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ABSTRACT
This research is motivated by the dominance of the
Google search engine and the bias that it may intro-
duce to the users’ perception of the Web. According to
a recent study, 75% of keyword searches on the Web are
handled by Google [17]. Given that Google returns cur-
rently “popular” pages at the top of search results, are
we unfairly penalizing newly created pages that are not
yet very well known? Is there a better way of measuring
the “quality” of a page than using the “popularity” of
the page? In this paper, we propose a new definition of
page quality and develop a practical way of measuring
the proposed page quality based on the evolution of the
Web link structure. We prove that our proposed quality
estimator measures the quality of a page well through
a theoretical analysis of a reasonable Web user model.
We also present our experimental results that show the
potential of our estimator in measuring the page quality.
We believe that our quality estimator has the potential
to alleviate the “rich-get-richer” phenomenon and help
new and high-quality pages get the attention that they
deserve.

1. INTRODUCTION
Since its founding in 1998, Google has become the dom-
inant search engine on the Web. According to a recent
estimate [17], about 75% of Web searches are being han-
dled by Google directly or indirectly. For example, in
addition to the keyword queries that Google gets di-
rectly from its sites, all keyword searches on AOL are
routed to Google. It is this startling dominance that
led one Internet commentator to conclude that, essen-
tially, “if your page is not indexed by Google, your page
does not exist on the Web [16].” While this statement
may be an exaggeration, it contains an alarming bit of
truth. To find a page on the Web, many users go to
Google (or another search engine that uses Google re-

sults), issue keyword queries, and look at the results.
If the users cannot find relevant pages after several it-
erations of keyword queries, they are likely to give up
and stop looking for further pages on the Web. A page
not indexed by Google or ranked poorly by Google is
therefore not likely to be viewed by many Web users.

Our research is motivated by this dominance of Google
and the bias that it may introduce. Is the people’s per-
ception of the Web influenced by Google? What kind
of and how much bias does it introduce? Is there a way
to reduce this bias? Our research is particularly con-
cerned about Google’s ranking of Web pages and the
bias induced from this ranking.

While Google takes more than 100 factors into account
in determining the final ranking of a page [9], the core
of their ranking algorithm is based on a metric called
PageRank [18, 5]. PageRank is essentially a “link-popularity”
metric, where a page is considered more important if
the page is linked to by many other pages on the Web.1

Roughly speaking, Google puts a page at the top in
a search result (out of all the pages that contain the
keywords that the user issued) when the page is linked
to by the most other pages on the Web. The effec-
tiveness of Google’s search results and the adoption of
PageRank by major search engines [23] strongly indi-
cate that PageRank is an effective ranking metric for
Web searches.

It is important to understand the distinction between
the importance or quality of a page and the relevance
of a particular Web document to a particular search.
The relevance is a quantity that depends heavily on the
particular search issued by a user. In contrast, the im-
portance or quality of the document is a quantity that
can be computed at crawl time and could be seen as
intrinsic to the document itself. It is this intrinsic doc-
ument quality with which this paper is concerned.

The core assumption of PageRank is that pages that are
very popular are the pages of highest quality. But one
important problem is that PageRank is based on the
current popularity of a page. Since currently-popular

1A more precise description of the PageRank metric is
provided in Section 3.



pages are repeatedly returned by search engines as the
top results, they are also the easiest for users to dis-
cover, which increases their popularity further. In con-
trast, a currently-unpopular page is often not returned
by search engines, so few new links will be created to
the page, keeping page’s ranking down. This “rich-get-
richer” phenomenon can be particularly problematic for
the high-quality yet currently-unpopular pages. Even if
a page is of high quality, the page may be completely
ignored by Web users simply because its current pop-
ularity is very low. It is clearly unfortunate (both for
the author of the new page and the overall Web users)
that important and useful information is being ignored
simply because it is new and has not had a chance to
be noticed. It is here we see this core assumption of
PageRank violated.

Now that we have identified this flaw in the PageRank
metric, can we avoid this problem? That is, is there a
way to rank pages based on their quality and not simply
on their popularity?

At the core of this problem lies the question of page
quality. What do we mean by the quality of a page?
Without a good definition of page quality, it is diffi-
cult to measure how much bias PageRank induces in its
ranking and how well other ranking algorithms capture
the quality of pages.

In this paper we first try to clarify the notion of page
quality and introduce a formal definition of page qual-
ity. Our quality metric is based on the idea that if the
quality of a page is high, when a Web user reads the
page, the user will probably like the page (and create
a link to it). So we define the quality of a page as the
probability that a Web user will like the page enough
to create a link to it when he reads the page. We then
propose a quality estimator, or a practical way of es-
timating the quality of a page. Our quality estimator
analyzes the changes in the Web link structure and uses
this information to estimate page quality. We theoret-
ically show that our estimator can measure the exact
quality of pages based on a simple and reasonable Web
model. We also present our experimental results that
show the potential of our estimator in measuring the
quality of a page. In summary, we believe we make the
following contributions in this paper:

• We introduce a formal definition of page quality,
which we believe is a good way of capturing the
intuitive concept of “page quality.” By separat-
ing the notion of page quality from actual ranking
functions, such as PageRank, we provide the for-
mal framework to objectively judge the effective-
ness of a ranking function. (Section 4)

• We show that Google’s PageRank measures our
formal definition of page quality very well in cer-
tain conditions. We also argue that Google’s PageR-
ank is heavily biased against unpopular pages, es-
pecially the ones that were created recently. (Sec-
tion 4)

• We propose a direct and practical way of estimat-
ing page quality. Our proposed quality estimator
is based on our careful analysis of a simple and
reasonable Web user model. We provide the intu-
ition and the derivation of our proposed estimator.
(Sections 5 through 7)

• We conduct an experiments on real-world Web
data to measure the effectiveness of our quality es-
timator. While preliminary, this experiment will
show the potential of our estimator in estimating
the quality of a page. (Section 8)

2. RELATED WORK
[22] provides a good overview of the work done in the
Information Retrieval (IR) community that studies the
problem of identifying the best matching documents to
a user query. This body of work analyzes the content of
the documents to find the best matches. The boolean
model [27], the vector-space model [21] and the proba-
bilistic model [20, 7] are some of the well known models
developed in this context. Some of these models (par-
ticularly the vector-space model) were adopted by many
of the early Web search engines. This work is, however,
geared towards measuring the relevance of a page rather
than its quality.

