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Abstract

We present a method for recognizing classes of human gaits from video sequences. We propose a novel image-based
representation of human gaits. At any instant of time a gait is represented by a vector of affine invariant moments. These
invariants are computed on the binary silhouettes corresponding to the moving body. We represent the time trajectories of
the affine invariant moment vector as the output of a linear dynamical system driven by white noise. The problem of gait
classification then boils down to formulating distances and performing recognition in the space of linear dynamical systems.
Experimental results demonstrate the discriminative power of the proposed approach.

1 Introduction

We live in a dynamic world, constantly analyzing and parsing time varying streams of sensory information. Almost all
biological creatures equipped with the sense of vision use dynamic cues to analyze their surrounding for critical survival
decisions. Clearly there is an abundance of information embedded in the dynamics of visual signals1. In this work we focus
on extracting and exploiting the temporal structure of video sequences for the purpose of recognizing human gaits.

By observing a person walking from a distance, we can often tell whether the subject is a human, identify their gender,
or make predictions about individual traits like age or physical health. We postulate that such information is encoded not
necessarily in the static appearance, but mostly in thedynamicsof the moving body. In Johansson’s experiments [34]
one cannot tell much from a single frame, however when the sequence is animated suddenly the scene is easily parsed.
Johansson’s experiments show that even in the lack of all comprehensible static content, the dynamics of a few moving dots
can contain sufficient information to correctly decipher the underlying physical phenomenon.

In this paper we address the problem of recognizing a person walking from one jumping, running, hopping or dancing,
and we want to do this independent of the person and her pose. We propose a novel representation of human gaits based on
computing affine invariant moments on the binary silhouette of the moving body. Following our previous work [4], we model
the dynamic of these affine moments as the output of a linear dynamical system, and define a distance between models for
the purpose of recognition.

Our representation is insensitive to a wide range of variabilities in the images, such viewing condition and identity of the
performer. Another advantage of our approach is that it does not use any model of the appearance of a person, so it can be
naturally extended to other classes of periodic motion. Finally, this method does not require to perform a tracking step, which
is usually a challenging task for most gait sequences.

1.1. Previous Work
The problem of image-based human motion analysis and recognition has been receiving considerable attention in the litera-
ture. Most of the proposed approaches involve tracking the pose of the human body, represented either as kinematic chain
of body parts [11, 16, 21], or as spatial arrangement of blobs [9] or point features [1]. Statistical models, such as standard
[5, 1] and parametric [6, 17] Hidden Markov Models are then fitted to the tracking data and likelihood tests are used for
recognition. In [10, 12, 2] mixed-state statistical models for the representation of motion have been proposed, and in [18, 19]
particle filters have been applied in this framework for estimation and recognition. In [4] linear Gaussian models have been
used, and recognition is performed by defining a metric on the space of models.

Other techniques do not require an explicit model of the human body. Zelnik-Manor et al. [15] propose a statistics of the
spatio-temporal gradient at multiple temporal scales and use it to define a distance between video sequences.

1Naturally there is also a great deal of information in the photometry and geometry of the scene that can be conveyed in a single static frame. However,
in this study we concentrate on the scene dynamics.
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Some approaches [14, 20, 8] are specific to recognition of periodic motion, such as the human gaits we consider in this
paper. In [14] classification is based on periodicities of a similarity measure computed on tracked moving parts. Little
and Boyd [8] use Fourier analysis to compute the relative phase of a set of features derived from moments of optical flow,
and employ the resulting phase vector for classification. Bobick and Davis [7] propose a description based on the spatial
distribution of motion, the Motion Energy and Motion Histogram Images. Recognition is done by comparing Hu moments
[22] of those images with a set of stored models. In [13], the problem is recognizing actions from video taken from a distance,
where the person appears only as a small patch. They compute a set of spatio-temporal motion descriptors on a stabilized
figure-centric sequence, and match the descriptors to a database of preclassified actions using nearest neighbor classification.

