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1 Abstract value for the wire-length is a very hard problem. Similar dif
ficulty in estimation has also been widely recognized foeoth
We address the classic wire-length estimation problem agitlical metrics of deep submicron designs such as power, de
propose a new statistical wire-length estimation approaah lay, noise immunity, and crosstalk. Therefore, synthepts o
captures the probability distribution function of net lémgaf- mization is typically performed in the presence of high @egr
ter placement and before routing. These types of models @k€stimation inaccuracy. The optimization decisions taike
highly instrumental in formalizing a complete and consistesuch a scenario are typically sub-optimal and often result i
probabilistic approach to design automation and design diailure of design closure. In order to solve this probleme&/n
sure where along with optimizing the pertinent cost fungtiodesign automation paradigm is gaining steam in which unpre-
the associated prediction error is also considered. dictable design objectives are modelled probabilistjcathd
The wire-length prediction model was developed usingtlze overall design is optimized probabilistically too. Fbe
combination of parametric and non-parametric statistieti- success of such an approach, we need accurate models which
niques. The model predicts not only the length of the netgusiprobabilistically estimate the critical design objectivén or-
input parameters extracted from the floorplan of a design, lk¢r to address this need, we have developed a novel stltistic
also probability distributions that a net with given chaesis- modeling methodology for capturing wire-length in the post
tics obtained after placement will have a particular lengte  placement pre-routing phase.
model is validated using both learn-and-test and resultistit
techniques. The model uses d.ata that can be extracted once the place-
The model can be used for a variety of purposes, inclJgent of the de3|_gns_|s completed. !n order to build the _model
ing the generation of a large number of statistically souM¢ used acomb_lnatlon of parametric and non-parametrie tec_h
and therefore realistic instances of designs. We applied fidues [4, 9]. Since the new model development approach is
net models to the probabilistic buffer insertion problend afg€neric and can be applied to other early estimation tasks in
obtained substantial improvement in net delay after rgutifyNthesis, we provide a detailed description of how the mod-

(~40%) when compared to a traditional bounding box-bas@tf Were derived. Although statistical technique have demo
buffer insertion strategy. strated their potential in many fields, they have rarely been

used in synthesis and CAD tools. That is surprising when we
consider their advantages. They produce models that alne bot
2 Introduction mathematically sound and that extract the maximal possible
amount of information from the collected data. Note that-non
Wire-length has become one of the most critical metrics parametric statistical techniques are applicable on ahgfse
physical design primarily due to the rise of the deep submiata with no prior assumptions about their distributionr-Fu
cron era. Therefore, there is a strong need for early estmathermore, statistical techniques provide a means for atialu
and optimization of this design parameter. A lot of researahd validation of obtained models as well as techniques and
has been directed towards accurate models for estimatiorioafis for establishing intervals of confidence about theaive
this important design objective. Accurate timing and rbilta model and any of its subparts. The standard and practieatref
ity estimation relies heavily on these models. ences for parametric and non-parametric statistical igoles
Estimating the exact wire-length for each net in the cirisuitthat explain in detail many of the concepts, techniques, and
a very difficult problem. There is a large number of differemtigorithms used in this paper include [5, 11, 17]. Although
parameters and constraints, such as the bounding box ofdte overall statistical modeling approach is new and sévera
net, number of routing grids and the grid capacity, total nursteps are unique, other steps are adopted from modern statis
ber of nets routed in the vicinity of the pertinent net, thia atical practice. Finally, it is important to emphasize thia¢ t
all potentially relevant, but typically are very hard to taje developed statistical model is validated both statidiicahd
into consistent wire-length model. Hence, estimating atexthrough a driver application - buffer insertion for clockcty
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optimization. The main prerequisite for the application of a probabilis-
Statistical estimation and prediction methodology and mdiét synthesis technique which considers uncertaintieshes

els can be used in many ways. For example, one can usea¥ailability of accurate prediction techniques. Currgritiese

prediction information to evaluate the suitability of a fi@r models are build mainly manually using deep insights into de

ular floorplan for obtaining final routing where nets satiafy sign process. However, the non-statistical method ardyrare

particular user specified condition. For instance, the gaal statistically tested for their accuracy. We propose theaise

be to determine which among a number of competing floamodern statistical techniques not only to automatize the de

plans is mots likely to result in final design with a few longelopment of models and the selection of the most accurate

nets or overall small sum of wirelengths. They are also a natedels, but also to provide sound mathematical estimates of

ural component of the overall probabilistic design autaamat their accuracy.

