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Abstract

We propose a framework for comparing shapes represented as closed planar contours that is by construction invariant with
respect to Euclidean and similarity transformations, and insensitive to high-frequency perturbations as well as to high-energy
localized deformations such as spikes and slivers. Our representation relies on a scale-space of integral invariants that is
used as the basis for establishing local correspondence between contours being compared. We present an implementation of
the optimal correspondence and the resulting geodesic distance.

1. Introduction
Our goal is to compare objects having different shape. This has obvious implication in shape classi£cation for object recogni-
tion, content-based image retrieval, medical diagnosis, etc. At this level of generality, this is a monumental task that admits no
simple meaningful solution [17]. Therefore, before we proceed any further, we need to specify what we mean by “objects,”
how we describe their “shape,” and concentrate our attention on particular ways in which they can “differ.” Within the scope
of this paper, by objects we mean closed planar contours1 embedded in R2; their shape is the equivalence class of objects
obtained under the action of a £nite-dimensional group, such as the Euclidean, similarity, af£ne or projective group [13].
Therefore, objects that are obtained from a closed planar contour by rotating, translating, and scaling it, for example, have the
same (similarity) shape; all other objects have different shape. However, in comparing shapes, we want to be insensitive to
certain accidents that can occur to an object: for instance, in Fig. 2, we want the “jagged,” “smooth,” “spiked,” and “wedged”
objects to be judged as having shapes that are similar to that of the original bowtie. We prefer not to use the word “noise”
when referring to these accidents because, with the exception of the jaggedness, they are not obtained with standard additive,
zero-mean, small variance perturbations. For the case of the spiked and wedged objects, for instance, the perturbation can be
quite signi£cant in energy, and highly localized along the contour. Our goal is to de£ne a distance with respect to which the
spiked bowtie in Fig. 2 (last row) is close to the bowtie in the same £gure.

The type of accidents we want to be resistant to can be lumped in three categories: “small deformations” that result
in small set-symmetric differences between the interior of the curves being compared, “high-frequency noise” that affects
a wide portion of the contour, and “localized changes” that signi£cantly affect the total arclength of the contour but are
spatially localized, such as spikes or wedges. Many in the literature have addressed the comparison of objects under small
deformations in a way that is invariant with respect to various groups (see Sect.1.1); fewer have addressed the sensitivity to
high-frequency noise and yet fewer have addressed localized changes [22, 20]. In this paper, we plan to develop a framework
that will allow addressing all of these accidents in one go. To this end, we plan to employ a recently proposed representation
of shape in terms of so-called integral invariants, so that the distance between objects will by construction be invariant with
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respect to the action of the chosen group; de£ning a scale space of such invariants allows us to address high-frequency noise
in a principled way. Finally, establishing point correspondence among contours allows us to handle localized changes.

Given the wealth of existing work on invariance, scale space and correspondence, our work naturally relates with a large
body of literature, as we describe in the next subsection. The reader should notice that we consider each object as one entity,
and perform no analysis or decomposition, so there is no notion of hierarchy or compositionality in our representation, which
is therefore intrinsically low-level.

1.1 Relation to prior work and contributions of this paper

There exists a vast literature on comparing shapes, represented as collection of points [2, 21, 29, 12], curves [14, 31, 19,
4, 8, 32], continuous curves reduced to various type of graph representations [33, 25, 26, 18, 15, 11]: we represent curves
as continuous objects living in in£nite-dimensional spaces. Within this choice, many have addressed matching curves under
various types of motion [2, 21, 29] and deformations [14, 31, 19, 4, 8, 7, 32, 6, 27], some involving a mapping from one curve
to another that has some optimality property [5, 8, 14, 19, 31, 6, 27, 4, 32]. A representation of closed planar contours that
is invariant with respect to the action of subgroups of plane-projective transformations that enjoyed great popularity during
the past decade was based on differential invariants [22, 8, 14, 19, 31]. Those, however, exhibited dif£culties in handling
high-frequency noise. Various approaches were presented to address this dif£culty, notably the introduction of a scale space
of curvature [30] and more recently the introduction of invariant curves that are based not on differential operators, but on
integral operators applied to the contour or the characteristic function of its interior [16, 20]. It is relatively straightforward
to de£ne a scale space of such invariants, by choosing parametric families of kernels with appropriate scale parameters. We
employ one such representation in our work, since it addresses the issue of invariance to £nite-dimensional group actions and
high-frequency noise at the outset.

