 25, 12] focuses on efficient support for
continuous queries and the computation of standard SQL-2
aggregates that combine streams flowing from a network of
nodes. The Tribeca system focuses on network traffic anal-
ysis [37] using operators adapted from relational algebra.
The OpenCQ [23] and Niagara Systems [8] support contin-
uous queries to monitor web sites and similar resources over
the network, while the Chronicle data model uses append-
only ordered sets of tuples (chronicles) that are basically
data streams [20].

The Aurora project [6] aims at building data manage-
ment systems that provide integrated support for

• Data streams applications, that continuously process
the most current data on the state of the environment.

• Applications on stored data (as in traditional DBs).
• Spanning applications that combine and compare in-

coming live data with stored data.

The need to support spanning applications implies the de-
sirability of using, insofar as possible, the same query lan-
guage on data streams and stored tables. This is clearly
the approach of choice since it maximizes the compatibil-
ity with existing information systems and greatly reduces
the efforts required for learning and using DSMS. But de-
signing a language for a new application domain represents
a research challenge even in the most favorable of circum-
stances, and, in our case, the requirement of building on
SQL, which was designed for a different application envi-
ronment and enabling technology, brings additional prob-
lems. Indeed, SQL was designed for transient queries on
persistent data, rather than for persistent queries on tran-
sient data flowing in on the wire.

The difficult challenge of designing an SQL-based lan-
guage for DSMS was addressed by the Stanford Stream



project with the design of the Continuous Query Language
(CQL) [1]. CQL introduces several stream-oriented con-
cepts and SQL-based constructs, for which a rigorous se-
mantics is also given [1]. Windows represent a very im-
portant construct in CQL, insofar as they are used in the
computation of aggregates and joins on streams, and to map
from streams to relations. Although CQL addresses many of
the requirements of simple data stream queries, it does not
achieve the level of expressive power needed for more com-
plex data stream applications, which are instead the focus
of our ESL language discussed next.

The Stream Mill project [11] seeks to overcome the se-
rious limitations of SQL on data stream applications, while
minimizing the deviations from current standards, by sup-
porting the Expressive Stream Language, ESL. Some SQL
limitations had already surfaced in DBMSs applications,
others are new and specific to data stream applications.
Among the latter, we find that blocking query operators [2]
cannot be used on data streams, whereas they provide the
cornerstone of many SQL constructs and implementation
technology. The SQL-2 constructs that cannot be used on
data streams include all of the SQL-2 aggregates and the
constructs NOT IN, NOT EXISTS, ALL, EXCEPT.

An in-depth analysis of the blocking problems and its
impact on expressive power was recently presented in [22].
It was there proven that (i) a function can be expressed by
a nonblocking query iff it is monotonic, and (ii) SQL is not
relationally complete on data streams, since it can only ex-
press some of its monotonic queries by using blocking oper-
ators, which are disallowed on data streams. This loss of ex-
pressive power represents a serious setback for SQL, since
its inadequacies in advanced application domains have long
been lamented by database researchers. Among these prob-
lem areas we find time series queries [36, 35, 30, 28, 33, 32]
and data mining queries [16, 26, 19, 34] on stored databases.
These are major limitations, since mining data streams rep-
resent an area of growing interest, and sequence queries
are very badly needed inasmuch as data streams are infi-
nite time series. These traditional SQL problems appear to
impact primarily complex queries, but its inability of ex-
pressing monotonic queries expressible in SQL affects sim-
ple data stream queries besides complex ones.

Furthermore, SQL problems are exacerbated by yet an-
other difference with respect to traditional database appli-
cations. Complex database applications are normally writ-
ten by embedding SQL queries in a procedural program via
cursor-based interface mechanisms. Then, functions that are
too complex for SQL can be written in the procedural lan-
guage. In the cursor-based model of embedded queries the
procedural program pulls tuples from the database via get-
next statements. But for data streams that arrive continu-
ously, at a fast and often bursty pace, it is unreasonable to
expect that the DSMS can hold on to the current tuple—

and those that have arrived after that—until the application
issues its get-next statement. Indeed, most of current data
stream management prototypes do not support cursor-based
interfaces to programming languages.

Therefore, the first objective of ESL is to enhance the ex-
pressive power of SQL in ways that support well typical
data stream applications, including those featuring syn-
opses, memory minimization, approximate queries, se-
quence queries, and stream mining queries. ESL pursues
this mission along with the two complementary objec-
tives of achieving (i) minimal deviations from the latest
SQL:2003 standard, and (ii) simple semantics that clearly
separate continuous queries from ad hoc queries, and iden-
tify which constructs can be used for the kinds of queries.

The main language constructs of ESL are as follows:
• Data stream declarations are used to import stream-

ing data (from external wrappers) and assign times-
tamps to them. Then, ESL queries consisting of non-
blocking SQL operators are used to create new data
streams to be supplied to other queries, or returned to
the user. When applied to data streams, the union op-
erator performs a sort-merge operation that combines
its input streams according to their timestamps. These
topics are discussed in the next section.

• User-defined aggregates (UDAs) natively defined in
SQL provide the main mechanism to achieve expres-
sive power and extensibility for ESL. UDAs come in
two versions easily identified from their syntax: non-
blocking UDAs can be used on both tables and
streams, while blocking UDAs can only be used on ta-
bles. UDAs are introduced in Section 3, and in
Section 4, we demonstrate their uses in memory man-
agement, approximate computations and sequence
queries.

