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Abstract

In [1], the authors proposed the partial cover of a random walk on a
broadcast network to be used to gather information and supported their
proposal with experimental results. In this paper, we demonstrate ana-
lytically that for sufficiently large broadcast radius, the partial cover of a
random walk on a broadcast network is in fact efficient and generates a
good distribution of the visited nodes. Our result is based on bounding
the conductance, which intuitively measures the amount of bottlenecks in
a graph. We show that the conductance of a random broadcast network is
Θ(R), and this bound allows us to analyze properties of the random walk
such as rapid mixing and load balancing. We find that for the random
walk to be both efficient and have a high quality cover and partial cover,
radius R = O(1/poly(logN)) is sufficient. Experimental results on the
random unit disk graphs that resemble the conductance of the 3D grid
indicate that the analytical bounds on efficiency, namely cover time and
partial cover time, are not tight. In particular, R = O(1/N 1/3) is suffi-
cient radius to obtain optimal cover time and partial cover time, if one is
not concerned about the quality of the distribution of the visited nodes
(for example in a query based on majority vote).

1 Introduction

The task of information collection and processing over wireless sensor networks
is one of the main challenges in such domains [2] [3] [4]. The strict energy con-
straints [5] and the dynamics of the network (caused by node mobility, node fail-
ure, unreliable communication, etc.) prevent in many cases adopting traditional
solutions from related areas like ad-hoc networks and distributed databases.
Many such systems rely on state information stored at the nodes and global
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data structures for proper operation (for example, pointers to cluster heads,
routing tables, and spanning trees). As such, those types of systems have crit-
ical points of failure and in dynamic environments must adopt failure recovery
mechanisms which impact significantly on the overall performance.

In recent years emphasis has been shifting from deterministic algorithms to
randomized algorithms which are often simpler and fast. In particular, we can
consider the simple random walk for information collection in a sensor network
due to the simplicity of the process, robustness to failures (no critical points of
failure), minimal overhead, and locality of computation. This approach is gain-
ing credence and popularity, as recently several authors [1, 6, 7] have considered
random walk approaches in various networking settings.

The authors [1] proposed the partial cover of a random walk on a broadcast
network to be used to gather and process information. As the cover time [8]
is the expected number of steps taken by a random walk to visit every node
in the network, the partial cover time (PCT) is the expected time required to
cover only a constant fraction of the network. In sensor network applications,
for most tasks, it is not necessary to consult every node in the network. In
fact, the authors had shown, derived from the well known Matthews bound [9],
that the partial cover time is a factor of O(log N) times more efficient than the
cover time. Substantiated by experimental results we showed that the partial
cover of 80% of the network is in fact efficient in the number of messages in
comparison to other systems and still maintains all the other nice properties of
random walks mention above.

Kempe et al. [6] proposed and analyzed parallel random walk techniques
for gossiping in networks. Their approach differs from [1] approach in the na-
ture of what is expected of the data collection task. The former is concerned
with disseminating global information throughout the network to be stored in
every node (all-to-all), whereas the latter is concerned with answering a query
regarding the global status of the network by the random walk of a single token
(all-to-one). While the [6] approach is much more time-efficient in comparison
to the [1] approach, it is energy-inefficient for use in a sensor network or broad-
cast network due to a number of factors: the total number of messages sent,
the correspondingly large associated interference, and the girth of information
stored at each node. Therefore, it is necessary to consider the particular nature
of the network and the data collection task.

Since then, Gkantsidis et al. [7] have proposed random walk techniques for
peer-to-peer networks based on that random walk are especially efficient when
the underlying topology of the network is an expander [10]. As such, they
have advocated expander construction in peer-to-peer network design and use
random walks to perform search. One nice property about expanders is that
they give optimal rate of convergence to stationary distribution, namely mixing
rate, due to the smallness of the second largest eigenvalue λ2 of the weighted
transition matrix associated with the underlying network topology. As shall be
discussed, λ2 is essentially related to other relevant and desirable properties of
random walks including partial cover time and load balancing.

In this paper, as we are concerned with all-to-one data collection in a sensor
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or broadcast network, we expand upon our previous work [1]. In particular
we investigate the efficiency and quality of the random walk as a function of
the broadcast radius and size of the network. Delineating such a relationship
is beneficial for network designers to either set broadcast radius accordingly or
to otherwise know what random walk properties are to be expected given their
network’s broadcast radius and size.

2 Overview of the Models, Methods, and Re-

sults

A well-known model representing sensor networks (or in general broadcast net-
works) and their underlying Markov chain is the class of unit disk graphs (UDGs)
[11]. Let GR(N) be a random UDG constructed as follows: Place N = |V | nodes
uniformly at random in unit a squared area and then connect every pair of nodes
at Euclidean distance less than or equal to R. (Although we can think of UDGs
in any number of dimensions, in this work we assume only the two dimensional
case as that has direct relevance to ad-hoc networks.)

