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1 Abstract

We address the classic wire-length estimation problem and
propose a new statistical wire-length estimation approachthat
captures the probability distribution function of net lengths af-
ter placement and before routing. These types of models are
highly instrumental in formalizing a complete and consistent
probabilistic approach to design automation and design clo-
sure where along with optimizing the pertinent cost function,
the associated prediction error is also considered.

The wire-length prediction model was developed using a
combination of parametric and non-parametric statisticaltech-
niques. The model predicts not only the length of the net using
input parameters extracted from the floorplan of a design, but
also probability distributions that a net with given characteris-
tics obtained after placement will have a particular length. The
model is validated using both learn-and-test and resubstitution
techniques.

The model can be used for a variety of purposes, includ-
ing the generation of a large number of statistically sound
and therefore realistic instances of designs. We applied the
net models to the probabilistic buffer insertion problem and
obtained substantial improvement in net delay after routing
(∼40%) when compared to a traditional bounding box-based
buffer insertion strategy.

2 Introduction

Wire-length has become one of the most critical metrics in
physical design primarily due to the rise of the deep submi-
cron era. Therefore, there is a strong need for early estimation
and optimization of this design parameter. A lot of research
has been directed towards accurate models for estimation of
this important design objective. Accurate timing and routabil-
ity estimation relies heavily on these models.

Estimating the exact wire-length for each net in the circuitis
a very difficult problem. There is a large number of different
parameters and constraints, such as the bounding box of the
net, number of routing grids and the grid capacity, total num-
ber of nets routed in the vicinity of the pertinent net, that are
all potentially relevant, but typically are very hard to capture
into consistent wire-length model. Hence, estimating an exact

value for the wire-length is a very hard problem. Similar dif-
ficulty in estimation has also been widely recognized for other
critical metrics of deep submicron designs such as power, de-
lay, noise immunity, and crosstalk. Therefore, synthesis opti-
mization is typically performed in the presence of high degrees
of estimation inaccuracy. The optimization decisions taken in
such a scenario are typically sub-optimal and often result in
failure of design closure. In order to solve this problem, a new
design automation paradigm is gaining steam in which unpre-
dictable design objectives are modelled probabilistically and
the overall design is optimized probabilistically too. Forthe
success of such an approach, we need accurate models which
probabilistically estimate the critical design objectives. In or-
der to address this need, we have developed a novel statistical
modeling methodology for capturing wire-length in the post
placement pre-routing phase.

The model uses data that can be extracted once the place-
ment of the designs is completed. In order to build the model
we used a combination of parametric and non-parametric tech-
niques [4, 9]. Since the new model development approach is
generic and can be applied to other early estimation tasks in
synthesis, we provide a detailed description of how the mod-
els were derived. Although statistical technique have demon-
strated their potential in many fields, they have rarely been
used in synthesis and CAD tools. That is surprising when we
consider their advantages. They produce models that are both
mathematically sound and that extract the maximal possible
amount of information from the collected data. Note that non-
parametric statistical techniques are applicable on any set of
data with no prior assumptions about their distribution. Fur-
thermore, statistical techniques provide a means for evaluation
and validation of obtained models as well as techniques and
tools for establishing intervals of confidence about the overall
model and any of its subparts. The standard and practical refer-
ences for parametric and non-parametric statistical techniques
that explain in detail many of the concepts, techniques, and
algorithms used in this paper include [5, 11, 17]. Although
our overall statistical modeling approach is new and several
steps are unique, other steps are adopted from modern statis-
tical practice. Finally, it is important to emphasize that the
developed statistical model is validated both statistically and
through a driver application - buffer insertion for clock cycle
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optimization.
Statistical estimation and prediction methodology and mod-

els can be used in many ways. For example, one can use the
prediction information to evaluate the suitability of a partic-
ular floorplan for obtaining final routing where nets satisfya
particular user specified condition. For instance, the goalcan
be to determine which among a number of competing floor-
plans is mots likely to result in final design with a few long
nets or overall small sum of wirelengths. They are also a nat-
ural component of the overall probabilistic design automation
methodology. One such probabilistic algorithm is [12] which
performs buffer insertion assuming wire-lengths which arees-
timated as distributions. We used our models in the proba-
bilistic buffer insertion approach of [12] and obtained massive
improvements in net delay (∼40%) after routing when com-
pared with a traditional bounding box-based traditional bound-
ing box strategies [2, 13].