2 Extracting an Affine Invariant Representation

An instance of a gait here is an image sequence of about two to three seconds (50-70 frames) long. We assume that the
sequence contains a human subject performing an action like walking or running. In their raw pixel form image sequences
are far too cluttered with irrelevant information. We are only interested in the part related to the person in the image and
more specifically his/her motion. A successful isolation of the dynamics information is highly dependent on the extraction
of a representation that is insensitive to such nuisance factors like the background, clothing, lighting and viewing angle.
While well established techniques with arbitrary degrees of sophistication can be deployed for extracting appearance free
representations we note that simple silhouette’s are conveniently insensitive to appearance factors1. They can be easily
extracted from motion sequences using background subtraction techniques. However, we need to be able to recognize a walk
not just invariant to appearance, but also to the vantage point. Much work has been done with features like textures, edges,
transform coefficients (Fourier, wavelets) and matrix factorizations. To account for perspective distortions and variations
of the vantage point we must go beyond these and consider more general statistical features. While an appearance free
feature was straightforward to attain, extracting a geometric invariant feature requires some attention. For this we follow
well established results from theory of geometric invariance and look at affine invariance. Utility of affine invariance is
realized by the fact that general affine deformations can help account for a range of perspective distortions. Specifically
we are looking for scalar featuresFi’s (working on silhouettes) that are invariant to general affine transformations, i.e.
F {I(u, v)} = F {I(x, y)}, where [

u
v

]
=

[
a1 a2

a3 a4

] [
x
y

]
+

[
b1

b2

]
A concise and elegant development of affine invariants based on higher order central moments is discussed in [23]. Flusser

et al, begin with the assumption that the affine invariant can be expressed in terms of the central moments of the binary
image. Drawing from the theory of algebraic invariants, they use two-dimensional moments of the image to derive explicit
expressions for independent affine invariants. Here the general two dimensional(p+q)’th order central moments of an Image
I(x, y) are defined as :

µp,q =
∫∫

(x− x̄)p(y − ȳ)qI(x, y)dxdy

The x̄ and ȳ are the coordinates of the center of gravity of the image. An invariant F is assumed to have the form of a
polynomial of the central moments :

F =
∑

i

ki

∏
j

µpj(i),qj(i)

/µ
z(i)
00

We include here the final form of the expressions for the first four invariants, and refer the reader for derivations to [23]:

I1 =
(
µ2,0µ0,2 − µ2

1,1

)
/µ4

0,0

I2 =
(
µ2

3,0µ
2
0,3 − 6µ3,0µ2,1µ1,2µ0,3 + 4µ3,0µ

2
1,2

+ 4µ2,1µ
2
0,3 − 3µ2

1,2µ
2
2,1

)
/µ10

0,0

1Other solutions such as thresholding the optical flow, or working directly with optical flow magnitude produced almost identical results.
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I3 =
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00 (1)

The idea of using moments on motion regions is not new. In [7] Hu moments are used on a description of the spatial
distribution of motion for recognition of activities. However, Hu moments are invariant only under translation, rotation and
scaling of the object. By using the moments proposed in [23], we obtain a representation of the moving shape invariant to
general affine transformations.

It should be noted that moment invariants are particularly natural for binary silhouettes. Furthermore the invariance to
translation eliminates the need for tracking people, body parts or blobs; a common preprocessing scheme in gait modeling.

In this section we outlined a representation that is simple but powerful. We will use this descriptor in the next sections to
isolate the dynamics of a gait from its image sequences. We will then discuss how to go from time trajectories of features to
dynamical models and cast the gait classification as recognition in the space of linear dynamical systems.

3 Dynamic Modeling with Invariant Moments

We make the assumption that temporal behavior of the invariant moments as the gait evolves in time, can be sufficiently
represented as a realization from a second-order stationary stochastic process. This means that the joint statistics between
two instants is shift-invariant. This is a restrictive assumption that will allow for modeling of stationary gaits and not for
“transient” actions. It is well known that a positive definite covariance sequence with rational spectrum corresponds to an
equivalence class of second-order stationary processes. It is then possible to choose as a representative of each class a Gauss-
Markov model - that is the output of a linear dynamical system driven by white, zero-mean Gaussian noise - with the given
covariance. In other words, we can assume that there exists a positive integer , a process (the “state”) with initial condition

x0 ∈ Rn ∼ N (0, P ) and a symmetric positive semi-definite matrix

[
Q S
ST R

]
≥ 0 such that{y(t)} is the output of the

following Gauss-Markov “ARMA” model2:{
x(t + 1) = Ax(t) + v(t) v(t) ∼ N (0, Q); x(0) = x0

y(t) = Cx(t) + w(t); w(t) ∼ N (0, R) (2)

for some matricesA ∈ Rn×n andC ∈ Rm×n.
The first observation concerning the model (2) is that the choice of matricesA,C,Q,R, S is not unique, in the sense that

there are infinitely many models that give rise to exactly the same measured covariance sequence starting from suitable initial
conditions. The first source of non-uniqueness has to do with the choice of basis for the state space: one can substituteA
with TAT−1, C with CT−1, Q with TQTT , S with TS, and choose the initial conditionTx0, whereT ∈ GL(n) is any
stablen × n matrix and obtain the same output covariance sequence; indeed, one also obtains the same output realization.
The second source of non-uniqueness has to do with issues in spectral factorization that are beyond the scope of this paper
[28]. Suffices for our purpose to say that one can transform the model (2) into a particular form – the so-called “innovation
representation” – that is unique. In order to be able to identify a unique model of the type (2) from a sample pathy(t), it is
therefore necessary to choose a representative of each equivalence class (i.e. a basis of the state-space): such a representative
is called acanonical model realization(or simply canonical realization). It is canonical in the sense that it does not depend
on the choice of the state space (because it has been fixed).

While there are many possible choices of canonical realizations (see for instance [29]), we are interested in one that is
“tailored” to the data, in the sense of having a diagonal state covariance. Such a model realization is calledbalanced[30]. The

2ARMA stands for autoregressive moving average.
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problem of going from data to models then be formulated as follows:givenmeasurements of a sample path of the process:
y(1), . . . , y(τ); τ >> n, estimateÂ, Ĉ, R̂, Q̂, a canonical realization of the process{y(t)}. Ideally, we would want the
maximum likelihood solution from the finite sample, that is the argument of

max
A,C,Q,R

p(y(1), . . . , y(τ)|A,C, Q,R). (3)

The closed-form asymptotically optimal solution to this problem has been derived in [31]. From this point on, therefore, we
will assume that we have available – for each sample sequence – a model in the form{A,C, Q,R}. While the state transition
A and the output transitionC are an intrinsic characteristic of the model, the input and output noise covariancesQ andR are
not significant for the purpose of recognition (we want to be able to recognize trajectories measured up to different levels of
noise as the same). Therefore, from this point on we will concentrate our attention on the matricesA andC that describe a
gait.

4 Recognizing Gaits

Models, learned from data as described in the previous section, do not live on a linear space. While the matrixA is only
constrained to be stable (eigenvalues within the unit circle), the matrixC has non-trivial geometric structure for its columns
form an orthogonal set. The set ofn orthogonal vectors inRm is a differentiable manifold called “Stiefel manifold”.

Because of the highly curved structure of this space, state-of-the-art classification algorithms applied on the model pa-
rameters fail to produce satisfactory results. In particular, we tested an efficient implementation [25] of the Support Vector
Machines classifier [24] on the vectors obtained by stacking the elements of the matricesA andC. With this approach
discrimination was not possible even in the simple case of only two classes of gaits.

4.1 Distance Between Models

As proposed in[4], a natural solution for the recognition problem in this case is provided by endowing the space of models
with a metric structure. In the literature of system identification and signal processing, the problem of defining a metric in
the space of linear dynamical systems is an active area of research [26, 27]. A common distance that is widely accepted in
system identification for comparing ARMA models is based on the so-called subspace angles [31].

Given a modelM specified by the matrices(A,C), the infinite observability matrixO(M) is defined as:

O(M) =
[

CT AT CT A2T CT · · ·
]
∈ R∞×n

The matrixO(M) spans an n-dimensional subspace ofR∞. To compare two modelsM1 and M2, the basic idea is
to compare “angles” between the two observability subspaces ofM1 andM2. There are many equivalent ways to define
subspace angles. Given a matrixH with its columns spanning an n-dimensional subspace, letQH denote the orthonormal
matrix which spans the same subspace asH. Given two matricesH1,H2, we denote the n ordered singular values of the
matrixQT

H1
QH2 ∈ Rn×n to becos2(θ1), ..., cos2(θn). Then the principal angles between subspaces spanned byH1 andH2

are denoted by the n-tuple:

H1 ∧H2 = (θ1, θ2, ..., θn) , θi ≥ θi+1 ≥ 0.

