

1

Abstract-- Knowledge of the link capacity is essential to better
manage and utilize networks. Most capacity estimation
techniques nowadays employ “active” approaches to probe the
networks and estimate the link capacity. In this paper, we study
the feasibility of “passive” capacity estimation techniques based
on CapProbe, a recently proposed fast, low overhead, and
accurate capacity estimation tool. We embed the CapProbe
algorithm in two popular protocols: TCP and TFRC, and
evaluate a passive version of CapProbe using both Internet
measurement and simulation. The results show that the passive
approaches can estimate capacity accurately and rapidly over a
wide range of system parameters. Some exceptions are
encountered in the TCP case where estimation accuracy may be
lower due to hardware and operating systems issues, particularly
when the bottleneck capacity is large. In addition, we present an
example of using passive capacity estimation in a mobile
computing scenario, where we enhance TFRC performance by
adapting its sending rate according to estimated capacity
before/after a vertical handoff. The proposed passive capacity
estimation is shown to be suitable for “on-line” usage with high
convergence speed and minimal overhead.

Index terms-- passive measurement, capacity estimation,

packet pair, CapProbe

I. INTRODUCTION

Increasing network heterogeneity, both in terms of access

technologies as well mobile environments, presents new
challenges. The ability to estimate network properties, such as
the capacity of a path1 is of particular importance since the
knowledge of the capacity of a path can be useful for many
applications. For instance, multimedia servers would be able to
determine appropriate streaming rates; and routing protocols
and multicast application level protocols can use capacity
information to build optimal routes/trees.

Mobile environments present newer challenges as they
demand faster and less intrusive techniques for path
estimation. A mobile end-host might traverse multiple
networks en-route and vertical handoffs would enable seamless
connectivity. It would be particularly useful if mobile hosts
can perform vertical handoff to the “best” access technology
based on the capacity information. Once the capacity
estimation can be done fast and accurately, it is also applicable
for the Internet servers to detect the occurrences of vertical
handoff events on Mobile Hosts, since vertical handoffs
usually result in drastic changes in path capacity. Dynamic link
capacity in network access technologies such as 1xRTT can
also impact application performance. Capacity estimation will

1 Capacity of a path here refers to the minimum physical

link capacity among all links on the path.

facilitate providing a better picture about the underlying
network conditions and hence enable application adaptation. It
is particularly critical when at the end of the path there is a
mobile node that dynamically hands-off to different access
networks (e.g., a vertical handoff from 802.11b connection to
1xRTT connection). The capacity of the path is generally the
capacity of the wireless link. It is an upper bound on the
reception rate at the mobile client, and its knowledge at a
server (or proxy) enables it to adjust its sending rate, and,
possibly, content, to match the reception rate. Also desirable is
that the time to obtain accurate estimates be small. For
instance, if capacity estimates need to be used by multimedia
servers to determine streaming rates, a significant delay in
estimating capacity would be unacceptable. The new challenge
in future mobile applications is the speed required for the
estimate in case the receiver (e.g., a car or a plane) moves
rapidly across different wireless domains.

Apart from the speed of estimation, another desirable
property of an estimation methodology is that it should be non-
intrusive, i.e., the amount of probing data injected into the
network should be minimal so that other traffic is not affected.
Existing estimation tools are either active, passive, or both.
Most often the decision of whether the tool will be active or
passive is determined by how invasive we can allow the tool to
be without affecting application performance. Scalability of
the measurement tool (i.e. if a large number of instances of the
tool are run simultaneously) is also affected by the mode of the
measurement.

Active estimation is characterized by introduction of packets
for measurement purposes. From an end-user’s perspective
active measurements to find the network path characteristics is
a reasonable approach. However, the scalability of such
measurements and its impact on application traffic can be
severe, particularly if a large number of users start
simultaneously start estimating the network path
characteristics. Pathchar [10], Pathrate [5], and CapProbe [12]
all employ active estimation techniques.

Passive estimation on the other hand is less intrusive. The
motivation for passively estimating the path is that the
transport protocol should detect any changes in network path
without an application or end-user explicitly initiating an
active measurement. Most of the capacity estimation tools can
be both active as well as passive. There have been some
proposals for tools that are a combination of the active and
passive measurements for scalability purposes [16]. Passive
estimation has its disadvantages as well since it is usually
limited to periods of time when there is application traffic.
Newer tools that combine active and passive measurements do
passive measurements when there is application traffic and
revert to active measurement after a prolonged period of
application traffic inactivity, to ensure a level of accuracy in
the network characteristics measured.

Ling-Jyh Chen, Alok Nandan, Guang Yang, M. Y. Sanadidi, Mario Gerla
3803H, Boelter Hall, Department of Computer Science, UCLA

Los Angeles, CA 90095, USA

CapProbe based Passive Capacity Estimation

UCLA Computer Science Department Technical Report CSD-TR No. 040023

2

In this paper, we propose and evaluate a passive version of
CapProbe. We evaluate the passive CapProbe techniques
using Internet experiments. The passive CapProbe techniques
are embedded in TCP and TFRC [7]. Aiming at the emerging
wireless and mobile computing scenarios, we also evaluated
the passive CapProbe techniques in the vertical handoff
scenarios.

The rest of the paper is organized as follows. In section 2,
we present related work and give an overview of CapProbe. In
section 3, two passive capacity estimation techniques, TFRC
Probe and TCP Probe, are proposed. In section 4, we evaluate
the accuracy and convergence speed of the proposed passive
techniques using Dummynet and Internet experiments. In
section 5, we validate the proposed techniques through
simulation. In section 6, we evaluate the proposed passive
techniques in wireless and mobile scenarios, and we present a
“fast rate adaptation” algorithm to better utilize the network
resources in vertical handoff scenarios. Section 7 concludes
the paper.