Note that, on the one hand, a 2D grid network is a UDG of borderline
radius to ensure connectivity. And, on the other hand, the complete graph KN

is a UDG with maximal density and connectivity. As we shall see, the 2D grid
lacks many desirable random walk properties (such as rapid mixing and optimal
cover time), whereas the complete graph behaves optimally with respect to such
random walk properties. It is easy to see that by increasing R of a UDG we are
increasing the connectivity and the degree of the nodes and can shift from the
grid to the complete graph. Then, intuitively, a question to ask is, do we need
to increase R to maximum (i.e

√
2) in order get these properties, or, rather,

is there a more continuous relationship between R and these properties? This
question was a primary motivation in investigating the relationship between the
radius and mixing time of a UDG.

As interference and energy grow with increased radius, in particular, we
wonder what are small radii for which we may yet obtain good, even optimal,
random walk properties. Of course, such bounds on the radii depend on the
particular properties desired, and the particular properties desired are related
to the following important and relevant questions to consider for a random walk
approach in the context of global data collection over broadcast networks:

1. How long should we wait for the random walk token to collect information
from all of the nodes?

2. How long should we wait for the random walk token to collect information
from a constant fraction c of the nodes?

3. Does the random walk have good load balance properties?

4. What is the quality of a random walk (measured by the distribution of
visited nodes) after some t number of steps?
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5. What is the quality of a the partial cover after having collected information
from a constant fraction c of the nodes?

Question 3 exactly concerns the mixing rate, the rate of convergence of a
random walk to stationary distribution, of the random walk over GR(N). For
regular graphs, the more rapidly mixing the random walk, the more uniformly
the nodes are sampled, and thus the more balanced is the load. Intuitively, the
fewer the bottlenecks of the UDG, the more rapidly mixing the random walk is.
Conductance is a measure of bottlenecks that is particularly appealing geomet-
rically and which is directly related to the second eigenvalue λ2 of the weighted
transition matrix [12]. We analytically demonstrate that for sufficiently large N
as a function of R, the conductance of GR(N) is Φ(GR(N)) = Θ(R) with high
probability1. We also give a useful continuous approximation to Φ(GR(N)).
Based on the conductance results, we show that for a GR(N) the radius suffi-
cient for rapid mixing is R = O(1/poly(logN)). The idea of using conductance
to bound the mixing time of broadcast networks was recently independently
proposed in yet unpublished manuscript [13].

Questions 1 and 2 exactly concern the cover time C and, respectively, partial
cover time PCT of GR(N). Since the random walk should be run C steps or
PCT steps to be expected to have collected information from all or almost all
of the nodes, we investigate for which broadcast radii R we obtain small C
or PCT . Unfortunately, from analytical results based on the conductance we
are only guaranteed optimal C and PCT for constant radius R. However, by
observing that the k dimensional mesh for k > 2 also has optimal C and PCT
though it is not even rapid mixing, we hypothesized that perhaps the GR(N)
with conductance similar to that of the 3D mesh may also has optimal C and
PCT. Since conductance alone is an insufficient measure to analytically tightly
bound C and PCT, our hypothesis was also based on the observation that, in
the case of UDGs, increase in conductance directly implies increase in average
degree and decrease in the hop-diameter of the network as well. Therefore,
we formalize the notion of resemblance of UDGs to other graphs based on the
similarity in conductance, which immediately implies some other comparisons
as well. In fact, our experimental results show that the GR(N) that resembles
the 3D mesh has C and PCT even lower than that of the 3D mesh. Therefore,
by experimental results we have that radius R = O(1/N 1/3) is sufficient for
optimal C and PCT. It should also be noted that experimental results indicate
that the GR(N) that resembles the hypercube has slightly better mixing rate
and PCT than that of the hypercube. This further demonstrates the usefulness
of the notion of resemblance as much is already known about certain graphs
such as the grids and hypercube.

For the last two questions, we measure the quality of our random walk in
terms of how small a hole, namely a contiguous unvisited area, remains after a
given number of steps. Such a characterization is eminently sensible due to the
geometric characterization of UDGs. We approximate the hole size by its upper
bound as the maximum minimum Euclidean distance from unvisited nodes to

1meaning with probability 1 − O( 1

N
)
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visited nodes after some number of steps. And, so the last two questions exactly
concern how small a hole remains after some amount of time. Our experimental
results indicate that the quality of the random walk is significantly improved
by rapid mixing. This intuitively makes sense as the quality of a random walk
is related to load-balancing properties. Thus, although for efficiency radius
R = O(1/N1/3) suffices, to achieve both efficiency and high quality geometric
distribution of visited nodes, radius R = O(1/poly(logN) is recommended.