However, when an object undergoes modi£cations that entail a signi£cant change in arclength concentrated locally on
the contour, integral invariants, which are bounded positive functions of arclength, cannot be meaningfully matched (see
Fig. 2). Therefore, a natural palliative consists of re-parameterizing arclength via a “warping function.” This idea has been
used in various contexts and applied to various representations. Most notably, Sebastian et. al. has applied it to a differential
invariant representation of the curve using curvature [22] with very convincing results for noise-free shapes. Our warping
operation is very similar in principle to Sebastian et. al.’s “alignment curve.” However, we perform the warping operation
on the integral invariant representation, rather than on curvature. While to the novice this may not seem like a signi£cant
difference at £rst, the outcome is different indeed, both at the theoretical and practical level. In fact, unlike curvature, the
integral invariant is a positive, bounded function of arclength, as we will review in Sect. 2. Therefore, it can be interpreted as
an (un-normalized) mass density, and the problem of transforming one mass density onto another is well-posed, theoretically
grounded in the optimal transport framework of Monge-Kantorovic[1], and for it there are optimal algorithms that are proven
to converge to the unique global minimum. Furthermore, the integral invariant is intrinsically less sensitive to noise than
curvature, and therefore we can handle high-frequency noise effortlessly and perform comparison in a scale space framework
that is naturally de£ned by the chosen representation. Our implementation of the optimal warp is based on a discretization of
the original curves and dynamic programming. This is standard in the alignment/warping literature [20, 22, 8, 12, 28, 3].

Our contribution, therefore, draws on extensive work on integral invariants and alignment-based shape matching. By
combining these two bodies of work, we have developed a framework for shape comparison that is by construction invariant
with respect to the action of the Euclidean or similarity group, insensitive with respect to high-frequency distributed noise,
and with respect to localized deformations such as spikes and slivers. The resulting approach has close ties with optimal
transport theory, and we show encouraging experimental results using a discretized implementation of shape warping.

2 Integral invariants

We represent a shape as a closed planar curve γ : S 7→ R2. For a group G acting on R2, an integral G-invariant is an integral
function of the curve that does not vary due to the action of any g ∈ G. Formally, for a kernal h : R2 × R2 7→ R,

Iγ(p) =

∫

γ̄

h(p, x)dµ(x) (1)

is an integral invariant if
Iγ(p) = Iγ(gp)∀g ∈ G. (2)

These invariants share several desirable qualities of their more well-known cousins, differential invariants, including local-
ity. However, unlike differential invariants, integral invariants are far more robust to noise. Speci£c examples include the
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“observed transport” shape measure [20] and the local area invariant [16], which is described below. Both of these invariants
are parameterized by r, the radius of a circular kernel. This allows the invariants to be extended to a discrete or continuous
multi-scale functions, yielding a vector-valued invariant. However, the “observed transport” invariant is evaluated on the con-
tour, while the local area invariant is evaluated on an area form. Further, domain of integration of the “observed transport”
invariant is based on visibility, which is very sensitive to curve perturbations near the kernel center.

For this reason we favor the invariant suggested in [16]. Speci£cally, the invariant is based on a kernel h(p, x) = χ(Br(p)∩
γ̄)(x), which represents the indicator function of the intersection of a small circle of radius r centered at the point p with the
interior of the curve γ. For a radius r, the corresponding integral invariant

Irγ(p)
.
=

∫

Br(p)∩γ̄

dx (3)

can be thought of as a function from the interval [0, 1] to the positive reals, bounded above by the area of the region bounded
by the curve γ. Alternately, normalizing the functional by the area of Br maps the interval [0, 1] to [0, 1]. This is illustrated
in Fig. 1 and examples are shown in Fig. 2, which demonstrates (in the £rst four rows) the effectiveness of this representation
for comparing shapes under Euclidian transformations, in global additive noise, and under smoothing. However, Fig. 2 (last
row) demonstrates that the local area invariant, like all other integral and differential invariants, is not robust to a highly
localized perturbation such as a spike. In the next section we present a method to warp the parameterization of the curves so
that such comparisons can be made robustly.