methodology. One such probabilistic algorithm is [12] whic

performs buffer insertion assuming wire-lengths whichese Lo ) )

timated as distributions. We used our models in the protfh- Statistical M odelling for Wire-length

bilistic buffer in_sertion approach of [12] and pbtained gias Prediction

improvements in net delay~@0%) after routing when com-

pared with a traditional bounding box-based traditionalimd |, this Section, we present a statistical approach for ptedi

ing box strategies [2, 13]. o _ ing the length of a given net on a given chip that is character-

The rest of paper is organized in the following way. Ied using a set of features that can be rapidly obtained afte
order to provide global picture and make the paper seiorplanning. We start by identifying the objectives and-co
contained we start by summarizing the probabilistic sysiestraints. After that we discuss a set of net and chip featbies
paradigm. Next, we describe our statistical modeling proGge used as predictors to our model. The heart of the Sestion i
dure and present the developed wire-length estimation mogge procedure that was used for the development of the model.
After that the model is evaluated using both learn-andé®et pdditionally, the three phases of the procedure (robusialin
resubstitution validation methodology. Finally, we preisige  regression [4], outlier detection, and establishment obg¥
application of our model to the probabilistic buffer insent p;jity distribution) are discussed. We then present a méatel
task. mapping between different designs. Finally, the evaluatib
the proposed models is conducted using learn-and-testeand r
substitution techniques [7, 8, 9].

3 Probabilistic Synthesis
Paradigms 4.1 Problem Formulation

Automation of integrated systems is marred with estimati&/r primary objective is to predict the length of each neégiv
inaccuracies which occur due to a combination of many fa&-Set of features that can be rapidly extracted from the floor-
tors. Unawareness of exact layout information such asmgutiplan of a chip. The goal is not only predict the length, bubals
placement, and exact logic structure are among prominant @ quantitatively characterize the probability that the wél
sons. In addition, recently fabrication uncertaintiesehalso have a particular length after routing. Furthermore, therop
begun to get considerable weight primarily due to incregsiational constraint is to use only features that can be etetiac
complexity and aggressive scaling of the fabrication pseceWith low computational effort and statistical techniquiatt

In the light of such unpredictabilities, a traditional detén- can be rapidly applied. The final major objective is to statis
istic approach towards design automation becomes incap#illy validate all obtained results and to establish irgton

and obsolete. Basically, a deterministic approach assigneonfidence on all deduced models and their parameters.
fixed value to the cost function (like area, delay, powergwir

I_engt_h) and dpes not cons_ider the error asso_ciated Withsbhe_4e_2 Characterization of Nets and Designs

timation of this cost function. Hence, very little can bedsai

about the optimality of the final design especially if thei-esfThe starting point for model development was the definition
mation was erroneous. This issues calls for the developafenf relevant features of nets that are available after placgm

a probabilistic approach towards design optimization.hSarc We used two types of features: atomic and composite. Atomic
approach models the cost functions as probability didfidis features are ones that are directly extracted from the nesig
and optimizes the design probabilistically, hence maxiimgiz Composite features where created by combining atomic fea-
the likelihood of satisfying design constraints. A numbér ¢ures using simple rules. Most often the composite rulegwer
researchers have suggested that the importance of such amadjos of two atomic features.

proach [1, 19, 3, 10, 16, 6] because estimation inaccuracie$Ve used a state of the art commercial placement and routing
(both due to fabrication variability and layout unawarex)egool (Cadence) to collect data that is used to build ourstati
are becoming major bottlenecks in design closure. The méaal models. We use the post placement information as input
advantage of such an approach is faster design closurer bgi@rameters for building the model for each net. The objec-
fabrication yield (since fabrication variability wouldvebeen tive is to identity metrics that influence the post routingewi
accounted for during designing) and improved robustness. length for each net. The basic intuition lies in the fact that
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net length is inversely proportional to the amount of rogtin
area available and directly proportional to the routingdhar
ness. Furthermore, a net is hard to route if its availablémgu
area is being claimed by other neighboring nets. The goal is
to build a statistical model using only a small set of param-
eters that can be easily and rapidly extracted from the place
ment. While computation of some features is straightforward
the computation of other parameters requires the use ofaeve
basic procedures from computational geometry [14]. For ex-
ample, procedure Locate-Point-Neighlypy.S) takes a poinp

and a set of rectanglésand calculates the subset of rectangles
which overlap with this point. Procedure Locate-Rectangle
Neighbok R, S) takes a rectangl& and a set of rectangles

and calculates the rectanglesdrthat overlap ork. Note that

all used properties can be rapidly computed in low polyndémia
time. We have considered the following post placement prop-
erties of the nets.

e Number of Net Terminals. The higher the number of ter-
minals, most often the harder it is to route the net.