• Window constructs are presented in Section 5 where
we focus on their efficient implementation and the in-
cremental, delta-based, maintenance of UDAs on win-
dows.

• ESL uses table functions to derive from data streams
concrete table-like views that support ad-hoc queries.
These are discussed in Section 6, where we also pro-
pose a simple semantics for queries spanning both data
streams and database tables.

In summary, the paper is organized along the two paral-
lel themes of introducing (i) the simple constructs of ESL,
and (ii) the complex applications that can be efficiently sup-
ported with those constructs. The discussion is completed
by Section 7, which focuses on complex applications, and
Section 8, which discusses related work.

2. Streams and timestamps

ESL views data streams as unbounded ordered se-
quences of tuples [22]; this is consistent with the ‘append



only table’ model commonly used by data stream systems
[5, 2, 15, 22]. In ESL, data streams are imported from exter-
nal wrappers by declarations that specify their source wrap-
per and the kind of timestamp used. While, Stream Mill
wrappers1 are very similar to those used in other sys-
tems [12, 1], timestamps are quite different. In ESL, during
their declarations, data streams can be assigned exter-
nal timestamps, internal timestamps or latent timestamps.
External timestamps are produced by the application gen-
erating the data and correspond to a column of the tuple
incoming from the the wrapper. Instead, internal times-
tamp are generated by the system as the tuples arrive from
the buffer.

For instance, in the following on-line auction example,
adapted from [3], OpenAuction and Bid streams have exter-
nal timestamps while ClosedAuction has internal one.

/* Stream of auction openings */
CREATE STREAM OpenAuction (

itemID /* id of the item being auctioned.*/,
sellerID /* seller of the item being auctioned.*/,
start price /* starting price of the item */,
timestamp /* time when the auction started */)

ORDER BY timestamp; /* external timestamp */
SOURCE ’OpenAuction.so’;

/*Stream of auction closings */
CREATE STREAM ClosedAuction(

itemID /* id of the item in this auction. */,
buyerID /* buyer of this item.*/)

ORDER BY INTERNAL; /* internal timestamp */

/* Bid: Stream of bidding. */
CREATE STREAM Bid(

itemID /* the item being bid for*/,
bid price, /* bid price */,
bidderID /* id of the bidder*/,
timestamp /* time when bid was registered */)

ORDER BY timestamp; /* external timestamp*/

While the SOURCE clause specifying the external buffer
cannot be omitted from the declarations, the ORDER BY
clause can be omitted altogether. This is the case of la-
tent timestamps—as opposed to the external timestamps and
internal timestamps which will call explicit. Latent times-
tamps are not kept in the actual tuples, and cannot be used in
the queries, but are expediently generated by system when
these tuples are accessed. Latent timestamps can produce
better performance, and the convenience of operational se-
mantics when needed.

For instance, for externally timestamped streams, there
is no assurance that their tuples arrive exactly sorted ac-
cording to their timestamps. ESL solves this problem by re-

1 Basically, data source can be programmed using external procedural
language such as C and compiled into a dynamic library.

assigning all late tuples to a separate stream with a latent
timestamp, which can then be handled directly to the user.

2.1. UNION

Union is the only n-ary operator (n > 1) supported by
ESL on data streams. For instance, the following query sort-
merges two streams according to their explicit timestamps
into an explicitly timestamped history1000 query:

Example 1 Price History Query: Report price history for
item #1000

CREATE STREAM history1000 AS
SELECT itemID, start price, timestamp
FROM OpenAuction WHERE itemID = 1000
UNION ALL
SELECT itemID, bid price, timestamp
FROM Bid WHERE itemID = 1000

In general, UNION is only supported on union-compatible
data streams and the union of a data stream with a DB ta-
ble is not allowed in ESL. The union of explicitly times-
tamped data streams produced an explicitly timestamped
data stream; likewise, the union of two or more data streams
with latent timestamp produces a data stream with latent
timestamps.

In implementing the union of streams with latent times-
tamps, the system goes round-robin to take from the buffers
the tuples currently there; while the system is designed to
service all input buffers fairly, the output order of the tu-
ples only preserves the order of each input stream.

To union data streams with explicit timestamps, we en-
sure that the resulting stream is ordered by their common
time stamps. This is achieved through a special sort-merge
operation on the streams. We choose the tuple with the min-
imum timestamp from the streams if none of the streams is
empty. If some stream is empty, we must wait for its next in-
coming tuple before we proceed, since that tuple may have
a timestamp smaller than any unprocessed tuple of the other
streams.

3. A Small but Complete Extension of SQL

User Defined Aggregates (UDAs) are important for de-
cision support, stream queries, and other advanced database
applications [41, 2, 17]. ESL adopts from SQL-3 the idea of
specifying a new UDA by an INITIALIZE, an ITERATE, and
a TERMINATE computation; however, ESL let users express
these three computations by a single procedure written in
SQL [40]— rather than by three procedures coded in pro-



cedural languages as prescribed by SQL-32. Readers who
are already familiar with UDAs can skip to the next sec-
tion.

Example 2 defines an aggregate equivalent to the stan-
dard AVG aggregate in SQL. The second line in Example 2
declares a local table, state, where the sum and count of the
values processed so far are kept. Furthermore, while in this
particular example, state contains only one tuple, it is in fact
a table that can be queried and updated using SQL state-
ments and can contain any number of tuples. These SQL
statements are grouped into the three blocks labeled, respec-
tively, INITIALIZE, ITERATE, and TERMINATE. Thus, INITIAL-
IZE inserts the value taken from the input stream and sets
the count to 1. The ITERATE statement updates the tuple in
state by adding the new input value to the sum and 1 to the
count. The TERMINATE statement returns the ratio between
the sum and the count as the final result of the computa-
tion by the INSERT INTO RETURN statement3. Thus, the TER-
MINATE statements are processed just after all the input tu-
ples have been exhausted.