A number of researchers have investigated using the link
structure of the Web to improve search results and pro-
posed various ranking metrics. Hub and Authority [13]
and PageRank [18] are the most well known metrics that
use the Web link structure. PageRank and its varia-
tions are currently being used by major search engines.
[1, 11, 12] describe various ways to improve PageRank
computation. [2] provides a theoretical justification for
the Hub and Authority metric and proposes a mecha-
nism to combine link and text analysis for page rank-
ing. [10] studies personalization of the PageRank met-
ric by giving different weights to pages. [25] proposes
a modification of PageRank equation to tailor it for
Web administrators. [23] proposes to rank Web pages
by the user traffic to the pages and suggests a traffic-
prediction model based on entropy maximization. In the
database community, researchers also developed ways to
rank database objects by modeling the object relation-
ship as a graph [8] and measuring the object proximity.

There exists a large body of work that investigates the
properties of the Web link structure [3, 4, 6, 19]. For
example, [6] shows that the global link structure of the
Web is similar to a “bow tie.” [3, 6] shows that the
number of in-bound or out-bound links follow a power-
law distribution. [4, 19] propose potential models on
the Web link structure.

The probabilistic model [7, 20] developed in the IR com-
munity is similar to our quality metric in that both defi-
nitions take a probabilistic approach. The probabilistic
model, however, measures that probability that a page
belongs to the relevant set given a particular user query,
while our quality metric measures the general probabil-
ity that a user will like a page when the user looks at



the page.

3. PAGERANK AND POPULARITY
We start our discussion with a brief overview of the
PageRank metric and explain how it is related to the
notion of the popularity of a page. A reader familiar
with PageRank may skip this section.

Intuitively, PageRank is based on the idea that a link
from page p1 to p2 may indicate that the author of p1

is interested in page p2. Thus, if a page has many links
from other pages, we may conclude that many people
are interested in the page and that the page should be
considered important, or of high quality. Furthermore,
we expect that a link from an important page (say, the
Yahoo home page) carries more significance than a link
from a random Web page (say, some individual’s home
page). Many of the important pages go through a more
rigorous editing process than a random page, so it would
make sense to value the link from an important page
more highly.

The PageRank metric PR(p), thus, defines the impor-
tance of page p to be the sum of the importance of the
pages that point to p. Thus, if many important pages
point to p, PR(p) will be high. More formally, consider
page pi that is pointed at by pages p1, . . . , pm. Let cj

be the number of links going out of page pj .
2 Then, the

PageRank of page pi is given by

PR(pi) = d + (1 − d) [PR(p1)/c1 + · · · + PR(pm)/cm]

Here, the constant d is called a damping factor whose
intuition is given below. Ignoring the damping factor
for now, we can see that PR(pi) is roughly the sum of
PR(pj)’s that point to pi. Under this formulation, note
that we construct one equation per Web page pi with
the equal number of unknown PR(pi) values. Thus, the
equations can be solved for the PR(pi) values. This
computation is typically done through iterative meth-
ods, starting with all PR(pi) values equal to 1.

One intuitive model for PageRank is that we can think
of a user “surfing” the Web, starting from any page,
and randomly selecting from that page a link to follow.3

When the user is on a page, there is some probability, d,
that the next visited page will be completely random.
This damping factor d makes sense because users will
only continue clicking on links for a finite amount of time
before they get distracted and start exploring something
completely unrelated. With the remaining probability
1 − d, the user will click on one of the cj links on page
pj at random. The PR(pi) values we computed above
give us the probability that our random surfer is at pi

at any given time.

Given the definition, we can interpret the PageRank of
a page as its popularity on the Web. High PageRank

2If a page has no outgoing link, we assume that it has
outgoing links to every single Web page.
3When the user reaches a page with no outlinks, he
jumps to a random page.

implies that (1) many web users are interested in the
page and that (2) more users are likely to visit the page
compared to low PageRank pages. Given the effective-
ness of Google’s search results and its adoption by many
Web search engines [23], PageRank seems to capture the
importance or the quality of Web pages well. Accord-
ing to a recent survey the majority of users are satisfied
with the top-ranked results from Google and from major
search engines [15].

We should note that the PageRank algorithm described
here is unlikely to be exactly the technique used by
Google today. Since the founding of Google as a private
company, the development of PageRank has continued,
and likely now contains corrections or other measures to
deal with “search engine optimizers” who interfere with
PageRank. While for the purposes of this paper we will
use the basic PageRank algorithm described in this sec-
tion, we could easily include more advanced techniques.

4. QUALITY AND PAGERANK
In the previous section, we went over the definition of
PageRank and explained that the PageRank of a page
captures the popularity of the page on the Web. We
also argued that the widespread use of PageRank for
Web search engines indicates its effectiveness for Web
searches.