γ

r

R

θ

p(s)
r

Irγ (p) ' r2θ

Figure 1: Integral area invariant de£ned by eq. (3).
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Figure 2: Sample shapes and their integral invariants. Kernal size is 15% of the curve’s bounding box.. Note the added
“hump” on the right side of the invariant due to the spike in the spiked bowtie (last row).
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3 Shape distance and warping integral invariants

While invariants can be designed to be robust to group actions, and integral invariants are robust to noise, an invariant
for highly localized, high energy perturbations of a shape, such as the addition of spikes, slivers, or other parts, or the
“disappearance” of parts due to occlusion or change in con£guration (i.e. a hand with £ve £ngers extended vs. four £ngers
extended) is much more problematic. A naive distance de£ned on an invariant would yield a relatively large distance between
the two hands above (implying they are very different) while intuitively these shapes should have a small distance between
them.

From the perspective of invariants, the large difference between shapes with local variation is due to the parameterization
of the curves, as demonstrated in Fig. 2. If the spike could be re-parameterized to have a smaller arclength, then its segment
of the invariant would contribute less to the distance between the two shapes. This warping of the parameterization of one
shape, or more symmetrically both shapes, would allow the computation of an intuitively more satisfying distance while
effectively inducing point correspondences between the two curves.

More formally, we ultimately wish to compute D(~I1, ~I2), a distance between two vector-valued integral invariants. We
emphasize vector-valued invariants to ensure that this formulation generalizes to multi-scale analysis. Rather than compute a
naive distance between two invariants,

D(~I1, ~I2) = argmin
s0

∫ 1

0

|~I1(s)− ~I2(s)|
p ds, (4)

we introduce added robustness by warping the parameterization of both curves via a function ρ(µ) = (h1(µ), h2(µ)), ρ :
[0, 1] 7→ [0, 1] × [0, 1], (called alignment curve in [22]). Each value of µ indexes a correspondence between γ1(h1(µ)) and
γ2(h2(µ)). Now a distance between two invariants can be thought of as a cost functional that aims to ful£ll two criteria: it
should put into correspondence points with similar integral invariant, and it should shrink or stretch the two contours as little
as possible. Both of these goals can be represented by a distance of the form

D(~I1, ~I2) = arg min
h1,h2,s0

∫

|~I1(h1)− ~I2(h2)|
p dρ, (5)

For simplicity, we consider the initial corresponding pair (i.e. s0) to be known; we discuss how to £nd this pair in Sect. 3.2.
The exponent p weights between the two goals:

p→ 0 minimize path length (stretching & shrinking)
p→∞ similarity of invariants dominates

(6)

Expanding dρ in (5) as

dρ =

√

(

dh1
dµ

)

+

(

dh2
dµ

)

dµ (7)

(where µ is the arclength parameterization of ρ) one clearly sees that the norm in (5) imposes similarity of the invariants and
the dρ term (speci£cally the portion under the square root) measures stretching or shrinking of the two contours.

In [22, 20] and others, the authors propose a cost functional which consists of two separate terms for measuring the
stretching and the bending, respectively, with a parameter R – see equation (4) in [22]. The second component (weighted
by R) also depends on the path length (i.e. shrinking and stretching effects) as well as similarity of invariants. Therefore,
appropriate choices of R to impose only one of the two constraints do not exist. One could normalize the second term so that
it would no longer depend on the length of ρ, thus measuring the mean dissimilarity of the invariants along the path. This
separates stretching and similarity of invariants. However, since we are optimizing with respect to the path, this would be
quite hard to implement.

3.1 Relationship to optimal transport

The classical problem of optimal transport put forth by Monge in the 18th century considers two measures µ and ν de£ned
over U ⊂ <n and V ⊂ <n respectively of identical total mass

∫

U

dµ =

∫

V

dν
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Figure 3: Optimal path through the graph. The path warps the parameterization of the hand (on the bottom of the graph) and
the parameterization of the noisy four-£ngered hand (on the left side of the graph). Both shapes are shown in Fig. 4. The
gray levels are the distance between points; lighter color indicates higher distance.

and seeks to £nd a mass preserving mapping ψ : U → V , where ν(E) = µ
(

ψ−1(E)
)

for any measurable E ⊂ V . Of course
there are many such mappings φ and the goal of the Monge problem is to £nd the one that minimizes the total transport cost

∫

U

|ψ(x)− x| dµ

which may be interpreted physically as the total work required to move the mass from its source distribution µ to its target
distribution ν according to the transport scheme de£ned by ψ.