Example 2 Defining the standard aggregate average

AGGREGATE myavg(Next Int) : Real
{ TABLE state(tsum Int, cnt Int);

INITIALIZE : {
INSERT INTO state VALUES (Next, 1);

}
ITERATE : {

UPDATE state
SET tsum=tsum+Next, cnt=cnt+1;

}
TERMINATE : {

INSERT INTO RETURN
SELECT tsum/cnt FROM state;

}
}

Observe that the SQL statements in the INITIALIZE, ITER-
ATE, and TERMINATE blocks play the same role as the exter-
nal functions in SQL-3 aggregates. But here, we have as-
sembled the three functions under one procedure, thus sup-
porting the declaration of their shared tables (the state ta-
ble in this example). This table is allocated just before the
INITIALIZE statement is executed and deallocated just after
the TERMINATE statement is completed. This approach to ag-
gregate definition is very general. For instance, say that we
want to support tumbling windows of 200 tuples [6]. Then
we can write the UDA where the RETURN statements appear
in ITERATE instead of TERMINATE.

2 Although UDAs have been left out of SQL:2003 specifications, they
were part of early SQL-3 proposals, and supported by some commer-
cial DBMS.

3 To conform to SQL syntax, RETURN is treated as a virtual table; how-
ever, it is not a stored table and cannot be used in any other role.

In Example 3, we define a maxpair aggregate that returns
the maximum value along with the first point at which the
maximum occurred. Observe that the formal parameters of
the UDA function are treated as constants in the SQL state-
ments. Thus, the UPDATE statement in ITERATE store the
constant iPoint in the mpair relation, provided that iValue
is larger than the value in mpair. Therefore, the WHERE
clauses operate here as conditionals. The RETURN statement
in TERMINATE returns the maximum value and the first point
where it occurred.

Example 3 Define maxpair in ESL4

AGGREGATE maxpair(iValue, iPoint):(mValue, mPoint)
{ TABLE mpair(value, point);

INITIALIZE:{
INSERT INTO mpair VALUES(iValue, iPoint);

}
ITERATE:{

UPDATE mpair SET point=iPoint, value=iValue
WHERE iValue > value;

}
TERMINATE: {

INSERT INTO RETURN
SELECT value, point FROM mpair

}
}

Observe that in SQL, the expression of this query is
somewhat contrived and inefficiency prone (these problems
escalate rapidly as we move from simple queries to more
complex ones). In fact, the computation will have to be ex-
pressed as follows: the MAX aggregate will first be used to
find the maximum value; then, this can be used as a sub-
query of another query that finds all points where this max-
imum occurs and return the first occurrence of these points.
It can be shown that UDA maxpair takes linear time to the
size of the original table while the equivalent SQL query
takes quadratic time.

Blocking versus Non-Blocking UDAs The UDAs in the pre-
vious examples are blocking [22] since they return values in
their TERMINATE state. Blocking UDAs cannot be used on
data streams. On the contrary, UDAs whose TERMINATE

state is either empty or missing can only return values in
their ITERATE or INTITIALIZE states, and are therefore non-
blocking [22]. Non-blocking UDAs can be freely used to
express continuous queries on data streams 5

For instance, we can build a continuous version of the
average aggregate of Example 2, by simply moving the
statements in TERMINATE to ITERATE. The new UDA so
constructed is nonblocking and can be used freely on data
streams.

4 We omit data type definitions in the following examples
5 Moreover, as we shall see later, nonblocking UDAs that use auxiliary

tables (including windows) can apply blocking computation on these
tables without losing their non-blocking properties.



4. UDA on Data Streams

The power of UDAs has been studied in [22] where we
have shown that turn SQL into a Turing complete language
that can express every query computable from the database.
We have also shown that non-blocking UDAs are also com-
plete on data streams, inasmuch as they can be used to ex-
press every computable monotonic query. We next show
that such non-blocking UDAs are indeed very effective in
dealing with data stream applications.

4.1. Self-joins

Since data streams are unbounded, naive joins
over streams might require infinite memory. Say that
calls(call ID, event, time) is a stream of phone-call records,
where we use start or end in the event field to indi-
cate whether time marks the beginning or the end of a
phone-call. Then to find the length of every conversa-
tion, we could self-join the stream with itself to find two
tuples that have the same call ID, and their event val-
ues are respectively start and end. But, expressed in
this naive form the query could require infinite mem-
ory. To avoid this, we could use windows (see Section 5).
But the use of windows can only provide an approxi-
mate solution, since the exact length of a conversation
whose duration is longer than the window size cannot be re-
ported. A better solution consists in deleting from the win-
dow those records whose ’end’ has already been seen;
this allow us to compute the duration with bounded mem-
ory, given that the number of calls drops exponentially
with length. This can be easily done using the follow-
ing UDA:

Example 4 List the length of every call in calls(call ID, event,
time)

AGGREGATE call len(callid, event, time) : (Id, Length)
{ TABLE memo(id, start);

INITIALIZE: ITERATE: {
INSERT INTO memo VALUES(callid,time)
WHERE Event=’start’;
INSERT INTO RETURN SELECT id, time - start

FROM memo WHERE event=’end’
AND memo.id=callid;

DELETE FROM memo
WHERE event=’end’ AND memo.id=callid;

}
}

4.2. Joins by UNION and UDAs

UNION operations are very useful in many applications.
For instance, to compute the closing price of an item (the
maximum bid price, or its starting price if no bids has been
placed), a naive approach will involve a join of 3 streams,

which requires unbounded memory. A more efficient imple-
mentation is shown in Example 5, below, where we union
3 streams together: OpenAuction, Bid and ClosedAuction
into a new stream, AllPrice, which is sorted by the arrival
timestamp. Tuples in AllPrice are tagged by start, bid, and
end, which indicate their origin. Once the three streams are
unioned together, we can call UDA mymax that memorizes
the maximum price seen so far and returns this maximum
when an end tag is seen. This query returns its results di-
rectly to stdout.