While quite effective, one significant flaw of PageRank
is that it is inherently biased against unpopular pages.
For example, consider a new page that has just been
created. We assume that the page is of very high qual-
ity and anyone who looks at the page agrees that the
page should be ranked highly by search engines. Even
so, because the page is new, there exist only a few (or
no) links to the page and thus search engines never re-
turn the page or give it very low rank. Because search
engines do not return it, few users ever see this page, so
the popularity of the page does not increase very much.
It may take a very long time for this new page to be
discovered by enough users to be ranked highly by the
search engine.

To avoid this problem, is there a way to measure the
quality of a page and somehow promote the high-quality
(yet not very popular) pages? The first challenge to the
problem is the notion of “page quality.” What do we
mean by page quality? How can we quantify it?

We note that page quality can be a very subjective
notion; different people may have completely different
quality judgment on the same page. One person may
regard a page very highly while another person may con-
sider the page completely useless. Given this subjectiv-
ity, is it possible to come up with a reasonable definition
of page quality that on which most people can agree?

In this paper, we propose to quantify the quality of a
page as the probability that a random Web user will
like the page enough to create a link to it once that user
discovers the page for the first time.



Definition 1 (Page quality) We define the quality of
a page p, Q(p), as the conditional probability that an
average user will like the page and create a link to the
page p given that the user discovers the page for the
first time. Mathematically,

Q(p) = P (Lp|Ap)

where Ap represents the event that the user becomes
newly aware of the page p and and Lp represents the
event that the user likes the page and creates a link to
p. 2

Given this definition, we can hypothetically measure the
quality of page p by showing p to all Web users (or to
a sample of Web users) and getting the users’ feedback
on whether they like p or not (or by counting how many
people create a link to p). For example, assuming the
total number of Web users is 100, if 90 Web users like
page p after they read it, its quality Q(p) is 0.9. We
believe that this is a reasonable way of defining page
quality given the subjectivity of page quality. When
individual users have different opinions on the quality
of a page, it is reasonable to consider a page to be of
higher quality if more people are likely to “vote for” the
page.

Under this definition, we note that it is possible that
page p1 is considered of higher quality than p2 simply
because p1 discusses a more popular topic. For example,
if p1 is about the movie “Star Wars” and p2 is about
the movie “Latino” (a 1985 movie produced by George
Lucas), p1 may be considered to be of higher quality un-
der our definition simply because the movie “Star Wars”
is more popular than “Latino.” This again is the cen-
tral issue of relevance versus quality. Any search engine
must also employ techniques to narrow a search to a par-
ticular set of relevant documents. It is only once this set
of documents (say, pages on the movie Latino) has been
identified that the quality or importance metric is used
to rank the pages, so only the relative quality within a
particular relevant set of documents will actually be im-
portant in determining the results returned in response
to a query. Thus this “topic bias” does not hurt the
effectiveness of a search engine using our metric.

Note that the current popularity (PageRank) of a page
estimates the quality of a page well if all Web pages have
been given the same chance to be discovered by Web
users; when pages have been looked at by the same set
of people, the number of people who like the page (and
create a link to it) is proportional to its quality. How-
ever, new pages have not been given the same chance as
old and established pages, so the current popularity of
new pages are definitely lower than their quality. In the
next section, we discuss how we can measure the quality
of a page using the evolution of the Web link structure.

5. QUALITY ESTIMATOR: INTUITION
Although we arrived at the quality estimator theoreti-
cally based on a user visitation model, before we delve

into this detailed analysis we will in this section pro-
vide a more intuitive explanation. This way, the more
technical analysis in Sections 6 and 7 will be easier to
understand.

How can we measure the quality of a page without ask-
ing for user feedback? Given that the quality of a page
is the fraction of the Web users who create a link to the
page once the users visit the page, we may suspect that
the time derivative of the link count (or PageRank) of
the page may provide some information of its quality.
The difficult question is exactly how we should use the
time derivative to correctly estimate the quality.

Our main idea for quality measurement is as follows:
The quality of a page is how many users will like a
page and create a link to the page when they discover
it. Therefore, if two pages are discovered by the same
number of people during the same period, more people
will create a link to the higher-quality page. In par-
ticular, the increase in the link count (or popularity)
is directly proportional to the quality of a page. Thus,
by measuring the increase in popularity, not the current
popularity, we may estimate the page quality more ac-
curately. We can use here any measure of popularity.
We will use PageRank for the purposes of this paper be-
cause of its success as a popularity metric, but we could
just as easily substitute the number of links.

There exist two problems with this approach. The first
problem is that pages are not visited by the same num-
ber of people. A popular page will be visited by more
people than an unpopular page. Even if the quality of
pages p1 and p2 are the same, if page p1 is visited by
twice as many people as p2, it will get twice as many
new links as p2. To accommodate this fact, we need to
divide the popularity increase by the number of visitors
to this page. Given that current PageRank (or popular-
ity) captures the probability that a random Web surfer
arrives at a page, we may assume that the number of
visitors to a page is proportional to its current popu-
larity. We thus divide the increase in the popularity by
the current PageRank to measure quality.

The second problem is that the popularity of an already
well-known page may not increase very much because
it is already known to most Web users. Even though
many users visit the page, they do not create any more
links to the page because they already know about it
and have already created links to it. Therefore, if we
estimate the quality of a well-known page simply based
on the increase in the popularity, the estimate may be
lower than its true quality value. We avoid this prob-
lem by considering both the current popularity of the
page and the increase in the popularity. More precisely,
we measure the quality of page through the following
formula:

Q(p) ≈ C ·
∆PR(p)

PR(p)
+ PR(p) (1)

Here, the first term, ∆PR(p)
PR(p)

, estimates the quality of a



page by measuring the relative increase in its PageR-
ank.4 The second term, PR(p), is to account for the
well-known pages whose PageRank do not increase much
because they are already so well known. When the
PageRank of a page has saturated, we believe that the
saturated PageRank value reflects the quality of the
page: a higher-quality page is eventually linked to by
more pages. The constant C in the formula decides the
relative weight that we give to the increase in PageRank
and to the current PageRank.