Based on these angles, two distances can be defined:

d2
M = − ln

∏
i

cos2(θi), dF = θ1. (4)

The first distance is an extension of Martin distance defined for SISO systems [27], the second is the Finsler distance
according to Weinstein [32]. Roughly speaking, the difference between these two distances is thatd2

M is anL2-norm butdF

is anL∞-norm between linear systems.
Once a metric in the space of models is available, standard grouping techniques such as k-means clustering can be suc-

cessfully employed for recognition.
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Figure 1:Sample frames from the dataset of the gaits: walking, running, jumping and limping.

Figure 2:Sample silhouettes extracted by background subtraction.

5 Experiments and Results

Our gait dataset consists of short clips of walking (with and without a backpack), limping, running and jumping performed
by two subjects, for a total of 81 sequences. In Table 4 we show a more detailed description of the exerimental data, and in
Figure 1 sample frames from the video sequences.

Given a gait sequence, for each frame we used backround subtraction to extract a sihouette of the moving body, and
computed the affine invariant moments on this binary image. Figure 2 shows sample output of the background subtraction,
and in Figure 3 the trajectories of the moments for some sequences in the dataset are plotted. From the experiments, we
noticed that moments of order higher than4 are too sensible to noise and negatively affect the results. Also, the four moments
(1) have different scales and need be normalized to form the feature vectory(t). The values of the scale factors were found
empirically by matching the mean energy of the moments.

For each sequence of moment trajectoriesy(t) we have identified a dynamical model of ordersn = 1 to 4. For identifying
the model we used the implementation of the N4SID algorithm [33] in the Matlab System Identification Toolbox. Since our
models are zero-mean, we subtract the mean from the data before the learning step.
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Figure 3:Plots of affine invariant moments computed on the binary silhouettes: on the left moments from a walking sequence
of subject A, on the right moments from a running sequence of subject B.

Gait Number of Sequences
Subject A Subject B

Walking 28, 8 with backpack 13
Running 9 11
Jumping 9 4
Limping 7 0

Figure 4:Description of the gait dataset: 4 gait classes performed by 2 persons for a total of 81 sequences, details as above.

We then computed the mutual distance between each model by calculating the distances between observability subspaces:
Finsler distancedF and our generalization of Martin distancedM , as defined in(4). These two distances gave similar results,
with an advantage for the latter one. In figure 5 we show the pairwise distance between models of sequences in the dataset,
with highlighted the two nearest neighbors.

As the result show, the dynamics of the invariant is able to distinguish between different sytles of gaits while preserving the
invariance with respect to apperance and geometric factors. Discrimination fails only when comparing sequences of walking
and limping, due to the high similarity of these two classes of motion.

6 Conclusions

We introduced a method to incorporate both appearance and geometric affine invariances to represent gait sequences. We
discussed how to extract such invariant representations from images and model their temporal behavior. We then developed
a frame work where invariant representations could be modelled and compared in the space of linear dynamical systems. We
presented results using over 80 sequences of gait samples corresponding to various different viewing angles and gait types.
We were able to cluster and isolate sequences corresponding to same or similar gaits regardless of the subject or geometric
viewing factors. The power of affine invariant representation and richness of dynamical systems for modeling temporal
structure of gaits is present in the results.
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Figure 5:Confusion matrix depicting the pairwise distance between models. Each row/column represents a sequence, and
sequences of the same class are grouped in blocks. Dark indicates a small distance, light a large distance. For each row,
a circle indicates the nearest neighbor and a cross identifies the second nearest neighbor. The last block corresponds to the
limping gaits. As we could expect, there are some misclassifications between limping and walking, since these gaits are
very close. For the other classes of gait, the block diagonal structure of the matrix clearly indicates the effectiveness of our
approach.
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