Example 5 Closing Price Query: Report the closing price
of each auctioned item.

INSERT INTO stdout
SELECT itemID, mymax(price, tag) AS Price
FROM

( SELECT itemID, start price, timestamp, ’start’
FROM OpenAuction
UNION ALL
SELECT itemID, bid price, timestamp, ’bid’
FROM Bid
UNION ALL
SELECT itemID, -1, timestamp, ’end’
FROM ClosedAuction /* ClosedAuction has no price */

) AS AllPrice (itemID, price, timestamp, tag)
GROUP BY itemID;

In the above example, the result of the UNION is a data
stream. UDA mymax is grouped by itemID so that it ap-
plies to different items separately. UDA mymax memorizes
the maximum price seen so far and returns this maximum
when an end tag is seen. This UDA is shown below:

AGGREGATE mymax(price, tag) : (price)
{ TABLE memo(mprice) MEMORY;

INITIALIZE:{
INSERT INTO memo VALUES(price);

}
ITERATE:{

UPDATE memo SET mprice = price
WHERE price > mprice;

INSERT INTO RETURN
SELECT * FROM memo WHERE tag = ’end’;

}
}

Using union and UDAs, we have here avoided having to
join the three streams. Here, for each open item, the in-
memory table memo contains exactly one tuple—the maxi-
mum. Therefore this approach requires memory linear in the
number of open items—rather than the unbounded memory
that might be required for joins.

4.3. Approximate Computations

Approximate computations and synopses are very im-
portant on data streams and can be expressed very effec-
tively in ESL. While windows are very important, many



approximate computations for data streams are not based
on windows. The computation of decaying averages, where
e.g., new incoming tuples are assigned a slightly greater
weight than the current average— can be expressed by a
simple modification of our Example 2.

For a more interesting example, consider the on-line syn-
opsis algorithm by Datar et al. [10]. The problem is the fol-
lowing: given a stream of data elements consisting of 0’s
and 1’s, maintain at every time instant an approximate count
of the number of 1’s in the last N elements. Datar’s al-
gorithm assures a relative error bound of 1 + ε and uses
Ω( 1

ε
log2 N) bits of memory space. The algorithm is as fol-

lows.
If an incoming element is 1, create a new bucket of value

1. If there are k neighboring buckets with same value v,
merge the oldest two buckets into one bucket with value 2v
(value k depends on the error bound ε, which is given by
the user). At every time instant, the approximate count is
the sum of the values of all buckets minus half of the value
in the oldest bucket.

Example 6 Approximate Counts over Streams

AGGREGATE basicCount(next Int, t Timestamp, k Int) : {
TABLE hist(h Int, t Timestamp);
INITIALIZE : ITERATE : {

INSERT INTO hist VALUES(next, t) WHERE next = 1;
DELETE FROM hist h WHERE h.t < t - T;
INSERT INTO RETURN

SELECT merge(h, t, k)
}

}

Example 6 implements the above procedure in ESL. In
the code, we use a table hist to maintain the buckets, and
calls another UDA merge to find tuples of same value and
merge them. Due to space limitations, we do not list here
the code for the UDA merge, which is posted in [11].

5. Windows

The window construct is very important for data streams
applications [1, 6]. Therefore, the decision was taken that
ESL would support windows on arbitrary UDAs, although
the problem is significantly more difficult than supporting
windows on standard built-in aggregates. We addressed this
problem with the introduction of constructs that support the
delta-based maintenance of aggregate on windows.

In SQL:2003, windows are used as aggregate modi-
fiers applied to ordered sequences of tuples. ESL extends
this role to windows applied to data streams—indeed, data
streams can be viewed as temporally ordered sequences of
unbounded length. However, ESL preserves the syntactic
framework of SQL:2003, whereby windows are used as ag-
gregate modifiers which can be appended to the aggregate
call via the OVER clause (whereas, in other DSMS windows

have been added to the ’from’ clause). This example illus-
trates how the design of ESL strives to maximize the expres-
sive power and efficiency of the language while attempting
to minimize the syntactic deviations from SQL standards.

Both logical (time-based) and physical (count-based)
windows are supported. In the next example, we assume
that we already have the ClosedPrice stream (see Example
5 for the actual computation of this stream). Then, a win-
dow with a capacity of 10 items (ROWS 9 PRECEDING)
is maintained for each seller (PARTITION BY sellerID), and
the average price of the 10 items in the window is returned.

Example 7 Count-Based Window : For each seller, main-
tain the average selling price over the last 10 items sold.

INSERT INTO stdout
SELECT sellerID, AVG(price)

OVER (PARTITION BY sellerID ROWS 9 PRECEDING)
FROM ClosedPrice;

In the next example, we find the first highest bid during the
last 10 minutes. To do this, we invoke UDA maxpair on a
logical window of 10 minutes.