Note that we can measure the values in the above for-
mula in practice by taking multiple snapshots of the
Web. That is, we download the Web multiple times,
say twice, at different times. We then compute the
PageRank of every page in each snapshot and take the
PageRank difference between the snapshots. Using this
difference and the current PageRank of a page, we can
compute its quality value.

In the next two sections, we present our original theo-
retical analysis that led us to the above estimator.5 In
Section 6 we explain our model on how Web users visit
pages. In Section 7, we analyze how the popularity of
a page evolves over time under this model and use the
result to obtain the quality estimator.

6. OUR USER-VISITATION MODEL
6.1 Basic definitions
Before we explain our user-visitation model, we intro-
duce three definitions that are important to understand
our model. First, we introduce two notions of popular-
ity: (simple) popularity and visit popularity.

Definition 2 (Popularity) We define the popularity
of page p at time t, P(p, t), as the fraction of Web users
who like the page. 2

Under this definition, if 100,000 users (out of, say, one
million) currently like page p1, its popularity is 0.1.

Notice the subtle difference between the quality of a
page and the popularity of a page. The quality is the
probability that a Web user will like the page if the user
discovers the page, while the popularity is the current
fraction of Web users who like the page. Thus, a high-
quality page may have low popularity because few users
are currently aware of the page.

We note that the exact popularity of a page is difficult
to measure in practice. However, we may substitute any
popularity metric, such as PageRank, as a surrogate to
its popularity.

The second notion of popularity, visit popularity, mea-
sures how many “visits” a page gets in a unit time in-

4We may replace PR(p) in the formula with the number
of links
5In fact, the intuition and the potential problems that
we described in this section was gained with a hindsight
after we arrived at the final form of the estimator.

terval.

Definition 3 (Visit popularity) We define the visit
popularity of a page p at time t, V(p, t), as the number
of “visits” or “page views” the page gets within a unit
time interval at time t. 2

For example, if 100 users visit page p1 in the unit time
interval from t, and if 200 users visit page p2 in the same
time period, V(p2, t) is twice as large as V(p1, t).

We also introduce the notion of user awareness.

Definition 4 (User awareness) We define the user
awareness of page p at time t, A(p, t), as the fraction of
the Web users who is aware of p at time t. 2

For example, if 100,000 users (say, out of one million)
have visited the page p1 so far and are aware of the
page, its user awareness, A(p1, t), is 0.1.

Note that the user awareness of p represents the number
of Web users who have already visited the page and are
aware of it whether they like it or not. In contrast, the
popularity of p represents the number of users who know
about the page and like it. Given the definitions, we can
see the following relationship between user awareness,
popularity and page quality.

Lemma 1 The popularity of p at time t, P(p, t), is
equal to the fraction of Web users who are aware of p
at t, A(p, t), times the quality of p.

P(p, t) = A(p, t) · Q(p) 2

Proof In order for a Web user to like the page p, the
user has to be aware of p and like the page. The prob-
ability that a random Web user is aware of the page
is A(p, t) (Definition 4). The probability that the user
will like the page is Q(p) (Definition 1). Thus, P(p, t) =
A(p, t) · Q(p). �

Note that P(p, t) and A(p, t) are functions of time t, but
Q(p) is not. In our model, we assume that the quality
Q(p) is an inherent property of p that does not change
over time. Therefore, the popularity of page p, P(p, t),
changes over time not because its quality changes, but
because users’ awareness of the page changes.

For reader’s convenience, we summarize our notation in
Table 1. As we continue our discussion, we will explain
some of the symbols that have not been introduced yet.

6.2 User-visitation model: two hypotheses
We now explain two core hypotheses of our user-visitation
model. The first hypothesis is based on the random-
surfer interpretation of PageRank. In Section 3 we ex-
plained that the PageRank of page p is equivalent to the
probability that a user will visit the page when the user
randomly surfs the Web. Given this interpretation, it



Symbol Meaning

PR(p) PageRank of page p (Section 3)
Q(p) Quality of p (Definition 1)
P(p, t) (Simple) popularity of p at t (Definition 2)
V(p, t) Visit popularity of p at t (Definition 3)
A(p, t) User awareness of p at t (Definition 4)
I(p, t) Relative popularity increase:

I(p, t) =
(

n
r

) dP(p,t)/dt
P(p,t)

r normalization constant: V(p, t) = rP(p, t)
n Total number of Web users

Table 1: The symbols that are used throughout
this paper and their meanings

is reasonable to assume that the number of visitors to
a page at time t, V(p, t), is proportional to its current
popularity P(p, t), which may be measured by PageR-
ank.

Proposition 1 (Popularity-equivalence hypothe-
sis)
The number of visits to page p within a unit time inter-
val at time t is proportional to how many people like the
page. That is,

V(p, t) = rP(p, t) (or V(p, t) ∝ P(p, t))

where r is a normalization constant common to all pages.

2

At an intuitive level, the above hypothesis makes sense
because when a page is popular the page is likely to be
visited by many people.

Our second hypothesis is that a visit to page p can be
done by any Web user with equal probability. That is, if
there exist n Web users and if a page p was just visited
by a user, the visit may have been done by any Web
user with 1/n probability.

