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Abstract— As a mechanism to support group communications, cation layer (i.e., application multicast). Multicast can also
multicasting faces a serious state scalability problem when there employ different delivery structures, such as tree (e.g., in
are large numbers of_grqups in the netvyork: Iot_s of resources IP multicast) and mesh (e.g., in Narada [3], an application
(e.g., memory to maintain group state information) and con- : ) .
trol overhead (e.g., multicast tree setup and maintenance) are multicast prot(_)col_). In a tree dgllvery structure, each in-
required to manage the groups. Recently, an efficient solution tree node maintains the forwarding state, and data packets
called aggregated multicast is proposed [8]. In this approach, are duplicated at fork nodes and are forwarded only once
groups are assigned to proper trees and multiple groups can gver each link. Due to its resource efficiency, tree is widely
share one delivery tree. A key problem in aggregated multicast ;5o jn multicast protocols. In this paper, we only focus on
is group-tree matching (i.e., matching groups to trees). In this . . . .
paper, we investigate this group-tree matching problem. We first mult_lcastmg V_V'th tree delivery structure.
formally define the problem, and formulate two versions of the ~ Since multicast employs the concept of group, no matter
problem: static and dynamic. We analyze the static version of at what level multicast is implemented, each multicast group
the problem and prove that it is NP-complete. To tackle this traditionally uses one delivery tree. To manage multicast
hard problem, we propose three algorithms: one optimal (using 4,45, resources (e.g., memory to maintain group forwarding
Linear Integer Programming, or ILP), one near-optimal (using .

Greedy method), and one pseudo-dynamic algorithm. For the state) arjd control overhead .(e.g., setup and maintenance of
dynamic version, we present a general heuristic on-line group- the multicast trees) are required. When there are large num-
tree matching algorithm. Simulation studies are conducted to bers of multicast groups in the network, a large amount of
compare the three algorithms for the static version. Our results resources and management overhead will be involved. Hence,
show that Greedy algorithm is a feasible solution to the stalic e petwork performance will be tremendously degraded. This
problem and its performance is very close the ILP optimal . . . " .
solution, while pseudo-dynamic algorithm is a good heuristic for issue is referred a_s multlgast Stqte scalability problem. It, will
many cases where Greedy does not work well. We also evaluateP€ exacerbated with the increasing demand of the multi-user
the performance of the heuristic online algorithm, and show applications.
that it is a practical solution to the dynamic on-line group-tree Recently, the state scalability problem has prompted many
matching problem. interesting research works: some schemes attempt to reduce
forwarding state at non-branched tree nodes[16], [14], [5];
|. INTRODUCTION some other schemes try to achieve state reduction by for-

With the rapid development of the Internet, there amwarding state aggregation at individual tree nodes [12], [15].
many emerging large scale multi-user applications, such ldewever, these mentioned schemes only consider the resource
news/software distributions, distributed interactive simulaticaspect of the state scalability problem.

(DIS), distributed network games, distributed virtual collabora- A recent proposed approach, called aggregated multicast
tions, teleconferencing, telemedicine, teleeducation, and std8k exploits both the resource and control overhead issues.
guotes distribution, etc. All these applications involve multiln this scheme, multiple multicast groups are aggregated to
point communications (or group communications, that is, dehare a single delivery tree (which is called aggregated
livering data from one or more sources to multiple receiverd)ee). This way, the total number of trees in the network may
To support these applications efficiently, multicast is usuallye significantly reduced and thus the forwarding state would be
employed, in which a concept of group is introduced: sourcdecreased accordingly. Aggregated multicast involves group-
send data to an advertised group; receivers who are interedted matching (i.e., assigning groups to trees) procedure since
in the data need to subscribe to the group to receive the daumper trees should be found to deliver data for the groups. To

Multicast can be implemented at different network protocalolve the state scalability problem, the objective of the group-
layers, such as network layer (i.e., IP multicast), and apptree matching algorithms would be to minimize the resources