The rest of paper is organized in the following way. In
order to provide global picture and make the paper self-
contained we start by summarizing the probabilistic synthesis
paradigm. Next, we describe our statistical modeling proce-
dure and present the developed wire-length estimation model.
After that the model is evaluated using both learn-and-testand
resubstitution validation methodology. Finally, we present the
application of our model to the probabilistic buffer insertion
task.

3 Probabilistic Synthesis
Paradigms

Automation of integrated systems is marred with estimation
inaccuracies which occur due to a combination of many fac-
tors. Unawareness of exact layout information such as routing,
placement, and exact logic structure are among prominent rea-
sons. In addition, recently fabrication uncertainties have also
begun to get considerable weight primarily due to increasing
complexity and aggressive scaling of the fabrication process.
In the light of such unpredictabilities, a traditional determin-
istic approach towards design automation becomes incapable
and obsolete. Basically, a deterministic approach assignsa
fixed value to the cost function (like area, delay, power, wire-
length) and does not consider the error associated with the es-
timation of this cost function. Hence, very little can be said
about the optimality of the final design especially if the esti-
mation was erroneous. This issues calls for the developmentof
a probabilistic approach towards design optimization. Such an
approach models the cost functions as probability distributions
and optimizes the design probabilistically, hence maximizing
the likelihood of satisfying design constraints. A number of
researchers have suggested that the importance of such an ap-
proach [1, 19, 3, 10, 16, 6] because estimation inaccuracies
(both due to fabrication variability and layout unawareness)
are becoming major bottlenecks in design closure. The main
advantage of such an approach is faster design closure, better
fabrication yield (since fabrication variability would have been
accounted for during designing) and improved robustness.

The main prerequisite for the application of a probabilis-
tic synthesis technique which considers uncertainties, isthe
availability of accurate prediction techniques. Currently, these
models are build mainly manually using deep insights into de-
sign process. However, the non-statistical method are rarely
statistically tested for their accuracy. We propose the useof
modern statistical techniques not only to automatize the de-
velopment of models and the selection of the most accurate
models, but also to provide sound mathematical estimates of
their accuracy.

4 Statistical Modelling for Wire-length
Prediction

In this Section, we present a statistical approach for predict-
ing the length of a given net on a given chip that is character-
ized using a set of features that can be rapidly obtained after
floorplanning. We start by identifying the objectives and con-
straints. After that we discuss a set of net and chip featuresthat
are used as predictors to our model. The heart of the Section is
the procedure that was used for the development of the model.
Additionally, the three phases of the procedure (robust linear
regression [4], outlier detection, and establishment of proba-
bility distribution) are discussed. We then present a modelfor
mapping between different designs. Finally, the evaluation of
the proposed models is conducted using learn-and-test and re-
substitution techniques [7, 8, 9].

4.1 Problem Formulation

Our primary objective is to predict the length of each net given
a set of features that can be rapidly extracted from the floor-
plan of a chip. The goal is not only predict the length, but also
to quantitatively characterize the probability that the net will
have a particular length after routing. Furthermore, the oper-
ational constraint is to use only features that can be extracted
with low computational effort and statistical techniques that
can be rapidly applied. The final major objective is to statisti-
cally validate all obtained results and to establish intervals on
confidence on all deduced models and their parameters.

4.2 Characterization of Nets and Designs

The starting point for model development was the definition
of relevant features of nets that are available after placement.
We used two types of features: atomic and composite. Atomic
features are ones that are directly extracted from the design.
Composite features where created by combining atomic fea-
tures using simple rules. Most often the composite rules were
ratios of two atomic features.

We used a state of the art commercial placement and routing
tool (Cadence) to collect data that is used to build our statis-
tical models. We use the post placement information as input
parameters for building the model for each net. The objec-
tive is to identity metrics that influence the post routing wire-
length for each net. The basic intuition lies in the fact thatthe
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net length is inversely proportional to the amount of routing
area available and directly proportional to the routing hard-
ness. Furthermore, a net is hard to route if its available routing
area is being claimed by other neighboring nets. The goal is
to build a statistical model using only a small set of param-
eters that can be easily and rapidly extracted from the place-
ment. While computation of some features is straightforward,
the computation of other parameters requires the use of several
basic procedures from computational geometry [14]. For ex-
ample, procedure Locate-Point-Neighbor(p, S) takes a pointp
and a set of rectanglesS and calculates the subset of rectangles
which overlap with this point. Procedure Locate-Rectangle-
Neighbor(R,S) takes a rectangleR and a set of rectanglesS
and calculates the rectangles inS that overlap onR. Note that
all used properties can be rapidly computed in low polynomial
time. We have considered the following post placement prop-
erties of the nets.