We may cast our problem into this framework due to the fact that that the integral invariants I we consider are positive
and bounded and therefore may be interpreted as densities in R1 of £nite total mass. In other words given I1(s1), an integral
invariant computed on one curve (with arclength parameter s1) and I2(s2), an integral invariant computed on a second curve
(with arclength parameter s1) we may set dµ = I1(s1)ds1 and dν = I2(s2)ds2 and U = [0, L1] and V = [0, L2] where L1

and L2 are the total arclengths of the £rst and second curves respectively. To obtain the mass balance condition required of
this framework, we may simply employ a uniformly scaled version of the same integral invariant used for I1 to calculate I2
where the scale parameter is chosen to equalize their total integrals.

Now the correspondence problem is formulated as £nding the optimal transport ρ : U → V of the two densities I1 and I2,
and in this simple one-dimensional case, the optimal transport map ρ may be reformulated as a reparameterization of the £rst
curve by rescaling by the ratio of the two curves’ arclengths L1/L2. In a similar way, the inverse map ρ−1 may be rescaled
by L2/L1 to obtain a reparameterization of the second curve. The distance between the two curves can then be measured by
the cost of the optimal transport

∫ L1

0

|ρ(s1)− s1|I1(s1) ds1

or equivalently
∫ L2

0

|ρ−1(s2)− s2|I2(s2) ds2.

Although there exist ef£cient numerical implementations for £nding the solution for the optimal transport map (see for
instance [1]) that relies on successive re£nements of an initial guess, in the remainder of this paper we will employ a simple
solution based on a discretization of the contours involved, which naturally results in a well-known dynamic programming
approach. The implementation of the optimal transport framework to invariant warping is the subject of our continuing
research.

3.2 Implementation

In Sect. 3 we presented a distance between invariants (and therefore shape) that depends on the choice of a warping function
ρ. To complete the calculation to distance, and to establish a local correspondence between the curves, we must optimize
distance with respect to ρ. This section brie¤y outlines the implementation of a well-known approach to globally optimize
the correspondence for a discrete representation of the curves as ordered sets of points.

Our implementation is based on dynamic programming approaches similar to those employed by many in the shape, stereo,
and registration (for medical imaging) communities [20, 22, 8, 12, 28, 3]. We £rst require that h1 and h2 be monotonic. A
intuitive algorithm would be as follows. We £rst £nd an initial correspondence between a point on each curve (discussed
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below). The “next” correspondence should be the choice of action that minimizes the distance; the actions are (1) locally
contracting the £rst curve onto the second, (2) locally contracting the second curve onto the £rst, or (3) locally mapping the
curves as one-to-one and onto. This sketch of the algorithm lends itself to a graph formulation, where each node of a periodic,
directed graph is a correspondence between a point on each curve, and each edge links the current node to the possible “next”
nodes. The edges are weighted by the distance between the invariants associated with the “next” node, c. f. eq. 5. For two
curves with N points, the graph has N 2 nodes and 3N2 edges. Given the initial correspondence, the well known Dijkstra
Algorithm will £nd the globally optimal shortest path back to the initial node. The resulting path is ρ and its distance is the
distance between the shapes. An example of the result of this algorithm is shown in Fig. 3.

No fast algorithm exists to determine the best choice of the initial correspondence. Previous implementations (cited above)
£x a point on the £rst curve (h 1(0)) and pair it with all possible choices of points on the second curve, calculating the path for
each pair to determine the shortest. This exhaustive search can be avoided by observing that strong features, such as corners
or convex/concave points, provide a heuristic way to propose point correspondences. These points are easily classi£ed in the
invariant space. For instance, for the local area invariant, points with little or no curvature are in a ball around I = .5. We £nd
a subset of points outside this ball, {s| |I1(s) − .5| > T} where T is some threshold (typically T = .1). These points, with
their nearest neighbors on I2, form a set of likely initial correspondences. In this way, we can £nd an initial correspondence
and compute the warping function ρ and its associated distance for two curves with 100 points each in less than 1 second
with MATLAB on a computer with an Intel 800 MHz processor.