Proposition 2 (Random-visit hypothesis) All web
users will visit a particular page with equal probability.

2

7. THEORETICAL DERIVATION OF QUAL-
ITY ESTIMATOR

The goal of this section is to investigate the user-visitation
model described in the previous section and see how we
may measure the quality of page p by observing the
evolution of its popularity. For this purpose, we first
analyze the popularity evolution of a page under the
model.

7.1 Popularity evolution
Intuitively, if we know the current popularity of the page
p, we can estimate how many new users will visit p based
on Propositions 1 and 2. Then, out of these new users,
Q(p) fraction will like the page p, so we can estimate
how much its popularity will increase. Therefore, as

long as we know the initial popularity of the page p, we
can derive its entire popularity evolution over time.

For formal derivation, we first prove the following lemma.
The lemma shows that we can learn the current user
awareness of a page from the history of its past popu-
larity. For the proof, we assume that there are n Web
users in total.

Lemma 2 The user awareness of p at t, A(p, t), can be
computed from its past popularity through the following
formula:

A(p, t) = 1 − e−
r

n

∫

t

0
P(p,t)dt

2

Proof V(p, t) is the rate at which Web users visit the

page p at t. Thus by time t, page p is visited
∫ t

0
V(p, t)dt =

r
∫ t

0
P(p, t)dt times.

Without loss of generality, we compute the probability
that user u1 is not aware of the page p when the page
has been visited k times. The probability that the ith
visitor to p was not u1 is (1 − 1

n
). Therefore, when p

has been visited k times, the probability that u1 would
have never visited p is (1 − 1

n
)k. By time t, the page

is visited
∫ t

0
V(p, t)dt times. Then the probability that

the user is not aware of p at time t, 1 −A(p, t), is

1 −A(p, t) =

(

1 −
1

n

)

∫

t

0
V(p,t)dt

=

(

1 −
1

n

)r
∫

t

0
P(p,t)dt

=

[

(

1 −
1

n

)−n
]−

r

n

∫

t

0
P(p,t)dt

Here we will assume that the number of web users is
quite large, so we can approximate the above expression

by observing that when n → ∞,
(

1 − 1
n

)−n
→ e. Thus,

1 −A(p, t) = e−
r

n

∫

t

0
P(p,t)dt

�

Lemma 1 shows that the current popularity of a page
can be computed from its current awareness. Lemma 2
shows that the current awareness can be computed from
its past popularity. Combined together, the lemmas
show that we can compute the current popularity of
a page from its past popularity. The following theorem
shows the popularity evolution given its initial popular-
ity.

Theorem 1 The popularity of page p evolves over time
through the following formula.

P(p, t) =
Q(p)

1 + [ Q(p)
P(p,0)

− 1] e−[ r

n
Q(p)]t

Here, P(p, 0) is the popularity of the page p at time zero
when the page was first created. 2
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Figure 1: Time evolution of page popularity

In the rest of this paper, we skip the proofs due to their
length and complexity. Proofs are not important to un-
derstand the core idea of the paper, but interested read-
ers may read Section 11 for the proofs.

Based on the result of the above theorem, we show an
example of the popularity evolution of a page in Fig-
ure 1. We assumed Q(p) = 0.8, n = 108, r = 108

and P(p, 0) = 10−8. Roughly, these parameters corre-
spond to the case where there are 100 million Web users
and only one user liked the page p at its creation. The
quality is relatively high at 0.8. The horizontal axis cor-
responds to the time. The vertical axis corresponds to
the popularity P(p, t) at the given time.

From the graph, we can see that a page roughly goes
through three stages after its birth: the infant stage, the
expansion stage, and the maturity stage. In the first in-
fant stage (between t = 0 and t = 15) the page is barely
noticed by Web users and has practically zero popular-
ity. At some point (t = 15), however, the page enters
the second expansion stage (t = 15 and 30), where the
popularity of the page suddenly increases. In the third
maturity stage, the popularity of the page stabilizes at
a certain value. Note that this “sigmoidal” evolution
of popularity has been experimentally observed in the
site popularity-evolution data collected by Web tracking
companies (e.g., NetRatings [14]).

We also note that the eventual popularity of p is equal
to its quality value 0.8. The following corollary shows
that this equality holds in general.

Corollary 1 The popularity of page p, P(p, t), eventu-
ally converges to Q(p). That is, when t → ∞, P(p, t) →
Q(p). 2

The result of this corollary is reasonable. When all users
are aware of the page, the fraction of all Web users who
like the page is the quality of the page.

The result of Figure 1 confirms our earlier assertion that
the popularity of a page is not a good estimator of its
quality when the page has just been created. During the
infant and the expansion stage (t < 30), the popularity
of the page is significantly lower than its true quality
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Figure 2: Time evolution of I(p, t) and P(p, t) as
predicted by the model.

value. It is only in the maturity stage when the popu-
larity reflects the true quality of the page. In the next
subsection, we check whether the time derivative of the
popularity is a better estimator of the page quality.

7.2 Derivation of quality
Our main idea for better quality estimation is to use
the popularity increase of the page as the quality esti-
mator. To check the validity of this idea, we take the
time derivative of P(p, t) and get the following lemma.

Lemma 3 The quality of a page is proportional to its
popularity increase and inversely proportional to its cur-
rent popularity. It is also inversely proportional to the
fraction of the users who are unaware of the page, 1 −
A(p, t).