• Number of Net Terminals. The higher the number of ter-
minals, most often the harder it is to route the net.

• Bounding Box (BBOX) for neti. The BBOX is easy to
compute and provided a lower bound on the real wire-
length. However, this property does not capture the num-
ber of terminals well. More importantly, the bounding
box is a function of only a small set of terminals.

• Minimal Spanning Tree (MST). MST is calculated us-
ing standard Kruskal’s or Prim’s algorithm. The property
captures the best case scenario for routing while taking
into account all terminals.

• Convex Hull (CHULL) of neti’s terminals. CHULL en-
velopes the terminals. Many algorithms, including stan-
dard Graham’s scan, can be used to calculate CHULL of
a net. Runtime isO(nlogn) if n is the number of net ter-
minals. CHULL is in a sense a generalization of BBOX.
Note that both MST and CHULL are often very strongly
correlated with BBOX.

• Number of different terminals in the bounding rectangle
of the neti. This property aims to predict routing dif-
ficulty by analyzing the number of terminals from other
nets that compete for the same routing resources - space.

• Space Utilization Factor (SUF) for the neti. The bound-
ing area of a net is divided into rectilinear regions based
on the number of overlapping neighbors on each region.
SUF is calculated using the following formula

SUF (Neti) = NTi ∗
∑

∀Rj∈neti

(
OVij ∗ Aij ∗ P

Ai

) (1)

whereP =
∑

∀v

(1 −
WSk

Ak

) (2)

where
v is neighborsk ∈ regionj, k /∈ i
R is set of all regions

Ai is Bounding Box Area (BBOX) forNeti
NTi is total number of terminals in the bounding box of
the net
Aij is area for allRj in Neti
OVij is number of nets that overlap inRj of net i
(excludingNeti)
WSk is white Space of netk which is one of the nets that
fall overRj

The key intuition behind this metric is the fact that more
overlapped regions on a net bounding box increase its
routing hardness. Moreover, if these neighbors have
smaller white space (which means they are themselves
congested) then they will make the pertinent net con-
gested too. This metric is calculated using the follow-
ing procedure. First, we identify regions on the layout
based on overlapping net bounding boxes. This is ac-
complished using an iterative execution of the procedure
Locate-Point-Neighbor(p, S) for all grid points. There-
fore, the running time of the procedure is proportional to
GridxGridyT(Locate-Point-Neighbor). Note that, if the
total number of grids is high, the procedure is relatively
slow. In this case, we impose a coarser grid resulting in
a faster runtime, however at the loss of accuracy. This
procedure can be followed by calculating the parameter
P (see the equations above) for all regions and summing
them up for the net.

• White Space ofNeti. This is a region on the design de-
fined with respect to the BBOX of neti that does not
overlap with the BBOX of other nets. The metrics can
be calculated using a strategy similar to the one used for
the calculation of the previous property. The intuition is
simple and clear: large white space is well correlated with
higher chances for efficient routing of the net.

• Resource Competition Metric (RCM) forNeti. This is
a composite property that aims to capture the congestion
in regions where neti is most likely to be routed. We
consider the set of regions,R, that is created after the
bounding box of the net is split by considering overlaps
with bounding boxes of other nets. If we denote neigh-
bors asneigh and use notation introduced for calculating
SUF, the RCM is calculated using the following formula.

∑

∀Rj ∈neti

(
Aij

Areai

−
∑

∀neighk ofRj

Aij

Areak

)) (3)

Recall that the regions can be identified in
GridxGridyT(Locate-Point-Neighbor) runtime and the
above parameter can be calculated for each region and
added up for the net. The key intuition behind this pa-
rameter is that if the valueAij

Areai
is high then the neti

has a larger share of the region where as ifAij

Areak
for the

neighbork is high then that neighbor has a larger share of
the region. Larger the RCM for a net more is its share of
the available routing area in the nets bounding rectangle.
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• Total number of overlapping neighbors. This property
can be calculated using the procedure
Locate-Rectangle-Neighbor(R,S) and is trying to esti-
mate the number of nets that compete with a given net
for routing resources.