II. RELATED WORK

Earlier approaches for estimating capacity relied on either

delay variations among probe packets as in pathchar [10], or
dispersion among probe packets as in Nettimer [15] and
Pathrate [5]. Other tools such as pchar and clink [6] use
variations of the same idea as pathchar. Pchar also uses
regression to determine the slope of the minimum RTT versus
the probing packet size. In [15], the authors propose kernel
density techniques to statistically filter packet pair dispersions.
Paxson showed that the dispersion distribution can be multi-
modal (e.g. in multi-channel links), and proposed the use of
Packet Bunch Modes, a technique involving packet trains of
different lengths [20]. Dovrolis’ [5] analysis clearly revealed
that the dispersions distribution can indeed be multi-modal
without multi-channels, and that the strongest mode in the
multimodal distribution of the dispersion may correspond to
either (1) the capacity of the path, or (2) a “compressed”
dispersion, resulting in capacity over-estimation, or (3) the
Average Dispersion Rate (ADR), which is lower than the
capacity.

Pathrate [5], a tool resorting to increasing packet train
lengths to induce the so-called Sub-Capacity Dispersion Range
(SCDR) was developed by Dovrolis to select the appropriate
capacity mode. Pathrate uses statistical techniques to identify
the first mode following this range, and this mode provides a
rather accurate estimate of the capacity. Pathrate and its
predecessors rely on histogram construction with their inherent
sensitivity to appropriate bin sizing, and require post-
processing time delays for mode identification. Pathrate is an
active estimation technique, which sends packet trains. Packet
train methods may be intrusive particularly if many users
simultaneously apply them. Thus, incorporating Pathrate or the
active version of CapProbe into a transport protocol to enable
widespread estimation might create scalability issues. Finally,
Pathchar like tools have limitations with respect to the speed
of estimation process as shown in [12].

A. CapProbe

CapProbe is a newly proposed capacity estimation

technique, which has been shown to be fast and accurate over a
large range of scenarios [12]. CapProbe requires only packet
pair probing, and does not need packet trains. More
importantly, CapProbe combines the use of dispersion
measurements and end-to-end delay measurements to filter out
packet pair samples distorted by cross traffic. In summary, a
packet pair, which is launched into the network back to back,
is dispersed at the bottleneck link according to the bottleneck
capacity. The smaller the link capacity is, the larger the
dispersion. If such dispersion would arrive at a destination
unperturbed, it will be ideal for identifying the bottleneck
capacity. The dispersion of those “distorted” samples might be
either expanded or compressed, where “expansion” of
dispersion leads to under-estimation and “compression” of
dispersion leads to over-estimation of the capacity as showed
in Figure 1.

Figure 1: (a) Under-Estimation caused by “expansion” (b)
Over-Estimation caused by “compression”

CapProbe is based on a simple and fundamental

observation that both expanded and compressed probing
samples must have experienced queuing delays on either the
first or the second packet of the probing packet pair. This
means that whenever an incorrect value of capacity is
estimated, the sum of the delays of the packet pair packets,
called the delay sum, includes cross-traffic induced queuing
delay. A delay sum, which does not include any cross-traffic
queuing delay, is referred to as the minimum delay sum. The
dispersion of such a packet pair sample is not distorted by
cross-traffic and will reflect the correct capacity. This sample
can easily be identified since its delay sum will be the
minimum among delay sums of all packet pair samples.

The capacity is thus estimated by the equation:
 C = P / T (1)

where P is the sampling packet size, and T is the dispersion of
the sample packet pair of the minimum delay sum.

Comparing with other capacity estimation techniques, such
as pathchar [10] and pathrate [5], CapProbe is a
computationally inexpensive scheme that only needs to keep
track of the minimum delay sum, and the dispersion of the pair
that produced it. CapProbe has no need to keep dispersion
histograms, and it estimates capacity without any post-

3

processing; whereas other schemes perform post-processing to
analyze the history of all samples information using statistical
methods. The simplicity natural to CapProbe makes it
amenable to be integrated in other data transmission protocols
with minimal modification. All that is required is that the
protocol data traffic includes back to back transmitted packets.
Round trip estimation also has minor requirements on
acknowledgments. The first implementation of CapProbe took
advantage of ICMP where every ICMP request will be replied
to immediately. However, such “out of band” capacity
estimation sometimes is not appreciated in the mobile
computing environments, especially when the link capacity is
fairly small. In this paper, we will show the integration of
CapProbe with other existing data transmission protocols, such
as TCP and TFRC, so that the link capacity can be passively
estimated. The details of the integration design will be
presented in the following subsections, and the evaluation of
the proposed integration will be shown in the simulation and
measurements experiments sections.

III. PASSIVE CAPACITY ESTIMATION

In this section, we introduce two passive capacity estimation

techniques based on CapProbe, namely TFRC Probe and TCP
Probe. TCP-Friendly Rate Control (TFRC) and TCP are two
popular transport protocols. We embed the CapProbe
technique into these protocols so that they can benefit from
capacity estimation as we will see shortly.

A. TFRC Probe

TCP-Friendly Rate Control (TFRC) is an equation based

unicast multimedia streaming protocol proposed in [7]. TFRC
mimics the TCP long-term throughput by utilizing the
response function [19]:

()2321
8

33
3

2 ppptpR

sT

RTO +

+

= (2)

where T is the upper bound of the sending rate. T is a
function of the packet size s, round trip time R, loss event rate
p, and the TCP retransmission timeout value tRTO.

The design goal of TFRC is flow controlled and TCP
friendly transport of data and streams requiring no strict error
control. Therefore, TFRC increases the sending rate slowly,
rather than aggressively seeking out available bandwidth. For
example, the maximum increase of the sending rate is 0.14
packets/RTT, or 0.22 packets/RTT with history discounting
[7]. On the other hand, TFRC is also designed to slowly
respond to data loss events, not to cut down the sending rate
drastically upon every single loss event.

In order to achieve smoother data transmission in TFRC, the
sender and the receiver are required to cooperate with each
other. The sender is responsible for computing the smoothed
round-trip time R using an exponentially weighted moving
average, and determining the retransmit timeout value tRTO.
The sender is also responsible for adjusting its sending rate
Tactual to be close to T, which is derived from the equation.

On the other hand, the receiver is responsible for calculating
the loss event rate p and sending the information back to the
sender once per round-trip time. The loss event rate is obtained
by maintaining an array of the last eight loss intervals. This
loss interval array is continuously updated and a weighted
average of the loss intervals is computed. The reported loss
event rate p is defined as the inverse of the weighted average.

Passive capacity estimation can be added to TFRC simply
by sending a portion of data packets back-to-back and
estimating the link capacity based on the measured dispersion
and end-to-end delay, i.e. following the fundamental concepts
of CapProbe. We call this extended TFRC with passive
capacity estimation capability TFRC Probe in this paper.

(a)

(b)

Figure 2: (a) original TFRC (b) TFRC Probe (the gray
ones are back-to-back sampling packets and ACKs)

Figure 2 compares the difference between TFRC and TFRC
Probe. In the original TFRC, as shown in Figure 2-a,
transmission of data packets is paced and evenly distributed,
based on the computed sending rate. This is beneficial to
multimedia streaming applications which require a smooth and
stable sending rate. For the purpose of CapProbe-based
capacity estimation, however, paced transmission lacks the
packet pairs that are crucial in the scheme. Additionally, the
TFRC receiver sends only one ACK packet every RTT, while
CapProbe requires the ACKs to be sent out immediately after
the data packets are received. TFRC Probe must make a few
necessary modifications in order to carry out effective capacity
measurements.

The first modification in TFRC Probe is that after every nth
data packet is sent out, the TFRC Probe sender immediately
transmits the next data packet without waiting for the pacing
interval. In other words, TFRC Probe creates a back-to-back
sampling packet pair every n packets. The default value of n is
set to 20 in our experiments. The TFRC Probe receiver must
acknowledge these occasional sampling packets, individually
and immediately, upon their receipt, with ACKs that are equal
in size to the data packets. When the ACKs arrive at the
sender, it is able to estimate the capacity using Equation 1.
Other than these changes, TFRC Probe operates in the same
way as the original TFRC. Figure 2-b highlights the
differences between the two schemes.

Since TFRC Probe changes the behavior of TFRC receiver
(i.e., it immediately acknowledges the individual sampling
packets using large ACKs at the size of the data packets), it

4

increases the amount of traffic on the reverse path, namely
from the receiver to the sender. The increased traffic overhead

is
2/n

A bps, where A is TFRC Probe data achieved rate (i.e.

throughput), and n is the number of data packets between each
sampling. In case that the reverse link can not afford the
increased traffic overhead, the TFRC Probe sender can either
decrease A or increase n to reduce the overhead.

The idea behind TFRC Probe is not restricted to the TFRC
protocol only. The passive capacity estimation concept can be
seamlessly applied to other UDP based application protocols
(e.g. RAP, RTP, UDP based FTP and P2P file downloading)
and the emerging data transmission protocols (e.g. DCCP
[14]).

B. TCP Probe

TCP is the most popular transport protocol on the Internet

today. Various congestion control algorithms have been
extensively studied to better utilize the network resources.
Knowledge of bottleneck link capacity can be helpful for TCP
congestion control algorithms to determine an upper bound of
the congestion window size. Additionally, several recent TCP
studies, such as TCP Westwood [24] and Agile TCP [23],
adjust their congestion window size “agilely” according to
some well-designed functions of link capacity, achieved rate,
queuing delay, and error rate estimate. It is obvious that such
TCP variants will be benefited if the bottleneck link capacity
can be estimated accurately and fast. Inspired by the simple
and accurate CapProbe algorithm, it soon becomes interesting
(and useful) if a CapProbe based passive capacity estimation
extension can be embedded within TCP. The top design
principle of such an extension is simplicity, i.e., changes to the
existing TCP protocol should be minimal and preferably
sender-side only. The extension should also be applicable to
any existing TCP variant. To identify the TCP with passive
capacity estimation, we call it TCP Probe hereafter.

Similar to TFRC Probe, the basic idea of TCP Probe is to
send a portion of the data packets back-to-back as sampling
packets. Fortunately, TCP does send some back-to-back data
packets, mostly in Slow Start and also sometimes in
Congestion Avoidance, upon receipt of an ACK packet. Once
two ACKs of a packet pair are received by the TCP sender, the
dispersion information can thus be used to estimate the path
capacity using the CapProbe approach.

However, in order to confine the modifications required in
TCP Probe to the sender-side only, and require no change at
the TCP receiver, two problems arise. One of them is caused
by the widely deployed “delayed ACK” [2], and the other is
due to the different packet sizes of TCP data packets and
ACKs.

Delayed ACK has been popularly deployed on most of
Internet hosts. A TCP receiver with delayed ACK installed
will acknowledge the received data on every other data packet.
Therefore if two TCP data packets i and i+1 are sent back-to-
back from the sender, either packet i or i+1 will be
acknowledged, as shown in Figure 3-a.

The problem caused by delayed ACK can be solved by the
“inverted packet-pair” technique. More specifically, when
TCP needs to send back-to-back data packets with sequence
numbers ‘i’ and ‘i+1’, it swaps the sending order, i.e., packet
‘i+1’ is sent before packet ‘i’. This swapped sending order
will generate back-to-back ACKs on sequence numbers ‘i-1’
and ‘i+1’. The delayed ACK receiver is, thus, forced to send
an individual ACK for each data packet, as shown in Figure 3-
b. The dispersion, T, of these two ACK packets are measured
and the capacity estimation is therefore obtained by applying
Eq. 1 with P equals to the size of the TCP data packet (instead
of the ACK packet size) Note that this enhancement is
applicable to all TCP variants.

(a)

(b)

Figure 3: (a) back-to-back TCP packets will only be
acknowledged once due to Delayed ACK; (b) inverted
back-to-back TCP Probe packets will both be
acknowledged

Moreover, since TCP Probe keeps the TCP receiver
unchanged and does not enlarge the ACK packet size, the
relatively small ACK packets (about 40 bytes) may result in
inaccurate capacity estimation. From the previous study [12],
the dispersion tends to become compressed if the size of the
packet pair is small. Furthermore, due to the resolution limit
and processing overhead of the operating system and other
system issues, the dispersion measurement becomes more
likely to be distorted. In a word, the capacity estimation tends
to be less accurate. We also note that in addition to the above
considerations, we are assuming symmetric forward and
backward paths. Therefore the capacity estimated by data
packet dispersion on the forward path, or measured by ACK
dispersion on the backward path, would be the same. The case
of asymmetric forward and backward paths will be addressed
in a subsequent work.

In the rest of the paper, we will present a set of Internet
measurements, supported by some simulations, to evaluate the
performance of the proposed passive estimation techniques,
namely TFRC Probe and TCP Probe, in terms of accuracy and
speed. A real wireless application of such passive capacity
estimation will also be introduced.

IV. EXPERIMENTS

In this section, we present experimental results to evaluate

the accuracy and speed of the proposed passive capacity
estimation techniques. We have implemented TFRC Probe by

5

modifying the TFRC implementation in [9] based on the
algorithm presented in section 3.1. TCP Probe, in turn, has
been implemented by modifying the TCP module in the Linux
kernel (version 2.4.22) and following the algorithm proposed
in section 3.2. We first perform a set of experiments in the
“better-controlled” testbed environment to calibrate and verify
the correctness of the proposed techniques and the
implementation. We then move the experiments to the Internet,
to for an evaluation in a more diverse and realistic scenario.
To simplify the evaluation and better present the nature of the
passive estimation results, we show the estimated capacity of
using 20, 50, 100, 200, and 500 samples, instead of applying
the convergence test as proposed in [12] in each test.

A. Dummy Net Experiments

Figure 4: Testbed for Dummy Net Experiment

The first set of experiments is performed in the testbed
configuration shown in Figure 4. The NISTNet emulator [17]
is used to emulate bottleneck links of arbitrary capacities on
the connection path. The cross traffic is generated by
downloading a huge file from the FTP server to the client; the
FTP connection shares the bottleneck link with the foreground
TFRC/TCP Probe connection.

Different capacities (1, 5, 10, 20Mbps) are configured on
the emulated NISTNet bottleneck link. For each capacity value
the experiment is repeated three times. In each test run, we
collect the estimated capacity after using 20, 50, and 100
samples, respectively, and show the results in Table 1 and
Table 2.

From the experiment results, both TFRC Probe and TCP
Probe estimate the bottleneck capacity accurately and fast. In
all test cases, the passive estimation techniques are able to
measure the bottleneck capacity within 20 samples. The
estimated capacities are always within 10% of the actual
values.

Table 1: NISTnet lab Measurements with TFRC Probe
Bottleneck Capacity Run 1 Run 2 Run 3

20 samples 0.932 0.952 0.952
50 samples 0.935 0.941 0.936 1Mbps

100 samples 0.935 0.941 0.936
20 samples 4.822 4.785 4.816
50 samples 4.822 4.820 4.816 5Mbps

100 samples 4.822 4.832 4.820
20 samples 9.214 9.046 9.224
50 samples 9.350 9.185 9.467 10Mbps

100 samples 9.350 9.152 9.467
20 samples 19.025 18.865 18.572
50 samples 19.025 18.865 19.156 20Mbps

100 samples 19.112 18.865 19.110

Table 2: NISTnet lab Measurements with TCP Probe

Bottleneck Capacity Run 1 Run 2 Run 3
20 samples 0.996 0.943 0.996
50 samples 0.996 0.996 0.996 1Mbps

100 samples 0.996 0.996 0.996
20 samples 5.038 4.854 4.919
50 samples 4.884 4.623 4.919 5Mbps

100 samples 4.850 4.623 4.192
20 samples 10.633 9.765 9.879
50 samples 10.633 9.765 9.785 10Mbps

100 samples 9.925 9.765 9.785
20 samples 19.667 20.000 19.368
50 samples 19.347 19.399 19.522 20Mbps

100 samples 19.347 19.385 19.004
Unit: Mbps

B. Internet Experiments

A set of Internet experiments were also performed to

evaluate the proposed techniques in a more diverse and
realistic scenario. Three Internet paths are selected for the
experiments and are reported in the tables below. The path
labeled UCLA is a local path on UCLA campus with 100Mbps
bottleneck capacity, NTNU is a global path from US to
Taiwan with 100Mbps bottleneck capacity, and DSL is a
domestic DSL path with its bottleneck capacity at around
130Kbps.

For each path, the experiment is repeated three times. In
each run, the estimated capacity is collected after 20, 50, 100,
200, and 500 samples, respectively. Since the estimated
capacity converges to a stable value much faster in TFRC
Probe than in TCP Probe, we only present the results of using
20, 50 and 100 samples in TFRC Probe experiments in Table
3. For TCP Probe, however, we list results at all sampling
frequencies in Table 4. Note that, we only evaluate TCP Probe
on UCLA and NTNU paths, because DSL path is asymmetric
with 512Kbps bottleneck capacity in the forward direction and
130Kbps capacity in the backward direction

From the results, TFRC Probe always estimates the
bottleneck capacity fast and accurately; it is able to get an
accurate estimate within 20 samples in almost all test cases.
The estimation results of TCP Probe, on the other hand,
oscillate and do not converge to the actual capacity until 500
samples are obtained.

