
1

Tackling Group-Tree Matching in Large Scale
Group Communications

Li Lao1, Jun-Hong Cui2, Mario Gerla1

llao@cs.ucla.edu, jcui@cse.uconn.edu, gerla@cs.ucla.edu
1 Computer Science Department, University of California, Los Angeles, CA 90095

2 Computer Science & Engineering Department, University of Connecticut, Storrs, CT 06029

Technical Report TR040022
06-29-2004

Computer Science Department
UCLA

Abstract— As a mechanism to support group communications,
multicasting faces a serious state scalability problem when there
are large numbers of groups in the network: lots of resources
(e.g., memory to maintain group state information) and con-
trol overhead (e.g., multicast tree setup and maintenance) are
required to manage the groups. Recently, an efficient solution
called aggregated multicast is proposed [8]. In this approach,
groups are assigned to proper trees and multiple groups can
share one delivery tree. A key problem in aggregated multicast
is group-tree matching (i.e., matching groups to trees). In this
paper, we investigate this group-tree matching problem. We first
formally define the problem, and formulate two versions of the
problem: static and dynamic. We analyze the static version of
the problem and prove that it is NP-complete. To tackle this
hard problem, we propose three algorithms: one optimal (using
Linear Integer Programming, or ILP), one near-optimal (using
Greedy method), and one pseudo-dynamic algorithm. For the
dynamic version, we present a general heuristic on-line group-
tree matching algorithm. Simulation studies are conducted to
compare the three algorithms for the static version. Our results
show that Greedy algorithm is a feasible solution to the static
problem and its performance is very close the ILP optimal
solution, while pseudo-dynamic algorithm is a good heuristic for
many cases where Greedy does not work well. We also evaluate
the performance of the heuristic online algorithm, and show
that it is a practical solution to the dynamic on-line group-tree
matching problem.

I. I NTRODUCTION

With the rapid development of the Internet, there are
many emerging large scale multi-user applications, such as
news/software distributions, distributed interactive simulation
(DIS), distributed network games, distributed virtual collabora-
tions, teleconferencing, telemedicine, teleeducation, and stock
quotes distribution, etc. All these applications involve multi-
point communications (or group communications, that is, de-
livering data from one or more sources to multiple receivers).
To support these applications efficiently, multicast is usually
employed, in which a concept of group is introduced: sources
send data to an advertised group; receivers who are interested
in the data need to subscribe to the group to receive the data.

Multicast can be implemented at different network protocol
layers, such as network layer (i.e., IP multicast), and appli-

cation layer (i.e., application multicast). Multicast can also
employ different delivery structures, such as tree (e.g., in
IP multicast) and mesh (e.g., in Narada [3], an application
multicast protocol). In a tree delivery structure, each in-
tree node maintains the forwarding state, and data packets
are duplicated at fork nodes and are forwarded only once
over each link. Due to its resource efficiency, tree is widely
used in multicast protocols. In this paper, we only focus on
multicasting with tree delivery structure.

Since multicast employs the concept of group, no matter
at what level multicast is implemented, each multicast group
traditionally uses one delivery tree. To manage multicast
groups, resources (e.g., memory to maintain group forwarding
state) and control overhead (e.g., setup and maintenance of
the multicast trees) are required. When there are large num-
bers of multicast groups in the network, a large amount of
resources and management overhead will be involved. Hence,
the network performance will be tremendously degraded. This
issue is referred as multicast state scalability problem. It will
be exacerbated with the increasing demand of the multi-user
applications.

Recently, the state scalability problem has prompted many
interesting research works: some schemes attempt to reduce
forwarding state at non-branched tree nodes[16], [14], [5];
some other schemes try to achieve state reduction by for-
warding state aggregation at individual tree nodes [12], [15].
However, these mentioned schemes only consider the resource
aspect of the state scalability problem.

A recent proposed approach, called aggregated multicast
[8], exploits both the resource and control overhead issues.
In this scheme, multiple multicast groups are aggregated to
share a single delivery tree (which is called anaggregated
tree). This way, the total number of trees in the network may
be significantly reduced and thus the forwarding state would be
decreased accordingly. Aggregated multicast involves group-
tree matching (i.e., assigning groups to trees) procedure since
proper trees should be found to deliver data for the groups. To
solve the state scalability problem, the objective of the group-
tree matching algorithms would be to minimize the resources

2

and control overhead. In previous studies [2], [13], [7], [6],
several aggregated multicast protocols using heuristic online
group-tree matching algorithms have been proposed, however,
there is no formal analysis of the group-tree matching problem,
and there is no formal evaluation of how good the online
heuristics are.

In this paper, we formally define the group-tree matching
problem, and formulate two versions of the problem: Static
Pre-Defined Tree version and Dynamic On-Line version. In the
static version, we assume all the groups are known beforehand,
i.e., we have the knowledge of the global group information.
This case is useful for multicast tree pre-dimensioning based
on long-term traffic measurement. We analyze the complexity
of the static version of the problem and show that it is NP-
complete. We propose three algorithms for this problem: one
optimal (using Linear Integer Programming, or ILP), one
near-optimal (using Greedy method), and one pseudo-dynamic
algorithm. By simulation studies, we show that Greedy method
is much faster and less time consuming than ILP while the
performance is not significantly sacrificed (less than 1.5%
for most of the simulated cases). Pseudo-dynamic algorithm
is even faster and more resource efficient, but we trade off
the performance for efficiency. For the dynamic version of
the problem, groups dynamically join and leave, and there
is no global information about all the groups. This is more
meaningful for managing online systems. We present a general
online heuristic group-tree matching algorithm, and evaluate
its performance by comparing with its upper bound, obtained
using the static algorithm. We find that the dynamic on-
line algorithm is a practical solution to the dynamic group-
tree matching problem with limited performance penalty and
reasonable computation requirement.