• RCM for overlapping neighbors ofNeti. The property is
calculated using the RCM procedure. The intuition is that
if neighboring nets are very congested, they will induce
higher difficulty of routing the pertinent neti.

• Sum of RCMs for all neighbors of overlapping neighbors.
This complex measure enhances the scope of the previous
metrics.

• Amount of overlapping area with the net for all neighbor-
ing nets. The rationale is that a higher ratio of the overlap
area indicates increased hardness to route.

• The number of common terminals of neighboring nets to
Neti. This measure is positively correlated with the dif-
ficulty of routing of neti.

• Neighbor utilization factor (NUF) that is defined in the
following way

∑

∀neighkof NETi

common terminals∗ common area
neighbor area

(4)

• Neighbor hardness factor (NHF) defined in the following
way

∑

∀neighk

common terminals∗ common area∗ RCM(k)

(5)

The last two properties aim to quantify the competition of
neighboring nets with the net under consideration.

4.3 Overall Flow

In this Subsection, we present the overall flow of our stati-
cal modeling procedure. Figure 1 summarizes the flow of the
developed statistical modeling technique for prediction of the
wire-lengths of the nets. The first step is the identificationof
relevant net properties. Two types of net properties are em-
ployed. The first group consists of properties related to thenet
itself. The second group consist of metrics that aim at pre-
dicting encountered congestion during routing of a given net
due the routing requirement of neighboring nets. On all prop-
erties we also applied a number of nonlinear transformations
(e.g. application of logarithm function) in order to obtainbet-
ter prediction abilities. Interestingly, while it is oftenreported
in other fields that the use of statistical techniques and non-
linear transformations often greatly enhance accuracy, for our
model and our set of properties this was not the case.

The second step was data collection. All designs were
routed using the Cadence placement and routing tool. Once the
data was available, we started with a randomly selected design
and built a number of models. We used only 60% of all nets
for this propose and preserved the rest of data for conducting
statistical test and validation procedures. It was immediately
apparent that each of the following three features (bounding
box, minimum spanning tree, and convex hull) predicts the
length of a majority of nets remarkably well. Each of them
hadR2 value above 0.8 individually. TheR2 value is square
of residuals, i.e. difference between the predicted variable and
its predicted value using an individual property. The statisti-
cal t-test indicates that the probability that this correlation is
accidental is less than10−16.

While independently each of the measures (bounding box,
minimum spanning tree, and convex hull) are strong predic-
tors, their combination results in only marginally better pre-
diction. Therefore, we decided to use bounding box as the ba-
sis of our model because of its low computational cost. Closer
examination of the data, indicated that short nets (ones with a
bounding box value less than 6,000) and long nets (bounding
boxes larger than 6,000) had very different properties. Most
importantly, the first group, short nets, had significantly bet-
ter statistical fits and essentially no outliers. Therefore, we
decided to treat these two sets of nets separately. Statistical
t-test indicates that correlation is significantly higher for the
separated sets than for the overall set. Once the data was di-
vided into two sets, we conducted a linear regression-based
procedure for fitting data for different percentiles. For each
percentile (in range 10% to 90%) a separate fit is obtained and
validated using the t-test. After that, to further enhance the
accuracy of our model, we conduct an outliers detection pro-
cedure that identified a small subset of data that required spe-
cialized models. For this purpose we have developed a CART
model [4]. The next step was to repeat linear regressions on
the data after outliers were removed.

The next two steps were dedicated to the development of
a PDF and CDF for wire-length prediction and to interchip
prediction. The goal of interchip prediction is to use global
parameters of the chip in order to predict how features, such
as global congestion and the number of nets and terminals,
impact to PDF for wire-length distribution. Finally, we con-
ducted extensive model evaluation using learn-and-test and the
resubstitution procedure in order to verify that the developed
model is sound and no overfitting was done. In the rest of this
Section, we elaborate on several key steps of the procedure.