Note that a high quality partial cover may not be necessary depending upon
the nature of the data collection task. For example, to collect a majority vote,
with very high probability after 90% PCT, the majority vote will have been
obtained regardless of the distribution quality. However, for a temperature
sensing system, for example, the quality of the random walk may be eminently
important.

3 Preliminaries

3.1 Markov chains and the Simple Random Walk

The probabilistic rules by which a random walk operates is defined by the cor-
responding Markov chain. Let M be a Markov chain over state space Ω and
probability transition matrix K (i.e K(x, y) is the probability to move from x
at time t to y at time t + 1). Let Pt denote the probability distribution of
M at time t. Given some starting distribution P0, one obtains the next step
distribution P1 by applying K to P0, then obtains the subsequent distribution
P2 by applying K to P1 and so forth. Therefore, for all time t > 0,

Pt = P0K
t−1 (1)

In such terms, the stationary distribution of M, if such exists, is then defined
as the unique probability vector π such that

πK = π (2)

A primary motivation in considering a random walk approach as opposed
to a deterministic protocol is simplicity and locality of computation. So, if
the random walk is currently at node q, then the simplest probabilistic rule by
which to choose the next node is simply to choose a node uniformly at random
from among the set of neighbors of q. We call the Markov chain N = (Ω,K)
corresponding to such a random walk the simple random walk. Note that we
may just as well define such N by its underlying graph G = (V,E). For such
G, for any node v ∈ V , let δ(v) denote the degree of v, that is the number of
neighbors of v in G and let K(v, u) = 1

δ(v) .

The simple random walk N = (Ω,K) over some connected graph G = (V,E)
has a stationary distribution π such that, for any node q ∈ V [14],

π(q) =
δ(q)

2m
(3)
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where m = |E|. Further, when the underlying graph G is regular, that is when
there is d such that for all q in N, δ(q) = d, the stationary distribution is the
uniform distribution [14]

π(q) =
d

2m
=

1

N
∀q ∈ Ω (4)

where N = |Ω| = |V |.
At stationary distribution, it is clear that the random walk has optimal load-

balancing qualities for regular graphs G. Similarly, it is clear that the faster the
random walk on a regular graph converges to stationarity, the greater its load-
balancing qualities and better the quality of the partial cover as mentioned
regarding question (4).

3.2 Mixing Time and the Spectral Gap (1 − λ2)

The efficiency with which a random walk of R may be used to sample over state
space Ω with respect to stationary distribution π is precisely given by the rate
at which Pt converges to π. In order to speak of convergence of probabilities,
one must have a notion of distance over time. The variation distance at time t
with respect to the initial state x is defined to be [15]

∆x(t) = max
S⊆Ω

|Kt(x, S) − π(S)| =
1

2

∑

y∈Ω

|Kt(x, y) − π(y)| (5)

The rate of convergence of R to stationarity may be measured by the mixing
time, the function [15]

τx(ε) = min{t | ∆x(t′) ≤ ε,∀t′ ≥ t} (6)

A chain M is considered rapid mixing iff τx(ε) is O(poly(log(N/ε))). For M to
be used for efficient sampling, we want that M is rapid mixing.

As every step t of a random walk on M is represented by the matrix product
of P0 and Kt, and from (2) above the stationary distribution π is an eigenvector
corresponding to largest eigenvalue 1 of K, plausibly spectral theory is very
useful in analyzing τx(ε). Let 1 = λ1 ≥ λ2 ≥ · · · ≥ λN > −1 denote the
eigenvalues of K in decreasing order for ergodic 2, reversible 3 Markov chain M.
It is well-known that a large value of the spectral gap (1 − λ2) exactly captures
rapid convergence to stationarity [15]:

Proposition 1 For an ergodic Markov chain, the quantity τx(ε) satisfies

(i) τx(ε) ≤ (1 − λ2)
−1(ln π(x)−1 + ln ε−1)

(ii) maxx∈Ω(ε) ≥ 1
2λ2(1 − λ2)

−1 ln(2ε)−1

2meaning that a stationary distribution exists
3The simple random walk is always reversible (i.e π(x)K(x, y) = π(y)K(y, x))
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As we would like the starting state of a random walk to be arbitrary, the
above implies that a large spectral gap (1−λ2) is both a necessary and sufficient
condition for rapid mixing. A well-known method for bounding λ2 to prove
rapid mixing when the underlying graph has a geometric interpretation is a
Conductance argument [12]. This is the method we shall use, as UDGs have a
strong geometric interpretation.

3.3 Conductance

Intuitively, one would expect that when the Markov chain M doesn’t have bot-
tlenecks, the lower the probability of getting stuck in any particular set of states,
and thus the more rapidly mixing M is. The property of “no bottlenecks” is
formalized in a continuous manner with the notion of conductance.

The conductance of a reversible Markov chain M is defined by

Φ = Φ(M) = min
S⊂Ω,0<π(S)≤1/2

Q(S, S)

π(S)
(7)

where S̄ = Ω−S, Q(x, y) = π(x)K(x, y) = π(y)K(y, x), π(S) is the probability
density of S under the stationary distribution π, and Q(S, S) is the sum of
Q(x, y) over all (x, y) ∈ S × (Ω − S).

In graph-theoretic terms, the conductance of M is the minimum over all
subsets S ⊂ Ω of the ratio of the weighted flow across the cut Cut(S, S) to the
weighted capacity of S. Intuitively, the higher the conductance of M, there are
fewer bottlenecks in M, and the more rapidly mixing M is. This intuition is
confirmed by the following theorem [15]:

Theorem 1 The second eigenvalue λ2 of a reversible Markov chain M satisfies

1 − 2Φ ≤ λ2 ≤ 1 − Φ2

2
(8)

The above Theorem along with Proposition (1) yield the following powerful
corollary bounding the mixing time via conductance [12]:

Corollary 1 Let M be a finite, reversible, ergodic and aperiodic 4 Markov
chain, and let Φ be the conductance of M. Then, for any initial state x, the
mixing time of M satisfies

τx(ε) ≤ 2Φ−2(ln π(x)−1 + ln ε−1) (9)

4Any chain can be made aperiodic simply by adding loop probabilities of 1

2
at each node,

this clearly does not affect the stationary diistribution. We assume that our random UDGs
are aperiodic.
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4 Mixing Time of UDGs

4.1 Bounding the Conductance of the k dimensional Grid

To begin with a simple example of a conductance argument with similarities
to the conductance argument for general UDGs, we consider the case of the 2
dimensional grid which is a sub-class of the class of regular UDGs.

Let M(2, N) denote the two dimensional grid of N nodes. It is easy to see
that, since the graph has a regular geometric structure, the minimum conduc-
tance occurs when we consider min(|S|, |S|) of maximum capacity, that is when
π(S) = π(S) = 1

2 so that S has half of the nodes of M(2, N). Furthermore,
as there are many possible ways of separating the nodes of M(2, N) into two
halves S and S, we need to consider the separation that gives the minimum
flow across Cut(S, S), which occurs when the length of the boundary between
S and S is minimized (since every edge has the same weight due to regularity).
It is easy to check that the separation satisfying this is with a separating line
l parallel to one of the axis. Since there are N

1

2 edges crossing such a cut and
each edge has weight w = 1

4
5, the conductance of the two dimensional grid of

N nodes is

Φ(M(2, N)) = 2
∑

x∈S
y∈S̄

1

N

1

4
= 2N

1

2

1

4N

= (2N
1

2 )−1

This argument easily generalizes to the k dimensional grid M(k,N), and we
obtain the following by Theorem 1 and Corollary 1 above:

Lemma 2 For the k dimensional grid M(k,N) of N nodes we have the follow-
ing:

1. Φ(M(k,N)) = (kN
1

k )−1

2. 1
2 (kN

1

k )−2 ≤ 1 − λ2 ≤ 2(kN
1

k )−1

3. τx(ε) ≤ 2k2N
2

k (ln N + ln ε−1)

4.2 Bounding the Conductance of GR(N)

Let GR(N) be a UDG constructed as mention earlier. Our main analytical
results are the following:

Theorem 2 If N ≥ 4R−2 ln(4R−2), then with high probability

Φ(GR(N)) = Θ(R) (10)

5We ignore the two nodes on the borders which have only 3 neighbors.
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From Theorem 2, Theorem 1 and Corollary 1 we obtain these bounds:

Corollary 3 If N ≥ 4R−2 ln(4R−2), then with high probability we have for
GR(N) the following :

1. 1 − λ2 = Ω(R2)

2. 1 − λ2 = O(R)

3. τx(ε) = O(R−2(ln N + ln ε−1))

Note immediately from above that GR(N) is rapidly mixing if R−1 = O(poly(log N))
.

Before we begin the proof of Theorem 2, note the following well-known and
very useful result from literature [10]:

Lemma 4 (Balls in Bins) If one throws N ≥ B log B balls randomly into B
bins, then both the minimum and the maximum number of balls in any bin is
Θ(N

B ) with high probability (meaning with probability 1 − O( 1
N )).