4 Experiments
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Figure 4: Correspondences on noisy hand with occluded £nger. The numbers label corresponding segments of each curve.
[LEFT] Original shape [CENTER], correspondences found via curvature, [RIGHT] correspondences found via integral invari-
ant. Results are similar for all choices of p.

This section presents experiments that highlight the additional robustness to noise of integral-invariant-based shape dis-
tances and correspondences when compared to similarly implemented differential-invariant methods.

Fig. 4 demonstrates the difference in the correspondences induced by the integral-invariant-based distance discussed in
Sect. 3 compared to a similar distance constructed on a differential invariant, namely curvature as in [22], on a partially
occluded, noisy hand. The correspondence induced by curvature is not as robust to these local and global perturbations, and
associates the ring £nger(a2) in the leftmost shape with the pinky(b2) in the middle shape; due to the ordering constraints
in the optimization framework, this mismatch forces several other erroneous correspondences, such as the pinky(a1) with
the heel(b1) of the hand. However, the correspondence induced by the integral invariant correctly associates all the features
available in both shapes, forcing the association of the ring £nger(a2) with the knuckle(c2) the ring £nger should be connected
to.

In Fig. 5 the results of matching and retrieving noisy shapes (shown on the left side) from a database (shown across the
top) are shown. We especially highlight several pairs where representation by differential invariants leads to mismatches.
These include the noisy bowties in the £rst and second rows, which, via curvature-based-distance, are as close to the hands
(rightmost columns) as they are to the correct bowties (leftmost columns). For the same bowtie shapes, distances calculated
with the integral invariant more consistently favor bowties (and bowtie-like £sh!) over hands and £sh. Examination of the
data shows several such cases where integral invariants are more robust than curvature on noisy shapes.

Shape interpolation, commonly known as morphing, has been recognized as a powerful tool especially for visual effects
including computer graphics and computer animation [10, 9, 24, 23]. The general problem is to £nd natural intermediate
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.58 .57 .54 .56 .60 .58 .54 .59 .59 .57 .54 .57 .58 .58 .60 .58 .64 .60 .44 .42 .44 .39 .43 .48

.56 .53 .55 .54 .59 .58 .55 .61 .63 .58 .57 .59 .57 .63 .54 .54 .62 .60 .50 .49 .49 .47 .48 .51

.57 .58 .55 .54 .61 .56 .51 .56 .57 .56 .54 .55 .57 .58 .57 .56 .61 .57 .41 .42 .42 .45 .41 .48

.60 .58 .60 .59 .64 .60 .59 .61 .63 .60 .59 .60 .59 .65 .57 .57 .63 .61 .55 .54 .55 .55 .54 .55

.52 .54 .51 .54 .55 .55 .52 .53 .54 .54 .51 .55 .53 .53 .53 .51 .57 .54 .48 .47 .48 .49 .47 .36

.60 .58 .60 .60 .64 .60 .59 .61 .64 .60 .58 .62 .59 .64 .59 .58 .63 .62 .56 .56 .55 .55 .56 .55

Figure 5: Noisy shape recognition from a database of 24 shapes. The upper number in each cell is the distance computed via
the local-area integral invariant; the lower number is the distance computed via curvature invariant. The bold, italics number
in each row represents the best match for the noisy shape at the left of that row; the four remaining bold numbers represent
the next four best matches See text for more details.

shapes from one shape to the other. In general shape interpolation is an ill-posed problem in a sense that there are numerous
ways to interpolate between two shapes and little has been discussed on notions of optimality in a quantitative way. In our
framework, an optimal correspondence is obtained between two shapes and a linear interpolation is applied to primitive
shape properties, which are relative distance and angle from the center point based on the correspondence. One example of
interpolation is demonstrated as shown in Figure 6.

5 Conclusions

In this conference paper we have addressed two open questions in the computation of shape distance. Multi-scale integral
group-invariant descriptions of shapes are employed for robustness to high-frequency noise and small deformations. Then
shape warping, the application of reparameterization to induce correspondences, is used to account for large localized changes
such as occlusions and con£guration changes. We embed both of these concepts in a formulation of a shape distance,
and outline how distance and optimal correspondence are jointly computed via fast dynamic programming algorithms. To
conclude, this model’s robustness is demonstrated for applications such as shape matching on real shape data. Our ongoing
research into these models includes implementing the optimization in an optimal-transport framework.
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t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Figure 6: Morphing based on correspondences found via integral-invariants.
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