4.4 Outlier detection

Outliers can be defined as nets that are not predicted well using
a given set of features without significantly changing the com-
plexity of the model. We detected the outliers using the follow-
ing procedure. We begin by building our preliminary models.
As candidates for outliers, we analyzed all points that differ
from their prediction by more thank%. In our experimenta-
tion, we setk = 20%. Next, all the outlier candidate points are
characterized according to each property. The separation value
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1. Feature Definition;
2. Feature Extraction;
3. Preliminary Data Exploration;
4. Features Evaluation and Normalization
and Compound Feature Selection;

5. Net Characterization{
6. Nets Categorization;
7. Preliminary Linear Regression on percentiles;
8. Outliers Detection;
9. Outliers Modelling;
10. Final Linear Regression on percentiles;}
11. CDF and PDF model generation;
12. Chip characterization;
13. Development of Mapping Function to New Designs;
14. Evaluation and Validation;

Figure 1: Modeling Approach Overall Flow.

for each property is set in such a way that it maximizes the ra-
tio of outliers versus well predicted nets for the nets above(or
below) the separation value. Note, that a linear-time sweepis
sufficient to find this separation value.

All properties with their corresponding separation values
are used as inputs to the non-parametric classification and re-
gression tree (CART) software [4] to provide compact charac-
terization of all outliers. The CART procedure resulted in the
model where all nets are separated in three groups according
to the number of terminals. The first group consisted of all
nets with two terminals, the second with three, four, and five
terminals, and the last group contained all other nets.

The final CART model used the following features: num-
ber of terminals, RCM of the net, RCM of overlapping neigh-
bors, total number of overlapping neighbors, and the number
of common terminals for a given net. The last four features
were normalized against the area of the bounding box in order
to achieve better separation. The overall misclassification rate
for the detection of outliers was 6.7%. For the outlier nets,
we build a separate linear regression fit, that hadR2 = 0.83.
The t-test indicates that probability of accidental fit was less
than10−16, clearly indicating the soundness of the model. It
is interesting and important to emphasize that all outlierswere
corresponding to nets that were longer than standard predic-
tions. This phenomenon can be easily explained by the in-
trinsic nature of the modeling problem. Relatively short nets
for a given size of the bounding box (or MST or CHULL) are
those that are routed using interconnect that is close to their
theoretically possible minimum when no other nets cause con-
gestion. In all designs for all values of bounding boxes, the
number of nets with these properties was relatively large. The
very high RCM was the best predictor that net will be routed
using significantly higher length, in particular if the number of
terminals was high.

4.5 CDF and PDF Generation

The goal of this phase is to find accurate cumulative distri-
bution (CDF) and probability distribution functions (PDF)for
the length of a net given the size of a corresponding bounding

# # Net Total
Bench layers nets Area Area Term

ibm01 8 11507 5.89E+09 1.95E-06 44266
ibm02 10 18429 7.65E+09 2.41E-06 78171
ibm07 10 44394 1.63E+10 2.73E-06 164369
ibm08 10 47944 1.76E+10 2.73E-06 198180
ibm10 10 64227 2.97E+10 2.16E-06 269000
ibm11 10 67016 2.31E+10 2.90E-06 231819
ibm12 10 67739 3.44E+10 1.97E-06 284398

Table 1: Chip level characteristics for ibm designs obtained
using Cadence routing and placement tool.

Bench BBOX MST CHULL

ibm01a 9.01E-07 1.09E-06 1.12E-06
ibm02a 6.44E-07 1.39E-06 2.03E-06
ibm07a 5.23E-07 6.06E-07 6.38E-07
ibm08a 4.78E-07 6.05E-07 5.98E-07
ibm10a 3.33E-07 3.91E-07 4.13E-07
ibm11a 3.35E-07 3.79E-07 3.98E-07
ibm12a 4.06E-07 4.74E-07 5.06E-07

Table 2: Congestion metrics for ibm designs.

bounding box. Note that partial information about the PDF and
CDF is already contained in percentiles and therefore it is also
contained in the percentile-based linear fit models. Therefore,
the starting point for the PDF derivation was the percentile
models for the ratio of the wire length versus bounding box
as a function of the size of the bounding box. For both small
and large bounding box data, we used a resubstitution-based
technique to obtain the CDF. Note that the PDF can be eas-
ily obtained from the CDF using either symbolic or numeric
differentiation.