The rest of this paper is organized as follows. In Sec-
tion II, we first describe and formulate the group-tree match-
ing problem. Then we present the algorithms for both the
static and dynamic versions of the problem, and give formal
time complexity analysis of these algorithms (Section III, IV
and V). After that, we conduct simulation studies and compare
different algorithms quantitatively in Section VI. Finally, we
give a brief summary and conclude the paper.

II. T HE GROUP-TREE MATCHING PROBLEM

A. Problem Description

In traditional multicast, each group uses one delivery tree,
while in aggregated multicast [8], multiple groups are forced
to share one aggregated tree. Thus, to implem1ent aggregated
multicast, we need to match groups to aggregated trees, i.e.,
do group-tree matching.

Given a group and a tree, the set of the group members
(sources and receivers) and the tree leaves are not always
identical. If all the tree leaves have the group members, the
tree is called a perfect match for the group. If there are
leaves of the tree that do not have the group members, we
call this tree a leaky match for the group. In this case, the
tree is “bigger” than the group. In other words, we send
data to parts of the tree with no receivers. Some simple
examples of perfect match and leaky match are illustrated

T 1

1
(g , g)

0

1
(g , g)

0

 g
0

1
(g , g)

0

T 0

g : A, B, E, F
0

g : B, E, F
1 T is a leaky match for g0 1

T is a perfect match for g0 0

T is a perfect match for g1 1

D F

A

B

C
E

Fig. 1. Examples of Perfect Match and Leaky Match

in Figure 1. Clearly, by leaky match, we can achieve better
aggregation (i.e., using less trees to cover more groups). A
disadvantage of the leaky match is that some bandwidth is
wasted to deliver data to nodes that are not members for the
group. Therefore, we trade off bandwidth for state scalability.
Theoretically, group-tree matching problem is an intractable
multi-objective (minimizing bandwidth waste and maximizing
aggregation) optimization problem, with the two objectives
self-contradicting each other. In reality, however, a network
manager could seek efficient group-tree matching algorithms
which can achieve best aggregation while keeping bandwidth
waste under some given threshold. In this way, the problem
becomes simplified.

B. Network Model and Definitions

1) Network Model:The network is modelled as an undi-
rected graphG(V,E). Each edge(i, j) is assigned a positive
costcij = cji, which represents the cost to transport unit traffic
from nodei to nodej (or from j to i). Given a multicast tree
t, total cost to distribute a unit amount of data over that tree
is

C(t) =
∑

cij , link (i, j) ∈ t. (1)

If every link is assumed to have equal cost1, tree cost is
simply C(t) = |t| − 1, where|t| denotes the number of nodes
in t. This assumption holds in this paper.

2) Bandwidth Waste:Now consider a networkG(V,E), in
which multicast routing algorithmA (for example, shortest
path tree algorithm) is used to setup multicast trees. Given a
multicast groupg, let tn(g) be the multicast tree computed
by the routing algorithm (we refertn(g) as the “native” tree
for group g). Alternatively, this group can be covered by an
aggregated treet(g), and itsbandwidth waste ratio is defined
as

δ(t, g) =
C(t(g))− C(tn(g))

C(tn(g))
. (2)

This metric directly reflects bandwidth waste ratio when tree
t(g) is used to carry data for groupg instead of the native
tree tn(g). Then, the bandwidth waste can be quantified as
D(g) × δ(t, g) × C(tn(g)) if the amount of data transmitted
is D(g). Following the assumption of equal link cost of1,
bandwidth waste ratio can be represented as

δ(t, g) =
|(t(g)| − |tn(g)|
|tn(g)| − 1

. (3)

3

To control the amount of bandwidth waste, in our group-
tree matching problem, a groupg is allowed to be mapped
onto a treet only if δ(t, g) ≤ bth, where bth is a pre-
determined bandwidth waste threshold. Note that,tn(g) is not
necessarily the minimum cost tree (Steiner tree), and therefore,
the aggregated treet(g) may happen to be more efficient than
tn(g). Thus, it is possible forδ(t, g) to be negative.

3) Aggregation Degree:Let Ngroups be the number of
multicast groups in the network andNtrees the number of
aggregated trees used to cover those groups,aggregation
degree is defined as

AD =
Ngroups

Ntrees
. (4)

AD is a direct measurement of the aggregation: the bigger
AD is, the less aggregated trees we need to manage, and thus
the less requirements of the resources and control overhead.
In one sentence, the biggerAD is, the better aggregation we
could achieve. In fact, Aggregation Degree is the optimization
goal in our group-tree matching algorithms.

C. Problem Formulation

Depending upon how aggregated multicast is used, we
formulate the group-tree matching problem into two versions:
static pre-defined tree version if aggregated multicast is used
by an ISP for tree pre-dimensioning based on long-term traffic
measurement; and dynamic on-line tree version if aggregated
multicast is employed in on-line systems where groups dy-
namically join and leave.