and control overhead. In previous studies [2], [13], [7], [6],
several aggregated multicast protocols using heuristic online
group-tree matching algorithms have been proposed, however,
there is no formal analysis of the group-tree matching problem,
and there is no formal evaluation of how good the online
heuristics are.
In this paper, we formally define the group-tree matching (& 8) (&y8)
problem, and formulate two versions of the problem: Static
Pre-Defined Tree version and Dynamic On-Line version. In the g; A B.EF
static version, we assume all the groups are known beforehand, g B.EF
i.e., we have the knowledge of the global group information.
This case is useful for multicast tree pre-dimensioning based. 1. Examples of Perfect Match and Leaky Match
on long-term traffic measurement. We analyze the complexity
of the static version of the problem and show that it is NP-
complete. We propose three algorithms for this problem: oHe Figure 1. Clearly, by leaky match, we can achieve better
optimal (using Linear Integer Programming, or ILP), on&ddregation (i.e., using less trees to cover more groups). A
near-optimal (using Greedy method), and one pseudo-dynarfligadvantage of the leaky match is that some bandwidth is
algorithm. By simulation studies, we show that Greedy methd¢psted to deliver data to nodes that are not members for the
is much faster and less time consuming than ILP while tigOUP- Therefore, we trade off bandwidth for state scalability.
performance is not significantly sacrificed (less than 1.59f1€oretically, group-tree matching problem is an intractable
for most of the simulated cases). Pseudo-dynamic algoritfRtlti-objective (minimizing bandwidth waste and maximizing
is even faster and more resource efficient, but we trade @@gregation) optimization problem, with the two objectives
the performance for efficiency. For the dynamic version Self-contradicting each other. In reality, however, a network
the problem, groups dynamically join and leave, and thef@@nager could seek efficient group-tree matching algorithms
is no global information about all the groups. This is mor@hich can achieve best aggregation while keeping bandwidth
meaningful for managing online systems. We present a gene#@ste under some given threshold. In this way, the problem
online heuristic group-tree matching algorithm, and evalua@&comes simplified.
its performance by comparing with its upper bound, obtained
using the static algorithm. We find that the dynamic orB. Network Model and Definitions
line algorithm is a practical solution to the dynamic group- 1) Network Model: The network is modelled as an undi-
tree matching problem with limited performance penalty angcted graphG(V, E). Each edgdi, j) is assigned a positive
reasonable computation requirement. coste;; = c;;, which represents the cost to transport unit traffic
The rest of this paper is organized as follows. In Se¢rom node: to node; (or from j to i). Given a multicast tree
tion 11, we first describe and formulate the group-tree match; total cost to distribute a unit amount of data over that tree
ing problem. Then we present the algorithms for both the
static and dynamic versions of the problem, and give formal C(t) = Zcij’ link (i,7) € t. (1)
time complexity analysis of these algorithms (Section lll, 1V . ,
and V). After that, we conduct simulation studies and comp lrfeevery link is assumed to have equal cdstiree cost is
different algorithms quantitatively in Section VI. Finally, weSIMPIY C(#) = [t| — 1, where|t| denotes the number of nodes

ive a brief summary and conclude the paper. in ¢. This assumption holds in this paper.
g y pap 2) Bandwidth WasteNow consider a network:(V, E), in

which multicast routing algorithmd (for example, shortest
path tree algorithm) is used to setup multicast trees. Given a
A. Problem Description multicast groupg, let t"(g) be the multicast tree computed
I@,/ the routing algorithm (we refef*(g) as the “native” tree

Ty is a perfect match for g,
T, is a perfect match for g

T, is a leaky match for g

Il. THE GROUP-TREE MATCHING PROBLEM

In traditional multicast, each group uses one delivery tre

while in aggregated multicast [8], multiple groups are forcel@" 9rouP ). Alternatively, this group can be covered by an
and itsbandwidth wasteratio is defined

to share one aggregated tree. Thus, to implemlent aggregd@dregated treg(g),
multicast, we need tp match groups to aggregated trees, i%, _ C(tlg)) — C(t"(9))
do group-tree matching. 6(t,g) = C () : (2
Given a group and a tree, the set of the group members, o g_ ]
(sources and receivers) and the tree leaves are not alwa gs_metrlc directly reflects bandW|dth waste ratio Wher_l tree
identical. If all the tree leaves have the group members, the) iS used to carry data for group instead of the native
tree is called a perfect match for the group. If there afee®?"(9). Then, the bandwidth waste can be quantified as
leaves of the tree that do not have the group members, #&9) X 0(t,9) x C(t"(g)) if the amount of data transmitted
call this tree a leaky match for the group. In this case, tie D(9). Following the assumption of equal link cost of
tree is “bigger” than the group. In other words, we sen@ndwidth waste ratio can be represented as
data to parts of the tree with no receivers. Some simple 5(t, g) = [(t(g)] — It™(9)]
examples of perfect match and leaky match are illustrated T tn(g)] -1

®3)



To control the amount of bandwidth waste, in our group- We prove that the Static Pre-Defined Tree problem is NP-
tree matching problem, a groupis allowed to be mapped hard by showing that a special case of this problem is actually
onto a treet only if §(t,g) < bth, wherebth is a pre- a MINIMUM SET COVER problem. We specify the special
determined bandwidth waste threshold. Note ttaty) is not case as follows: target trees can only be selected from the set
necessarily the minimum cost tree (Steiner tree), and therefasg,native trees ofGrps instead of all possible trees in the
the aggregated tre¢g) may happen to be more efficient thametwork. Now, we can present an instance of this problem as
t"(g). Thus, it is possible fob(t, g) to be negative. an instance of MINIMUM SET COVER problem:

3) Aggregation Degree:Let Ny,...ps b€ the number of o Let the multicast group sefrps be S.
multicast groups in the network and;,.., the number of . Let the native tree set of the groups denotedIty For

aggregated trees used to cover those groaggregation each treet € T, we represent the group set covered by
degreeis defined as t with bandwidth waste belowth as G¢(t). We denote
Nyroups the collection ofG°(t) asG*(T").
AD = Nipees (4) « Let the collectionG¢(T™) be C.

AD is a direct measurement of the aggregation: the bigger! NN the objective of finding minimum number of trégs

AD is, the less aggregated trees we need to manage, and tRUPVer the groups:rps becomes minimizing the cardinality
the less requirements of the resources and control overheXdPetC”, whereC7 C C such that every element ifi belongs
In one sentence, the biggelD is, the better aggregation welO at least one member @’. In other words, the discussed

could achieve. In fact, Aggregation Degree is the optimizatio’?PeCial case of the .Static Pre-Defined Tree p.roblem is NP-hard.
goal in our group-tree matching algorithms. The Static Pre-Defined Tree problem is obviously harder than

this special case, thus it is NP-hard. This completes the proof.
To tackle this NP-complete problem, we propose three

C. Problem Formulation . . . X :
algorithms, one optimal algorithm using ILP, one near-optimal

Depending upon how aggregated multicast is used, Wyorithm using greedy method, and one pseudo-dynamic
formulate the group-tree matching problem into two versiongjgorithm, We will present these algorithms in Section Il
static pre-defined tree version if aggregated multicast is u V respectively.
by an ISP for tree pre-dimensioning based on long-term traﬁicz) Dynamic On-Line TreesThe dynamic version of the
measurement; and dynamic on-line tree version if aggregaigdyp-tree matching problem is more meaningful for practical
multicast is employed in on-line systems where groups djyrposes. In this case, instead of a static set of groups, groups
namically join and leave. _ _ dynamically join and leave. Our goal is to find an algorithm to

1) Static Pre-Defined Treedn this version of the problem, generate and maintain (e.g., establish, modify and tear down)
we are given: a netwprlG(V, E), a set of mU|th§St groups g set of trees and map a group to a tree when the group starts,
Grps, @ multicast routing algorithml, and a bandwidth waste ith the objective of minimizing the number of aggregated
thresholdbth. The goal is to findN trees (each of them aeg (j.e., maximizing aggregation degree) without violating
covers a different node set) and a matching from a groyp. given bandwidth waste threshaith.

g to a treet(g) such that every group is covered byi(g),  Several previous studies [2], [13], [7], [6] proposed heuristic
with the objective of minimizingV (equivalent to maximizing gnline group-tree matching algorithms, but there is no upper
aggregation degree) while keeping the bandwidth waste un@gfnd analysis to evaluate the performance of these algo-
given thresholdbth. This is the problem we need to solve tqijthms. In Section IV, we will first describe a general on-line

build a set of pre-defined aggregated trees based on Iong-t%fyrnamic algorithm, and then compare its performance with
traffic measurement information. the upper bound.

In fact, we can show that the static pre-defined tree problem
is NP-complete. Before we give the proof, we first introduce a Ill. ALGORITHMS FORSTATIC PRE-DEFINED TREES
well-studied NP-complete problem, MINIMUM SET COVER | this section, we present two algorithms for Static Pre-
[4]. Defined Trees. The basic idea behind these algorithms is to
« INSTANCE: CollectionC' of subsets of a finite sef. first find the candidate trees that can be used to cover a subset
« SOLUTION: A set cover foiS, i.e., asubset” C C' such of given multicast groups, convert the problem of selecting
that every element ir§ belongs to at least one membethe minimum number of trees for all groups to a classical

of C. MINIMUM SET COVER problem, and finally map each
« MEASURE: Cardinality of the set cover, i.6G/|. group to a selected tree. Thus, we divide the problem into three
Theorem 1. The Static Pre-Defined Tree Problem is NPsub-problems, namely, candidate tree generation, tree selection
Complete. and group-tree mapping. The candidate tree generation and

Proof. It is easy to show that the Static Pre-Defined Tregroup-tree mapping sub-problems can be solved in polynomial
problem is NP. Restating this optimization problem as time, while the tree selection sub-problem is in fact NP-

decision problem, we want to determine if there arérees complete. We present an integer linear programming (ILP)
which can cover all the groupSrps within bandwidth waste based optimal algorithm and a greedy algorithm for the tree
thresholdbth given sizek. Suppose we are giveh trees, to selection sub-problem. For simplicity, we call the algorithm

validate if these trees can cover grodpsps without violating using ILP approach for tree selection as ILP algorithm, and
bth can be performed in polynomial time. the one using greedy approach as Greedy algorithm.