Example 8 UDA on time-based window: Every 10 minutes
return the first highest bid in the recent 10 minutes.

INSERT INTO stdout
SELECT maxpair(bid price, itemID)

OVER (RANGE 10 MINUTE PRECEDING)
FROM Bid;

5.1. Defining UDAs on Windows

For most aggregates the efficiency of their computation
on windows can be greatly improved by delta maintenance
techniques similar to those used to support concrete views.
For that, we introduce a new state, called EXPIRE in UDA
definition, as illustrated by the following example:

Example 9 The New Construct EXPIRE

WINDOW AGGREGATE myavg(Next Int) : Real
{ TABLE state(tsum Int, cnt Int);

INITIALIZE : {
INSERT INTO state VALUES (Next, 1);

}
ITERATE : {

/* here, the incoming tuple is a new tuple */
UPDATE state SET tsum=tsum+Next, cnt=cnt+1;
INSERT INTO RETURN

SELECT tsum/cnt FROM state;
}
EXPIRE: {

/* here, the incoming tuple is an expired tuple */
UPDATE state SET tsum=tsum-Next, cnt=cnt-1;

}
}



When a new tuple arrives, the system executes the EXPIRE

statements for each tuple in the expired window, before it
executes the ITERATE routine for the newly arrived tuple.
This ensures that the computation reflects the correct state.

The use of EXPIRE in UDAs represents a significant im-
provement over the delta maintenance constructs presented
in [43], since it produces shorter definitions and a more ef-
ficient implementation. In [24], we discuss efficient win-
dow implementation when the main memory is limited. Un-
der the assumption that there is only one single window, we
prove that Last-In-First-Out (LIFO) algorithm is optimal in
terms of the number of page faults. In reality, however, there
are multiple continuous queries in the DSMS system, and
each could have a window of different size, each process-
ing data at a different rate. We show that an policy called
the Longest Forward Distance algorithm is optimal in this
situation.

Window maintenance issues are shared by all kinds of
aggregates, including built-in aggregates, aggregates de-
fined in procedural languages and UDAs. In our examples,
we showed UDAs defined in ESL. However, the same de-
sign, in particular the use of an EXPIRE state, apply to UDAs
written in procedural languages or languages different from
ESL [6]. Corresponding primitives should also be used to
handle the windows used by built-in aggregates. Indeed sig-
nificant performance benefits can be achieved with this ap-
proach [24].

Although not discussed here, ESL also supports the slide
and tumble constructs [6] for general UDAs.

5.2. Effectiveness of Window UDAs

The following example defines UDA maxpair. We have
used this UDA in Example 8, where it is applied on the Bid
stream with a 10-minute time-based window, and returns a
stream of maximum bids within each window.

Example 10 Optimizing maxpair for windows

WINDOW AGGREGATE maxpair(iValue, iPoint) :
(mValue, mPoint)

{
TABLE mpair(value, point);
INITIALIZE: ITERATE:{

DELETE FROM mpair WHERE value < iValue;
INSERT INTO mpair VALUES(iValue, iPoint);

}
EXPIRE:{

DELETE FROM mpair WHERE point = iPoint;
INSERT INTO RETURN

SELECT maxpair(value,point) FROM mpair;
}

}

To find the first bid with maximum price in the window,
the UDA iterates over the stream and selectively buffers

bids that occurred in the last 10 minutes. Note that a bid
which is not the highest in the current window could be-
come the highest in the next window, so we must buffer the
bids. However, for each incoming bid, we can remove those
in the buffer that have been out-bidden by the new bid. Fi-
nally we use the UDA maxpair called without the window
modifier to find the maximum bids from the buffer. In ESL,
the window and windowless versions of an aggregate are
treated as two different procedures, where the presence of
the OVER clause results in the invocation of the procedure
for the widow version of the aggregate, and its absence re-
sults in the call of the basic windowless version.

How many tuples we need to buffer? It can be shown
that, on the average, mpair contains log2(N) tuples, where
N is the number of tuples in the window; the window-
less version of maxpair takes linear time to the size of
mpair while the equivalent SQL query without UDA takes
quadratic time. Thus, our both versions of maxpair are quite
efficient.

6. Concrete Views and Joins

All the constructs defined so far are based on SQL:2003.
Even UDAs, which were not included in the official stan-
dards were contained in early SQL-3 draft, and are now
part of several commercial DBMSs that support their def-
inition via external procedural languages (rather than its the
native definition supported by ESL).

So far, we have considered queries that operate on data
streams and return data streams as their output. We now turn
to the situation where we want to define concrete table-like
views from data streams. This problem has been studied in
[1] where window-like construct similar to those used for
aggregates are used for the task. [1]. In ESL we use instead
special table function to achieve the same objective: this ap-
proach is consistent with SQL:2003 where table functions
are can be used to recast practically any kind of external
data source into SQL tables [31].

For instance, we can define a window of a 24-hour range
on stream ClosedAuction. When there is a new tuple com-
ing to OpenAuction, we join it with tuples in the window:

Example 11 Short Auction Query: Report all auctions
which closed within 24 hours of their opening.