1) Static Pre-Defined Trees:In this version of the problem,
we are given: a networkG(V,E), a set of multicast groups
Grps, a multicast routing algorithmA, and a bandwidth waste
threshold bth. The goal is to findN trees (each of them
covers a different node set) and a matching from a group
g to a treet(g) such that every groupg is covered byt(g),
with the objective of minimizingN (equivalent to maximizing
aggregation degree) while keeping the bandwidth waste under
given thresholdbth. This is the problem we need to solve to
build a set of pre-defined aggregated trees based on long-term
traffic measurement information.

In fact, we can show that the static pre-defined tree problem
is NP-complete. Before we give the proof, we first introduce a
well-studied NP-complete problem, MINIMUM SET COVER
[4].
• INSTANCE: CollectionC of subsets of a finite setS.
• SOLUTION: A set cover forS, i.e., a subsetC′ ⊆ C such

that every element inS belongs to at least one member
of C′.

• MEASURE: Cardinality of the set cover, i.e.,|C′|.
Theorem 1. The Static Pre-Defined Tree Problem is NP-
Complete.
Proof. It is easy to show that the Static Pre-Defined Tree
problem is NP. Restating this optimization problem as a
decision problem, we want to determine if there arek trees
which can cover all the groupsGrps within bandwidth waste
thresholdbth given sizek. Suppose we are givenk trees, to
validate if these trees can cover groupsGrps without violating
bth can be performed in polynomial time.

We prove that the Static Pre-Defined Tree problem is NP-
hard by showing that a special case of this problem is actually
a MINIMUM SET COVER problem. We specify the special
case as follows: target trees can only be selected from the set
of native trees ofGrps instead of all possible trees in the
network. Now, we can present an instance of this problem as
an instance of MINIMUM SET COVER problem:
• Let the multicast group setGrps be S.
• Let the native tree set of the groups denoted byTn. For

each treet ∈ Tn, we represent the group set covered by
t with bandwidth waste belowbth as Gc(t). We denote
the collection ofGc(t) asGc(Tn).

• Let the collectionGc(Tn) be C.
Then the objective of finding minimum number of treesTm

to cover the groupsGrps becomes minimizing the cardinality
of setC′, whereC′ ⊆ C such that every element inS belongs
to at least one member ofC′. In other words, the discussed
special case of the Static Pre-Defined Tree problem is NP-hard.
The Static Pre-Defined Tree problem is obviously harder than
this special case, thus it is NP-hard. This completes the proof.

To tackle this NP-complete problem, we propose three
algorithms, one optimal algorithm using ILP, one near-optimal
algorithm using greedy method, and one pseudo-dynamic
algorithm. We will present these algorithms in Section III
and V respectively.

2) Dynamic On-Line Trees:The dynamic version of the
group-tree matching problem is more meaningful for practical
purposes. In this case, instead of a static set of groups, groups
dynamically join and leave. Our goal is to find an algorithm to
generate and maintain (e.g., establish, modify and tear down)
a set of trees and map a group to a tree when the group starts,
with the objective of minimizing the number of aggregated
trees (i.e., maximizing aggregation degree) without violating
the given bandwidth waste thresholdbth.

Several previous studies [2], [13], [7], [6] proposed heuristic
online group-tree matching algorithms, but there is no upper
bound analysis to evaluate the performance of these algo-
rithms. In Section IV, we will first describe a general on-line
dynamic algorithm, and then compare its performance with
the upper bound.

III. A LGORITHMS FORSTATIC PRE-DEFINED TREES

In this section, we present two algorithms for Static Pre-
Defined Trees. The basic idea behind these algorithms is to
first find the candidate trees that can be used to cover a subset
of given multicast groups, convert the problem of selecting
the minimum number of trees for all groups to a classical
MINIMUM SET COVER problem, and finally map each
group to a selected tree. Thus, we divide the problem into three
sub-problems, namely, candidate tree generation, tree selection
and group-tree mapping. The candidate tree generation and
group-tree mapping sub-problems can be solved in polynomial
time, while the tree selection sub-problem is in fact NP-
complete. We present an integer linear programming (ILP)
based optimal algorithm and a greedy algorithm for the tree
selection sub-problem. For simplicity, we call the algorithm
using ILP approach for tree selection as ILP algorithm, and
the one using greedy approach as Greedy algorithm.

4

In the following subsections, we describe the algorithms to
solve each of the sub-problems, and then analyze the time
complexity of these algorithms.

A. Candidate Tree Generation

The sub-problem of candidate tree generation can be formu-
lated as follows: given a network graphG(V,E), a multicast
routing algorithmA used to set up multicast trees, and a set of
groupsGrps, for each multicast groupg ∈ Grps, find the set
of treesT (g) that can coverg while satisfying the bandwidth
waste thresholdbth, since this set of trees are the potential
candidate trees thatg can be mapped to.

Our algorithm works as follows. For each groupg ∈ Grps,
its native treetn(g) (using multicast algorithmA) is first
computed. This native tree is certainly one of the potential
trees for groupg, so it belongs to the candidate tree set
T (g). Then this native tree is extended to generate more
potential trees with no more thanl additional links, where
l is determined by the number of links on the native tree
(denoted as|tn(g)|-1) and the bandwidth waste thresholdbth:
l = (|tn(g)| − 1) × bth. To extend a treet, the algorithm
recursively checks for each edgee ∈ E whethere is adjacent
to t: if it is, then the tree can be extended to containe. The
generated trees are also included inT (g). After the candidate
trees for all groups have been generated, for each candidate
tree t, the set of groupsGc(t) that can be covered byt is
computed.