In the following subsections, we describe the algorithms to The objective is to minimize the number of selected trees:
solve each of the sub-problems, and then analyze the time N,
complexity of these algorithms. min ij
j=1

A. Candidate Tree Generat.lon ) subject to the constraint that every group must be covered by
The sub-problem of candidate tree generation can be formy4-jeast one tree:

lated as follows: given a network gragh(V, E'), a multicast N,
routing algorithmA used to set up multicast trees, and a set of Z c; >1 Vi€ [0,N,]
groupsGrps, for each multicast group € Grps, find the set = T g

of treesT'(g) that can covel while satisfying the bandwidth ing th ' btain th | for (i
waste thresholdth, since this set of trees are the potentia}l By so.vmgt e ILP, we o.tamt e values foy (j € [1, Vi),
rom which we can determine the set of trgesto be selected.

candidate trees that can be mapped to. _ _
our algorithm works as follows. For each grog Grps, _ 2) Greedy Approach:Aithough the ILP approach is able
to find out the optimal solution for small problems, its

its native treet™(g) (using multicast algorithmA) is first i head makes it infeasible f latively |
computed. This native tree is certainly one of the potentigP™Putation overnead makes it infeasible for relatively large

trees for groupg, so it belongs to the candidate tree s roblems. Thus,'we ‘T’IISO p.res.e.ntaGre'edy qlgorithm which re-
T(g). Then this native tree is extended to generate md jices computation time significantly with slight performance

potential trees with no more thahadditional links, where d€gradation. As shown in Algorithm 1, given the multicast
| is determined by the number of links on the native tre@OUPSGrps, the candidate trees = UvgearpsT(9), an(cj the
(denoted ast”(g)|-1) and the bandwidth waste threshold: MaPPINg between each treeand its covered group&“(t),

I = (jt*(g)| — 1) x bth. To extend a tree, the algorithm this algorithm iteratively fllnd_s the tree that covers the largest
recursively checks for each edgec E whethere is adjacent number of groups, adds it into th? selectgd tree]é%tapd

to #: if it is, then the tree can be extended to contairThe '€MOVe these groups frofrps, until Grps is empty, which
generated trees are also included/ify). After the candidate Means all groups have been covered by at least one tree.
trees for all groups have been generated, for each candidate— -

tree t, the set of groupss¢(t) that can be covered by is Algorithm 1 Greedy(rrps, T, G°)

computed. 1. 1% - 0 .
2: while Grps is not emptydo
B. Tree Selection 3. maz_cover « 0

. . 4. best_t 0
Based on the mapping between candidate trees and groups, fgf allr(:t:_T do

we need to select a minimum set of trees such that every group if |G°(£)| > maz_cover then
can be mapped to at least one tree in this set. By dividing/: T cover HIGC(tM

the set of multicast group&rps into a number of subsets _ best ;ree ¢

G¢(t), each of which contains the groups that can be coveregj B

) . end if
by the same candidate tregthe tree selection problem NOW., . ond for
becomes how to find the minimum number of subsets thﬁj TS TS U best_tree

cover the originalG'rps. In this way, we convert this problem _
to MINIMUM SET COVER problem. o gr;z_(;bf;?ﬁ"eéc (vesttree)

MINIMUM SET COVER problem is a classical NP- 14: end while -
complete problem, and a large number of approximation return T
algorithms have been proposed to solve this problem [10}-
[11]. Here, we present an ILP approach and a greedy approach
for the tree selection problem.

1) ILP Approach: An advantage of ILP is that the prob-C. Group-Tree Mapping
lems that can be expressed in ILP formulation with limited Given the group&rps and the selected tre€%, a groupg
variables and constraints can be solved optimally with fregay be covered by multiple treesf. In this case, we break
or commercially available softwares. Therefore, our majehe tie by selecting the tree that can coyewith minimum
task is to develop ILP formulation for tree selection problenbandwidth waste as the final tré&(g) for this group.
Before presenting the ILP formulation, we define the following

variables: D. Complexity Analysis
T = {é, Iftgee tjis selected vj €1, Ny Clearly, the time complexity of the ILP algorithm is not
, Ootherwise polynomial since the MINIMUM SET COVER problem is