The PDF is built using the following procedure. First a sub-
set ofk nets are randomly selected for short nets. In our exper-
imentation, we used valuek = 50%. The data is separated in
bins that are dictated by BBOX values. The size of bin was de-
termined in such a way that all bins contain the same number
of points. The total number of bins was 10. The randomly se-
lected subset of data is used to establish new percentile points
for each bin containing data. All percentile points are nor-
malized against the bounding box with shortest nets. The nor-
malization is done in such a way that the average discrepancy
between the values that correspond to the identical percentile
is minimized. The data is fit using polynomials of low degree
(three and four in our experimentation). The procedure is re-
peated a large number of times, the average value for each of
percentile is calculated and fit using a least linear squaresap-
proach. This process was terminated once the percentile vali-
dation method indicated that we achieved user specified inter-
vals of confidence for the PDF model. The same procedure is
repeated for long nets. Figures 2 and 3 show intermediate and
final results of the PDF derivation procedure.
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IBM07a - Large BBOX Model
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IBM07a - Small BBOX Model
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Figure 2: Linear Regression Model for ibm07 design using Cadence Router.

4.6 Interdesign Modelling

Note that our goal is to predict distribution of expected wire
length for nets of the design that are not used to build the sta-
tistical model. Therefore, once a model was built and vali-
dated for a single design, we have to establish means for rapid
re-mapping of the wire-length model to other chips.

For this task, we considered the following atomic chip prop-
erties: (i) the area of the chip; (ii) the number of nets; (iii) the
average and median of bounding box areas, MST, and convex
hulls for all nets (iv) the average number of terminals per net;
(v) the percentage of the number of nets with a small number
of terminals (two , three, or four). The composite chip metrics
included ratios of all atomic chip properties and their simple
statistical measures such as moments of low orders.

Table 1 shows the chip level characteristic of the designs.
The first column denotes the name of the benchmark, followed
by the number of chip layers and the number of nets in the
benchmark. The fourth column denotes the total area of the
chip. The overall congestion of the design is denoted in the
fifth column by the total number of nets over the area of the
design. The final column specifies the total number of termi-
nals in the benchmark. Table 2 denotes the normalized average
size of the bounding box, MST and CHULL for each net for
each design. The statistics are normalized against the areaof
the chip.

We denote byci andcj the overall congestion of designsi
andj measured by the normalized sum of convex hull area for
each design divided by the total area of the design. Further-
more, we denote byNLi andNLj the number of layers used
in designsi andj. Our model indicates that the length of the
net in designi (Li) can be calculated using the length of the
net with the same BBOX in designj (Lj) using the following
formulaLi = Lj

NLj

NLi
∗( Ci

Cj
)0.48. This model is built using least

linear squares data fitting approach [15]. We build this model
using a randomly selected subset of four designs. The model

was validated against the remaining design, as well as using
resubstitution procedure as explained in the next Subsection.

4.7 Evaluation and Validation

The last step of the modeling procedure was dedicated to
the evaluation of the accuracy of the developed models. We
followed two paradigms: learn-and-test and resubstitution
[7, 8, 9]. In the case of the former procedure, we selected
a subset of nets for building the model. This procedure was
properly applicable only on modeling done on a single design,
since the total number of available designs was too small sta-
tistically for sound application of this type of analysis onin-
terchip models. Nevertheless, the application of the learn-and-
test procedure on the interchip model indicates very high con-
sistency, strongly implying that different designs followvery
similar distributions of the wire lengths for nets characterized
by the selected features.

We have applied the learn-and-test validation technique to
both trend modeling and outlier identification. In both cases,
for single chip models, we obtained predictions with 3% of
accuracy for more than 96% of instances.

Resubstitution is the technique that effectively resamples
the available data in order to ensure that overfitting is not con-
ducted. It was applied to modeling at both levels of abstrac-
tions: interchip and intrachip. We created 100 different subsets
of data using uniform random sampling of the data. For the in-
terchip modeling, we select 70% of data for each subset and
build a separate model using the developed procedure. The
percentile analysis indicates that for all results, the interval of
confidence is less than±3% with probability higher than 97%.
For the interchip modelling, we selected a random subset that
contained between three and five designs. We repeated this
procedure 100 times. The interval of confidence was±10%
with probability higher than 86%. This relatively lower proba-
bility was the direct consequence of the fact that from a statis-
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tical point of view relatively few design were available. Nev-
ertheless, the percentile analysis [9] strongly validatesthe ap-
proach and indicates that the statistical trends have less than
one in billion of chance to be accidental.

5 Statistical Wire-length PDF and
CDF Models

In this Section, we present the obtained statistical wire length
model. We present the parameters of the model, obtained PDF
and CDF, and summarize model evaluation results. Although
we present a single final model, it is important to emphasize
that the procedure presented in the previous Section resulted in
a large number of competitive models that differed relatively
little with respect to their accuracy and interval of confidence.
The model that we present was mainly selected due to its low
conceptual complexity and through the use of a set of features
that can be rapidly extracted from the post-placement designs.