B. Tree Selection

Based on the mapping between candidate trees and groups,
we need to select a minimum set of trees such that every group
can be mapped to at least one tree in this set. By dividing
the set of multicast groupsGrps into a number of subsets
Gc(t), each of which contains the groups that can be covered
by the same candidate treet, the tree selection problem now
becomes how to find the minimum number of subsets that
cover the originalGrps. In this way, we convert this problem
to MINIMUM SET COVER problem.

MINIMUM SET COVER problem is a classical NP-
complete problem, and a large number of approximation
algorithms have been proposed to solve this problem [10],
[11]. Here, we present an ILP approach and a greedy approach
for the tree selection problem.

1) ILP Approach: An advantage of ILP is that the prob-
lems that can be expressed in ILP formulation with limited
variables and constraints can be solved optimally with free
or commercially available softwares. Therefore, our major
task is to develop ILP formulation for tree selection problem.
Before presenting the ILP formulation, we define the following
variables:

xj =
{

1, if tree tj is selected
0, otherwise

∀j ∈ [1, Nt]

cij =
{

1, if gi is covered bytj
0, otherwise

∀i ∈ [1, Ng], j ∈ [1, Nt]

whereNg andNt are the total number of groups and candidate
trees, respectively.

The objective is to minimize the number of selected trees:

min
Nt∑
j=1

xj

subject to the constraint that every group must be covered by
at least one tree:

Nt∑
j=1

cij ≥ 1 ∀i ∈ [0, Ng]

By solving the ILP, we obtain the values forxj (j ∈ [1, Nt]),
from which we can determine the set of treesT s to be selected.

2) Greedy Approach:Although the ILP approach is able
to find out the optimal solution for small problems, its
computation overhead makes it infeasible for relatively large
problems. Thus, we also present a Greedy algorithm which re-
duces computation time significantly with slight performance
degradation. As shown in Algorithm 1, given the multicast
groupsGrps, the candidate treesT = ∪∀g∈GrpsT (g), and the
mapping between each treet and its covered groupsGc(t),
this algorithm iteratively finds the tree that covers the largest
number of groups, adds it into the selected tree setT s, and
remove these groups fromGrps, until Grps is empty, which
means all groups have been covered by at least one tree.

Algorithm 1 Greedy(Grps, T , Gc)

1: T s ← ∅
2: while Grps is not emptydo
3: max cover ← 0
4: best tree← 0
5: for all t ∈ T do
6: if |Gc(t)| > max cover then
7: max cover ← |Gc(t)|
8: best tree← t
9: end if

10: end for
11: T s ← T s ∪ best tree
12: T ← T − best tree
13: Grps← Grps−Gc(best tree)
14: end while
15: returnT s

C. Group-Tree Mapping

Given the groupsGrps and the selected treesT s, a groupg
may be covered by multiple trees inT s. In this case, we break
the tie by selecting the tree that can coverg with minimum
bandwidth waste as the final treetf (g) for this group.

D. Complexity Analysis

Clearly, the time complexity of the ILP algorithm is not
polynomial since the MINIMUM SET COVER problem is
NP-complete. Hence, we focus on the complexity analysis of
the Greedy algorithm. To facilitate our analysis, we define
several variables as shown in Table I.

In candidate tree generation algorithm, given a treet, finding
all trees that are extended fromt with one additional link

5

TABLE I

DEFINITION OF VARIABLES IN COMPLEXITY ANALYSIS

m number of nodes
n number of links
Ng number of groups
Ntc number of candidate trees
Nts number of selected trees (Nts ≤ Ng)

requires scanning every linke ∈ E and deciding if it is
adjacent tot, which takesO(

(
n
1

)
) = O(n) time. Similarly, we

can derive that the operation of finding trees extended fromt
with additionall links takesO(

(
n
l

)
) = O(n!

(n−l)!l!). Therefore,
the time complexity of finding the extended trees with no more
than l links is:

O(
l∑

i=1

n!
(n− i)!i!

)� O(
n∑

i=0

n!
(n− i)!i!

) = O(2n)

Thus, it seems that this algorithm in general is not poly-
nomial time. However, in practice, the value ofl is restricted
to be relatively small numbers in order to control bandwidth
waste. If we assumel ≤ 3, the time complexity of generating
candidate trees for one group becomes:

O(n +
n(n− 1)

2
+

n(n− 1)(n− 2)
6

) = O(n3)

In this way, the candidate tree selection algorithm takes
O(Ngn

3) time to find the candidate trees for all groups. Using
the same reasoning, we can conclude that, whenl ≤ 3, the total
number of candidate treesNtc is bounded:Ntc = O(Ngn

3).
For tree selection sub-problem, the Greedy algorithm re-

quires scanning all candidate trees forNts times until allNts

trees are selected. Obviously,Nts ≤ Ng, so the time com-
plexity of this algorithm isO(NtcNts) = O((Ngn

3)Ng) =
O(Ng

2n3).
Finally, in the group-tree mapping algorithm, for each

group, the selected treesT s are searched to find a best tree.
Since it takes at mostO(n) time to check if a tree covers a
group and compute the bandwidth waste between a group and
a tree, this algorithm needsO(NgNtsn) = O(Ng

2n) time.
Combining the three sub-problems, we conclude that, when

the bandwidth waste thresholdbth is reasonably small, the
time complexity of the Greedy algorithm is polynomial time.

