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Abstract-- Knowledge of the link capacity is essential to better 
manage and utilize networks. Most capacity estimation 
techniques nowadays employ “active” approaches to probe the 
networks and estimate the link capacity. In this paper, we study 
the feasibility of “passive” capacity estimation techniques based 
on CapProbe, a recently proposed fast, low overhead, and 
accurate capacity estimation tool. We embed the CapProbe 
algorithm in two popular protocols: TCP and TFRC, and 
evaluate a passive version of CapProbe using both Internet 
measurement and simulation. The results show that the passive 
approaches can estimate capacity accurately and rapidly over a 
wide range of system parameters. Some exceptions are 
encountered in the TCP case where estimation accuracy may be 
lower due to hardware and operating systems issues, particularly 
when the bottleneck capacity is large. In addition, we present an 
example of using passive capacity estimation in a mobile 
computing scenario, where we enhance TFRC performance by 
adapting its sending rate according to estimated capacity 
before/after a vertical handoff. The proposed passive capacity 
estimation is shown to be suitable for “on-line” usage with high 
convergence speed and minimal overhead.  

 
Index terms-- passive measurement, capacity estimation, 

packet pair, CapProbe 
 

I. INTRODUCTION 
 
Increasing network heterogeneity, both in terms of access 

technologies as well mobile environments, presents new 
challenges.  The ability to estimate network properties, such as 
the capacity of a path1 is of particular importance since the 
knowledge of the capacity of a path can be useful for many 
applications. For instance, multimedia servers would be able to 
determine appropriate streaming rates; and routing protocols 
and multicast application level protocols can use capacity 
information to build optimal routes/trees. 

Mobile environments present newer challenges as they 
demand faster and less intrusive techniques for path 
estimation.  A mobile end-host might traverse multiple 
networks en-route and vertical handoffs would enable seamless 
connectivity. It would be particularly useful if mobile hosts 
can perform vertical handoff to the “best” access technology 
based on the capacity information. Once the capacity 
estimation can be done fast and accurately, it is also applicable 
for the Internet servers to detect the occurrences of vertical 
handoff events on Mobile Hosts, since vertical handoffs 
usually result in drastic changes in path capacity. Dynamic link 
capacity in network access technologies such as 1xRTT can 
also impact application performance. Capacity estimation will 
                                                           

 
1 Capacity of a path here refers to the minimum physical 

link capacity among all links on the path.  
 

facilitate providing a better picture about the underlying 
network conditions and hence enable application adaptation. It 
is particularly critical when at the end of the path there is a 
mobile node that dynamically hands-off to different access 
networks (e.g., a vertical handoff from 802.11b connection to 
1xRTT connection). The capacity of the path is generally the 
capacity of the wireless link. It is an upper bound on the 
reception rate at the mobile client, and its knowledge at a 
server (or proxy) enables it to adjust its sending rate, and, 
possibly, content, to match the reception rate. Also desirable is 
that the time to obtain accurate estimates be small. For 
instance, if capacity estimates need to be used by multimedia 
servers to determine streaming rates, a significant delay in 
estimating capacity would be unacceptable. The new challenge 
in future mobile applications is the speed required for the 
estimate in case the receiver (e.g., a car or a plane) moves 
rapidly across different wireless domains. 

Apart from the speed of estimation, another desirable 
property of an estimation methodology is that it should be non-
intrusive, i.e., the amount of probing data injected into the 
network should be minimal so that other traffic is not affected. 
Existing estimation tools are either active, passive, or both. 
Most often the decision of whether the tool will be active or 
passive is determined by how invasive we can allow the tool to 
be without affecting application performance. Scalability of 
the measurement tool (i.e. if a large number of instances of the 
tool are run simultaneously) is also affected by the mode of the 
measurement. 

Active estimation is characterized by introduction of packets 
for measurement purposes. From an end-user’s perspective 
active measurements to find the network path characteristics is 
a reasonable approach. However, the scalability of such 
measurements and its impact on application traffic can be 
severe, particularly if a large number of users start 
simultaneously start estimating the network path 
characteristics.  Pathchar [10], Pathrate [5], and CapProbe [12] 
all employ active estimation techniques.  

Passive estimation on the other hand is less intrusive. The 
motivation for passively estimating the path is that the 
transport protocol should detect any changes in network path 
without an application or end-user explicitly initiating an 
active measurement. Most of the capacity estimation tools can 
be both active as well as passive. There have been some 
proposals for tools that are a combination of the active and 
passive measurements for scalability purposes [16]. Passive 
estimation has its disadvantages as well since it is usually 
limited to periods of time when there is application traffic. 
Newer tools that combine active and passive measurements do 
passive measurements when there is application traffic and 
revert to active measurement after a prolonged period of 
application traffic inactivity, to ensure a level of accuracy in 
the network characteristics measured.  
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In this paper, we propose and evaluate a passive version of 
CapProbe.  We evaluate the passive CapProbe techniques 
using Internet experiments. The passive CapProbe techniques 
are embedded in TCP and TFRC [7]. Aiming at the emerging 
wireless and mobile computing scenarios, we also evaluated 
the passive CapProbe techniques in the vertical handoff 
scenarios. 

The rest of the paper is organized as follows. In section 2, 
we present related work and give an overview of CapProbe. In 
section 3, two passive capacity estimation techniques, TFRC 
Probe and TCP Probe, are proposed. In section 4, we evaluate 
the accuracy and convergence speed of the proposed passive 
techniques using Dummynet and Internet experiments.  In 
section 5, we validate the proposed techniques through 
simulation. In section 6, we evaluate the proposed passive 
techniques in wireless and mobile scenarios, and we present a 
“fast rate adaptation” algorithm to better utilize the network 
resources in vertical handoff scenarios. Section 7 concludes 
the paper. 