The prediction abilities of the model are illustrated in Fig-
ures 2(a)-5(b). The demonstration example used for the de-
velopment of the model is imb07. It is important to empha-
size that the model was actually developed using only 60% of
randomly selected nets. Figures 2(a) and 2(b) show the nor-
malized net length with respect to BBOX for different sizes
of BBOX. The continuous lines in these two figures indicate
the prediction models for small and large BBOX respectively.
The bottom line correspond to 10% percentile and the top line
to 90% percentile value. All other lines indicate the value of
expected length for percentiles that differ by 10% increments.
Tables 3 and 4 present the parameters of the models and the
obtainedR2 values. That that the square of residuals is consis-
tently high. t-test indicates that for both sets the probability of
accidental coincidence is less than10−18. Therefore, it is clear
that the model is both theoretically and practically sound.

As can be seen from the table, the variability of the net
lengths is well captured as indicated by the high value of
theR2 coefficient, in particularly for the small BBOX model.
There are two main reasons why it is much easier to accurately
predict short nets. The first one is that there are significantly
more short nets than long nets and, therefore, the statistical
model can be developed using a much larger number of sam-
ples. The second reason is that short nets usually have sig-
nificantly fewer terminals, simple structure, and can leverage
on relatively small areas of white space in their vicinity. For
longer wires, we see that the prediction of nets that are almost
as short as their lower bound indicated by BBOX is more ac-
curate than nets that are long. For the long nets, the model
relies on the CART model presented in the previous Section
that has very high consistency. The CART model-based re-
moval of nets that are predicted to be significantly longer than
the BBOX-bound, improves theR2 for all percentiles to above
0.95 level essentially matching the accuracy of the model for
short nets. The CART model correctly identifies very long
nets with accuracy better than 90%. More importantly, less
than 1/than indicated by BBOX linear regression-model is not
detected by the CART model. Finally, note that no short net

(with BBOX value less than 6,000) was identified as outlier.

ibm07a - Small BBOX Linear Regression Models
%ile a b c R2

90 9E-09 2E-05 1.1758 0.9876
80 9E-10 5E-05 1.0686 0.9762
70 2E-10 6E-05 1.1175 0.9184
60 -2E-09 5E-05 1.0439 0.9804
50 -4E-09 5E-05 1.0131 0.9849
40 -2E-09 3E-05 1.0055 0.9876
30 1E-09 6E-06 1.0160 0.9854
20 -9E-10 1E-05 1.0038 0.8049
10 1E-09 -3E-06 1.0023 0.9702

Table 3: Linear Regression Fit Parameters andR2 for Small
BBOX of ibm07 design. Coefficientsa, b, andc are used for
the quadratic model of the formax2 + bx + c.

ibm07a - Large BBOX Linear Regression Models
%ile a b c R2

90 5E-11 5E-06 1.5944 0.7185
80 -1E-11 7E-06 1.3948 0.6268
70 -2E-11 8E-06 1.2767 0.6890
60 -5E-11 9E-06 1.1828 0.7460
50 -3E-11 7E-06 1.1383 0.8111
40 -3E-11 6E-06 1.0981 0.8655
30 -2E-11 5E-06 1.0720 0.9109
20 -3E-11 5E-06 1.0476 0.9033
10 -3E-11 5E-06 1.0135 0.8862

Table 4: Linear Regression Fit Parameters andR2 for Large
BBOX of ibm07 design. Coefficientsa, b, andc are used for
the quadratic model of the formax2 + bx + c.

Figure 3 and 4 show a cumulative distribution function
(CDF) and a probability distribution function (PDF) for short
and long nets. The x-axis indicates the normalized discrep-
ancy against the most likely values. Again, the continuous
line indicates the prediction provided by the model and each
plot point corresponds to the length of the nets in a particu-
lar bounding box bin selected by the resubstitution procedure.
From the PDF figures we can conclude that the majority of
nets are routed using a wire-length that is close to theoretical
minimum and that longer nets are statistically rare.