What to do when bth is big? Obviously, when bandwidth
waste thresholdbth is big, the Greedy algorithm will become
time consuming. Inspired by the dynamic on-line group tree
matching heuristics, we propose a pseudo-dynamic algorithm
for Static Pre-Defined Tree problem, and it will be presented
in Section V.

IV. DYNAMIC ON-L INE ALGORITHM

The algorithms discussed above are expected to achieve
optimal or near-optimal performance in minimizing the num-
ber of aggregated trees without violating the bandwidth waste
threshold. However, they are used to match a static set of
groups onto trees, and thus cannot be used as “on-line” algo-
rithms. To solve this problem, many heuristics that determines
group-tree matching as groups join and leave the network have

been proposed [2], [13], [7], [6]. In this section, we briefly
present a general dynamic on-line algorithm.

Algorithm 2 shows the procedure for group join. When a
new groupg joins the network, we first identify if there are
eligible existing trees to cover it. For each existing treet ∈ T s,
if it can coverg without exceedingbth, thent is a candidate
tree. Otherwise, it is extended to coverg, and if the resulting
extended treete satisfies the bandwidth waste requirement
for all of the groups mapped tot, i.e., Gc(t) ∪ g, then te

is considered as a candidate tree. Note that when extending
an existing tree, we must check if extended tree still satisfies
the requirements ofbth for groups mapped to the original
tree to ensure the bound on the bandwidth waste is valid.
If there are more than one candidate trees for groupg, then
the one with the minimum bandwidth waste is selected as
the final treetf (g); otherwise the native tree of this group is
constructed as its final tree. When a group leaves the network,
a similar procedure will be activated. However, some trees will
be shrunk instead of extended in order to obtain better set of
trees which can cover the active groups.

Algorithm 2 Dynamic-Join(g)

1: T c(g)← null //initialize candidate tree set
2: for all t ∈ T do
3: //T is the existing tree set
4: if t coversg then
5: compute the bandwidth wasteδ(t, g)
6: if δ(t, g) < bth then
7: T c(g) = T c(g) ∪ t
8: end if
9: else

10: extend treet to te to cover groupg
11: compute the maximum bandwidth wasteδmax be-

tweente and its covered groups includingg
12: if δmax < bth then
13: T c(g) = T c(g) ∪ te

14: end if
15: end if
16: end for
17: if T c(g) == null then
18: the native treetn(g) is used astf (g)
19: else
20: choose a tree with min. bandwidth waste astf (g)
21: end if

In the Dynamic On-Line algorithm, the existing treesT
are searched to find a best tree for each group. Checking the
eligibility and bandwidth waste threshold of an existing tree
or an extended tree requiresO(n) time, and finding the native
tree when no existing tree is appropriate requiresO(n) time,
so the time complexity for group join isO(|T |n), while |T |
is bounded by the number of existing groups in the network.
A similar analysis applies to group leave.

To design a good Dynamic On-Line algorithm, one impor-
tant concern is to decide how good the algorithm is, or how
far this algorithm degrades from the optimal solution. In fact,
we can obtain an upper bound for each of the sample points
in the group dynamics as follows: at a given sample point,

6

we collect a set of (currently active) groups, run a Static Pre-
Defined Tree algorithm, and decide what is the minimum set of
trees to cover these groups. In our simulation studies, we will
investigate the performance of Dynamic On-Line algorithm by
comparing the optimal or near-optimal solutions.

V. PSEUDO-DYNAMIC ALGORITHM FOR STATIC

PRE-DEFINED TREES

In Section III, we presented two algorithms: ILP algorithm,
and Greedy algorithm. Though the latter one is practical when
bandwidth waste thresholdbth is small, we remark that the
efficiency of Greedy algorithm will be significantly degraded
as bth is increased, due to the candidate tree generation pro-
cedure. Inspired by the dynamic on-line algorithm presented
in last section, we propose a such called Pseudo-Dynamic
Algorithm for the Static Pre-Defined Tree problem.

The basic idea is following: given a static set of groups
Grps, we randomly pick groups and let them join the network
one by one. In this way, we actually have a dynamic group
trace, for which we can use Dynamic On-Line algorithm. Since
in the generated group trace, there is only group join and
no leave, when all the groups join the network, by running
Dynamic On-Line algorithm, we actually obtain the proper
trees covering all the groups. Obviously, the result may be
far from the optimal, and can be affected by the order of
group join. We can improve the performance by running the
algorithm on multiple group traces. In fact, in our simulation
studies, we will show that this Pseudo-Dynamic algorithm is
very effective: much faster than Greedy algorithm whenbth
is big without sacrificing too much performance.

Following the previous time analysis, it is easy to
see the time complexity for Pseudo-Dynamic algorithm
O(NgNtsn) = O(Ng

2n), which is much faster than
O(Ng

2n3) in the case of the Greedy algorithm.

VI. SIMULATION STUDIES

We implemented the proposed algorithms and tested them
under various conditions. In this section, we first introduce the
simulation environments and performance metrics, and then
we present the simulation results.