 
II. RELATED WORK 

 
Earlier approaches for estimating capacity relied on either 

delay variations among probe packets as in pathchar [10], or 
dispersion among probe packets as in Nettimer [15] and 
Pathrate [5]. Other tools such as pchar and clink [6] use 
variations of the same idea as pathchar. Pchar also uses 
regression to determine the slope of the minimum RTT versus 
the probing packet size. In [15], the authors propose kernel 
density techniques to statistically filter packet pair dispersions. 
Paxson showed that the dispersion distribution can be multi-
modal (e.g. in multi-channel links), and proposed the use of 
Packet Bunch Modes, a technique involving packet trains of 
different lengths [20]. Dovrolis’ [5] analysis clearly revealed 
that the dispersions distribution can indeed be multi-modal 
without multi-channels, and that the strongest mode in the 
multimodal distribution of the dispersion may correspond to 
either (1) the capacity of the path, or (2) a “compressed” 
dispersion, resulting in capacity over-estimation, or (3) the 
Average Dispersion Rate (ADR), which is lower than the 
capacity.  

Pathrate [5], a tool resorting to increasing packet train 
lengths to induce the so-called Sub-Capacity Dispersion Range 
(SCDR) was developed by Dovrolis to select the appropriate 
capacity mode. Pathrate uses statistical techniques to identify 
the first mode following this range, and this mode provides a 
rather accurate estimate of the capacity. Pathrate and its 
predecessors rely on histogram construction with their inherent 
sensitivity to appropriate bin sizing, and require post-
processing time delays for mode identification. Pathrate is an 
active estimation technique, which sends packet trains. Packet 
train methods may be intrusive particularly if many users 
simultaneously apply them. Thus, incorporating Pathrate or the 
active version of CapProbe into a transport protocol to enable 
widespread estimation might create scalability issues. Finally, 
Pathchar like tools have limitations with respect to the speed 
of estimation process as shown in [12]. 

 

A. CapProbe 
 
CapProbe is a newly proposed capacity estimation 

technique, which has been shown to be fast and accurate over a 
large range of scenarios [12]. CapProbe requires only packet 
pair probing, and does not need packet trains. More 
importantly, CapProbe combines the use of dispersion 
measurements and end-to-end delay measurements to filter out 
packet pair samples distorted by cross traffic. In summary, a 
packet pair, which is launched into the network back to back, 
is dispersed at the bottleneck link according to the bottleneck 
capacity. The smaller the link capacity is, the larger the 
dispersion.  If such dispersion would arrive at a destination 
unperturbed, it will be ideal for identifying the bottleneck 
capacity. The dispersion of those “distorted” samples might be 
either expanded or compressed, where “expansion” of 
dispersion leads to under-estimation and “compression” of 
dispersion leads to over-estimation of the capacity as showed 
in Figure 1. 
 

 
Figure 1: (a) Under-Estimation caused by “expansion” (b) 
Over-Estimation caused by “compression” 

 
CapProbe is based on a simple and fundamental 

observation that both expanded and compressed probing 
samples must have experienced queuing delays on either the 
first or the second packet of the probing packet pair. This 
means that whenever an incorrect value of capacity is 
estimated, the sum of the delays of the packet pair packets, 
called the delay sum, includes cross-traffic induced queuing 
delay. A delay sum, which does not include any cross-traffic 
queuing delay, is referred to as the minimum delay sum. The 
dispersion of such a packet pair sample is not distorted by 
cross-traffic and will reflect the correct capacity. This sample 
can easily be identified since its delay sum will be the 
minimum among delay sums of all packet pair samples. 

The capacity is thus estimated by the equation: 
                              C = P / T                                  (1) 

where P is the sampling packet size, and T is the dispersion of 
the sample packet pair of the minimum delay sum. 

Comparing with other capacity estimation techniques, such 
as pathchar [10] and pathrate [5], CapProbe is a 
computationally inexpensive scheme that only needs to keep 
track of the minimum delay sum, and the dispersion of the pair 
that produced it. CapProbe has no need to keep dispersion 
histograms, and it estimates capacity without any post-



 

3 
 

processing; whereas other schemes perform post-processing to 
analyze the history of all samples information using statistical 
methods. The simplicity natural to CapProbe makes it 
amenable to be integrated in other data transmission protocols 
with minimal modification. All that is required is that the 
protocol data traffic includes back to back transmitted packets.  
Round trip estimation also has minor requirements on 
acknowledgments. The first implementation of CapProbe took 
advantage of ICMP where every ICMP request will be replied 
to immediately. However, such “out of band” capacity 
estimation sometimes is not appreciated in the mobile 
computing environments, especially when the link capacity is 
fairly small. In this paper, we will show the integration of 
CapProbe with other existing data transmission protocols, such 
as TCP and TFRC, so that the link capacity can be passively 
estimated. The details of the integration design will be 
presented in the following subsections, and the evaluation of 
the proposed integration will be shown in the simulation and 
measurements experiments sections. 

 
III. PASSIVE CAPACITY ESTIMATION 

 
In this section, we introduce two passive capacity estimation 

techniques based on CapProbe, namely TFRC Probe and TCP 
Probe. TCP-Friendly Rate Control (TFRC) and TCP are two 
popular transport protocols.  We embed the CapProbe 
technique into these protocols so that they can benefit from 
capacity estimation as we will see shortly. 