NP-complete. Hence, we focus on the complexity analysis of
Vi € [1,N,],5 € [1, N{] the Greedy algorithm. To facilitate our analysis, we define
several variables as shown in Table I.
whereN, and N, are the total number of groups and candidate In candidate tree generation algorithm, given a trdimding
trees, respectively. all trees that are extended fromwith one additional link

o — 1, if g; is covered byt;
710, otherwise



TABLE |
DEFINITION OF VARIABLES IN COMPLEXITY ANALYSIS

been proposed [2], [13], [7], [6]. In this section, we briefly
present a general dynamic on-line algorithm.

m number of nodes Algorithm 2 shows the procedure for group join. When a
n number of links new groupg joins the network, we first identify if there are
Ng_| number of groups eligible existing trees to cover it. For each existing treeTs,

Nic | number of candidate trees . . . . .

N,= | number of selected treesV(s < N,) if it can coverg without exceedingth, thent is a candidate

tree. Otherwise, it is extended to covgrand if the resulting
extended treg® satisfies the bandwidth waste requirement
requires scanning every link € E and deciding if it is for all of the groups mapped to, i.e., G°(t) U g, thent*
adjacent ta, which takesO(('lL)) = O(n) time. Similarly, we is considered as a candidate tree. Note that when extending
can derive that the operation of finding trees extended fronn €Xisting tree, we must check if extended tree still satisfies
with additionall links takesO((7})) = O(#!)m). Therefore, the requirements obth for groups mappe_d to the or.iginal.
the time complexity of finding the e tenéed trees with no moféee to ensure the bound on the bandwidth waste is valid.

than! links is: If there are more than one candidate trees for grguthen
. " the one with the minimum bandwidth waste is selected as
O(Z n! ) < O(Z n! )= 0(2") the final treet/ (g); otherwise the native tree of this group is
— (n -l — (n— i)l constructed as its final tree. When a group leaves the network,

a similar procedure will be activated. However, some trees will

Thus,_lt seems that .th's alg_orlthm n gener_al IS not POSe shrunk instead of extended in order to obtain better set of
nomial time. However, in practice, the value lois restricted Hees which can cover the active groups

to be relatively small numbers in order to control bandwidt
waste. If we assume< 3, the time complexity of generating Algorithm 2 Dynamic-Joing)
candidate trees for one group becomes:
n(n —1) n n(n —1)(n — 2)
2 6

In this way, the candidate tree selection algorithm takes“f h dth
O(N,4n®) time to find the candidate trees for all groups. Using™ _c;ompute the barr11dW|dt wastét, g)
the same reasoning, we can conclude that, whers, the total _ : 5(579) < btch then

number of candidate tree¥;- is bounded:N;e = O(Nyn?).  © 5 _gg) =T(g)Ut

For tree selection sub-problem, the Greedy algorithm re§: Ien :
quires scanning all candidate trees gy times until all Vs else q .
trees are selected. Obviously;: < N,, so the time com- *° extend tre€ to ¢ to cover groupy

lexity of this algorithm isO(N:cN:.) = O((N.n3)N.) = 1 compute the maximum bandwidth wasig,,, be-
?)(N ¥n3) g (Noe Nee) ((Ngn”)N) tweent¢ and its covered groups including
,2n?).

if 0pmaz < bth then
Te(g) =T(g) Ut®

1: T°(g) < null llinitialize candidate tree set
2: for all t € T do

3. /IT is the existing tree set

if ¢ coversg then

O(n + ) = O0(n®)

Finally, in the group-tree mapping algorithm, for eacﬁlzf
group, the selected treds® are searched to find a best tree.lsj

Since it takes at mosD(n) time to check if a tree covers a X4 Zn.? i
group and compute the bandwidth waste between a group e en(cajnforl

a tree, this algorithm need8(N,N;:n) = O(N,n) time. o

Combining the three sub-problems, we conclude that, whéf' ' 7*(9) == null then ¢
the bandwidth waste thresholdh is reasonably small, the ig elsfge native tree™(g) is used ag’(g)
time complexity of the Greedy algorithm is polynomial time.”™ . : .

What to do when bth is big? Obviously, when bandwidth 20 Coose a tree with min. bandwidth wastetag)
waste thresholdth is big, the Greedy algorithm will become 21: end if
time consuming. Inspired by the dynamic on-line group tree ) ) ) -
matching heuristics, we propose a pseudo-dynamic algorithn‘fn the Dynamic On-Line algorithm, the existing tre@s

for Static Pre-Defined Tree problem, and it will be presentéf€ Séarched to find a best tree for each group. Checking the
in Section V. eligibility and bandwidth waste threshold of an existing tree

or an extended tree requiré§n) time, and finding the native
tree when no existing tree is appropriate requités) time,
so the time complexity for group join i©(|T'|n), while |T|

The algorithms discussed above are expected to achiévédounded by the number of existing groups in the network.
optimal or near-optimal performance in minimizing the numA similar analysis applies to group leave.
ber of aggregated trees without violating the bandwidth wasteTo design a good Dynamic On-Line algorithm, one impor-
threshold. However, they are used to match a static settafht concern is to decide how good the algorithm is, or how
groups onto trees, and thus cannot be used as “on-line” aldar this algorithm degrades from the optimal solution. In fact,
rithms. To solve this problem, many heuristics that determine& can obtain an upper bound for each of the sample points
group-tree matching as groups join and leave the network hamethe group dynamics as follows: at a given sample point,

IV. DYNAMIC ON-LINE ALGORITHM



we collect a set of (currently active) groups, run a Static PraseRandom Node Weight Modgl] for group member distri-
Defined Tree algorithm, and decide what is the minimum set bfition. In this model, we consider the probability (which we
trees to cover these groups. In our simulation studies, we willl weight) that a router “participates” in multicast groups,
investigate the performance of Dynamic On-Line algorithm hat is, this router has attached end hosts that join multi-

comparing the optimal or near-optimal solutions. cast groups. In our simulated network, gateway nodes and
backbone nodes are assumed to be core routers only and are

V. PSEUDO-DYNAMIC ALGORITHM FOR STATIC assigned a weight of 0. The weights of the contracted nodes is
PRE-DEFINED TREES related to the number of access routers it represents. Exchange

In Section 11, we presented two algorithms: ILP algorithmPodes are each assigned a weight of 0.9, since they usually
and Greedy algorithm. Though the latter one is practical wh&RNNects to peering networks with a large number of group
bandwidth waste thresholkt’ is small, we remark that the MemMbers. _ _ _
efficiency of Greedy algorithm will be significantly degraded VW& assume the multicast group requests arrive as a Poisson
asbth is increased, due to the candidate tree generation pRsOCesS, and groups’s lifetime follows an exponential distri-
cedure. Inspired by the dynamic on-line algorithm presenté4tion. After the network reaches steady state, we know the
in last section, we propose a such called Pseudo-Dynarfierage number of groups. In our simulations, we fix average
Algorithm for the Static Pre-Defined Tree problem. group life time as 100 seconds and simulation time as 600

The basic idea is following: given a static set of groupgeconds, and vary the group arrival rates to control the number
Grps, we randomly pick groups and let them join the networRf groups in the network. The group-tree matching algorithms
one by one. In this way, we actually have a dynamic groJBr Static Pre-Defined Trees are executed on the active groups
trace, for which we can use Dynamic On-Line algorithm. Sincvery 10 seconds, and the Dynamic On-Line algorithm is
in the generated group trace, there is only group join aserecuted continuously as group joins and leaves the network,
no leave, when all the groups join the network, by runnin@Oth after 400 seconds simulation time when steady state is
Dynamic On-Line algorithm, we actually obtain the propei€ached.
trees covering all the groups. Obviously, the result may beTo evaluate the performance of the group-tree mapping
far from the optimal, and can be affected by the order &lgorithms, besides Aggregation Degree (AD) (introduced
group join. We can improve the performance by running tirlier), we define the following metrics:
algorithm on multiple group traces. In fact, in our simulation State Reduction Ratio (SRR) Since multicast state in edge
studies, we will show that this Pseudo-Dynamic algorithm f@uters cannot be reduced in any state reduction scheme, we
very effective: much faster than Greedy algorithm wieh only consider the state in core routers. Thus, we define SRR

is big without sacrificing too much performance. as: g
Following the previous time analysis, it is easy to SRR=1- -9 (5)
see the time complexity for Pseudo-Dynamic algorithm no-ag9
O(NyNisn) = O(N,’n), which is much faster thanwhereS,,, andsS,, .4, represents the total number of multi-
O(N,*n?) in the case of the Greedy algorithm. cast state entries in core routers with and without tree aggre-
gation, respectively. The higher the SRR, the more multicast
VI. SIMULATION STUDIES state entries is reduced.

We implemented the proposed algorithms and tested thenf’rogram Execution Time (PET) is the total time to
under various conditions. In this section, we first introduce tHfin the simulation for an algorithm. It reflects the amount
simulation environments and performance metrics, and thgh computation (and sometimes memory) required for an

we present the simulation results. algorithm. _ _ _
We implement the group-tree matching algorithms in C++.

We uselp_solve (Version 5) [1], an open source (Mixed-
Integer) Linear Programming system, to solve the ILP prob-

In our simulations, we use a network topology abstractggims. An Intel Xeon 2.40GHz computer with 1GB memory is
from AT&T IP backbone, a real network topology withsed to execute the simulation experiments.

123 nodes. This network consists of 9 gateway routers, 9

backbone routers, 9 remote GSR (Gigabit Switch Routers) .

access routers, and 96 remote access routers. We confucfesults and Analysis

an abstraction procedure to generate a simplified network ofl) ILP vs. Greedy:We first compare the performance of

54 nodes as follows: (1) the gateway routers and backboih® and Greedy algorithms by varying the bandwidth waste

routers are kept as is; (2) the remote access routers attacthedshold (denoted akth) from 0 to 0.05 and the number

to the same gateway or backbone router are “contracted” irtbconcurrently active groups from 500 to 2500. Due to the

one contracted nodeand (3) one additionaéxchange node computation overhead associated with ILP algorithm, we were

is created for each gateway router to represent the peeringable to obtain results for higher bandwidth waste threshold

networks and Internet public exchange points to which thed larger number of groups.

gateway router is connected. Figure 2 plots the results of AD (Aggregation Degree) for
In the obtained network topology, we generate group ithese two algorithms. As shown in the figure, fgh = 0,

stances to run different group-tree matching algorithms. Wee ADs for both algorithms are exactly the same. The reason

A. Simulation Settings



3 T 1000 r r

' bth=0 ——
th=0.05 — - —

H

1)

3
T

Ea

.
1S
T

Average Aggregation Degree
\

15 f--oe- e bth=0 —+— - oo
Greedy, bth=0.05 — >~
ILP, bth=0.05 - - - -

~
T
1

Program execution time ratio (ILP/Greedy)

. ; ; ; ; ; . ; ; ; ;
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Average number of groups Average number of groups

Fig. 2. AD of ILP and Greedy algorithms vs. number of concurrently activEig. 4. PET Ratio of ILP and Greedy algorithms vs. number of concurrently

groups. active groups.
6
0.7 T T T T T T
: : : Dynamic, 1000 groups ——
; ; ; Dynamic, 4000 groups —&— -
; ; : : : [ = Greedy, 1000 groups — - ------- e Sl g —
085 oo ] Greedy, 4000 groups —-&— a
: : ; L % X

i
Average Aggregation Degree
©
T

\ \
\
\ NS
\ S
N S
\
\

Average State Reduction Ratio
o
@
a
T

Bth=0 ——— 4
Greedy, bth=0.05 — -
ILP, bth=0.05 - - - -

045 [

0
-0.05 0 0.05 0.1 0.15
Bandwidth waste threshold

0.4 i i i i i
0 500 1000 1500 2000 2500 3000

Average number of groups Fig. 5. AD of Greedy and Pseudo-Dynamic algorithms vs. bandwidth waste
threshold.
Fig. 3. SRR of ILP and Greedy algorithms vs. number of concurrently active