The reason for the performance gap between TFRC Probe
and TCP Probe may be due to the different ACK packet sizes.
In TFRC Probe, the size of the ACK packets which correspond
to the back-to-back probing packets was chosen by us to be the
same as that of the data (probing) packets, 1500 bytes in our
experiments. This follows the original CapProbe design. In
contrast, in TCP Probe the ACK size is dictated by the
standard, namely 40 bytes.

6

Table 3: Internet experiment results of TFRC Probe

 Run 1 Run 2 Run 3
20 samples 93.0 M 86.7 M 95.7 M
50 samples 89.7 M 91.7 M 95.7 M UCLA

100Mbps
100 samples 93.6 M 91.7 M 95.7 M
20 samples 81.1 M 74.6 M 89.5 M
50 samples 70.1 M 99.7 M 89.5 M NTNU

100Mbps
100 samples 88.2 M 99.7 M 89.5 M
20 samples 135 K 136 K 130 K
50 samples 133 K 130 K 132 K DSL

130Kbps
100 samples 133 K 130 K 132 K

Unit: bps

Table 4: Internet experiment results of TCP Probe

 Run 1 Run 2 Run 3
20 samples 51.0 M 81.3 M 49.9 M
50 samples 56.0 M 50.3 M 51.8 M

100 samples 48.8 M 48.8 M 49.8 M
200 samples 90.3 M 55.6 M 82.6 M

UCLA
100Mbps

500 samples 94.9 M 98.6 M 96.0 M
20 samples 104.2 M 101.3 M 378.7 M
50 samples 94.7 M 65.9 M 68.5 M

100 samples 94.7 M 101.3 M 68.5 M
200 samples 97.9 M 119.8 M 93.1 M

NTNU
100Mbps

500 samples 97.9 M 86.2 M 95.6 M
Unit: bps

The influence of packet size on capacity estimation has been

studied in [12] [13]. The considerations of packet sizes in
these studies apply to TFRC Probe. Probing packets of
different sizes will experience different network dynamics and
result in different estimation. Moreover, packets of small sizes
tend to suffer the time granularity problem. For example,
hardware and operating systems usually have limitations on the
supported time resolution, which in turn limits the precision of
timestamps. To better understand and verify the correctness of
TCP Probe, we carry out supplementary simulations and
present the results in the next section.

V. SIMULATION

In this section, we use simulation to verify the proposed

passive techniques in a variety of configurations. A set of
simulations are performed to evaluate the accuracy and speed
of the capacity estimation, and different types of cross traffic
are used to simulate different network dynamics. In the end,
we compare the simulation to the measurement results and
discuss potential challenges of passive capacity estimation.

Two passive capacity estimation methods (TFRC Probe and
TCP Probe) were implemented in NS-2 simulator [18], where
TCP Probe is an extended version of TCP NewReno. The
topology we used in the simulation is shown in Figure 5, in
which the bottleneck link (between node 3 and 4) is shared by
all flows. The passive capacity estimation is performed on the
path from node 1 to node 6, and the cross traffic (if it exists) is
generated from node 7 to 10, 8 to 9, 11 to 14, and 12 to 13
respectively.

Figure 5: Simulation Scenarios

A. Accuracy and Speed of Capacity Estimation

In order to evaluate speed and accuracy of our probes with

more diverse configurations, 3 types of cross traffic are
employed in the simulation as shown in Table 5, with type 3
being Long Range Dependent [22]. Different capacity values
are assigned on the link from node 3 to node 4 to create the
bottleneck link. In each experiment, we collect the estimated
capacity after 20 samples and 50 samples in order to evaluate
the speed of the estimation, and we show the results in Table 6
and Table 7 below.

Cross

Traffic
Description

Type 1 4 FTP flows (from node 7 to 10, 8 to 9, 11 to
14, and 12 to 13); 1500 bytes/packet

Type 2
4 CBR flows (from node 7 to 10, 8 to 9, 11 to
14, and 12 to 13); 500 bytes/packet; 80% load
on the bottleneck

Type 3

16 Pareto flows with alpha = 1.9 (4 flows
from node 7 to 10, 4 flows from 8 to 9, 4
flows from 11 to 14, and 4 flows from 12 to
13); 1000 bytes/packet; 80% load on the
bottleneck

Table 5: Types of cross traffic

From the results, both TFRC Probe and TCP Probe show
high accuracy in all the test cases, regardless of different types
of cross traffic. In addition, in each test, it is always able to get
the accurate estimation using just 20 samples. The results
indicate that the proposed passive capacity estimation
techniques are able to detect link capacity very accurate and
fast.

Table 6: Accuracy of TFRC Probe capacity estimation

Bottleneck Capacity 100 Kbps 500 Kbps 1 Mbps 5 Mbps
20 samples 100 K 500 K 1 M 5 M w/o

CT 50 samples 100 K 500 K 1 M 5 M
20 samples 100 K 500 K 1 M 5 M w. CT

Type 1 50 samples 100 K 500 K 1 M 5 M
20 samples 100 K 500 K 1 M 5 M w. CT

Type 2 50 samples 100 K 500 K 1 M 5 M
20 samples 100 K 500 K 1 M 5 M w. CT

Type 3 50 samples 100 K 500 K 1 M 5 M

7

Table 7: Accuracy of TCP Probe capacity estimation

Bottleneck Capacity 100 Kbps 500 Kbps 1 Mbps 5 Mbps
20 samples 100 K 500 K 1 M 5 M w/o

CT 50 samples 100 K 500 K 1 M 5 M
20 samples 100 K 500 K 1 M 5 M w. CT

Type 1 50 samples 100 K 500 K 1 M 5 M
20 samples 100 K 500 K 1 M 5 M w. CT

Type 2 50 samples 100 K 500 K 1 M 5 M
20 samples 100 K 500 K 1 M 5 M w. CT

Type 3 50 samples 100 K 500 K 1 M 5 M
Unit: bps

B. Discussion

Comparing the simulation with measurement results shown

in section 4, we note that the capacity estimation process of
TCP Probe is slow and relatively unstable only in the Internet
experiments. The reason that affects the performance of TCP
Probe in Internet experiments is most likely due to the smaller
ACK packet size. Recall that in TFRC Probe, the ACK packets
that correspond to the back-to-back probing packets are of the
same size as data packets. In TCP Probe, however, we intend
to keep the changes as sender-side only and do not use special
ACKs for probing data packets. These ACKs are typically 40
bytes each, much smaller than the regular data packets.

As reported in [12], packets of different sizes will
experience different network dynamics. While operating in the
Internet, the network dynamics are much more diverse than in
the controlled NISTNet environment or in the simulator. The
chance that both packets in a packet pair receive no buffering
is smaller in the Internet. Moreover, smaller packets are more
susceptible to the network dynamics, resulting in less accurate
sampling results and thus a slower convergence speed to the
correct capacity value. Since the algorithm of CapProbe relies
on obtaining such an un-buffered packet pair sample, the
estimation process of TCP Probe, using small ACK packets, is
slower.

VI. APPLICATIONS

In this section, we present two applications of using passive

capacity estimation in the wireless and mobile computing
scenarios. In 6.1, we use TFRC Probe to passively monitor the
capacity of wireless links. In 6.2, we use TFRC Probe to detect
the occurrences of vertical handoffs, and we evaluate the
performance of a “fast rate adaptation” algorithm in TFRC
Probe where the vertical handoff notification is available. The
experimental results are presented below.

A. “On-line” Monitor For Wireless Link Capacities

Knowledge of wireless link capacity is important for

network management, pricing, and QoS support. However,
differing from the wired links, properties of wireless links
always change very dramatically and frequently. It soon

becomes desired to have a scheme that enables “on-line”
monitoring of wireless links with minimal overhead.

The passive capacity estimation techniques proposed in this
work are appropriate for this purpose. In the following
experiments, we evaluate TFRC Probe on 802.11b links
(indoor environments with 11Mbps, 5.5Mbps, 2Mbps, and
1Mbps modes), and 1xRTT wireless links. The experiment
results are shown in Table 8, where we report the estimated
capacity using 20, 50, and 100 samples respectively in each
test run.

Table 8: Wireless experiment results of TFRC Probe

 Run 1 Run 2 Run 3 Run 4 Run 5
20 samples 7.9 M 7.9 M 8.0 M 7.9 M 8.0 M
50 samples 8.0 M 8.0 M 7.9 M 8.2 M 8.0 M

802.11b
11Mbps

mode 100 samples 8.0 M 8.0 M 7.9 M 7.8 M 7.9 M
20 samples 3.7 M 3.9 M 3.8 M 3.8 M 3.8 M
50 samples 3.7 M 3.7 M 3.8 M 3.8 M 3.8 M

802.11b
5.5Mbps

mode 100 samples 3.9 M 3.9 M 3.8 M 3.8 M 3.7 M
20 samples 1.7 M 1.4 M 1.8 M 1.7 M 1.8 M
50 samples 1.7 M 1.4 M 1.8 M 1.7 M 1.8 M

802.11b
2Mbps
mode 100 samples 1.7 M 1.4 M 1.7 M 1.7 M 1.4 M

20 samples 858 K 933 K 859 K 911 K 897 K
50 samples 858 K 933 K 903 K 911 K 898 K

802.11b
1Mbps
mode 100 samples 858 K 933 K 873 K 903 K 898 K

20 samples 42.3 K 53.8 K 59.2 K 49.3 K 98.7 K
50 samples 45.2 K 53.8 K 24.7 K 65.8 K 65.8 K1xRTT

150Kbps
100 samples 36.8 K 49.4 K 24.7 K 72.6 K 84.6 K

Unit: bps

We should also mention here that the effective capacity is

usually smaller than the physical channel capacity in 802.11b
and 1xRTT connections. For 802.11b connections, the
effective capacity is reduced due to the MAC layer overhead
(e.g. RTS/CTS packets and CSMA/CA mechanisms); whereas
for 1xRTT connections, the effective capacity is determined by
the number of assigned channels which are determined by the
base station (ISP).

From the experiment results, TFRC Probe always estimates
70%~90% of the channel capacity on 802.11b links, which is
very close to the analytical results of effective capacity
presented in [25]. Moreover, the capacity estimation is very
fast such that it is able to estimate the accurate capacity within
20 samples. On the other hand, for 1xRTT links, the estimated
capacities vary a lot in the five runs. This is because the
effective capacity of 1xRTT is determined by the channel
allocation algorithm on the base station (ISP), which will
change very frequently according to the traffic loads and the
number of customers in the same area. Though there is no way
to know the exact allocated channel capacity from the ISP, the
estimated capacities are all within a reasonable range and are
able to reflect the current allocated channel capacity.

Due to the high estimation accuracy, fast speed, and low
overhead (i.e. no “out-of-band” traffic is generated in the
passive techniques), TFRC Probe thus becomes a good “on-
line” tool for monitoring a wireless link capacity. In the
following subsections, we extend the same idea to detect the
occurrences of vertical handoffs by monitoring the changes of

8

estimated capacity. Furthermore, we propose a “fast rate
adaptation” for TFRC Probe to improve its throughput
performance in vertical handoff scenarios.

B. Vertical Handoff

Figure 6: A vertical handoff scenario

In this section, we study the application of TFRC Probe in
vertical handoff scenarios. A vertical handoff is a process of
switching the ongoing network connection from one network
interface/technology to the other [21]. For example, when a
mobile device moves out of the 1xRTT network and into an
802.11b network (as shown in Figure 6), the handoff event
would be considered as vertical.