We evaluated accuracy and consistency of PDF and CDF
using the resubstitution procedure. We generated 100 differ-
ent subset that contain 60% of initial date and build PDF and
CDF of the wire length model. For a hundred randomly se-
lected points their PDF and CDF values were recorded for
each of the resubstitution models. The non-parametric inter-
val of confidence was calculated for each point and for the
overall probability and cumulative distribution functions. The
analysis indicates that with a probability larger than 96% the
model is accurate within±7%. It is interesting to note that in-
terval of confidence was sharper for the CDF than for the PDF
most likely as consequence that CDF integrates discrepancies
of PDF.
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Figure 3: Cumulative Distribution Function and Probability Distribution Function for Large BBOX nets in ibm07 design for
Cadence Router.

Figure 4: Cumulative Distribution Function and Probability Distribution Function for Small BBOX nets in ibm07 design for
Cadence Router.

Finally, Figures 5(a) and 5(b) show a 3-dimensional repre-
sentation of histograms that is formed by selecting bins ac-
cording to their ratio of normalized net length versus BBOX
and the size of BBOX on the other axis. The z-axis indicates
instead of the conventional number of nets which belong to a
particular bin, the logarithm of this value in order to provide
better visual insight in to the distribution of wire-lengths of
the net for all lengths. Data in Figure 5(a) was collected after
using the Cadence routing tool. Data in Figure 5(b) is gener-
ated using the developed prediction model. It is easy to see
that there exists close correspondence and high correlation be-
tween data in the two figures, except that for a small subset of
bins in the true data that have statistical anomalies due to the
specifics of the actual design.

6 Application of Statistical Wire
Length Model to Probabilistic Buffer
Insertion

In this section, we describe a few applications of the presented
wire length model. The common underlying idea is to demon-
strate the superiority of statistical estimation and probabilis-
tic optimization over the traditional deterministic approach to
design automation. In order to accomplish this objective, we
applied the developed statistical models to the probabilistic
buffer insertion problem.

The buffer insertion problem can be formally stated in the
following way. Given the fan-out wiring tree with parasitic re-
sistances and capacitances, wire-lengths, potential buffer lo-
cations, sink required times, sink capacitive loads and a delay
constraint at the driving gate, the problem is to place buffers
into the tree such that the required arrival time at the input
of the driving gate is maximum. We also consider the opti-
mization of the number of buffers used to satisfy the delay con-
straint.

The buffer insertion problem was formalized by [18] and
models the fan-out wiring tree as a set of distributed RC sec-
tions. The Elmore Delay model [10] is used to compute the
delay of such a wiring tree.

In order to estimate the parasitics for each wire-segments
we need to determine the exact wire-lengths. Now let us sup-
pose that this optimization is being performed during the in-
place mode during which the exact wire-length is not avail-
able. The only available information is about the bounding
box of the nets. Using the placement information we can gen-
erate the probability distributions of individual wire segments
of the wiring tree and perform buffer insertion probabilisti-
cally. [12] proposed such a probabilistic approach to buffer in-
sertion. For brevity, we omit the details of that algorithm.We
ran probabilistic buffer insertion on a placed net (placed using
Cadence Qplace) and also traditional buffer insertion [18]as-
suming bounding box as the net length estimate. After buffer
insertion, the entire circuit was routed and the net delay was
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(a) Actual Data (b) Length generated using Prediction Model

Figure 5: Logarithm of Histogram of Number of Nets of given Length and given BBOX for ibm07 Large BBOX.

Prob. BBox
Delay # Buf Delay # Buf

Net1 8.31 14 9.59 9
Net2 6.0 20 8.74 17
Net3 6.4 22 8.51 17

Table 5: Post Routing Comparison: Prob. vs BBox based
Buffer Insertion on ibm08 design.

computed using real wire delay values.
The following table compares the post routing net delays

from probabilistic and traditional buffer insertion. Table 5 re-
ports the comparison. It can be seen that post routing, the prob-
abilistic approach produces significantly better results than
bounding box based approach indicating the effectiveness of
our models and also the superiority of a probabilistic approach.

7 Conclusion

We have built a compact statistical model that predicts the
probability that a given net will have a particular wire-length.
The model is characterized using a small set of parameters that
are easily extracted from the design’s floorplan. The run-time
of the model is less than one second even for the largest de-
signs. The model was validates using both learn-and-test and
resubstitution evaluation techniques.

The proposed net length models have large range of applica-
bility in emerging probabilistic approaches to design automa-
tion that are rapidly gaining acceptance. We demonstrated the
effectiveness of our model through extensive experimentation
with state of the art commercial and academic tools.
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