A. Simulation Settings

In our simulations, we use a network topology abstracted
from AT&T IP backbone, a real network topology with
123 nodes. This network consists of 9 gateway routers, 9
backbone routers, 9 remote GSR (Gigabit Switch Routers)
access routers, and 96 remote access routers. We conduct
an abstraction procedure to generate a simplified network of
54 nodes as follows: (1) the gateway routers and backbone
routers are kept as is; (2) the remote access routers attached
to the same gateway or backbone router are “contracted” into
one contracted node; and (3) one additionalexchange node
is created for each gateway router to represent the peering
networks and Internet public exchange points to which the
gateway router is connected.

In the obtained network topology, we generate group in-
stances to run different group-tree matching algorithms. We

useRandom Node Weight Model[9] for group member distri-
bution. In this model, we consider the probability (which we
call weight) that a router “participates” in multicast groups,
that is, this router has attached end hosts that join multi-
cast groups. In our simulated network, gateway nodes and
backbone nodes are assumed to be core routers only and are
assigned a weight of 0. The weights of the contracted nodes is
related to the number of access routers it represents. Exchange
nodes are each assigned a weight of 0.9, since they usually
connects to peering networks with a large number of group
members.

We assume the multicast group requests arrive as a Poisson
process, and groups’s lifetime follows an exponential distri-
bution. After the network reaches steady state, we know the
average number of groups. In our simulations, we fix average
group life time as 100 seconds and simulation time as 600
seconds, and vary the group arrival rates to control the number
of groups in the network. The group-tree matching algorithms
for Static Pre-Defined Trees are executed on the active groups
every 10 seconds, and the Dynamic On-Line algorithm is
executed continuously as group joins and leaves the network,
both after 400 seconds simulation time when steady state is
reached.

To evaluate the performance of the group-tree mapping
algorithms, besides Aggregation Degree (AD) (introduced
earlier), we define the following metrics:

State Reduction Ratio (SRR): Since multicast state in edge
routers cannot be reduced in any state reduction scheme, we
only consider the state in core routers. Thus, we define SRR
as:

SRR = 1− Sagg

Sno agg
(5)

whereSagg andSno agg represents the total number of multi-
cast state entries in core routers with and without tree aggre-
gation, respectively. The higher the SRR, the more multicast
state entries is reduced.

Program Execution Time (PET) is the total time to
run the simulation for an algorithm. It reflects the amount
of computation (and sometimes memory) required for an
algorithm.

We implement the group-tree matching algorithms in C++.
We use lp solve (Version 5) [1], an open source (Mixed-
Integer) Linear Programming system, to solve the ILP prob-
lems. An Intel Xeon 2.40GHz computer with 1GB memory is
used to execute the simulation experiments.

B. Results and Analysis

1) ILP vs. Greedy:We first compare the performance of
ILP and Greedy algorithms by varying the bandwidth waste
threshold (denoted asbth) from 0 to 0.05 and the number
of concurrently active groups from 500 to 2500. Due to the
computation overhead associated with ILP algorithm, we were
unable to obtain results for higher bandwidth waste threshold
and larger number of groups.

Figure 2 plots the results of AD (Aggregation Degree) for
these two algorithms. As shown in the figure, forbth = 0,
the ADs for both algorithms are exactly the same. The reason

7

1

1.5

2

2.5

3

0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 A
gg

re
ga

tio
n

D
eg

re
e

Average number of groups

bth=0
Greedy, bth=0.05

ILP, bth=0.05

Fig. 2. AD of ILP and Greedy algorithms vs. number of concurrently active
groups.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 S
ta

te
 R

ed
uc

tio
n

R
at

io

Average number of groups

bth=0
Greedy, bth=0.05

ILP, bth=0.05

Fig. 3. SRR of ILP and Greedy algorithms vs. number of concurrently active
groups.

behind this is simple: under this condition, leaky match is
not allowed, and each group can only be mapped onto its
native tree. Thus, for both algorithms, the set of aggregated
trees is the union of all the native trees. Asbth increases, ILP
out-performs Greedy, which is consistent with our intuition,
since ILP optimally minimizes the number of aggregated
trees whereas Greedy uses a heuristic algorithm to reduce
the same metric. Nevertheless, we want to emphasize that the
performance improvement of ILP vs. Greedy is very small.
For instance, when there are 2000 multicast groups co-existing
in the network, AD is 2.601 and 2.631 for ILP and Greedy,
respectively, which means ILP require approximately 9 trees
less than Greedy on average.

Figure 3 compares SRR (State Reduction Ratio) of ILP
vs. Greedy algorithms, which exhibits a similar trend as
Figure 2. Therefore, we can conclude that Greedy is able to
achieve near-optimal performance in reducing the number of
aggregation trees and multicast state entries.

Even though ILP achieves slightly higher performance than
Greedy, this gain comes at a cost of additional computation
overhead. To demonstrate this, we show the PET (Program
Execution Time) ratio of ILP vs. Greedy in Figure 4. We
observe that forbth = 0, the PET ratio increases approxi-
mately linearly with the number of co-existing group, which
corresponds to an exponential relationship between the time
ratio and the number of groups due to the use of log-scale for
y axis; for bth = 0.05, the ratio increases even more rapidly.
This indicates that computation cost of ILP will become too
expensive when there are a large number of simultaneously

1

10

100

1000

0 500 1000 1500 2000 2500 3000

P
ro

gr
am

 e
xe

cu
tio

n
tim

e
ra

tio
 (

IL
P

/G
re

ed
y)

Average number of groups

bth=0
bth=0.05

Fig. 4. PET Ratio of ILP and Greedy algorithms vs. number of concurrently
active groups.