A vertical handoff usually results in a drastic change in the
link capacity. For instance, a vertical handoff from 1xRTT to
802.11b can easily witness around 100-fold increase in the
channel capacity (from 150 Kbps to 11Mbps). However,
though most data transmission protocols employ AIMD-based
congestion control algorithms to adjust its sending rate
according to the network dynamics, the adaptation process can
not take aggressive advantage of the rapid change of resources
in such vertical handoff scenarios [8]. For example, when a
handoff occurs from LOW capacity to HIGH capacity (e.g.
1xRTT to 802.11b), no congestion loss is detected. An AIMD-
based scheme will remain in congestion avoidance phase and
linearly increase its congestion window (or sending rate) to
probe the available bandwidth. In the opposite direction, when
a handoff occurs from HIGH to LOW (e.g. 802.11b to
1xRTT), there is immediate packet loss at the moment of the
handoff, and AIMD protocols will react promptly to such loss.

It is obvious that the application performance would benefit
if they can be notified of the occurrence of vertical handoff
[8]. For example, the AIMD-based protocols can be forced to
enter the slow start phase when it is notified of the occurrence
of a vertical handoff from LOW to HIGH capacity.
Additionally, they can be forced to slow down their send rates
in advance, as long as the notification of a vertical handoff
from HIGH to LOW capacity can be predicted.

By monitoring the capacity of the ongoing wireless link, it
soon becomes possible to detect the occurrence of a vertical
handoff. Using the passive capacity estimation techniques, a
vertical handoff notification can be generated when a drastic
change in the estimated capacity is detected. In the following
experiments, we tackle that the case of a vertical handoff from
LOW to HIGH capacity link (e.g. 1xRTT to 802.11b). Besides
detecting the occurrence of vertical handoff, a “fast rate
adaptation” scheme is also proposed to force TFRC Probe to

enter slow start phase while the detected vertical handoff is
from low capacity link to high capacity link. Figure 7 shows
the algorithm for detecting vertical handoff occurrences and
“fast rate adaptation”.

In recv_reports function on the TFRC sender:
// this function will be called when ACK
// packets are received

// initialization
n = 0; C_old = 0; Delay_SUM = INFINITE;

while (True) {
if this is an ACK of TFRC Probe sampling packet {

if this is the ACK of the first packet {
measure RTT1;

} else {
measure RTT2;
n++;

// Perform CapProbe Algorithm
if (Delay_SUM > RTT1 + RTT2){

Delay_SUM = RTT1 + RTT2;
C = PacketSize / (RTT2 – RTT1);

}
}

}
if (n==20) {

// report the capacity every 20 samples
if (C>5*C_old) {

// generate a vertical handoff
// notification and force TFRC to enter
// slow start phase
MODE = SLOW_START;

}
C_old = C;
// reset CapProbe variables
n = 0; C = 0; Delay_SUM = INFINITE;

}
}

Figure 7: The algorithm of detecting vertical handoff and
"fast rate adaptation" using TFRC Probe

In the deployed vertical handoff detection algorithm, the
capacity estimation results are reported every 20 samples,
which is based on the observation of Table 8 such that TFRC
Probe can accurately estimate capacity using 20 samples in
most test cases. Moreover, a vertical handoff notification is
generated upon drastic change in estimated capacity, i.e. the
new estimation is five times larger than the previous capacity
estimation.

To provide seamless vertical handoff, a testbed was created
using USHA [4]. Figure 8 shows the experiment results, where
a seamless vertical handoff was performed from 1xRTT to
802.11b at around 30th sample.

In Figure 8, the capacity estimation, showed in dashed line,
is reported after the 20th, 40th, 60th, 80th, and 100th sample (i.e.
every 20 samples). A drastic capacity change is shown on the
40th sample, after the vertical handoff (from 1xRTT to
802.11b) occurs at around 30th sample, and the new capacity is
reported on the 40th sample. Note that, the capacity estimation
of 802.11b link reported in Figure 8 is lower than the results
reported in Table 8. This is because the results of Figure 8 are
based on outdoor experiments, whereas the results of Table 8
are collected from indoor experiments. While operating
802.11b in the outdoor environments, the effective capacity is

9

degraded by an increased number of retransmissions due to
wireless channel impairments (e.g. fading and interference).

(a)

(b)

Figure 8: Sending rate of TFRC Probe in vertical handoff
(from 1xRTT to 802.11b) (a) TFRC Probe without “fast
rate adaptation” (b) TFRC Probe with “fast rate
adaptation”

The performance improvement of “fast rate adaptation”
algorithm is also shown in Figure 8. In Figure 8-a, the TFRC
Probe sending rate increased very slowly after the vertical
handoff, which is consistent with the SlowCC (slowly-
responsive congestion control) feature of TFRC [1], where the
maximum increase of the sending rate is showed to be 0.14
packets/RTT (or 0.22 packets/RTT with history discounting)
[7].

On the other hand, while the “fast rate adaptation” algorithm
is enabled, TFRC Probe will enter slow start phase
immediately when a vertical handoff from LOW to HIGH
capacity link is detected. Following the TFRC algorithm,
TFRC Probe will keep itself in the slow start phase and
increase its sending rate aggressively to probe the new
available bandwidth. It will then switch to normal phase after a
loss event. Figure 8-b shows that the sending rate increases
from 50Kbps to 1.9Mbps very fast after the 40th sample, thus
better utilizing the network resources than the original TFRC
(as shown in Figure 8-a).

It should be mentioned that the proposed “fast rate
adaptation” may potentially raise unfriendliness and unfairness
problems with other coexisting flows, since TFRC Probe will
aggressively probe the available bandwidth (entering slow start
phase) when a drastic increase of link capacity is detected. To
alleviate the potential negative effects, it is necessary to extend
TFRC Probe by including for example random loss vs
congestion discrimination algorithm as reported in [3].
Incidentally, the “fast rate adaptation” concept can also be

applied to TCP Probe to better utilize the network resources in
the case of frequent changes in the wireless medium. We defer
a detailed study of this technique to future work.

VII. CONCLUSION

In this paper, we studied passive capacity estimation and

proposed two CapProbe based passive techniques, TFRC
Probe and TCP Probe, to estimate link capacity. Differing
from the traditional active approaches, passive techniques can
minimize the traffic overhead while estimating the link
capacity. Using Internet experiments, we showed the high
accuracy and convergence speed of the proposed passive
techniques.

Two applications of TFRC Probe were evaluated in
monitoring the wireless link capacity and detecting the
occurrences of vertical handoffs. We also proposed the “fast
rate adaptation” algorithm to enhance the application
performance upon the notification of the vertical handoff from
low capacity to high capacity link. Using testbed experiments,
we showed TFRC Probe is able to adjust its sending rate much
faster when this algorithm is enabled.

The future work of this study is to evaluate the passive
CapProbe techniques within other data transmission protocols.
Besides two way measurement, we plan to extend the proposed
techniques to be capable of estimating the link capacity on
both forward and reverse paths, i.e. one way measurement in
both directions. Also, another future direction is to study and
integrate the capacity estimation with other existing techniques
(e.g. load estimation, error rate estimation, and loss
discrimination) to benefit TCP and other data transmission
protocols in the performance and efficiency improvement.

VIII. REFERENCES

[1] D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker.
“Dynamic Behavior of Slowly-Responsive Congestion
Control Algorithms,” In Proc. of ACM SIGCOMM 2001.

[2] R. Braden, “Requirements for Internet Hosts –
Communication Layers,” IETF RFC 1122, Oct. 1989.

[3] S. Cen, P. C. Cosman, and G. M. Voelker, “End-to-end
differentiation of congestion and wireless losses,”
Networking, IEEE/ACM Transactions on, vol. 11, issue 5,
2003, pp 703-717.

[4] L.J. Chen, T. Sun, B. Cheung, D. Nguyen, and M. Gerla.
“Universal Seamless Handoff Architecture in Wireless
Overlay Networks,” Technical Report TR040012, UCLA
CSD, 2004.

[5] C. Dovrolis, P. Ramanathan, and D. Moore, “What do
packet dispersion techniques measure?" in Proceedings of
IEEE Infocom'01, 2001.

[6] A. B. Downey, “Using Pathchar to Estimate Internet Link
Characteristics,” In Proc. of ACM SIGCOMM 1999.

[7] S. Floyd, M. Handley, J. Padhye, and J. Widmer.
“Equation-Based Congestion Control for Unicast
Applications,” In Proc. of ACM SIGCOMM 2000.

10

[8] A. Gurtov and J. Korhonen, ”Measurement and Analysis
of TCP-Friendly Rate Control for Vertical Handovers,”
submitted for publication,
http://www.cs.helsinki.fi/u/gurtov/papers/vho.html

[9] Implementation of the TCP-Friendly Congestion Control
Protocol (TFRC), www.icir.org/tfrc/code/

[10] V. Jacobson,”Pathchar:A tool to infer characteristics of
Internet paths”, ftp://ftp.ee.lbl.gov/pathchar

[11] R. Jain, “The art of computer systems performance
analysis,” John Wiley and sons, QA76.9.E94J32, 1991.

[12] R. Kapoor, L.-J. Chen, L. Lao, M. Gerla, M. Y. Sanadidi,
“CapProbe: A Simple and Accurate Capacity Estimation
Technique,” to appear in ACM SIGCOMM 2004.

[13] R. Kapoor, L.-J. Chen, M. Y. Sanadidi, M. Gerla,
"Accuracy of Link Capacity Estimates using Passive and
Active Approaches with CapProbe," in Proceedings of
ISCC 2004.

[14] E. Kohler, M. Handley, and S. Floyd, “Data Congestion
Control Protocol,” IETF Internet-Draft, draft-ietf-dccp-
spec-06.txt.

[15] K. Lai and M. Baker, “Measuring Bandwidth”, In
Proceedings of IEEE INFOCOM '99, p. 235-245.

[16] Bruce B. Lowekamp, "Combining Active and Passive
Network Measurements to Build Scalable Monitoring
Systems on the Grid," Performance Evaluation Review
30(4):19-26, March 2003.

[17] NIST Net, http://snad.ncsl.nist.gov/itg/nistnet/
[18] Network Simulator (NS-2),

http://www.mash.cs.berkeley.edu/ns/
[19] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose.

“Modeling TCP Throughput: A Simple Model and its
Empirical Validation,” In Proc. of SIGCOMM, 1998.

[20] V. Paxson, “Measurements and Dynamics of End-to-End
Internet Dynamics”, Ph.D. thesis, Computer Science
Division, Univ. Calif. Berkeley, April 1997.

[21] Mark Stemm, and Randy H. Katz. “Vertical Handoffs in
Wireless Overlay Networks,” ACM Mobile Networking
(MONET), 1998.

[22] M.S. Taqqu, W. Willinger, R. Sherman, “Proof of a
fundamental result in self-similar traffic modeling,”
SIGCOMM Computer Communications Review, 27: 5-23,
1997.

[23] R. Wang, G. Pau, K. Yamada, M. Y. Sanadidi, and M.
Gerla, “TCP Startup Performance in Large Bandwidth
Delay Networks,” in Proc. of IEEE Infocom 2004.

[24] R. Wang, M. Valla, M. Y. Sanadidi, and M. Gerla,
“Adaptive Bandwidth Share Estimation in TCP
Westwood,” In Proc. of IEEE Globecom 2002.

[25] WLAN: Expected Throughput,
http://www.uninett.no/wlan/throughput.html