e Bounding Box (BBOX) for net. The BBOX is easy to
compute and provided a lower bound on the real wire-
length. However, this property does not capture the num-
ber of terminals well. More importantly, the bounding
box is a function of only a small set of terminals.

e Minimal Spanning Tree (MST). MST is calculated us-
ing standard Kruskal's or Prim’s algorithm. The property
captures the best case scenario for routing while takings
into account all terminals.

e Convex Hull (CHULL) of neti's terminals. CHULL en-
velopes the terminals. Many algorithms, including stan-
dard Graham’s scan, can be used to calculate CHULL of
a net. Runtime i®)(nlogn) if n is the number of net ter-
minals. CHULL is in a sense a generalization of BBOX.
Note that both MST and CHULL are often very strongly o
correlated with BBOX.

e Number of different terminals in the bounding rectangle
of the neti. This property aims to predict routing dif-
ficulty by analyzing the number of terminals from other
nets that compete for the same routing resources - space.

e Space Utilization Factor (SUF) for the netThe bound-
ing area of a net is divided into rectilinear regions based
on the number of overlapping neighbors on each region.
SUF is calculated using the following formula

SUF(Net;) = NTix > (T) 1)
VR;€Enet;
WS,
hereP = 1— 2
whereP = ( i )
where

v is neighborg: € regiony, k ¢ i
Ris set of all regions

A; is Bounding Box Area (BBOX) fotVet;

NT; is total number of terminals in the bounding box of
the net

A;jis areafor allR; in Net;

OV;; is number of nets that overlap i®; of neti
(excludingNet;)

W Sy, is white Space of net which is one of the nets that
fall over R;

The key intuition behind this metric is the fact that more
overlapped regions on a net bounding box increase its
routing hardness. Moreover, if these neighbors have
smaller white space (which means they are themselves
congested) then they will make the pertinent net con-
gested too. This metric is calculated using the follow-
ing procedure. First, we identify regions on the layout
based on overlapping net bounding boxes. This is ac-
complished using an iterative execution of the procedure
Locate-Point-Neighbdp, S) for all grid points. There-
fore, the running time of the procedure is proportional to
Grid,Grid, T(Locate-Point-Neighbor). Note that, if the
total number of grids is high, the procedure is relatively
slow. In this case, we impose a coarser grid resulting in
a faster runtime, however at the loss of accuracy. This
procedure can be followed by calculating the parameter
P (see the equations above) for all regions and summing
them up for the net.

White Space ofVet;. This is a region on the design de-
fined with respect to the BBOX of nétthat does not
overlap with the BBOX of other nets. The metrics can
be calculated using a strategy similar to the one used for
the calculation of the previous property. The intuition is
simple and clear: large white space is well correlated with
higher chances for efficient routing of the net.

Resource Competition Metric (RCM) fd¥et;. This is

a composite property that aims to capture the congestion
in regions where net is most likely to be routed. We
consider the set of region$, that is created after the
bounding box of the net is split by considering overlaps
with bounding boxes of other nets. If we denote neigh-
bors asieigh and use notation introduced for calculating
SUF, the RCM is calculated using the following formula.

Z (Areai - Z

VR, Enet; Vneighy, of R;

Areay,

) G

Recall that the regions can be identified in

Grid,Grid, T(Locate-Point-Neighbor) runtime and the
above parameter can be calculated for each region and
added up for the net. The key intuition behind this pa-
rameter is that if the valu% is high then the net

has a larger share of the region where aﬁf\#— for the

neighbork is high then that neighbor has a Iarger share of
the region. Larger the RCM for a net more is its share of
the available routing area in the nets bounding rectangle.



e Total number of overlapping neighbors. This property The second step was data collection. All designs were
can be calculated using the procedure routed using the Cadence placement and routing tool. Orce th
Locate-Rectangle-Neighbdi(S) and is trying to esti- data was available, we started with a randomly selectegdesi
mate the number of nets that compete with a given raatd built a number of models. We used only 60% of all nets
for routing resources. for this propose and preserved the rest of data for condyctin

] . . statistical test and validation procedures. It was imntetiia

» RCM for overlapping neighbors df e;. The property is gnnarent that each of the following three features (boundin
calculated using the RCM procedure. The intuition is thghy - minimum spanning tree, and convex hull) predicts the
if neighboring nets are very congested, they will induggngth of a majority of nets remarkably well. Each of them
higher difficulty of routing the pertinent nét had R? value above 0.8 individually. Th&2 value is square

e Sum of RCMs for all neighbors of overlapping neighborg.f re5|dyals, -€. d|ffer(_ence bgtw_e_en the predicted V‘mab.d.
This complex measure enhances the scope of the previ%ﬂgredlct_ed_value using an |nd|V|d_u_aI property. Th_e stati
metrics. ca _t—test mdmates that_the probability that this cortiela is

accidental is less thar)—16.