 
A. TFRC Probe 

 
TCP-Friendly Rate Control (TFRC) is an equation based 

unicast multimedia streaming protocol proposed in [7]. TFRC 
mimics the TCP long-term throughput by utilizing the 
response function [19]: 
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where T is the upper bound of the sending rate. T is a 
function of the packet size s, round trip time R, loss event rate 
p, and the TCP retransmission timeout value tRTO. 

The design goal of TFRC is flow controlled and TCP 
friendly transport of data and streams requiring no strict error 
control. Therefore, TFRC increases the sending rate slowly, 
rather than aggressively seeking out available bandwidth. For 
example, the maximum increase of the sending rate is 0.14 
packets/RTT, or 0.22 packets/RTT with history discounting 
[7]. On the other hand, TFRC is also designed to slowly 
respond to data loss events, not to cut down the sending rate 
drastically upon every single loss event. 

In order to achieve smoother data transmission in TFRC, the 
sender and the receiver are required to cooperate with each 
other. The sender is responsible for computing the smoothed 
round-trip time R using an exponentially weighted moving 
average, and determining the retransmit timeout value tRTO. 
The sender is also responsible for adjusting its sending rate 
Tactual to be close to T, which is derived from the equation.  

On the other hand, the receiver is responsible for calculating 
the loss event rate p and sending the information back to the 
sender once per round-trip time. The loss event rate is obtained 
by maintaining an array of the last eight loss intervals. This 
loss interval array is continuously updated and a weighted 
average of the loss intervals is computed. The reported loss 
event rate p is defined as the inverse of the weighted average. 

Passive capacity estimation can be added to TFRC simply 
by sending a portion of data packets back-to-back and 
estimating the link capacity based on the measured dispersion 
and end-to-end delay, i.e. following the fundamental concepts 
of CapProbe. We call this extended TFRC with passive 
capacity estimation capability TFRC Probe in this paper.  

 
(a)

(b)

Figure 2: (a) original TFRC (b) TFRC Probe (the gray 
ones are back-to-back sampling packets and ACKs) 

Figure 2 compares the difference between TFRC and TFRC 
Probe. In the original TFRC, as shown in Figure 2-a, 
transmission of data packets is paced and evenly distributed, 
based on the computed sending rate. This is beneficial to 
multimedia streaming applications which require a smooth and 
stable sending rate. For the purpose of CapProbe-based 
capacity estimation, however, paced transmission lacks the 
packet pairs that are crucial in the scheme. Additionally, the 
TFRC receiver sends only one ACK packet every RTT, while 
CapProbe requires the ACKs to be sent out immediately after 
the data packets are received. TFRC Probe must make a few 
necessary modifications in order to carry out effective capacity 
measurements. 

The first modification in TFRC Probe is that after every nth 
data packet is sent out, the TFRC Probe sender immediately 
transmits the next data packet without waiting for the pacing 
interval. In other words, TFRC Probe creates a back-to-back 
sampling packet pair every n packets. The default value of n is 
set to 20 in our experiments. The TFRC Probe receiver must 
acknowledge these occasional sampling packets, individually 
and immediately, upon their receipt, with ACKs that are equal 
in size to the data packets. When the ACKs arrive at the 
sender, it is able to estimate the capacity using Equation 1. 
Other than these changes, TFRC Probe operates in the same 
way as the original TFRC. Figure 2-b highlights the 
differences between the two schemes.  

Since TFRC Probe changes the behavior of TFRC receiver 
(i.e., it immediately acknowledges the individual sampling 
packets using large ACKs at the size of the data packets), it 
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increases the amount of traffic on the reverse path, namely 
from the receiver to the sender. The increased traffic overhead 

is 
2/n

A  bps, where A is TFRC Probe data achieved rate (i.e. 

throughput), and n is the number of data packets between each 
sampling. In case that the reverse link can not afford the 
increased traffic overhead, the TFRC Probe sender can either 
decrease A or increase n to reduce the overhead. 

The idea behind TFRC Probe is not restricted to the TFRC 
protocol only. The passive capacity estimation concept can be 
seamlessly applied to other UDP based application protocols 
(e.g. RAP, RTP, UDP based FTP and P2P file downloading) 
and the emerging data transmission protocols (e.g. DCCP 
[14]). 

 
B. TCP Probe 

 
TCP is the most popular transport protocol on the Internet 

today. Various congestion control algorithms have been 
extensively studied to better utilize the network resources.  
Knowledge of bottleneck link capacity can be helpful for TCP 
congestion control algorithms to determine an upper bound of 
the congestion window size. Additionally, several recent TCP 
studies, such as TCP Westwood [24] and Agile TCP [23], 
adjust their congestion window size “agilely” according to 
some well-designed functions of link capacity, achieved rate, 
queuing delay, and error rate estimate. It is obvious that such 
TCP variants will be benefited if the bottleneck link capacity 
can be estimated accurately and fast. Inspired by the simple 
and accurate CapProbe algorithm, it soon becomes interesting 
(and useful) if a CapProbe based passive capacity estimation 
extension can be embedded within TCP. The top design 
principle of such an extension is simplicity, i.e., changes to the 
existing TCP protocol should be minimal and preferably 
sender-side only. The extension should also be applicable to 
any existing TCP variant. To identify the TCP with passive 
capacity estimation, we call it TCP Probe hereafter. 

Similar to TFRC Probe, the basic idea of TCP Probe is to 
send a portion of the data packets back-to-back as sampling 
packets. Fortunately, TCP does send some back-to-back data 
packets, mostly in Slow Start and also sometimes in 
Congestion Avoidance, upon receipt of an ACK packet. Once 
two ACKs of a packet pair are received by the TCP sender, the 
dispersion information can thus be used to estimate the path 
capacity using the CapProbe approach. 

However, in order to confine the modifications required in 
TCP Probe to the sender-side only, and require no change at 
the TCP receiver, two problems arise. One of them is caused 
by the widely deployed “delayed ACK” [2], and the other is 
due to the different packet sizes of TCP data packets and 
ACKs.  

Delayed ACK has been popularly deployed on most of 
Internet hosts. A TCP receiver with delayed ACK installed 
will acknowledge the received data on every other data packet. 
Therefore if two TCP data packets i and i+1 are sent back-to-
back from the sender, either packet i or i+1 will be 
acknowledged, as shown in Figure 3-a. 

The problem caused by delayed ACK can be solved by the 
“inverted packet-pair” technique. More specifically, when 
TCP needs to send back-to-back data packets with sequence 
numbers ‘i’ and ‘i+1’, it swaps the sending order, i.e., packet 
‘i+1’ is sent before packet ‘i’. This swapped sending order 
will generate back-to-back ACKs on sequence numbers ‘i-1’ 
and ‘i+1’. The delayed ACK receiver is, thus, forced to send 
an individual ACK for each data packet, as shown in Figure 3-
b. The dispersion, T, of these two ACK packets are measured 
and the capacity estimation is therefore obtained by applying 
Eq. 1 with P equals to the size of the TCP data packet (instead 
of the ACK packet size) Note that this enhancement is 
applicable to all TCP variants. 

 
(a)

 
(b)

 
Figure 3: (a) back-to-back TCP packets will only be 
acknowledged once due to Delayed ACK; (b) inverted 
back-to-back TCP Probe packets will both be 
acknowledged 

Moreover, since TCP Probe keeps the TCP receiver 
unchanged and does not enlarge the ACK packet size, the 
relatively small ACK packets (about 40 bytes) may result in 
inaccurate capacity estimation. From the previous study [12], 
the dispersion tends to become compressed if the size of the 
packet pair is small. Furthermore, due to the resolution limit 
and processing overhead of the operating system and other 
system issues, the dispersion measurement becomes more 
likely to be distorted. In a word, the capacity estimation tends 
to be less accurate. We also note that in addition to the above 
considerations, we are assuming symmetric forward and 
backward paths. Therefore the capacity estimated by data 
packet dispersion on the forward path, or measured by ACK 
dispersion on the backward path, would be the same. The case 
of asymmetric forward and backward paths will be addressed 
in a subsequent work. 

In the rest of the paper, we will present a set of Internet 
measurements, supported by some simulations, to evaluate the 
performance of the proposed passive estimation techniques, 
namely TFRC Probe and TCP Probe, in terms of accuracy and 
speed. A real wireless application of such passive capacity 
estimation will also be introduced. 

 
IV. EXPERIMENTS 

 
In this section, we present experimental results to evaluate 

the accuracy and speed of the proposed passive capacity 
estimation techniques. We have implemented TFRC Probe by 
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modifying the TFRC implementation in [9] based on the 
algorithm presented in section 3.1. TCP Probe, in turn, has 
been implemented by modifying the TCP module in the Linux 
kernel (version 2.4.22) and following the algorithm proposed 
in section 3.2. We first perform a set of experiments in the 
“better-controlled” testbed environment to calibrate and verify 
the correctness of the proposed techniques and the 
implementation. We then move the experiments to the Internet, 
to for an evaluation in a more diverse and realistic scenario. 
To simplify the evaluation and better present the nature of the 
passive estimation results, we show the estimated capacity of 
using 20, 50, 100, 200, and 500 samples, instead of applying 
the convergence test as proposed in [12] in each test. 

 
A. Dummy Net Experiments 

 
Figure 4: Testbed for Dummy Net Experiment 

The first set of experiments is performed in the testbed 
configuration shown in Figure 4. The NISTNet emulator [17] 
is used to emulate bottleneck links of arbitrary capacities on 
the connection path. The cross traffic is generated by 
downloading a huge file from the FTP server to the client; the 
FTP connection shares the bottleneck link with the foreground 
TFRC/TCP Probe connection.  

Different capacities (1, 5, 10, 20Mbps) are configured on 
the emulated NISTNet bottleneck link. For each capacity value 
the experiment is repeated three times. In each test run, we 
collect the estimated capacity after using 20, 50, and 100 
samples, respectively, and show the results in Table 1 and 
Table 2. 

From the experiment results, both TFRC Probe and TCP 
Probe estimate the bottleneck capacity accurately and fast. In 
all test cases, the passive estimation techniques are able to 
measure the bottleneck capacity within 20 samples. The 
estimated capacities are always within 10% of the actual 
values. 