From Lemma 4, we may prove the following about GR(N):

Lemma 5 If N ≥ 2R−2 ln(2R−2), then with high probability δ(v) = Θ(NR2),∀v ∈
V .

Proof 1 (of Lemma 5) First note that N ≥ 2R−2 ln(2R−2), guarantees from
Lemma 4 that if we divide the area into 2R−2 bins of size R√

2
× R√

2
, the number of

nodes in every bin will be Θ(N/R−2) with high probability. (Increasing N tight-
ens the bound.) Since, for every bin, the set of nodes in the bin forms a clique,
and every node v ∈ V is in some bin, we have that δ(v) = Ω(NR2),∀v ∈ V . Fur-
thermore, as every node may be connected to the nodes of at most nine bins (that
is its own bin and the bordering bins), we have that δ(v) = Θ(NR2),∀v ∈ V .

Since N = 2R−2 ln(2R−2)) satisfies the connectivity requirements from [16],
and obviously increasing N will not disconnect the network, it can be shown
that GR(N) is connected with high probability. In other words, with high
probability, GR(N) is connected, almost regular, and there are no large areas
in the graph with low density. Now we may begin the proof of our main result:

Proof 2 (of Theorem 2) Let Cut(S, S̄) denote the cut size between S and
S̄ (the total number of edges crossing from S to S̄). Due to regularity and
uniformity with high probability by Lemma 5, we can adopt the reasoning from
the conductance argument for the grid M(2, N) given in the previous subsection,
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Figure 1: (a) Lower bound for the Conductance in UDG. (b) upper bound for
the Conductance in UDG

and we can clearly observe that the minimum conductance is when we divide the
area into two halves S and S̄ as in Fig. 6.

First we prove the lower bound. Partition the area into bins of size R
2
√

2
×

R√
2

as in Figure 1 (a). Since N ≥ 4R−2 ln(4R−2), from Lemma 4, with high

probability the number of nodes in any bin is N R2

4 . Notice that the set of nodes
in any two horizontally adjacent bins forms a clique. Therefore, to lower bound
Cut(S, S̄), we are only considering the crossing edges within each separate such

clique along the dividing line l. Since there are at least
√

2
R cliques along the

dividing line l, and for each bin on the left side of l we have Ω(NR2) such edges
crossing to the right of l, we obtain the desired lower bound Ω(R3N2) with high
probability.

And, now we prove the upper bound. Partition the area into bins of size
R × R as in Figure 1 (b). Note that for each edge (u, v) crossing l, v must be
in some left bin B0 adjacent to l, and so u must be in one of three possible bins
B1, B2, B3 that are on the right of l and touching B0 as shown in the picture.
To upper bound Cut(S, S̄), we consider the maximum number of crossing edges
from any R×R sized bin B0 in S to three R×R sized bins B1, B2, andB3 in S̄.
As there are 1

R such bins as B0, and from Lemma 4, with high probability the
number of nodes in any bin is NR2, we get the desired upper bound as follows:

Cut(S, S̄) = O(
1

R
· NR2 · 3NR2) = O(R3N2) (11)

with high probability.

10



So, combining the upper and lower bounds, we have that with high probability,

Cut(S, S̄) = Θ(R3N2) (12)

And, thus, by δ(v) = Θ(NR2),∀v ∈ V we complete the proof:

Φ(GR(N)) = 2Q(x, y) =
∑

x∈S
y∈S̄

π(x)K(x, y)

= 2
∑

x∈S
y∈S̄

Θ(
1

N
)Θ(

1

R2N
)

= 2Θ(R3N2)/Θ(R2N2)

= Θ(R)

5 Cover Time and Partial Cover Time of UDGs

Known results for the cover time of specific graphs vary from the best case of
O(N log N) to the worst case of O(N 3). The best cases correspond to dense,
highly connected graphs, for example, the complete graph, d-regular graphs
with d > N

2 , and the hypercube. When connectivity decreases and bottlenecks
exist in the graph, the cover time increases, as exemplified by the bar-bell graph
and, to a lesser degree, by the line graph which has cover time Θ(N 2).

Therefore, intuitively, one would anticipate a relationship between the spec-
tral gap (1−λ2) and small cover time. In confirmation of this intuition, a bound
for the cover time for regular graphs G that is based on the spectral gap (1−λ2)
is given by [17] and [18]:

Theorem 3 For regular graph G = (V,E) with N = |V | and second largest
eigenvalue λ2 the cover time of G is bounded as follows: C(G) = O(N log N/(1−
λ2))

From the same analysis of [18] and [17] one may directly obtain the partial
cover time of a regular graph via a partial balls in bins argument:

Lemma 6 For regular graph G = (V,E) with N = |V | and second largest
eigenvalue λ2 the partial cover time of G is bounded as follows for any constant
c such that 0 < c < 1: PCTc(G) = O(N/(1 − λ2))

Therefore, it follows from Theorem 3, Lemma 6, and Theorem 2 that we can
bound the cover time and PCT of GR(N) as follows:

Corollary 7 If N ≥ 2R−2 ln(2R−2), then with high probability

C(GR(N)) = O(R−2N log N) (13)

and, for any constant c, 0 ≤ c < 1,

PCTc(GR(N)) = O(R−2N) (14)
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If these bounds on cover time and PCT were tight, then the only way to
achieve optimal cover time for UDGs would be by choosing a radius R that
is constant irrespective of the network size N . Recalling that our definition
of GR(N) is normalized to a unit area, this would mean that only broadcast
networks of constant hop diameter may have optimal cover and partial cover.
Even the radius required for rapid mixing, which is R = O(1/poly(log N)), is
several orders lower than such a radius.

However, fortunately, the bounds given by Theorem 3, Lemma 6, and cor-
respondingly by Corollary 7 are not tight. An especially demonstrative case of
this is for k dimensional grid M(k,N) of N nodes for any k > 2. The cover time
and PCT for M(k,N) are known to be optimal, that is Θ(N log N) and Θ(N)
respectively [19]. Yet, recalling Lemma 2, Theorem 3 and Lemma 6 yield only

that C(M(k,N)) = O(k2N1+ 2

k log N) and that PCTc(M(k,N)) = O(k2N1+ 2

k ).
The following theorem provides, in many cases, tighter bounds on the cover

time C in term of the maximum hitting time hmax. For arbitrary nodes i, j ∈ V ,
let hij be the expected number of steps for the random walk to move from i to
j, namely the hitting time between i and j. Then hmax (hmin) is defined as the
maximum (minimum) hij over all ordered pairs of nodes.

Theorem 4 (Matthews’ Theorem [9]) For any graph G,

hmin · HN ≤ C(G) ≤ hmax · HN

where Hk = ln(k) + Θ(1) is the k-th harmonic number.

Similarly, in [1] the authors showed the following bound of the partial cover
time, PCT, in terms of the hitting time:

Lemma 8 For any graph G, and 0 ≤ c ≤ N−1
N

PCTc(G) < 2 · hmax ·
⌈

log2(
1

1 − c
)

⌉

= O(hmax)

In particular, as the maximum hitting time for M(k,N) is known to be O(N)
for k > 2 [19], Matthew’s Theorem and Lemma 8 yield that the cover time and
PCT of M(k,N) is O(N log N) and O(N), respectively, which are tight. In
future work, we plan to investigate the maximum hitting time of GR(N) to
obtain tighter analytical bounds on the cover time and PCT of UDGs based on
Matthew’s Theorem and Lemma 8. In this work, we have investigated the cover
time and PCT of UDGs via experiments.

Notice that whether one bounds the cover time or partial cover time based
on the hitting time or based on the spectral gap, an O(log N) efficiency is
gained in moving from the cover time to the partial cover time. In fact, as
can be observed from the case of the k dimensional grid M(k,N), the O(log N)
gain in efficiency is often tight. Experimental results comparing cover times
and PCTs of UDGs from [1] also support this tightness for the case of UDGs,
further justifying consideration of the partial cover for information collection in
broadcast networks.
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6 Resemblance of UDGs

We are concerned with small radii (as a function of N) for which optimal cover
time and PCT may yet be achieved. From above discussion we have seen that
connectivity and the spectral gap are closely related to the cover time and PCT,
and we expect that, for fixed N , as R increases, the cover time and PCT of
GR(N) decrease. We know that M(3, N) has optimal cover time and PCT even
though it has constant degree and is not even rapidly mixing. So, we wonder
for which radius R would the cover time and PCT of GR(N) be on the same
order as the cover time and PCT, respectively, of M(3, N). As conductance
is a measure of connectivity and spectral gap, and Φ(GR(N)) = Θ(R) from
Theorem 2, we ask: If R = Φ(M(3, N)) does GR(N) also have optimal cover
time and PCT?

To formalize the implicit notion of resemblance of graphs underlying that
question, let us define the following: A UDG GR(N) resembles another graph
G = (V,E), with N = |V |, iff R = Θ(Φ(G)). And, as abbreviation, we may
write, GR(N) ≡Φ G to mean that GR(N) resembles G.

As the spectral gap and mixing time may both be upper bounded and lower
bounded by functions of conductance, it is easy to see that two graphs which
resemble each other will also have spectral gap and mixing time within close
range of each other. For example, if GR(N) ≡Φ G, then GR(N) is rapidly mixing
iff G is rapidly mixing. However, precisely because our notion of resemblance is
based essentially on spectral gap, which in general is not sufficient to characterize
the cover time and PCT due the non-tightness of Theorem 3 and Lemma 6 for
the case of M(k,N) for k > 2, we do not necessarily expect that any two graphs
with the same conductance also have the same cover time or PCT.

But, in the case of UDGs, other special properties improve with increased
radius. In particular, it is easy to see that both the average degree δ and the
hop diameter D of a UDG are functions of the radius. Specifically, it is easy to
see the following:

Corollary 9 If GR(N) ≡Φ M(k,N) for some k ≥ 2 then

1. R = Θ(N− 1

k )

2. D(GR(N)) = Θ(N
1

k ) = D(M(k,N))

3. ∀v ∈ V, δ(v) = Θ(N
k−2

k )

So, when GR(N) ≡Φ M(k,N), for any constant k ≥ 2: Not only do the two
graphs have similar conductance and diameter, but also the average degree of
the nodes of GR(N) is orders higher than the degree of any node of M(k,N)
(which is just d = 2k). This motivates our hypothesis above, paraphrased in
terms of resemblance:
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Figure 2: The progress of partial cover time as function of number of steps
normalized to N for different graphs

Table 1: Number of steps required for 80% cover of 3D grid and Corresponding
UDG

N R UDG(R) 3D Grid
1000 0.0859 2.7142 2.7016
1728 0.0704 2.5828 2.6947
2744 0.05965 2.5697 2.7090
4096 0.5176 2.4693 2.6874

Hypothesis 1 If GR(N) ≡Φ M(k,N) for some k > 2 then, for any constant
0 ≤ c < 1,

1. C(GR(N)) = O(C(M(k,N))) = Θ(N log N)

2. PCTc(GR(N)) = O(PCTc(M(k,N))) = Θ(N)

In particular, this would imply that the radius required for optimal cover
time and PCT is O(N− 1

3 ), which is significantly lower than Θ(1/poly(log N)),
the radius required for rapid mixing. In the next section, we demonstrate ex-
perimental results in support of this hypothesis.

7 Experimental Results

In this section we validate our analytical results and hypotheses using simu-
lations of simple random walks on different graphs. Our random UDGs were
constructed by placing N random nodes in a unit area and connecting every
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two nodes at distance less than or equal to R. For each experiment we took the
average of 100 runs. Unless otherwise specified, the graphs are of size N = 4096
nodes. In our experiments based on resemblance, we used the continuous ap-
proximation to the conductance as given in the Appendix.

7.1 Cover Time and PCT

Fig. 2 represents the number of steps (time) normalized to N (on log scale) as a
function of the progress of the partial cover. The Figure presents three different
well known graphs: 2D-grid M(2, N), 3D-grid M(3, N), and the hypercube
H(N), and three different random GR(N)′s with R = 0.03, 0.05176, 0.1 which
closely achieve the same partial cover as the respective known graphs. This
validates our intuition that we can achieve any cover time up to an optimal one
by increasing R and legitimizes the notion of resemblance for UDGs.

Importantly, note that R = 0.05176 corresponds to the radius of the GR(4096)
that resembles M(3, 4096), obtained using the approximation to conductance in
equation (15). One may observe from Fig. 2 that the PCT and cover time of
the GR(4096) with R = 0.05176 behave very similarly to the PCT and cover
time of M(3, 4096). One may further observe from Table 1, that for varying
network size N , the 80% PCT of M(3, N) and the GR(N) that resembles it has
very similar PCT. Therefore, Fig. 2 and Table 1 support our Hypothesis 1 and
demonstrate that the PCT for the GR(N) that resembles M(3, N) is almost
the same as the PCT of M(3, N), which is optimal, namely O(N) instead of

O(N
2

3 N) which follow Corollary 9 and Corollary 7
In Fig. 2, one may directly observe the sharp increase in the number of steps

(time) for every graph as the partial cover approaches the full cover. This con-
firms the non-negligible gap previously observed by [1] between the order of the
cover time and the order of the PCT for UDGs, further justifying consideration
of the partial cover.

7.2 Quality of the Random Walk based on Hole Size

As previously stated, the load balancing properties of an almost regular graph
are directly related to the graph’s mixing rate, the measure of variation distance
over time. Fig. 3 compares the variation distance as a function of number of
steps (time) for different GR(N)s and 3D-grid M(3, N). Again, as expected,
when R increases the variation distance drops faster. Also note that with R
less than the radius of the GR(N) resembling the 3D-grid (0.5176) we get even
better mixing time than the 3D-grid. Since this was also the case in Fig. 2
and Table 1 it seems that the UDG that resembles M(3, N) actually has better
cover time and mixing time than M(3, N).