e Amount of overlapping area with the net for all neighbor- While independently each of the measures (bounding box,
ing nets. The rationale is that a higher ratio of the overlaginimum spanning tree, and convex hull) are strong predic-
area indicates increased hardness to route. tors, their combination results in only marginally betteep

) _ ) diction. Therefore, we decided to use bounding box as the ba-

e The number of common terminals of neighboring nets & of our model because of its low computational cost. Glose
Net;. This measure is positively correlated with the difsxamination of the data, indicated that short nets (ones avit
ficulty of routing of net.. bounding box value less than 6,000) and long nets (bounding

e Neighbor utilization factor (NUF) that is defined in th(!f)OXes larger thap 6,000) had very different p_rope_rtles. tMos
following way |mporta_nt!y, thg first group, s.hort nets, h_ad significantiy-b

ter statistical fits and essentially no outliers. Therefave
decided to treat these two sets of nets separately. Statisti
t-test indicates that correlation is significantly higher the

separated sets than for the overall set. Once the data was di-

vided into two sets, we conducted a linear regression-based

(4) procedure for fitting data for different percentiles. Fockea
ercentile (in range 10% to 90%) a separate fit is obtained and

e Neighbor hardness factor (NHF) defined in the fOHOWingalidated lfsing t?le t-test. After) that,pto further enharfe t
way accuracy of our model, we conduct an outliers detection pro-

cedure that identified a small subset of data that required sp
cialized models. For this purpose we have developed a CART
>~ common terminals common area RCM (k)  model [4]. The next step was to repeat linear regressions on

Vneighy the data after outliers were removed.

The next two steps were dedicated to the development of
& PDF and CDF for wire-length prediction and to interchip
prediction. The goal of interchip prediction is to use globa
parameters of the chip in order to predict how features, such
as global congestion and the number of nets and terminals,
4.3 Overall Flow impact to PDF for wire-length distribution. Finally, we con
agpcted extensive model evaluation using learn-and-tebstren
heesubstitution procedure in order to verify that the depetb
model is sound and no overfitting was done. In the rest of this
Section, we elaborate on several key steps of the procedure.

Z common terminal$ common area

neighbor area
VneighkOf NET;

The last two properties aim to quantify the competition
neighboring nets with the net under consideration.

In this Subsection, we present the overall flow of our st
cal modeling procedure. Figure 1 summarizes the flow of t
developed statistical modeling technique for predictibthe
wire-lengths of the nets. The first step is the identificatbn
relevant net properties. Two types of net properties are em-

ployed. The first group consists of properties related tovéte 4 4  Qutlier detection

itself. The second group consist of metrics that aim at pre-

dicting encountered congestion during routing of a given r@utliers can be defined as nets that are not predicted waljusi
due the routing requirement of neighboring nets. On all prapgiven set of features without significantly changing the€o
erties we also applied a number of nonlinear transformatigaiexity of the model. We detected the outliers using thefeH
(e.g. application of logarithm function) in order to obtdiet- ing procedure. We begin by building our preliminary models.
ter prediction abilities. Interestingly, while it is ofteaported As candidates for outliers, we analyzed all points thatediff
in other fields that the use of statistical techniques and ndmom their prediction by more thah%. In our experimenta-
linear transformations often greatly enhance accuracygdo tion, we setc = 20%. Next, all the outlier candidate points are
model and our set of properties this was not the case. characterized according to each property. The separatioe v
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1. Feature Definition; # # Net Total

2. Feature Extraction; Bench | layers| nets Area Area Term

3. Preliminary Data Exploration; ibm01| 8 | 11507 5.89E+09] 1.95E-06] 44266

4. Features Evaluation and Normalization ibm02 10 18429 | 7.65E+09| 2.41E-06| 78171
and Compound Feature Selection; ibm07 | 10 | 44394 1.63E+10| 2.73E-06| 164369

5. NetCharacterizatior| ibm08 | 10 | 47944 | 1.76E+10| 2.73E-06| 198180

6. Nets Categorization; ibm10 | 10 | 64227 | 2.97E+10| 2.16E-06| 269000

7. Preliminary Linear Regression on percentiles; ibm11 10 67016 | 2.31E+10| 2.90E-06| 231819

8. Outliers Detection; ibm12 | 10 | 67739| 3.44E+10| 1.97E-06| 284398
9. Outliers Modelling;

10. Final Linear Regression on percentilgs; Table 1: Chip level characteristics for ibm designs obtine
11. CDF and PDF model generation; using Cadence routing and placement tool.

12. Chip characterization;

13. Development of Mapping Function to New Designs;

14. Evaluation and Validation; Bench | BBOX | MST | CHULL

Figure 1: Modeling Approach Overall Flow. !bm01a 9.01E-07| 1.09E-06| 1.12E-06
ibm02a | 6.44E-07| 1.39E-06| 2.03E-06
for each property is set in such a way that it maximizes the ra- ibmO7a| 5.23E-07| 6.06E-07| 6.38E-07
tio of outliers versus well predicted nets for the nets alove ibmO8a | 4.78E-07| 6.05E-07| 5.98E-07
below) the separation value. Note, that a linear-time svigep ibml10a| 3.33E-07| 3.91E-07| 4.13E-07
sufficient to find this separation value. ibmlla| 3.35E-07| 3.79E-07| 3.98E-07
All properties with their corresponding separation values ibml12a| 4.06E-07| 4.74E-07| 5.06E-07
are used as inputs to the non-parametric classificationend r
gression tree (CART) software [4] to provide compact charac Table 2: Congestion metrics for ibm designs.

terization of all outliers. The CART procedure resultedtia t
model where all nets are separated in three groups according

to the number of terminals. The first group consisted of @bunding box. Note that partial information about the PD& an
nets with two terminals, the second with three, four, and fig®DF is already contained in percentiles and therefore isis a
terminals, and the last group contained all other nets. contained in the percentile-based linear fit models. Theeef
The final CART model used the following features: numhe starting point for the PDF derivation was the percentile
ber of terminals, RCM of the net, RCM of overlapping neighmodels for the ratio of the wire length versus bounding box
bors, total number of overlapping neighbors, and the numBgra function of the size of the bounding box. For both small
of common terminals for a given net. The last four featurgsd large bounding box data, we used a resubstitution-based
were normalized against the area of the bounding box in org&fhnique to obtain the CDF. Note that the PDF can be eas-
to achieve better separation. The overall misclassifinatite ily obtained from the CDF using either symbolic or numeric
for the detection of outliers was 6.7%. For the outlier netgifferentiation.
we build a separate linear regression fit, that ifd= 0.83.
The t-test indicates that probability of accidental fit wassl ~ The PDF is built using the following procedure. First a sub-
than10~16, clearly indicating the soundness of the model. $&t of% nets are randomly selected for short nets. In our exper-
is interesting and important to emphasize that all outliezse  imentation, we used value = 50%. The data is separated in
corresponding to nets that were longer than standard pretiais that are dictated by BBOX values. The size of bin was de-
tions. This phenomenon can be easily explained by the fermined in such a way that all bins contain the same number
trinsic nature of the modeling problem. Relatively shortsneof points. The total number of bins was 10. The randomly se-
for a given size of the bounding box (or MST or CHULL) aréected subset of data is used to establish new percentittspoi
those that are routed using interconnect that is close fo thier each bin containing data. All percentile points are nor-
theoretically possible minimum when no other nets cause cemalized against the bounding box with shortest nets. The nor
gestion. In all designs for all values of bounding boxes, thealization is done in such a way that the average discrepancy
number of nets with these properties was relatively large= Toetween the values that correspond to the identical péleent
very high RCM was the best predictor that net will be routésl minimized. The data is fit using polynomials of low degree
using significantly higher length, in particular if the nuentof (three and four in our experimentation). The procedure-is re

terminals was high. peated a large number of times, the average value for each of
percentile is calculated and fit using a least linear squapes
45 CDF and PDF Generation proach. This process was terminated once the percentite val

dation method indicated that we achieved user specified inte
The goal of this phase is to find accurate cumulative distvals of confidence for the PDF model. The same procedure is
bution (CDF) and probability distribution functions (PDiiey repeated for long nets. Figures 2 and 3 show intermediate and
the length of a net given the size of a corresponding boundiimal results of the PDF derivation procedure.
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IBMO7a - Large BBOX Model IBM07a - Small BBOX Model
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Figure 2: Linear Regression Model for ibm07 design usingebad Router.

4.6 Interdesign Modelling was validated against the remaining design, as well as using
resubstitution procedure as explained in the next Sulmsecti

Note that our goal is to predict distribution of expectedewir

length for nets of the design that are not used to build the sta ] o

tistical model. Therefore, once a model was built and vafi-7 Evaluation and Validation

dated for a single design, we have to establish means fat ra‘Pri\e last step of the modeling procedure was dedicated to

re-mappmg ofthe ere—lgngth model to c?ther chps. . the evaluation of the accuracy of the developed models. We
For this task, we considered the following atomic chip props ved two paradigms: learn-and-test and resubstitutio

erties: () the area_of the chipz‘()_ the number of netsy¢;) the 7, 8, 9]. In the case of the former procedure, we selected
average and median of bounding box areas, MST, and con €ubset of nets for building the model. This procedure was

hullshfor all nets (v) t?ehaverags nurpber of t.ek:mmals"per n?groperly applicable only on modeling done on a single design
(v) the percentage of the number of nets with a small num ce the total number of available designs was too small sta

of terminals (two , three, or four). The composite chip nutri tistically for sound application of this type of analysis ion

inCIL.‘d.ed ratios of all atomic chip properties and their Sl.E'mpterchip models. Nevertheless, the application of the laauh-

statistical measures such as moments of IF)VY orders. _ test procedure on the interchip model indicates very high co
Taple 1 shows the chip level characteristic of the desigstency, strongly implying that different designs folloery

The first column denotes the name of the benchmark, followgghjjar distributions of the wire lengths for nets charaizted

by the number of chip layers and the number of nets in t[39 the selected features.

benchmark. The fourth column denotes the total area of th§ye nave applied the learn-and-test validation technique to

chip. The overall congestion of the design is denoted in g trend modeling and outlier identification. In both case

fifth column by the total number of nets over the area of ths; single chip models, we obtained predictions with 3% of
design. The final column specifies the total number of termjacyracy for more than 96% of instances.

nals in the benchmark. Table 2 denotes the normalized aerath oo bstitution is the technique that effectively resample

size of th? bounding b.ox.’ MST and CHULL for-each net f%e available data in order to ensure that overfitting is oot c
each Qe5|gn. The statistics are normalized against theo;E"e(’ilucted. It was applied to modeling at both levels of abstrac-
the chip. ) _ tions: interchip and intrachip. We created 100 differeissis

We denote by:; andc; the overall congestion of designs of gata using uniform random sampling of the data. For the in-
andj measured by the normalized sum of convex hull area ft@"rchip modeling, we select 70% of data for each subset and
each design divided by the total area of the design. Furthgkild a separate model using the developed procedure. The
more, we denote by L; and N L; the number of layers usedyercentile analysis indicates that for all results, therival of
in designs; andj. Our model indicates that the length of thggnfigence is less than3% with probability higher than 97%.
net in design (L;) can be calculated using the length of theey the interchip modelling, we selected a random subseét tha
net with the same BBOX in design(L;) using the following contained between three and five designs. We repeated this
formulal; = L; %i] *(%)0‘48- This model is built using leastprocedure 100 times. The interval of confidence wA9%
linear squares data fitting approach [15]. We build this nhodeith probability higher than 86%. This relatively lower |a>
using a randomly selected subset of four designs. The madaiéty was the direct consequence of the fact that from asstat
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tical point of view relatively few design were available. \We (with BBOX value less than 6,000) was identified as outlier.
ertheless, the percentile analysis [9] strongly valid&tesap-
proach and indicates that the statistical trends have hess t ibm07a - Small BBOX Linear Regression Models
one in billion of chance to be accidental. %ile a b c R?
90 | 9E-09 2E-05 1.1758 0.9876
80 | 9E-10 5E-05 1.0686 0.9762
5 Statistical Wire-length PDF and 70 | 2E-10 6E-05 1.117§ 0.9184
60 | -2E-09 5E-05 1.0439 0.9804
CDF Models 50 | -4E-09 5E-05 1.0131 0.9849
40 | -2E-09 3E-05 1.0053 0.9876
30 | 1E-09 6E-06 1.0160 0.9854
20 | -9E-10 1E-05 1.0038 0.8049
10 | 1E-09 -3E-06 1.0023 0.9702

In this Section, we present the obtained statistical wingtle
model. We present the parameters of the model, obtained PDF
and CDF, and summarize model evaluation results. Although
we present a single final model, it is important to emphasize

th?t the procsdur?( presentg_d n thedprlevLc])ust_ft;zctuzjn eelisqlt Table 3: Linear Regression Fit Parameters &3dfor Small
? arge number o com.petmve mo esF at ditiere re dmveBBOX of ibmOQ7 design. Coefficients, b, andc are used for
ittle with respect to their accuracy gnd interval of conﬁdg. the quadratic model of the form:2 + bz + c.
The model that we present was mainly selected due to its low
conceptual complexity and through the use of a set of festure
that can be rapidly extracted from the post-placement dssig ibm07a - Large BBOX Linear Regression Models
The prediction abilities of the model are illustrated in +ig %ile a b c R2
ures 2(a)-5(b). The demonstration example used for the de- 90 | 5E-11 _5E.06 15944 07185
velopment of the model is imb07. It is important to empha- 80 | 1E11  7E-06 1.3948 0.6268
size that the model was actually developed using only 60% of 0 | -2E-11  8E-06 1.276' 0.6890
randomly selected nets. Figures 2(a) and 2(b) show the nor- 0 | -5E-11 9E-06 1.1825 0.7460
malized net length _With regpect_to BBOX for _differer_1t s_izes 50 | -3E-11 7E-06 1:1385 0:8111
of BBOX. The continuous lines in these two figures indicate 40 | -3E-11 6E-06 1.0981 0.8655
30
0
0

the pred|ct|or1 models for small and large BI_BOX respectlvelly JE-11 BE-06 1.0720 0.9109
The bottom line correspond to 10% percentile and the top line

. . L -3E-11 5E-06 1.0476  0.9033
to 90% percentile value. All other lines indicate the valtie o 3E-11 5E-06 10133  0.8862
expected length for percentiles that differ by 10% incretsen 1 -

Tables 3 and 4 present the parameters of the models andﬁ%e 4: Linear Regression Fit Parameters &tfidfor Large

obtainedR? values. That that the square of residuals is CONSISE % of ibm07 design. Coefficients, b, andc are used for
tently high. t-test indicates that for both sets the prolitstof the quadratic model of the form:? + bz + c.

accidental coincidence is less theoT 18, Therefore, itis clear
that the model is both theoretically and practically sound. Figure 3 and 4 show a cumulative distribution function
As can be seen from the table, the variability of the n6EDF) and a probability distribution function (PDF) for sho
lengths is well captured as indicated by the high value @fd long nets. The x-axis indicates the normalized discrep-
the R? coefficient, in particularly for the small BBOX model.ancy against the most likely values. Again, the continuous
There are two main reasons why it is much easier to accuratetg indicates the prediction provided by the model and each
predict short nets. The first one is that there are signifiganplot point corresponds to the length of the nets in a particu-
more short nets than long nets and, therefore, the stalistiar bounding box bin selected by the resubstitution procedu
model can be developed using a much larger number of s&rem the PDF figures we can conclude that the majority of
ples. The second reason is that short nets usually have Bigjs are routed using a wire-length that is close to theweti
nificantly fewer terminals, simple structure, and can lager minimum and that longer nets are statistically rare.
on relatively small areas of white space in their vicinityorF  We evaluated accuracy and consistency of PDF and CDF
longer wires, we see that the prediction of nets that are slmosing the resubstitution procedure. We generated 100rdiffe
as short as their lower bound indicated by BBOX is more agat subset that contain 60% of initial date and build PDF and
curate than nets that are long. For the long nets, the moG&F of the wire length model. For a hundred randomly se-
relies on the CART model presented in the previous Sectiected points their PDF and CDF values were recorded for
that has very high consistency. The CART model-based each of the resubstitution models. The non-parametric-inte
moval of nets that are predicted to be significantly longanthval of confidence was calculated for each point and for the
the BBOX-bound, improves th&? for all percentiles to above overall probability and cumulative distribution functgnThe
0.95 level essentially matching the accuracy of the model fnalysis indicates that with a probability larger than 96 t
short nets. The CART model correctly identifies very longodel is accurate withirn-7%. It is interesting to note that in-
nets with accuracy better than 90%. More importantly, lesgval of confidence was sharper for the CDF than for the PDF
than 1/than indicated by BBOX linear regression-model ts nmost likely as consequence that CDF integrates discrepanci
detected by the CART model. Finally, note that no short netPDF.
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Figure 4. Cumulative Distribution Function and Probabildistribution Function for Small BBOX nets in ibmQ7 desigor f
Cadence Router.

Finally, Figures 5(a) and 5(b) show a 3-dimensional repre-The buffer insertion problem can be formally stated in the
sentation of histograms that is formed by selecting bins dcHowing way. Given the fan-out wiring tree with parasitic re-
cording to their ratio of normalized net length versus BBO3istances and capacitances, wire-lengths, potentiakbulidF
and the size of BBOX on the other axis. The z-axis indicateations, sink required times, sink capacitive loads andlayde
instead of the conventional number of nets which belong t@anstraint at the driving gate, the problem is to place knsffe
particular bin, the logarithm of this value in order to prwi into the tree such that the required arrival time at the input
better visual insight in to the distribution of wire-lengtiof of the driving gate is maximum. We also consider the opti-
the net for all lengths. Data in Figure 5(a) was collectedrafimization of the number of buffers used to satisfy the delay co
using the Cadence routing tool. Data in Figure 5(b) is genstraint.