Q(p) =
(n

r

) dP(p, t)/dt

P(p, t) (1 −A(p, t))
(2)

2

In the above equation, note that two main factors, dP(p, t)/dt
and P(p, t), are measurable in practice while 1−A(p, t)
is not. That is, we can measure dP(p, t)/dt by down-
loading the Web multiple times and measuring popu-
larity increase of p. P(p, t) can also be measured from
its current popularity. A(p, t) is, however, difficult to
measure because we do not know how many users are
aware of p unless we know when p was first created
and how many users have visited it so far. Therefore,
for now, we ignore the unmeasurable factor 1 − A(p, t)
from the equation and study the property of the remain-

ing factors
(

n
r

) dP(p,t)/dt
P(p,t)

as the quality estimator. For

convenience, we refer to
(

n
r

) dP(p,t)/dt
P(p,t)

as the relative

popularity increase, I(p, t).

In Figure 2, we show the time evolution of I(p, t) when
Q(p) = 0.2, n = 108, r = 108, and P(p, 0) = 10−9. The
horizontal axis is the time and the vertical axis shows
the value of the function. We obtained this graph an-
alytically using the equation of Theorem 1. The solid
line in the graph shows the relative popularity increase
I(p, t). We also show the time evolution of the popu-
larity P(p, t) as a dashed line in the figure for the com-
parison purpose.
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Figure 3: Time evolution of I(p, t) + P(p, t).

From the graph, we can see that the relative popularity
increase I(p, t) measures the quality of the page Q(p)
very well in the beginning when the page was just cre-
ated (t < 70). During this time, I(p, t) ≈ 0.2 = Q(p).
As time goes on, however, the relative popularity in-
crease I(p, t) loses its merit as the estimator of Q(p).
I(p, t) gets much smaller than Q(p) for t > 120. This
result is reasonable because when most users on the Web
are aware of the page, the popularity of the page cannot
increase any further, so the popularity-increase-based
quality estimator will be much smaller than Q(p). In
contrast, the popularity P(p, t) works very poorly as the
estimator of Q(p) in the early stage of a page (t < 70),
but is a good estimator of Q(p) when t is large (t > 120).

From the above discussion, we can see that I(p, t) and
P(p, t) are complementary to each other as the quality
estimator of a page. When P(p, t) does not work well as
the quality estimator, I(p, t) does. When I(p, t) does
not, P(p, t) does. In fact, from the shape of the two
curves we can expect that we may estimate the quality
of the page accurately if we add these two functions.

In Figure 3, we show the time evolution of this addition,
I(p, t)+P(p, t), for the same parameters as in Figure 2.
We can see that I(p, t)+P(p, t) is a straight line at the
quality value 0.2. The following theorem generalizes
this observation and shows that I(p, t) + P(p, t) is an
accurate quality estimator.

Theorem 2 The quality of page p, Q(p), is always equal
to the sum of its relative popularity increase I(p, t) and
its popularity P(p, t).

Q(p) = I(p, t) + P(p, t) 2

Based on the result of Theorem 2, we define I(p, t) +
P(p, t) as the quality estimator of p, Q(p, t):

Q(p, t) = I(p, t) + P(p, t)

=
(n

r

)

(

dP(p, t)/dt

P(p, t)

)

+ P(p, t) (3)

Intuitively, the above equation shows that under our
user-visitation model we can exactly estimate the qual-
ity of a page by measuring its relative popularity in-
crease and current popularity, which in turn can be
measured by downloading the Web multiple times.

8. EXPERIMENTS
Given that our ultimate goal is to find high-quality
pages and rank them highly in search results, the best
way to evaluate our new quality estimator is to im-
plement it on a search engine and see how well users
perceive our new ranking. Before we embark on this
enormous endeavor, we wanted to check the potential
of our proposed quality estimator in a more practical
and manageable setting.

Evaluating a Web ranking metric is a challenging task
for its subjectivity and the lack of standard corpus.
The relevance and quality of a page is clearly a sub-
jective notion, so the best way of measuring the effec-
tiveness of a ranking metric is to ask a large number
of users to go over a collection of Web pages carefully
and provide their feedback on the perceived quality of
each page. This task is clearly time consuming and
expensive, requiring a careful selection of a represen-
tative user group and Web pages and a rigorous way
of ensuring the unbiasedness of the collected user feed-
back. Recognizing this challenge, the IR community
has collaboratively constructed a standard evaluation
corpus, called TREC [24], which also includes a special
sub-collection of Web documents. Unfortunately, this
dataset is not well suited for our evaluation, because
(1) it only contains a single snapshot of the Web, mak-
ing it impossible to measure the evolution of PageRank
and (2) the dataset indicates only the binary relevance
(either 0 or 1) of each page to a number of predefined
queries. With the binary relevance, we cannot rank the
pages based on their quality and compare this ranking
to the one from our quality metric.

Given this difficulty, we take an alternative approach
to evaluating the potential of our quality estimator.
Our main idea for evaluation is that the popularity or
PageRank of a page is a reasonably good estimator of
its quality if the page has existed on the Web for a
long period (Corollary 1). Thus, if we can wait long
enough, the future PageRank of a page will be close to
its true quality. This means that if our quality estima-
tor estimates the quality of the page well, the estimated
page quality from today’s Web should be closer to the
future PageRank than the current PageRank. In other
words, our quality estimator should be a better “predic-
tor” of the future PageRank than the current PageRank.
Based on this idea, we capture multiple snapshots of the
Web, compute page quality, and compare today’s qual-
ity value with the PageRank values in the future.

Admittedly, this evaluation is not perfect because the
quality is compared against future PageRank, a metric
that it tries to replace. However, with the lack of the
true quality value for each page (which can be measured
reliably only through a large-scale user study), we be-
lieve that this comparison, at the very least, will show
the potential of our estimator. In the remainder of this
section, we describe our experimental setup and the re-
sults obtained from our experiment.