When the mixing time is better one would expect that the quality of the
partial cover will improve, meaning that the random walk will not leave large
contiguous areas in the network uncovered. To make this measurement more
precise let min(v) be the minimum distance from v to a visited node in a (par-
tial) random walk. We define the hole size of a random walk as the maximum
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of min(v) over all the nodes in the graph. Note that the hole size is decreasing
as the random walk proceeds and more nodes are visited; after cover time it is
0.

Fig. 4 presents the decrease in the hole size as a function of number of
steps of random walk for GR(N) with increasing R. The figure shows that the
rate of improvement in the quality is strongly dependent upon R, similarly to
the mixing rate. Note that each walk was sampled at 10%, 20%, and up to
100% cover where the hole size is 0. An interesting point to discuss is that
this experiment also validates the fact that graphs with different spectral gap
(and mixing time) can have the same cover time (such as the 3D grid and the
hypercube). For example the graphs with R > 0.06 seems to have very similar
cover time but nevertheless very different partial cover quality.

Fig. 5 shows the improvement in the hole size after 80% cover as a function
of R. Note that it behaves like the function R−2, which further supports the
intuition that the hole size is directly related to the mixing rate.

8 Conclusions and Future Work

We have analytically obtained bounds on the mixing time of GR(N) which is
O(R−2 ln N). In particular, the analytical bounds show that the radius required
for rapid mixing is R = O(1/poly(logN)). Although we also obtained analytical
bounds on the cover time and partial cover time of GR(N) based on the spectral
gap, experimental results on the UDGs that resemble M(3, N) indicate that
those bounds are not tight. In particular, R = O(1/N 1/3) is sufficient radius
to obtain optimal cover time and partial cover time. However, experimental
results on hole size and intuition on load-balancing indicate that for the random
walk to have good quality, a short mixing time, or rapid mixing, is needed.
Therefore, to be both efficient and have good quality cover and partial cover
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R = O(1/poly(logN)) is sufficient.
These bounds may yet be improved or proven analytically. For example,

experimental results indicate that the UDG that resembles M(3, N) actually
performs better than M(3, N). Moreover, it would be nice to know analytically
why the UDG that resembles M(3, N) has optimal cover time and partial cover
time. For this insight and in order to improve the bounds, we plan to investigate
the electrical resistance of GR(N), which is intimately connected with the cover
time and partial cover time. We also plan to analytically investigate the exact
relationship between mixing time and the quality of the random walk in terms
of hole size.

Finally, although our random walk does not pose any interference in and
of itself, in sensor networks there is always the issue of energy optimization.
Whereas finding small radii for which optimal random properties are exhibited
implicitly incorporates the idea that large radii impose interference and energy
constraints, we would like to explicitly incorporate energy and interference into
our current random walk model and find the optimum radius under the new
model.
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[Continuous Approximation of Conductance] Follow Fig. 6 Let l be the
dividing. A point p in S that is at distance x < R from l neighbors the nodes in
the gray area A in the Figure. The size of A is given by 1

2R2(θ−sin θ). (Observe
that θ = arccos( x

R ) and A is a function of x.) So p has an expected number
of NA edges crossing to S̄. Taking the integral over all the points in distance
0 ≤ x ≤ R and assuming that there are N∆x nodes in the area 1 · ∆x we get
that the expected number of edges crossing from S to S̄ is (ignoring the effect
of the borders) 6

6Note that as N → ∞ and R → 0 the above bound tightens and approaches equality.
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E[Cut(S, S̄)] ≤
∫ R

0

1

2
R2NANdx

=

∫ R

0

1

2
R2N

[

arccos(
x

R
)

− sin(arccos(
x

R
)
]

Ndx

=
1

2
R2N2

[

−2R

√

1 − x2

R2

+
2

3
R(1 − x2

R2
)

3

2 + 2x arccos(
x

R
)

]R

0

=
1

2
R2N2(0 − (−2R +

2

3
R)

=
2

3
R3N2

To approximate the conductance we use this upper bound and improve it
by assuming the expected degree is πR2N and by taking out part of the border
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effect as we take the integral over the area (1 − R) · ∆x (R << 1)

Φ(GR(N)) =
Q(S, S̄)

π(S)

= 2
∑

x∈S
y∈S̄

π(x)P (x, y)

≈ 2
∑

x∈S
y∈S̄

1

N

1

πR2N

≈ 2
2

3
N2R3(1 − R)

1

πR2N2

=
4

3π
R(1 − R)

(15)
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