ated using the developed prediction model. .It is easy t.0 S€&1e buffer insertion problem was formalized by [18] and
that there exists close correspondence and high cornelaéio m(f]dels the fan-out wiring tree as a set of distributed RC sec-

tween data in the two figures, except that for a small subsehg s. The Elmore Delay model [10] is used to compute the
bins in the true data that have statistical anomalies duleeto &elay of such a wiring tree

specifics of the actual design.
In order to estimate the parasitics for each wire-segments

] ) o ] we need to determine the exact wire-lengths. Now let us sup-
6 Application of Statistical Wire pose that this optimization is being performed during the in

STPeT place mode during which the exact wire-length is not avail-
Length Model to Probabilistic Buffer able. The only available information is about the bounding

Insertion box of the nets. Using the placement information we can gen-
erate the probability distributions of individual wire segnts
In this section, we describe a few applications of the preegknof the wiring tree and perform buffer insertion probabist
wire length model. The common underlying idea is to democally. [12] proposed such a probabilistic approach to hiiffe
strate the superiority of statistical estimation and philie sertion. For brevity, we omit the details of that algorithvide
tic optimization over the traditional deterministic apgch to ran probabilistic buffer insertion on a placed net (placsitg
design automation. In order to accomplish this objective, WCadence Qplace) and also traditional buffer insertion s3]
applied the developed statistical models to the probaibilissuming bounding box as the net length estimate. After buffer
buffer insertion problem. insertion, the entire circuit was routed and the net delay wa
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Prob. BBox [2] C. J. Alpert and A. Devgan. Wire segmenting for improved
Delay | #Buf || Delay | # Buf buffer insertion. IPACM/IEEE Design Automation Conference
Netl| 831 | 14 | 959 | 9 pages 588-593, 1997.
Net2 6.0 20 8.74 17 [3] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshayar

and V. De. Parameter variations and impact on circuits and mi-
Net3 6.4 22 8.51 17 croarchitecture. IARCM/IEEE Design Aut?)mation Conference
Table 5: Post Routing Comparison: Prob. vs BBox based pages 338-342, 2003.
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from probabilistic and traditional buffer insertion. Tel® re-

ports the comparison. It can be seen that post routing, 6t pr predictabilities: A risk management paradigm. AGM/IEEE

abilistic approach produces significantly better resutiant Int'l Symposium on Low Power Electronics and Desigages
bounding box based approach indicating the effectiventss 0 302305, August 2003.

our models and also the superiority of a probabilistic appho

[6] A. Davoodi and A. Srivastava. Voltage scheduling under un-
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probability that a given net will have a particular wire-igh. Chapman & Hall, 1993'. _ )
The model is characterized using a small set of parametatrs Y WC Elmore. The tranS|ent_anaIyS|s of da_n_wped linear networks
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of the model is less than one second even for the largest de- pple i ys'c_'wo _ume_ o i
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bility in emerging probabilistic approaches to design ende probabilistic approach to buffer insertion.IBEE International
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effectiveness of our model through extensive experimiemtat '

with state of the art commercial and academic tools [13] J. Lillis, C. K. Cheng, and T. T. Y. Lin. Optimal wire sizing and
’ buffer insertion for low power and a generalized delay model.

In IEEE International Conference on Computer Aided Design

Referenceﬁ pages 138-143, 1995.
[14] F. P. Preparata and M. I. Sham@omputational Geometry: An
[1] A. Agarwal, D. Blaauw, V. Zolotov, and S. Vrudhula. Com-  Introduction Springer-Verlag, New York, NY.
putation and refinement of statistical bounds on circuit deld¢5] William H. Press, Saul A. Teukolsky, William T. Vetterling, and
In ACM/IEEE Design Automation Conferengages 348—353, Brian P. FlanneryNumerical recipes in C (2nd ed.): the art of
2003. scientific computingCambridge University Press, 1992.



[16] A. Srivastava, E. Kursun, and M. Sarrafzadeh. Predictability
driven binding: Methodologies and tradeoffs.Journal of Cir-
cuits, Systems and Computers, Special Issue on Low Power IC
Designs volume 11 of4, pages 223-232, August 2002.

[17] Ronald A. ThistedElements of statistical computinGhapman
& Hall, Ltd., 1986.

[18] L.P.P.P. van Ginneken. Buffer placement in distributed rc-tree
networks for minimal elmore delay. Int'l Symposium on Cir-
cuits and Systempages 865-868, December 1990.

[19] C. Visweswariah. Death, taxes and failing chipsAM/IEEE
Design Automation Conferengeages 343-347, 2003.

10