Table 1: NISTnet lab Measurements with TFRC Probe 
Bottleneck Capacity Run 1 Run 2 Run 3 

20 samples 0.932 0.952 0.952 
50 samples 0.935 0.941 0.936 1Mbps 

100 samples 0.935 0.941 0.936 
20 samples 4.822 4.785 4.816 
50 samples 4.822 4.820 4.816 5Mbps 

100 samples 4.822 4.832 4.820 
20 samples 9.214 9.046 9.224 
50 samples 9.350 9.185 9.467 10Mbps 

100 samples 9.350 9.152 9.467 
20 samples 19.025 18.865 18.572 
50 samples 19.025 18.865 19.156 20Mbps 

100 samples 19.112 18.865 19.110 

Table 2: NISTnet lab Measurements with TCP Probe 

Bottleneck Capacity Run 1 Run 2 Run 3 
20 samples 0.996 0.943 0.996 
50 samples 0.996 0.996 0.996 1Mbps 

100 samples 0.996 0.996 0.996 
20 samples 5.038 4.854 4.919 
50 samples 4.884 4.623 4.919 5Mbps 

100 samples 4.850 4.623 4.192 
20 samples 10.633 9.765 9.879 
50 samples 10.633 9.765 9.785 10Mbps

100 samples 9.925 9.765 9.785 
20 samples 19.667 20.000 19.368 
50 samples 19.347 19.399 19.522 20Mbps

100 samples 19.347 19.385 19.004 
Unit: Mbps 

 
B. Internet Experiments 

 
A set of Internet experiments were also performed to 

evaluate the proposed techniques in a more diverse and 
realistic scenario. Three Internet paths are selected for the 
experiments and are reported in the tables below. The path 
labeled UCLA is a local path on UCLA campus with 100Mbps 
bottleneck capacity, NTNU is a global path from US to 
Taiwan with 100Mbps bottleneck capacity, and DSL is a 
domestic DSL path with its bottleneck capacity at around 
130Kbps. 

For each path, the experiment is repeated three times. In 
each run, the estimated capacity is collected after 20, 50, 100, 
200, and 500 samples, respectively. Since the estimated 
capacity converges to a stable value much faster in TFRC 
Probe than in TCP Probe, we only present the results of using 
20, 50 and 100 samples in TFRC Probe experiments in Table 
3. For TCP Probe, however, we list results at all sampling 
frequencies in Table 4. Note that, we only evaluate TCP Probe 
on UCLA and NTNU paths, because DSL path is asymmetric 
with 512Kbps bottleneck capacity in the forward direction and 
130Kbps capacity in the backward direction 

From the results, TFRC Probe always estimates the 
bottleneck capacity fast and accurately; it is able to get an 
accurate estimate within 20 samples in almost all test cases. 
The estimation results of TCP Probe, on the other hand, 
oscillate and do not converge to the actual capacity until 500 
samples are obtained. 

The reason for the performance gap between TFRC Probe 
and TCP Probe may be due to the different ACK packet sizes. 
In TFRC Probe, the size of the ACK packets which correspond 
to the back-to-back probing packets was chosen by us to be the 
same as that of the data (probing) packets, 1500 bytes in our 
experiments. This follows the original CapProbe design. In 
contrast, in TCP Probe the ACK size is dictated by the 
standard, namely 40 bytes. 
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Table 3: Internet experiment results of TFRC Probe 

 Run 1 Run 2 Run 3 
20 samples 93.0 M 86.7 M 95.7 M 
50 samples 89.7 M 91.7 M 95.7 M UCLA 

100Mbps 
100 samples 93.6 M 91.7 M 95.7 M 
20 samples 81.1 M 74.6 M 89.5 M 
50 samples 70.1 M 99.7 M 89.5 M NTNU 

100Mbps 
100 samples 88.2 M 99.7 M 89.5 M 
20 samples 135 K 136 K 130 K 
50 samples 133 K 130 K 132 K DSL 

130Kbps 
100 samples 133 K 130 K 132 K 

Unit: bps 

Table 4: Internet experiment results of TCP Probe 

 Run 1 Run 2 Run 3 
20 samples 51.0 M 81.3 M 49.9 M 
50 samples 56.0 M 50.3 M 51.8 M 

100 samples 48.8 M 48.8 M 49.8 M 
200 samples 90.3 M 55.6 M 82.6 M 

UCLA 
100Mbps 

500 samples 94.9 M 98.6 M 96.0 M 
20 samples 104.2 M 101.3 M 378.7 M
50 samples 94.7 M 65.9 M 68.5 M 

100 samples 94.7 M 101.3 M 68.5 M 
200 samples 97.9 M 119.8 M 93.1 M 

NTNU 
100Mbps 

500 samples 97.9 M 86.2 M 95.6 M 
Unit: bps 

 
The influence of packet size on capacity estimation has been 

studied in [12] [13]. The considerations of packet sizes in 
these studies apply to TFRC Probe. Probing packets of 
different sizes will experience different network dynamics and 
result in different estimation. Moreover, packets of small sizes 
tend to suffer the time granularity problem. For example, 
hardware and operating systems usually have limitations on the 
supported time resolution, which in turn limits the precision of 
timestamps. To better understand and verify the correctness of 
TCP Probe, we carry out supplementary simulations and 
present the results in the next section. 

 
V. SIMULATION 

 
In this section, we use simulation to verify the proposed 

passive techniques in a variety of configurations. A set of 
simulations are performed to evaluate the accuracy and speed 
of the capacity estimation, and different types of cross traffic 
are used to simulate different network dynamics. In the end, 
we compare the simulation to the measurement results and 
discuss potential challenges of passive capacity estimation. 

Two passive capacity estimation methods (TFRC Probe and 
TCP Probe) were implemented in NS-2 simulator [18], where 
TCP Probe is an extended version of TCP NewReno. The 
topology we used in the simulation is shown in Figure 5, in 
which the bottleneck link (between node 3 and 4) is shared by 
all flows. The passive capacity estimation is performed on the 
path from node 1 to node 6, and the cross traffic (if it exists) is 
generated from node 7 to 10, 8 to 9, 11 to 14, and 12 to 13 
respectively.   

 

 
Figure 5: Simulation Scenarios 

 
A. Accuracy and Speed of Capacity Estimation 

 
In order to evaluate speed and accuracy of our probes with 

more diverse configurations, 3 types of cross traffic are 
employed in the simulation as shown in Table 5, with type 3 
being Long Range Dependent [22]. Different capacity values 
are assigned on the link from node 3 to node 4 to create the 
bottleneck link. In each experiment, we collect the estimated 
capacity after 20 samples and 50 samples in order to evaluate 
the speed of the estimation, and we show the results in Table 6 
and Table 7 below. 

 
Cross 

Traffic 
Description 

Type 1 4 FTP flows (from node 7 to 10, 8 to 9, 11 to 
14, and 12 to 13); 1500 bytes/packet 

Type 2 
4 CBR flows (from node 7 to 10, 8 to 9, 11 to 
14, and 12 to 13); 500 bytes/packet; 80% load 
on the bottleneck 

Type 3 

16 Pareto flows with alpha = 1.9 (4 flows 
from node 7 to 10, 4 flows from 8 to 9, 4 
flows from 11 to 14, and 4 flows from 12 to 
13); 1000 bytes/packet; 80% load on the 
bottleneck 

Table 5: Types of cross traffic  

From the results, both TFRC Probe and TCP Probe show 
high accuracy in all the test cases, regardless of different types 
of cross traffic. In addition, in each test, it is always able to get 
the accurate estimation using just 20 samples. The results 
indicate that the proposed passive capacity estimation 
techniques are able to detect link capacity very accurate and 
fast. 

Table 6: Accuracy of TFRC Probe capacity estimation 

Bottleneck Capacity  100 Kbps 500 Kbps 1 Mbps 5 Mbps
20 samples 100 K 500 K 1 M 5 M w/o 

CT 50 samples 100 K 500 K 1 M 5 M 
20 samples 100 K 500 K 1 M 5 M w. CT

Type 1 50 samples 100 K 500 K 1 M 5 M 
20 samples 100 K 500 K 1 M 5 M w. CT

Type 2 50 samples 100 K 500 K 1 M 5 M 
20 samples 100 K 500 K 1 M 5 M w. CT

Type 3 50 samples 100 K 500 K 1 M 5 M 
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Table 7: Accuracy of TCP Probe capacity estimation 

Bottleneck Capacity  100 Kbps 500 Kbps 1 Mbps 5 Mbps
20 samples 100 K 500 K 1 M 5 M w/o 

CT 50 samples 100 K 500 K 1 M 5 M 
20 samples 100 K 500 K 1 M 5 M w. CT 

Type 1 50 samples 100 K 500 K 1 M 5 M 
20 samples 100 K 500 K 1 M 5 M w. CT 

Type 2 50 samples 100 K 500 K 1 M 5 M 
20 samples 100 K 500 K 1 M 5 M w. CT 

Type 3 50 samples 100 K 500 K 1 M 5 M 
Unit: bps 

 
 

B. Discussion 
 
Comparing the simulation with measurement results shown 

in section 4, we note that the capacity estimation process of 
TCP Probe is slow and relatively unstable only in the Internet 
experiments. The reason that affects the performance of TCP 
Probe in Internet experiments is most likely due to the smaller 
ACK packet size. Recall that in TFRC Probe, the ACK packets 
that correspond to the back-to-back probing packets are of the 
same size as data packets. In TCP Probe, however, we intend 
to keep the changes as sender-side only and do not use special 
ACKs for probing data packets. These ACKs are typically 40 
bytes each, much smaller than the regular data packets. 

As reported in [12], packets of different sizes will 
experience different network dynamics. While operating in the 
Internet, the network dynamics are much more diverse than in 
the controlled NISTNet environment or in the simulator. The 
chance that both packets in a packet pair receive no buffering 
is smaller in the Internet. Moreover, smaller packets are more 
susceptible to the network dynamics, resulting in less accurate 
sampling results and thus a slower convergence speed to the 
correct capacity value. Since the algorithm of CapProbe relies 
on obtaining such an un-buffered packet pair sample, the 
estimation process of TCP Probe, using small ACK packets, is 
slower. 

 
VI. APPLICATIONS 

 
In this section, we present two applications of using passive 

capacity estimation in the wireless and mobile computing 
scenarios. In 6.1, we use TFRC Probe to passively monitor the 
capacity of wireless links. In 6.2, we use TFRC Probe to detect 
the occurrences of vertical handoffs, and we evaluate the 
performance of a “fast rate adaptation” algorithm in TFRC 
Probe where the vertical handoff notification is available. The 
experimental results are presented below. 

 
A. “On-line” Monitor For Wireless Link Capacities 

 
Knowledge of wireless link capacity is important for 

network management, pricing, and QoS support. However, 
differing from the wired links, properties of wireless links 
always change very dramatically and frequently. It soon 

becomes desired to have a scheme that enables “on-line” 
monitoring of wireless links with minimal overhead. 

The passive capacity estimation techniques proposed in this 
work are appropriate for this purpose. In the following 
experiments, we evaluate TFRC Probe on 802.11b links 
(indoor environments with 11Mbps, 5.5Mbps, 2Mbps, and 
1Mbps modes), and 1xRTT wireless links. The experiment 
results are shown in Table 8, where we report the estimated 
capacity using 20, 50, and 100 samples respectively in each 
test run. 

Table 8: Wireless experiment results of TFRC Probe 

 Run 1 Run 2 Run 3 Run 4 Run 5
20 samples 7.9 M 7.9 M 8.0 M 7.9 M 8.0 M
50 samples 8.0 M 8.0 M 7.9 M 8.2 M 8.0 M

802.11b 
11Mbps 

mode 100 samples 8.0 M 8.0 M 7.9 M 7.8 M 7.9 M
20 samples 3.7 M 3.9 M 3.8 M 3.8 M 3.8 M
50 samples 3.7 M 3.7 M 3.8 M 3.8 M 3.8 M

802.11b 
5.5Mbps 

mode 100 samples 3.9 M 3.9 M 3.8 M 3.8 M 3.7 M
20 samples 1.7 M 1.4 M 1.8 M 1.7 M 1.8 M
50 samples 1.7 M 1.4 M 1.8 M 1.7 M 1.8 M

802.11b 
2Mbps 
mode 100 samples 1.7 M 1.4 M 1.7 M 1.7 M 1.4 M

20 samples 858 K 933 K 859 K 911 K 897 K
50 samples 858 K 933 K 903 K 911 K 898 K

802.11b 
1Mbps 
mode 100 samples 858 K 933 K 873 K 903 K 898 K

20 samples 42.3 K 53.8 K 59.2 K 49.3 K 98.7 K
50 samples 45.2 K 53.8 K 24.7 K 65.8 K 65.8 K1xRTT 

150Kbps
100 samples 36.8 K 49.4 K 24.7 K 72.6 K 84.6 K

Unit: bps 
 
We should also mention here that the effective capacity is 

usually smaller than the physical channel capacity in 802.11b 
and 1xRTT connections. For 802.11b connections, the 
effective capacity is reduced due to the MAC layer overhead 
(e.g. RTS/CTS packets and CSMA/CA mechanisms); whereas 
for 1xRTT connections, the effective capacity is determined by 
the number of assigned channels which are determined by the 
base station (ISP). 

From the experiment results, TFRC Probe always estimates 
70%~90% of the channel capacity on 802.11b links, which is 
very close to the analytical results of effective capacity 
presented in [25]. Moreover, the capacity estimation is very 
fast such that it is able to estimate the accurate capacity within 
20 samples. On the other hand, for 1xRTT links, the estimated 
capacities vary a lot in the five runs. This is because the 
effective capacity of 1xRTT is determined by the channel 
allocation algorithm on the base station (ISP), which will 
change very frequently according to the traffic loads and the 
number of customers in the same area. Though there is no way 
to know the exact allocated channel capacity from the ISP, the 
estimated capacities are all within a reasonable range and are 
able to reflect the current allocated channel capacity. 

Due to the high estimation accuracy, fast speed, and low 
overhead (i.e. no “out-of-band” traffic is generated in the 
passive techniques), TFRC Probe thus becomes a good “on-
line” tool for monitoring a wireless link capacity. In the 
following subsections, we extend the same idea to detect the 
occurrences of vertical handoffs by monitoring the changes of 
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estimated capacity. Furthermore, we propose a “fast rate 
adaptation” for TFRC Probe to improve its throughput 
performance in vertical handoff scenarios. 

 
B. Vertical Handoff 

 
Figure 6: A vertical handoff scenario 

In this section, we study the application of TFRC Probe in 
vertical handoff scenarios. A vertical handoff is a process of 
switching the ongoing network connection from one network 
interface/technology to the other [21]. For example, when a 
mobile device moves out of the 1xRTT network and into an 
802.11b network (as shown in Figure 6), the handoff event 
would be considered as vertical. 

A vertical handoff usually results in a drastic change in the 
link capacity. For instance, a vertical handoff from 1xRTT to 
802.11b can easily witness around 100-fold increase in the 
channel capacity (from 150 Kbps to 11Mbps). However, 
though most data transmission protocols employ AIMD-based 
congestion control algorithms to adjust its sending rate 
according to the network dynamics, the adaptation process can 
not take aggressive advantage of the rapid change of resources 
in such vertical handoff scenarios [8]. For example, when a 
handoff occurs from LOW capacity to HIGH capacity (e.g. 
1xRTT to 802.11b), no congestion loss is detected. An AIMD-
based scheme will remain in congestion avoidance phase and 
linearly increase its congestion window (or sending rate) to 
probe the available bandwidth. In the opposite direction, when 
a handoff occurs from HIGH to LOW (e.g. 802.11b to 
1xRTT), there is immediate packet loss at the moment of the 
handoff, and AIMD protocols will react promptly to such loss. 

It is obvious that the application performance would benefit 
if they can be notified of the occurrence of vertical handoff 
[8]. For example, the AIMD-based protocols can be forced to 
enter the slow start phase when it is notified of the occurrence 
of a vertical handoff from LOW to HIGH capacity. 
Additionally, they can be forced to slow down their send rates 
in advance, as long as the notification of a vertical handoff 
from HIGH to LOW capacity can be predicted. 

By monitoring the capacity of the ongoing wireless link, it 
soon becomes possible to detect the occurrence of a vertical 
handoff. Using the passive capacity estimation techniques, a 
vertical handoff notification can be generated when a drastic 
change in the estimated capacity is detected. In the following 
experiments, we tackle that the case of a vertical handoff from 
LOW to HIGH capacity link (e.g. 1xRTT to 802.11b). Besides 
detecting the occurrence of vertical handoff, a “fast rate 
adaptation” scheme is also proposed to force TFRC Probe to 

enter slow start phase while the detected vertical handoff is 
from low capacity link to high capacity link. Figure 7 shows 
the algorithm for detecting vertical handoff occurrences and 
“fast rate adaptation”. 

 
In recv_reports function on the TFRC sender:
// this function will be called when ACK
// packets are received

// initialization
n = 0; C_old = 0; Delay_SUM = INFINITE;

while (True) {
if this is an ACK of TFRC Probe sampling packet {

if this is the ACK of the first packet {
measure RTT1;

} else {
measure RTT2;
n++;

// Perform CapProbe Algorithm
if (Delay_SUM > RTT1 + RTT2){

Delay_SUM = RTT1 + RTT2;
C = PacketSize / (RTT2 – RTT1);

}
}

}
if (n==20) {

// report the capacity every 20 samples
if (C>5*C_old) {

// generate a vertical handoff
// notification and force TFRC to enter
// slow start phase
MODE = SLOW_START;

}
C_old = C;
// reset CapProbe variables
n = 0; C = 0; Delay_SUM = INFINITE;

}
} 

Figure 7: The algorithm of detecting vertical handoff and 
"fast rate adaptation" using TFRC Probe 

In the deployed vertical handoff detection algorithm, the 
capacity estimation results are reported every 20 samples, 
which is based on the observation of Table 8 such that TFRC 
Probe can accurately estimate capacity using 20 samples in 
most test cases. Moreover, a vertical handoff notification is 
generated upon drastic change in estimated capacity, i.e. the 
new estimation is five times larger than the previous capacity 
estimation. 

To provide seamless vertical handoff, a testbed was created 
using USHA [4]. Figure 8 shows the experiment results, where 
a seamless vertical handoff was performed from 1xRTT to 
802.11b at around 30th sample. 

In Figure 8, the capacity estimation, showed in dashed line, 
is reported after the 20th, 40th, 60th, 80th, and 100th sample (i.e. 
every 20 samples). A drastic capacity change is shown on the 
40th sample, after the vertical handoff (from 1xRTT to 
802.11b) occurs at around 30th sample, and the new capacity is 
reported on the 40th sample. Note that, the capacity estimation 
of 802.11b link reported in Figure 8 is lower than the results 
reported in Table 8. This is because the results of Figure 8 are 
based on outdoor experiments, whereas the results of Table 8 
are collected from indoor experiments. While operating 
802.11b in the outdoor environments, the effective capacity is 
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degraded by an increased number of retransmissions due to 
wireless channel impairments (e.g. fading and interference). 

 
(a) 

(b)

Figure 8: Sending rate of TFRC Probe in vertical handoff 
(from 1xRTT to 802.11b) (a) TFRC Probe without “fast 
rate adaptation” (b) TFRC Probe with “fast rate 
adaptation” 

The performance improvement of “fast rate adaptation” 
algorithm is also shown in Figure 8. In Figure 8-a, the TFRC 
Probe sending rate increased very slowly after the vertical 
handoff, which is consistent with  the SlowCC (slowly-
responsive congestion control) feature of TFRC [1], where the 
maximum increase of the sending rate is showed to be 0.14 
packets/RTT (or 0.22 packets/RTT with history discounting) 
[7]. 

On the other hand, while the “fast rate adaptation” algorithm 
is enabled, TFRC Probe will enter slow start phase 
immediately when a vertical handoff from LOW to HIGH 
capacity link is detected. Following the TFRC algorithm, 
TFRC Probe will keep itself in the slow start phase and 
increase its sending rate aggressively to probe the new 
available bandwidth. It will then switch to normal phase after a 
loss event. Figure 8-b shows that the sending rate increases 
from 50Kbps to 1.9Mbps very fast after the 40th sample,  thus 
better utilizing the network resources than the original TFRC 
(as shown in Figure 8-a). 

It should be mentioned that the proposed “fast rate 
adaptation” may potentially raise unfriendliness and unfairness 
problems with other coexisting flows, since TFRC Probe will 
aggressively probe the available bandwidth (entering slow start 
phase) when a drastic increase of link capacity is detected. To 
alleviate the potential negative effects, it is necessary to extend 
TFRC Probe by including for example   random loss vs 
congestion discrimination algorithm as reported in [3]. 
Incidentally, the “fast rate adaptation” concept can also be 

applied to TCP Probe to better utilize the network resources in 
the case of frequent changes in the wireless medium. We defer 
a detailed study of this technique to future work.  

 
VII. CONCLUSION 

 
In this paper, we studied passive capacity estimation and 

proposed two CapProbe based passive techniques, TFRC 
Probe and TCP Probe, to estimate link capacity. Differing 
from the traditional active approaches, passive techniques can 
minimize the traffic overhead while estimating the link 
capacity. Using Internet experiments, we showed the high 
accuracy and convergence speed of the proposed passive 
techniques. 

Two applications of TFRC Probe were evaluated in 
monitoring the wireless link capacity and detecting the 
occurrences of vertical handoffs. We also proposed the “fast 
rate adaptation” algorithm to enhance the application 
performance upon the notification of the vertical handoff from 
low capacity to high capacity link. Using testbed experiments, 
we showed TFRC Probe is able to adjust its sending rate much 
faster when this algorithm is enabled. 

The future work of this study is to evaluate the passive 
CapProbe techniques within other data transmission protocols. 
Besides two way measurement, we plan to extend the proposed 
techniques to be capable of estimating the link capacity on 
both forward and reverse paths, i.e. one way measurement in 
both directions. Also, another future direction is to study and 
integrate the capacity estimation with other existing techniques 
(e.g. load estimation, error rate estimation, and loss 
discrimination) to benefit TCP and other data transmission 
protocols in the performance and efficiency improvement. 
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