8.1 Experimental Setup
Due to our limited network and storage resources, we
had to restrict our experiments to a relatively small
subset of the Web. In our experiment we downloaded
pages on 154 Web sites (e.g., acm.org, hp.com, etc.)
four times over the period of six months. The list of
the Web sites were collected from the Open Directory
(http://dmoz.org). The timeline of our snapshots is
shown in Figure 4. Roughly, the first three snapshots
were taken with one-month interval between them and
the last snapshot was taken four months after the third
snapshot. We refer to the time of each snapshot as
t1, t2, t3 and t4. The first three snapshots were used to
compute the quality of pages and the last snapshot was
used as the “future” PageRank.

Our snapshots were quite complete mirrors of the 154
Web sites. We downloaded pages from each site until
we could not reach any more pages from the site or we
downloaded the maximum of 200,000 pages. Out of 154
Web sites, only four Web sites had more than 200,000
pages. The number of pages that we downloaded in
each snapshot ranged between 4.6 million pages and 5
million pages. Since we were interested in comparing
our estimated page quality with the future PageRank,
we first identified the set of pages downloaded in all
snapshots. Out of 5 million pages, 2.7 million pages
were common in all four snapshots. We then computed
the PageRank values from the subgraph of the Web ob-
tained from these 2.7 million pages for each snapshot.
For the computation, we used 1 as the initial PageRank
value of each page.

8.2 Quality and future PageRank
Using the collected data, we estimated the quality of a
page based on the PageRank increase between t1 and
t3. We then compared the estimated quality to the
PageRank at t4 and measured the difference. In esti-
mating page quality, we first identified the set of pages
whose PageRank values had consistently increased (or
decreased) over the first three snapshots (i.e., the pages
with PR(p, t1) < PR(p, t2) < PR(p, t3)). For these
pages, we computed the quality through the following
formula:

Q(p) = 0.1 ·

[

PR(p, t3) − PR(p, t1)

PR(p, t1)

]

+ PR(p, t3)

That is, we computed the PageRank increase by taking
the difference between t1 and t3 (∆PR(p) = PR(p, t3)−
PR(p, t1)) and dividing it by PR(p, t1). We then added
this number to PR(p, t3) to estimate the page quality.
As the constant factor C in Equation 1, we used the
value 0.1.6 Note that our quality estimator becomes
the same as the current PageRank if the PageRank of
a page does not change between t1 and t3. Since the
majority of pages did not show a significant change in
PageRank values, in the remainder of this section, we
report our results only for the pages whose PageRank

6The value 0.1 showed the best result out of all values
that we tested. Small variations in the constant did not
affect our result significantly.
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values changed more than 5% between t1 and t3. By
limiting to these pages, we can see the potential of our
quality estimator more clearly.

In order to quantify how well Q(p) predicts the “future”
PageRank PR(p, t4) compared to the “current” PageR-
ank PR(p, t3), we compute the average relative “error”
between Q(p) and PR(p, t4) and between PR(p, t3) and
PR(p, t4). That is, we compute the relative error

err(p) =








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∣

∣

∣
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∣

∣

∣
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for the pages and compare their average errors.

From this comparison, we could observe that the aver-
age relative error is significantly smaller for Q(p) than
PR(p, t3). The average error was 0.32 for Q(p) while it
was 0.78 for PR(p, t3). That is, our quality estimator
Q(p) predicted the future PageRank twice as accurately
as PR(p, t3) on average. Assuming that the PageRank
at t4 is closer to the quality of pages, this result strongly
indicates that our estimator measures the quality much
more accurately than the current PageRank.

In Figure 5, we report more detailed result from this
comparison. In the graph, we show the distribution of
the relative errors for Q(p) and PR(p, t3). We counted
how many pages had the relative error between 0 and
0.1, 0.1 and 0.2, etc., and plotted the histogram. The
white bars correspond to the histogram of Q(p) and the
grey bars correspond to PR(p, t3). The bars labeled as
0.1 correspond to the error range between 0 and 0.1,
the bars labeled as 0.2 correspond to the range between
0.1 and 0.2, etc. When the error was larger than 1,
we put them into the last bin labeled as 1. The ver-
tical axis shows the fraction of pages within the given
error range. From the histogram, we can see that our
quality estimator Q(p) shows significantly smaller error
than PR(p, t3). For example, from the first bars of the
graph we can see that Q(p) showed less than 0.1 rela-
tive error for about 62% of the pages, while PR(p, t3)
showed similar error only for 46% of the pages. Also,
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from the last bars of the graph, we can see that Q(p)
showed relative error larger than 1 only for 5% of the
pages, while PR(p, t3) showed similar error for over 10%
of the pages.

9. CONCLUSION
In this paper, we investigated the problem of page qual-
ity, including how to quantify the subjective notion of
page quality, how well existing search engines measure
the quality, and how we might measure the quality of a
page more directly. In our study, we proposed a reason-
able definition for page quality and we proposed a prac-
tical way of estimating the quality of a page using the
evolution of the Web link structure. We then theoreti-
cally justified our quality estimator and experimentally
showed the potential of our quality estimator.

At a very high level, we may consider our proposed
quality estimator as a third-generation ranking metric.
The first-generation ranking metric (before PageRank)
judged the relevance and quality of a page mainly based
on the content of a page without much consideration
of Web link structure. Then researchers [13, 18] pro-
posed second-generation ranking metrics that exploited
the link structure of the Web. In our study, we argued
that we can further improve the ranking metrics by con-
sidering not just the current link structure, but also the
evolution and change in the link structure.