INSERT INTO stdout SELECT *
FROM OpenAuction AS O,

TABLE (ClosedAuction OVER
(RANGE 24 HOUR PRECEDING O)) AS C

WHERE O.itemID = C.itemID;

Thus, TABLE (ClosedAuction OVER ...) generates a TABLE-
like view of the stream ClosedAuction over a window de-
fined using the usual RANGE|ROWS statements; however
PRECEDING now takes an explicit synchronization param-
eter. In the example, the window is explicitly synchronized



with O, specifying that all the tuples up to and including
the timestamp of O being joined with the window must be
in the window. Thus the implementation of this window re-
quires synchronization policies similar to those used in the
union of streams,

discussed earlier. To reduce the overhead involved in
these techniques, we allow the ESL programmer to replace
PRECEDING O with PRECEDING SELF.

Example 12 Short Auction Query: Report all auctions
which closed within 24 hours of their opening.

INSERT INTO stdout SELECT *
FROM OpenAuction AS O,

TABLE (ClosedAuction OVER
(RANGE 24 HOUR PRECEDING O)) AS C

WHERE O.itemID = C.itemID;

When PRECEDING SELF is specified, the window spans
a period of 24 hours, with computed with respect to its
most recent tuple in the buffer—with a semantics simi-
lar to that used for windows on aggregates. In the current
Stream Mill implementation, this means that upon arrival of
a new OPENAUCTION tuple, the system process all newly
arrived tuples in CLOSEDAUCTION but does not wait un-
til it sees one with timestamp equal or greater than that of
O. In a nutshell, ’SELF’ falls back to an operational se-
mantics, that only assures synchronization on a best-effort
basis and depending on system implementation and work-
load. For many applications this more relaxed policy is suf-
ficient and preferable since it poses less demands on the sys-
tem. Data streams with latent timestamps are typically pro-
cessed using this policy. In fact, if CLOSEDAUCTION had
latent timestamps, only the ’SELF’ synchronization pol-
icy would be allowed in ESL (also only count-based win-
dows would be allowed, whereas both kinds of windows are
allowed now since CLOSEDAUCTION is explicitly times-
tamped.) Likewise, the ’SELF’ option is required if OPE-
NAUCTION had a latent timestamp (and the stream pro-
duced would also have a latent timestamp in that case.)

Therefore, ESL can support joins of multiples streams
either using the union-based approach illustrated in Exam-
ple 5) and the window-based solution of Example 11, above.
In general to compute the join of streams A and B on a given
window we instead need to union the results of joining A on
a window on B, with the join of B on a window on A. As
described in [21] this approach is conducive to efficient im-
plementation and query optimization. No union is needed
in the case of self-joins and when event A is known to pre-
cede event B as in example 11.

Our next example is to compute a delayed stream:

Example 13 Delayed Stream: List all calls made 10 min-
utes ago in: calls(call ID, event, time)

SELECT call ID
FROM TickSecond T,

TABLE(calls OVER 10 MINUTE PRECEDING T) AS W
WHERE T.time - W.time = 10 MINUTE AND event = ’start’;

Here, TickSecond is a stream containing the timestamp gen-
erated every second by the system. ESL provides functions
that produce ticks at arbitrary intervals, and more com-
plex periodic ticks. Therefore, the TABLE construct just dis-
cussed generates a time-varying table from a stream. It has
all the properties of a table, and can, e.g., be unioned with
another table, but not with a stream.

Finally observe that, in ESL, there are difference be-
tween table-functions windows and aggregate windows
inasmuch as in the former (i) an explicit argument af-
ter PRECEDING is required, and (ii) the PARTITION BY
clause is not supported. The similarities between the two
are however such, that Stream Mill can provide a uni-
fied and highly optimized support for both.

6.1. Concrete Views

ESL also supports concrete views created as windows
on streams using a syntax similar to the windows gener-
ated as table expressions in the previous examples (but only
the SELF option is allowed here). For instance:

Example 14 Concrete View: A table containing all the
auctions where the price was above 100000 in the last two
hours.

CREATE TABLE bigitems AS (SELECT *
FROM OpendAuction OVER

(RANGE 2 HOUR PRECEDING SELF)
WHERE start price > 100000) IMMEDIATE

This view has the semantic property of tables. There-
fore, as any other query on database tables, this is an ad
hoc query that returns results and then quits. Here we sup-
port SQL:2003 IMMEDIATE/DEFFERRED options of con-
crete views. In the first case the system maintains this view
up-to-date and responds immediately to the user query. In
the second case, the system rebuilds the view when the
query is received. In the second case, the response to the
query might be slow (in our example, it could take up to 2
hours to rebuild the data) and the results might be returned
incrementally, almost as in a data stream. The fact that the
users can write query that display a continuum of behav-
ior between data stream and database applications is a posi-
tive sign from the practical viewpoint. However, there is no
ambiguity in the semantics of the the two kinds of queries
in ESL, since

• Continuous queries are those defined by simple SQL
statements where data stream appear as an argument
in their ’from’ clauses (and all the remaining argu-
ments in the from clause are database tables, or equiv-
alent). Union of such statements also define contin-



uous queries. No other statements define continuous
queries.

– Continuous queries persist until they are turned
off explicitly by the user.

• Ad hoc queries are defined by statements where all the
arguments in their from clause are database tables, or
their equivalent

– Ad hoc queries are turned off once they complete.

No other queries but those are supported in ESL; further-
more blocking operators are not allowed on data streams,
although they are fully allowed on tables or their equiva-
lent.