 0

 1

 2

 3

 4

 5

 6

-0.05 0 0.05 0.1 0.15

A
ve

ra
ge

 A
gg

re
ga

tio
n

D
eg

re
e

Bandwidth waste threshold

Dynamic, 1000 groups
Dynamic, 4000 groups

Greedy, 1000 groups
Greedy, 4000 groups

Fig. 5. AD of Greedy and Pseudo-Dynamic algorithms vs. bandwidth waste
threshold.

active groups and/or when the bandwidth waste threshold is
high. For example, whenbth = 0.05 and number of groups
is 2500, the program is not able to finish within one day for
ILP algorithm, whereas it takes only less than 50 seconds for
the Greedy algorithm to complete.

2) Greedy vs. Pseudo-Dynamic:As shown in previous
section, ILP algorithm is not feasible for large number of
groups and high bandwidth waste threshold, so we now only
compare the performance of Greedy vs. Pseudo-Dynamic
algorithms. We expect that the latter algorithm is not able
to perform as well as Greedy, since it does not exploit all
potential trees for a group and select trees based on a global
view of the relationship between groups and trees as Greedy
does. Figure 5 and 6 plot the AD and SRR, respectively,
for these two algorithms when the bandwidth waste threshold
and the number of groups are varied. Both figures show the
same trend as expected: except forbth = 0 when Greedy
and Pseudo-Dynamic algorithms yield the same results for
the reason explained earlier, Greedy always achieves higher
multicast state scalability (or better aggregation) than Pseudo-
Dynamic algorithm. For example, when there are 4000 co-
existing groups andbth = 0.1, AD is 5.400 and 4.822
for Greedy and Pseudo-Dynamic, respectively, and the corre-
sponding SRR is 0.819 and 0.796. Additionally, as bandwidth
waste threshold increases, the difference in these two metrics
becomes more distinct. We want to point out here that the
performance penalty resulted from using Pseudo-Dynamic
instead of Greedy algorithm is very small: under the conditions
tested, in the worst case, the performance reduction by Pseudo-
Dynamic algorithm is 14.3% for AD and only 5.16% for SRR,
relative to Greedy algorithm.

8

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

-0.05 0 0.05 0.1 0.15

A
ve

ra
ge

 S
ta

te
 R

ed
uc

tio
n

R
at

io

Bandwidth waste threshold

Dynamic, 1000 groups
Dynamic, 4000 groups

Greedy, 1000 groups
Greedy, 4000 groups

Fig. 6. SRR of Greedy and Pseudo-Dynamic algorithms vs. bandwidth waste
threshold.

 0.01

 0.1

 1

 10

 100

-0.05 0 0.05 0.1 0.15

P
ro

gr
am

 e
xe

cu
tio

n
tim

e
ra

tio
 (

G
re

ed
y/

D
yn

am
ic

)

Bandwidth waste threshold

1000 groups
4000 groups

Fig. 7. PET Ratio of Greedy and Pseudo-Dynamic algorithms vs. bandwidth
waste threshold.

Finally, we plot the PET ratio of Greedy vs. Pseudo-
Dynamic algorithms in Figure 7. We found in our simula-
tions that the PET of Pseudo-Dynamic algorithm is affected
mostly by the number of groups and not by the value of
bandwidth waste threshold (which is not shown here due to
space limitation). In contrast, as shown in Figure 7, the PET
ratio increases exponentially to the bandwidth waste thresh-
old, which indicates that the PET of the Greedy Algorithm
grows very fast. For smallbth, Greedy algorithm runs faster;
when bth ≥ 0.125, Pseudo-Dynamic algorithm out-performs
Greedy. Whenbth = 0.125, for 1000 groups, the PET ratio
is as high as 48.3; for more than 2000 groups, the Greedy
algorithm runs out of memory due to the storage requirement
of a large number of potential trees for all groups, which is
another disadvantages of ILP and Greedy algorithms.

3) Greedy vs. Dynamic On-Line:For on-line group-tree
matching problem, Greedy algorithm gives an upper bound
of how well Dynamic algorithm can solve this problem,
because Dynamic algorithm incrementally finds group-tree
matching for each group as groups join and leave the network
by considering only existing trees as candidate trees, while
Greedy algorithm takes advantage of the knowledge of groups
joining later than the current one and tries to use one tree to
include as many groups as possible. As illustrated in Figure 8
and 9, the results match our conjecture. In addition, in the case
of AD, as bth increases, the difference between these two
algorithms is magnified; however, for SRR, their difference
remains approximately the same forbth ≥ 0.05. From these
results, we can see that the Dynamic algorithm can achieve
the goal reasonably well whenbth is relatively small, as is

 0

 1

 2

 3

 4

 5

 6

 7

 8

-0.05 0 0.05 0.1 0.15

A
ve

ra
ge

 A
gg

re
ga

tio
n

D
eg

re
e

Bandwidth waste threshold

Dynamic, 1000 groups
Dynamic, 4000 groups

Greedy, 1000 groups
Greedy, 4000 groups

Fig. 8. AD of Greedy and Dynamic On-Line algorithms vs. bandwidth waste
threshold.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-0.05 0 0.05 0.1 0.15
A

ve
ra

ge
 S

ta
te

 R
ed

uc
tio

n
R

at
io

Bandwidth waste threshold

Dynamic, 1000 groups
Dynamic, 4000 groups

Greedy, 1000 groups
Greedy, 4000 groups

Fig. 9. SRR of Greedy and Dynamic On-Line algorithms vs. bandwidth
waste threshold.

true in reality: we do not want to waste too much bandwidth
to improve state scalability.

We also collected the execution time ratio of Greedy vs.
Dynamic algorithm in 10. We observe again that Greedy
algorithm generally takes longer time, especially for largebth,
due to the exhaustive search of candidate trees required by the
algorithm.

In conclusion, our simulation studies show the following
results: 1) Among the algorithms for Static Pre-Defined Trees,
the performance of multicast state scalability degrades in the
order of ILP (optimum), Greedy (near-optimum), and Pseudo-
Dynamic; however, the first two algorithms are not feasible
in reality due to significant processing and memory overhead.
2) The Dynamic On-Line algorithm is demonstrated to be a
practical solution to the dynamic group-tree matching problem
with limited performance penalty and reasonable computation
requirement.

VII. C ONCLUSIONS

In this paper, we have studied the group-tree matching
problem in large scale group communications. We formulated
two versions of the problem: static version and dynamic
version. We proved that the static version of the problem is
NP-complete. For each version of the problem, we proposed
different solutions: three algorithms (ILP, Greedy, and Pseudo-
Dynamic) are deigned for Static Pre-Defined Trees; and one
general heuristic on-line algorithm is presented to solve the
Dynamic On-Line Tree problem. By simulation studies, we
find that Greedy algorithm is a feasible solution to the Static
Pre-Defined Tree problem when bandwidth waste threshold

9

 0.1

 1

 10

 100

-0.05 0 0.05 0.1 0.15

P
ro

gr
am

 e
xe

cu
tio

n
tim

e
ra

tio
 (

G
re

ed
y/

D
yn

am
ic

)

Bandwidth waste threshold

1000 groups
4000 groups

Fig. 10. PET ratio of Greedy and Dynamic On-Line algorithms vs. bandwidth
waste threshold.

(bth) is small, and its performance is very close the ILP
optimal solution (less than 1.5% for most of the cases).
Pseudo-Dynamic algorithm is much more time-efficient when
bth is big though it introduces some performance penalty (with
14.3% in the worst case of our simulations). We also formally
evaluated the performance of dynamic on-line group-tree
matching algorithm, and our experiments results demonstrate
that the dynamic on-line algorithm is practical to solve on-line
group-tree matching problem.

REFERENCES

[1] lp solve, Version 5.0. http://groups.yahoo.com/group/lpsolve/.
[2] Filli Y. Y. Cheng and Rocky K. C. Chang. A tree switching protocol

for multicast state reduction. InIn the Proceedings of IEEE Symposium
on Computers and Communications (ISCC’00), 2000.

[3] Y. Chu, S. Rao, and H. Zhang. A case for end system multicast.
Proceedings of ACM Sigmetrics, June 2000.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to
Algorithms. MIT Press, 1990.

[5] Lus Henrique M.K. Costa, Serge Fdida, and Otto Carlos M.B. Duarte.
Hop-by-hop multicast routing protocol.Proceddings of SIGCOMM’01,
August 2001.

[6] J.-H. Cui, L. Lao, D. Maggiorini, and M. Gerla. BEAM: A distributed
aggregated multicast protocol using bi-directional trees. InProceedings
of IEEE ICC, May 2003.

[7] Jun-Hong Cui, Dario Maggiorini, Jinkyu Kim, Khaled Boussetta, and
Mario Gerla. A protocol to improve the state scalability of source
specific multicast. InProceedings of IEEE GLOBECOM, November
2002.

[8] Aiguo Fei, Jun-Hong Cui, Mario Gerla, and Michalis Faloutsos. Aggre-
gated Multicast: an approach to reduce multicast state.Proceedings of
Sixth Global Internet Symposium(GI2001), November 2001.

[9] Aiguo Fei, Jun-Hong Cui, Mario Gerla, and Michalis Faloutsos. Aggre-
gated Multicast with inter-group tree sharing.Proceedings of NGC2001,
November 2001.

[10] D. S. Johonson. Approximation algorithms for combinatorial problems.
Journal of Computer and System Sciences, 9:256–278, 1974.

[11] V. T. Paschos. A survey of approximately optimal solutions to some
covering and packing problems.ACM Computing Surveys, 29(2):171–
209, June 1997.

[12] P. I. Radoslavov, D. Estrin, and R. Govindan. Exploiting the bandwidth-
memory tradeoff in multicast state aggregation. Technical report, USC
Dept. of CS Technical Report 99-697 (Second Revision), July 1999.

[13] Sejun Song, Zhi-Li Zhang, Baek-Young Choi, and David H.C. Du.
Protocol independent multicast group aggregation scheme for the global
area multicast. InIn the Proceedings of the IEEE Global Internet
Symposium (Globecom’00), 2000.

[14] I. Stoica, T.S. Ng, and H. Zhang. REUNITE: A recursive unicast
approach to multicast. InProceedings of IEEE INFOCOM’00, Tel Aviv,
Israel, March 2000.

[15] D. Thaler and M. Handley. On the aggregatability of multicast forward-
ing state.Proceedings of IEEE INFOCOM, March 2000.

[16] J. Tian and G. Neufeld. Forwarding state reduction for sparse mode
multicast communications.Proceedings of IEEE INFOCOM, March
1998.