groups.
active groups and/or when the bandwidth waste threshold is
high. For example, whehth = 0.05 and number of groups
behind this is simple: under this condition, leaky match ig 2500, the program is not able to finish within one day for
not allowed, and each group can only be mapped onto it algorithm, whereas it takes only less than 50 seconds for
native tree. Thus, for both algorithms, the set of aggregatge Greedy algorithm to complete.
trees is the union of all the native trees. ## increases, ILP  2) Greedy vs. Pseudo-DynamicAs shown in previous
out-performs Greedy, which is consistent with our intuitionsection, ILP algorithm is not feasible for large number of
since ILP optimally minimizes the number of aggregategroups and high bandwidth waste threshold, so we now only
trees whereas Greedy uses a heuristic algorithm to I’EdldQﬁnpare the performance of Greedy vs. Pseudo-Dynamic
the same metric. Nevertheless, we want to emphasize that #ftgorithms. We expect that the latter algorithm is not able
performance improvement of ILP vs. Greedy is very smallp perform as well as Greedy, since it does not exploit all
For instance, when there are 2000 multicast groups co-existifigtential trees for a group and select trees based on a global
in the network, AD is 2.601 and 2.631 for ILP and Greedyjiew of the relationship between groups and trees as Greedy
respectively, which means ILP require approximately 9 treg@®es. Figure 5 and 6 plot the AD and SRR, respectively,
less than Greedy on average. for these two algorithms when the bandwidth waste threshold
Figure 3 compares SRR (State Reduction Ratio) of IL&d the number of groups are varied. Both figures show the
vs. Greedy algorithms, which exhibits a similar trend asame trend as expected: except foh = 0 when Greedy
Figure 2. Therefore, we can conclude that Greedy is abledad Pseudo-Dynamic algorithms yield the same results for
achieve near-optimal performance in reducing the numberthe reason explained earlier, Greedy always achieves higher
aggregation trees and multicast state entries. multicast state scalability (or better aggregation) than Pseudo-
Even though ILP achieves slightly higher performance thddynamic algorithm. For example, when there are 4000 co-
Greedy, this gain comes at a cost of additional computatiemisting groups ancdhth = 0.1, AD is 5.400 and 4.822
overhead. To demonstrate this, we show the PET (Progréon Greedy and Pseudo-Dynamic, respectively, and the corre-
Execution Time) ratio of ILP vs. Greedy in Figure 4. Wesponding SRR is 0.819 and 0.796. Additionally, as bandwidth
observe that fomth = 0, the PET ratio increases approxi-waste threshold increases, the difference in these two metrics
mately linearly with the number of co-existing group, whiclbbecomes more distinct. We want to point out here that the
corresponds to an exponential relationship between the tiperformance penalty resulted from using Pseudo-Dynamic
ratio and the number of groups due to the use of log-scale fastead of Greedy algorithm is very small: under the conditions
y axis; forbth = 0.05, the ratio increases even more rapidlytested, in the worst case, the performance reduction by Pseudo-
This indicates that computation cost of ILP will become to®ynamic algorithm is 14.3% for AD and only 5.16% for SRR,
expensive when there are a large number of simultaneousijative to Greedy algorithm.
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Fina”y, we p|0t the PET ratio of Greedy VS. Pseudotrue in reality: we do not want to waste too much bandwidth
Dynamic algorithms in Figure 7. We found in our simulal® improve state scalability.
tions that the PET of Pseudo-Dynamic algorithm is affected We also collected the execution time ratio of Greedy vs.
mostly by the number of groups and not by the value &ynamic algorithm in 10. We observe again that Greedy
bandwidth waste threshold (which is not shown here due &gorithm generally takes longer time, especially for laige
space limitation). In contrast, as shown in Figure 7, the pedpe to the exhaustive search of candidate trees required by the
ratio increases exponentially to the bandwidth waste thresHgorithm.
old, which indicates that the PET of the Greedy Algorithm !N conclusion, our simulation studies show the following
grows very fast. For smalith, Greedy algorithm runs faster; results: 1) Among the algorithms for Static Pre-Defined Trees,
when bth > 0.125, Pseudo-Dynamic algorithm out—performéhe performance of multicast state scalability degrades in the
Greedy. Wherbth = 0.125, for 1000 groups, the PET ratio Order of ILP (optimum), Greedy (near-optimum), and Pseudo-
is as high as 48.3; for more than 2000 groups, the Gree@ynamic; however, the first two algorithms are not feasible
algorithm runs out of memory due to the storage requiremé|r1treality due to significant processing and memory overhead.
of a large number of potential trees for all groups, which ) The Dynamic On-Line algorithm is demonstrated to be a
another disadvantages of ILP and Greedy algorithms. practical solution to the dynamic group-tree matching problem

3) Greedy vs. Dynamic On-LineEor on-line group-tree with _Iimited performance penalty and reasonable computation
matching problem, Greedy algorithm gives an upper boufigduirement.
of how well Dynamic algorithm can solve this problem,
because Dynamic algorithm incrementally finds group-tree VII. CONCLUSIONS
matching for each group as groups join and leave the networkin this paper, we have studied the group-tree matching
by considering only existing trees as candidate trees, whpeoblem in large scale group communications. We formulated
Greedy algorithm takes advantage of the knowledge of groupg versions of the problem: static version and dynamic
joining later than the current one and tries to use one treeviersion. We proved that the static version of the problem is
include as many groups as possible. As illustrated in FigureN*>-complete. For each version of the problem, we proposed
and 9, the results match our conjecture. In addition, in the catifferent solutions: three algorithms (ILP, Greedy, and Pseudo-
of AD, as bth increases, the difference between these twidynamic) are deigned for Static Pre-Defined Trees; and one
algorithms is magnified; however, for SRR, their differencgeneral heuristic on-line algorithm is presented to solve the
remains approximately the same f@h > 0.05. From these Dynamic On-Line Tree problem. By simulation studies, we
results, we can see that the Dynamic algorithm can achidiued that Greedy algorithm is a feasible solution to the Static
the goal reasonably well wheith is relatively small, as is Pre-Defined Tree problem when bandwidth waste threshold
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(bth) is small, and its performance is very close the ILP
optimal solution (less than 1.5% for most of the cases).
Pseudo-Dynamic algorithm is much more time-efficient when
bth is big though it introduces some performance penalty (with
14.3% in the worst case of our simulations). We also formally
evaluated the performance of dynamic on-line group-tree
matching algorithm, and our experiments results demonstrate
that the dynamic on-line algorithm is practical to solve on-line
group-tree matching problem.
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