7. Applications of ESL

Sequence Queries Several query languages have been pro-
posed in the past for sequences and time-series [29, 33]. The
main motivation of these languages is that most self-join
queries are too complex to express and inefficient to imple-
ment if they are written in SQL [29, 33]. Take for instance
the following query on time-series of daily temperatures:
Find a fortnight of raising temperatures. In SQL, this query
requires 14 joins; that many joins cannot be supported effi-
ciently, and are also too complex for users to write. Other
queries, such as double-bottom queries [33] would require
an unbounded number of self-joins, and might not be ex-
pressible in SQL. All these queries can however be ex-
pressed using UDAs.

In the following example taken from [33], we have a log
of web pages clicked by a user, as follows:

CREATE STREAM
Sessions(SessNo,ClickTime, PageNo, PageType);

ORDER BY ClickTime

A user entering the home page of a given site starts a
new session that consists of a sequence of pages clicked; for
each session number, SessNo, the log shows the sequence of
pages visited—where a page is described by its timestamp,
ClickTime, number, PageNo and type PageType (e.g., a con-
tent page, a product description page, or a page used to pur-
chase the item).

The ideal scenario for advertisers is when users (i) see
the advertisement page for some item in a content page,
(ii) jump to the product-description page with details on
the item and its price, and finally (iii) click the ‘purchase
this item’ page. This advertisers’ dream pattern can be ex-
pressed by the following UDA query, where ‘a’, ‘d’, and ‘p’,
respectively, denote an ad page, an item description page,
and a purchase page. We store the last three page types us-
ing the memo table in the UDA find pattern. Then we issue
a self-join query to check the condition. Since the memo ta-
ble only contains three tuples at all time, the self-join query
is very efficient.

Example 15 Sequence query

INSERT INTO stdout
SELECT SessNo, find pattern(PageType)
FROM Sessions
GROUP BY SessNO;

AGGREGATE find pattern(PageType):{
TABLE memo(PageType, state) MEMORY;
INITIALIZE:ITERATE:{

UPDATE memo SET state = state + 1;
DELETE FROM memo WHERE state = 3;
INSERT INTO memo VALUES (PageType, 0);
INSERT INTO RETURN

SELECT ’Found Pattern’
FROM memo X, memo Y, memo Z
WHERE X.state = 0 AND X.PageType = ’a’

AND Y.state = 1 AND Y.PageType = ’d’
And Z.state = 2 AND Z.PageType = ’p’;

}};

In [4], we designed a sequence query language called
ESL-TS. This query is expressible in ESL-TS with only one
statement. The implementation of ESL-TS is based on the
constructs discussed in this paper.

In Example 16, we compute the top 5 purchases in each
10-hour window. This is realized by UDA window top5,
which iterates over the stream purchase and selectively
buffers purchases made in the last 10 hours. For each pur-
chase record r, we count the number of future purchases
(as they come in) that have a larger amount than r. If there
are more than 5 such purchases, we remove r from the win-
dow buffer since it will not qualify as one of the top 5 pur-
chases for now or in the future. This memory optimization
technique can be gracefully expressed in ESL. Furthermore,
the tuple expiration is transparent to users (with EXPIRE ab-
sent or empty).

Example 16 Top 5 purchases within each 10 hour window6

CREATE STREAM purchase(id, amount) SOURCE . . .

SELECT id, window top5(amount,0)
OVER (RANGE 10 HOURS PRECEDING)
FROM purchase;

WINDOW AGGREGATE window top5(pamount, cnt):{
INITIALIZE : ITERATE : {

UPDATE WINDOW W SET W.cnt=W.cnt+1
WHERE W.amount < amount;

DELETE FROM WINDOW W WHERE W.cnt ≥ 5;
INSERT INTO RETURN

SELECT top5(W.amount) FROM WINDOW W;
}};

6 The windowless version of UDA top5() can be found at [11]



Our next example is on-line mining — one of the key
applications of data streams. The task is to learn an accu-
rate classifier from an unbounded data stream with concept-
drifts [18, 39].

In order to maintain a classifier that represents the most
up-to-date concept of the underlying dataset, we must learn
from new data and ‘forget’ old data. However, both revis-
ing the current decision tree and building a new decision
tree are time-consuming, and have negative impact on pre-
diction accuracy with concept-drifting data streams [39].

Here, we adopt a more efficient approach: we partition
the stream into data chunks of fixed size, and learn a clas-
sifier from each of them. We then combine those classifiers
that have low prediction errors on the most recent training
data to predict the most recent testing data. The above pro-
cess can be implemented with a UDA classifystream.

Example 17 stream classifier with concept-drifts

AGGREGATE classifystream(col 1, ..., col n, label):
{ TABLE state(cnt Int) AS VALUES (0);

INITIALIZE: ITERATE : {
SELECT learn(W.*) FROM WINDOW AS W

WHERE ((SELECT cnt FROM state) = 1000
OR ((SELECT cnt FROM state) % 1000 = 0 AND

(SELECT sum(|classify(W.*)-W.label|)
FROM WINDOW AS W
WHERE W.label=NULL)≥ threshold))

AND W.label <> NULL;
UPDATE state SET cnt=cnt+1;
INSERT INTO RETURN

SELECT classify(V.*)
FROM VALUES(col 1,...,col n) AS V
WHERE label = NULL;

}
}

The UDA classifystream in Example 17 implements a
classifier over a stream with concept-drifts. It makes use of a
UDA classify and learn, which are either available as a built-
in or can be defined using UDAs as described in [43, 42].

Now, all that is left to do is to apply our classifystream on
the union of the (labeled) training data and the (unlabeled)
testing data:

INSERT INTO stdout
SELECT classifystream(S.*)
OVER (ROWS 10000 PRECEDING)
FROM stream AS S;

At each point, we must determine whether we should (re-
)learn a classifier. We (re-)learn a classifier if (i) we reach
the boundary of the first window (cnt = 1000); or (ii) at the
boundary of every 1000 records (cnt%1000 = 0), the clas-
sification error on the last window exceeds a user-specified

error threshold. Here, we use zero-one loss (|classify(?)-
label|) to estimate classification error .

To reduce overfitting, we can implement a more sophis-
ticated classifier using classifier ensembles [39].

8. Related Work

The objective of overcoming SQL’s limitations in deal-
ing with time series and sequences has motivated signifi-
cant database research long before the emergence of data
streams.

The first line of work focuses on using composite events
as triggers of active databases rules [14, 13, 27]. These
projects observed that the event-condition statements sup-
ported in commercial SQL DBMS are insufficient to detect
complex event patterns in time-series, and therefore pro-
posed powerful extensions based on a marriage of SQL with
regular expressions and temporal aggregates [14, 13, 27].

In terms of expressive power, composite-event languages
support most of the functions needed for processing se-
quences or data streams, but it is far from clear that the ac-
tive database architecture can be extended to provide the
query performance and high bandwidth required on se-
quences or data streams. Therefore, most research projects
on data sequences have instead used query language exten-
sions (and this is also true for data streams).

Because of space limitations, and the presence of recent
surveys [2, 15] we will not attempt to give a comprehensive
overview of the large body of excellent research work that
is being produced on data streams. We will only focus on
some points that are more directly related to ESL.

For instance stream declaration with various kinds of
timestamps is extensively discussed in CQL, and the con-
cept of heartbeats is addressed. ESL provides an additional
type of timestamp, i.e. latent timestamp. Windows play a
critical role in CQL as it is a stream-to-relation operator.
CQL uses windows as stream modifiers, unlike the role of
aggregate modifiers in SQL:2003 and ESL.

Instead of extending SQL, Aurora defines query plans
via a “boxes and arrows” graphical interfaces [6]. Aurora
supports eight primitive operations, among which four are
windowed operators. It also supports user-defined aggre-
gates, which are defined with semi-procedural constructs
rather than SQL. The aggregation operators have optional
parameters, making their semantics dependent on stream
arrival and processing rates. All operators in Aurora are
stream-to-stream, although historical data can be stored into
relations via connection points. Ad-hoc queries can be is-
sued on relations.

TelegraphCQ proposes a SQL-like language with exten-
sion of window constructs. As CQL, TelegraphCQ treats
windows as stream modifier rather than aggregate modi-
fiers in ESL and SQL:1999. The usage of aggregates must



be combined with windows, since all aggregates in Tele-
graphCQ are blocking. In [12], a low-level C/C++-like for-
loop aiming at more general window, such as backward
windows and windows in the past.

GSQL is a pure stream query language designed for Gi-
gascope, a stream database for network applications [9].
GSQL is an SQL-like language allowing query composi-
tion and query optimization.

In GSQL[9], stream declaration with timestamp is not
discussed. GSQL supports sort-merge union of streams,
joins of two streams, and aggregation. The concept of win-
dow is absent in GSQL. Since GSQL is a pure stream lan-
guage, the operations involving tables are missing. Gigas-
cope has the concept of external functions (e.g. to imple-
ment algorithms by network analysts) written in procedural
languages.7

9. Conclusions

An SQL-based query language represents the obvious
choice for systems that want to support applications span-
ning both DB tables and data streams. However, continu-
ous queries on streaming data are so different from tradi-
tional queries on stored data that an in-depth analysis of
the new requirements is the sine-qua-non for an effective
design. Some of the requirements, e.g., to avoid blocking
computations, and minimize memory usage, have been rec-
ognized by previous research projects, but ESL goes fur-
ther of other projects in addressing the expressive power
and generality issues that follow from these new require-
ments, and design a complete language for data stream ap-
plications, under both a theoretical and practical viewpoint.
The completeness of ESL from a theoretical viewpoint was
proven in [22] where we showed that the language can ex-
press all computable queries on database tables, and all the
queries expressible using nonblocking query operators (i.e.,
all monotonic queries) on data streams. In this paper, we
have instead elucidated the practical language design is-
sues, and showed that ESL can handle advanced applica-
tions, such as approximate computations, sequence queries,
and data stream mining, that are well beyond the capabil-
ities of other data stream systems. Furthermore, we have
proposed a design that (i) minimizes the deviations from
the SQL:2003 standards and (ii) integrates continuous data
stream queries, and ad-hoc database queries with a clear se-
mantics. The key extensions with respect to SQL:2003 are
(a) a sort-merge semantics for union, (b) nonblocking UDAs
(c) window-based extensions of such UDAs, and (c) spe-
cial table function to create table-like windows on streams.

7 In ESL, we also support external functions written in procedural lan-
guages as well as UDAs written in SQL.

While topic (b) was discussed in previous papers, the re-
maining topics are new.

We have shown that the limited set of syntactic exten-
sions added to SQL:2003 by ESL allows users to express
succinctly and efficiently complex queries, including con-
tinuous mining queries and all the queries in [3]. More-
over, the use of UDAs can allow significant savings in
memory and computations in many situations—particularly
when used as a replacement for self-joins. Due to space
limitations, we leave for later papers a discussion of the
architecture and implementation of the Data Stream Mill
system, which features a new data stream manager and
continuous-query manager—along with the database man-
ager and query manager supporting SQL and blocking and
nonblocking UDAs.

The current version of the ESL system is avail-
able from [11].
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