As more digital information becomes available, and as
the Web further matures, it will get increasingly diffi-
cult for new pages to be discovered by users and get
the attention that they deserve. We believe that our
new ranking metric will help us alleviate this “informa-
tion imbalance” problem that only established pages are
repeatedly looked at by users. Our metric can identity
these high-quality pages much earlier than existing met-
rics and shorten the time it takes for new pages to get
noticed.

9.1 Discussion and future work
While our result indicates that our quality metric is a
good way to measure the quality of a page in practice,
we discuss some of the limitations of our work and po-
tential venues for future work.

• Decreasing popularity: Our user-visitation model
predicts that the popularity of a page only in-
creases over time (Figure 1). However, many pages
in our dataset showed consistent decrease in their
PageRanks. In order to explain these pages, a

revision in our user-visitation model is necessary.
We expect that we may explain popularity de-
crease by modeling the fact that some users may
“forget” some of the pages that they visited.

• Fluctuation in PageRank: Even further, during
the analysis of our experimental result, we ob-
served fluctuation of PageRanks for many of the
pages that we downloaded. For example, the PageR-
ank values for a number of pages went up from t1
to t2 and went down again from t2 to t3. For these
pages, we assumed that I(p, t) = 0 for our quality
estimator because when their PageRank values os-
cillate, it is difficult to estimate this part. Again,
our model does not handle these pages.

• Statistical Noise: One potential problem with the
quality metric is that it may be adversely affected
by noise for pages with very low popularity. When
we are measuring the rare event of a page with
low popularity receiving a new link, there is the
potential that noise could cause such a page to be
promoted prematurely. Further work is required
to investigate how best to smooth out the curve,
including perhaps adjusting the Web download in-
tervals depending on the current PageRank val-
ues. For example, for low-PageRank pages, we
may want to compute the PageRank increase over
a longer period than high-PageRank pages in or-
der reduce the impact of noise.

• Scale of the data: Our experiment was based on
a small subset of the Web. While our result in-
dicated improvement over the PageRank metric,
it will be interesting to see how well our quality
estimator works for a larger dataset.

• Application to Web traffic data: While in this pa-
per we used the Web link structure and its evo-
lution to measure quality, our estimator can be
similarly applied to the Web traffic data. That
is, assuming that the visit popularity is equiva-
lent to the (simple) popularity (Proposition 1), if
we can measure how many people visit a particu-
lar Web site and how quickly the number of visits
increases over time, we can use our quality esti-
mator to measure the quality of the site based on
this traffic data. It will be interesting to see how
this traffic-based quality estimate is different from
our link-based quality estimate and which quality
estimate users prefer.
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11. PROOFS
Proof for Theorem 1 From Lemmas 1 and 2,

P(p, t) =
[

1 − e−
r

n

∫

t

0
P(p,t)dt

]

Q(p)

If we substitute e−
r

n

∫

t

0
P(p,t)dt with f(t), P(p, t) is equiv-

alent to (−n
r
)( df

dt
/f). Thus,

(

−
n

r

)

(

1

f

)

df

dt
= (1 − f) Q(p) (4)

Equation 4 is known as a Verhulst equation (or logistic
growth equation) which often arises in the context of
population growth [26]. The solution to the equation is

f(t) =
1

1 + Ce
r

n
Q(p)t

where C is a constant to be determined by the boundary

condition. Since f(t) = e−
r

n

∫

t

0
P(p,t)dt,

e−
r

n

∫

t

0
P(p,t)dt =

1

1 + Ce
r

n
Q(p)t

. (5)

If we take the logarithm of both sides of Equation 5 and
differentiate by t,

(

−
r

n

)

P(p, t) = −

(

r
n

)

Q(p) C e
r

n
Q(p)t

1 + Ce
r

n
Q(p)t

.

After rearrangement, we get

P(p, t) =
CQ(p)

C + e−
r

n
Q(p)t

. (6)

We now determine the constant C. From Equation 6

P(p, 0) =
CQ(p)

C + 1
. (7)

Thus,

C =
P(p, 0)

Q(p) − P(p, 0)
(8)

After rearrangement, we finally get

P(p, t) =
Q(p)

1 + [ Q(p)
P(p,0)

− 1] e−[ r

n
Q(p)]t �

Proof for Corollary 1 From Theorem 1,

P(p, t) =
A(p, 0) Q(p)

A(p, 0) + [1 −A(p, 0)] e−[ r

n
Q(p)]t

.

When t → ∞, e−[ r

n
Q(p)]t → 0. Thus,

P(p, t) =
A(p, 0) Q(p)

A(p, 0) + [1 −A(p, 0)] e−[ r

n
Q(p)]t

→
A(p, 0) Q(p)

A(p, 0)

= Q(p). �

Proof for Lemma 3 By differentiating the equation
in Lemma 1, we get

dP

dt
=

dA

dt
Q(p). (9)

From Lemma 2,

dA

dt
= −

d

dt
e−

r

n

∫

t

0
P(p,t)dt

= −
(

e−
r

n

∫

t

0
P(p,t)dt

) (

−
r

n
P(p, t)

)

= (1 −A(p, t))
( r

n
P(p, t)

)

. (10)

From Equations 9 and 10, we get

Q(p) =
(n

r

) dP(p, t)/dt

P(p, t) (1 −A(p, t))
. �

Proof for Theorem 2
If we multiply Equation 2 by 1 −A(p, t), we get

Q(p) (1 −A(p, t)) =
(n

r

) dP(p, t)/dt

P(p, t)

The right-hand side of the above equation is I(p, t). The
left-hand side is

Q(p) − Q(p) · A(p, t) = Q(p) − P(p, t).

Therefore,

Q(p) − P(p, t) = I(p, t). �


