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Abstract

In this paper we are interested in the joint reconstruction of geometry and photometry of scenes with multiple moving objects
from a collection of motion-blurred images. We make simplifying assumptions on the photometry of the scene (we model each
object in the scene as self-luminous) and infer the motion field of the scene, its depth map, and its radiance. In particular,
we choose to partition the image into regions where motion is well approximated by a simple planar translation. We model
motion-blurred images as the solution of an anisotropic diffusion equation, whose initial conditions depend on the radiance
and whose diffusion tensor encodes the depth map of the scene and the motion field. We propose an algorithm to infer the
unknowns of the model. Inference is performed by minimizing the discrepancy between the measured images and the ones
synthesized via diffusion. Since the problem is ill-posed, we also introduce additional Tikhonov regularization terms.

1. Introduction
Motion blurring is a common distortion of images that becomes perceivable when objects in the scene move at a speed higher
than the speed of the shutter of the camera [1]. Given motion blurred images, one may be interested in recovering a sharp or
deblurred image of the scene. In order to do so, one needs to recover both the deblurred image and some description of the
motion of the scene. For example, one can assume that the motion characterizing a motion blurred image can be represented
by a two dimensional velocity vector. This assumption, however, is not realistic when multiple objects are simultaneously
moving with different speed and/or along different directions. In this case, the complexity of motion cannot be captured
by a single two dimensional vector. In order to model a complex motion one can choose a very rich global model, that
explains the motion of the entire image, or a very simple model, selected from a small parametric class, together with a
segmentation of the regions of the images where the model is satisfied within a prescribed accuracy. In this paper we choose
the latter approach. For simplicity, we adopt the simplest possible model, i.e. that each region moves with constant, purely
translational motion. Notice that while this would be a severe restriction for aglobal motion model, any motion field can be
approximated locally by a pure translation to an arbitrary degree of accuracy. Naturally, the price we pay for such a model is
that the partitioning process may result in very fine segments, hence over-segmenting the scene. Subsequent aggregation can
be performed based on richer motion models, but we do not address this issue in this paper.

1.1. Existing Work and Contributions of this Paper
As we mentioned in the previous section, motion blur is a phenomenon that becomes perceivable whenever we capture images
of an object that is moving faster than the shutter of the camera. Given a description of the geometry and the appearance of
a scene, and its motion, one may be interested insimulating(or rendering) images with motion blur [2, 3]. This problem
is also called adirect problemsince it aims at mimicking the physical process as it happens in nature [4]. One may also be
interested in theinverse problem, i.e. in the problem of inferring a description of the scene (geometry and appearance) and of
its motion, given motion-blurred images [1, 5, 6, 7, 8, 9]. This problem is calledmotion deblurring, ormotion smear[10, 11],
or super-resolution[12, 13] when the deblurred image is reconstructed at a resolution higher than the resolution of the input
images.
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Most of the approaches for motion deblurring are based on using a single image in input [14, 5, 6, 7, 8, 1]. In this case,
one has to introduce strong assumptions on the scene and/or the blurring (see Remark 1). For example, in [14] the blurring
kernel support is assumed known. In [6], the motion of the scene is known. In [8] the radiance is assumed to be isotropic.
These assumptions are unavoidable due to the severe lack of data, and introduce constraints that are too restrictive.

Some work has also been done when multiple images are used [9, 15]. [9] uses images captured while the scene is moving
along different motion directions. They consider blur is shift-invariant and that a single object is moving in the scene. In
[15] deblurring is also performed by using multiple images of the same scene captured for different shutter intervals and
pixel resolutions. They propose an innovative hybrid camera that can also estimate the path of the moving scene, up to the
resolution of the fastest camera.

We propose a novel approach to motion-deblurring and scene reconstruction when multiple objects are simultaneously
moving in a scene. Some work has been done along this direction [6, 7], although only one image is considered as an input.
In this paper, instead, we consider multiple images so as to avoid introducing additional assumptions on the unknowns. We
assume we are made available images captured for different shutter intervals. In addition, we model the motion of the objects
on the images by considering their three dimensional geometry and their three dimensional motion, which has not been done
in the context of motion-deblurring. Some work has been done towards recovering depth information from motion-blurred
images, but restricted to the specific motion generated by lens zooming and for a single object in the scene [16]. Also, our
approach differs from most of the previous approaches in that we pose our inference problem as an optimization procedure
in a variational framework. To the best of our knowledge, the only other work in this framework is the recent paper in [6].
However, in [6] only a single image is used, the motion on the image plane of the objects is assumed known, and there is no
geometric model of the scene.

2. Notation and Problem Formulation
We represent an image with a functionI : Ω ⊂ R2 7→ [0,∞), that assigns an energy value to each pixel on the image plane.
We assume thatΩ is a bounded domain with piecewise smooth boundary∂Ω. The intensity of the measured energy depends
on the reflectivity properties of the surfaces of the objects in the scene, which we describe with a functionr : R2 7→ [0,∞);
r assigns an energy value at each point on the surface of the objects and it is called, with an abuse of terminology1, radiance
of the scene.

We capture images from scenes where a number of objects are moving in different directions, possibly with different
speed. For now, assume the scene is made of a single object. If the camera shutter remains open while the object is moving
with velocityv for a time interval∆T , then the imageI that we measure on the image plane can be modeled by:

I(x) =
1

∆T

∫ ∆T
2

−∆T
2

r(x + vt)dt =
∫ 1

2

− 1
2

r(x + ∆Tvt)dt (1)

which we approximate with the following

I(x) '
∫

1√
2π

e−
t2
2 r(x + ∆Tvt)dt. (2)

Now consider the scene is composed ofM objects that are moving simultaneously in front of the camera. Denote with
{Ωj}j=1...M the regions on the image plane occupied by the projections of each of the moving objects. We assume that
{Ωj}j=1...M is apartition of Ω, i.e. thatΩ =

⋃M
j=1 Ωj and thatΩj

⋂
Ωi = ∅ for ∀i, j = 1 . . . M , i 6= j. In this case, the

image model becomes

I(x) =
∫

1√
2π

e−
t2
2 r(x + ∆Tvjt)dt ∀x ∈ Ωj . (3)

Consider that we are made availableN images{J1, . . . , JN} collected while the shutter remains open for different spans
of time {∆T1, . . . , ∆TN}. Then, one can pose the problem of inferring velocities{vj}j=1...M , partition{Ωj}j=1...M and
radiancer of the scene as the following minimization:

v̂j , Ω̂j , r̂ = arg min
vj ,Ωj ,r

N∑

i=1

∫

Ω

(Ji(x)− Ii(x))2dx (4)

1In the context ofradiometry, the termradiancerefers to a more complex object that describes energy emitted along a certain direction, per solid
angle, per foreshortened area and per time instant. Here we are implicitly assuming that scene radiance and image irradiance are the same, which is an
approximation that is only valid for Lambertian scenes under uniform illumination.
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where{Ji}i=1...N are images measured on the image plane, while{Ii}i=1...N are images synthesized by using the image
model eq. (3).

Remark 1. The problem in eq. 4 is an inverse problem and it is known to beill-posed. One of the main factors that cause
the ill-posedness of this problem is the lack of data. For the sake of example, let us consider the simpler case where a single
object is moving in the scene. In this case, the problem amounts to recovering the velocityv of the scene and to restoring the
radiancer. It is immediate to see that there are infinite solutions to the problem when only a single imageJ is used. For
example,{r̂, v̂} = {J, 0} and{r̂, v̂} = {r, v} are both valid solutions. More in general, the following is also a valid (infinite)
set of solutions:

r̂ =
∫

1√
2π

e−
t2
2 r

(
x +

(1− α)√
(1− α)2 + α2

vτ

)
dτ

v̂ =
α√

(1− α)2 + α2
v

(5)

for all α ∈ [0, 1].

Remark 2. One may raise the concern that capturing images of the same scene but with different shutter intervals might
present some technical difficulties. Here we propose two ways to perform this operation. The most straightforward method
is to use different cameras that can capture simultaneously images with different shutter intervals. However, in this case one
might encounter some difficulties in registering the images with each other and in synchronizing the cameras. [15] describes
hardware that can be used in this modality. Another way to capture images with different shutter intervals is to collect a
sequence of images. Time averaging the sequence simulates a long shutter interval. For example, one could collect three
motion-blurred images[J̄1, J̄2, J̄3], and then considerJ1 = J̄2 as one input image andJ2 = 1

3

∑3
i=1 J̄i as a second input

image. The shutter interval for the second imageJ2 is 3 times the shutter interval of the first imageJ1. In this case, the
data collection is rather simple, since no alignment and no synchronization is required, but it is based on the assumption that
motion does not change among the three frames. Due to its simplicity, in this manuscript we choose this second modality for
data collection.

3. Modeling Motion-Blur of Multiple Objects
In the previous section we briefly introduced a model for motion blurred images in eq. (3). The model was described by a
certain motionvj , a regionΩj corresponding to the motionvj , and the radiancer of the scene. In the next subsection, we
will specify more in detail how the motionvj depends on the surfaces in the scene and the 3D motion of the scene. Then, in
subsection 3.2 we will introduce an alternative model to eq. (3) based on anisotropic diffusion.

3.1. A Model for Motion of Multiple Objects
We denote the surfaces of the objects with a functions : R2 7→ [0,∞) that assigns a depth value to each pixel coordinate and
it is calleddepth map. A point on the depth maps at timet can be written as

X(t) = [x(t) 1]T s(x(t)) (6)

wherex(t) ∈ R2 are the 2D coordinates of a pixel. We denote withV = [VX(t) VY (t) VZ(t)]T ∈ R3 the translational
velocity and withω ∈ R3 the rotational velocity of one of the objects in the scene. Then, it is well known that the time
derivative of the coordinatesx satisfies (see [17] for more details):

ẋ(t) = 1
s(x(t))

[
F 0 −x1(t)
0 F −x2(t)

]
V +

+
[ −x1(t)x2(t) 1 + x2

1(t) −x2(t)
−1− x2

2(t) x1(t)x2(t) x1(t)

]
ω.

(7)

We definev
.= ẋ(t) and call it thevelocity field.

As we have anticipated, we restrict ourselves to a crude motion model that only represents sideways translations parallel
to the image plane

v(t) = F
VX,Y (t)
s(x(t))

=
V̄X,Y (t)
s(x(t))

(8)
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whereV̄X,Y = FVX,Y is the velocity in focal length units. From now on we will not make a distinction betweenV̄X,Y and
VX,Y , and useV to denoteVX,Y for simplicity. Although we derived the velocity field only for the case of translational
motion, it is straightforward, in principle, to extend it to the general case of eq. (7). Conceptually, however, both cases
correspond to a chosen motion model, and given that the scene in general will violate it, we will have to segment it into
regions that satisfy the model. Therefore, we concentrate on the simplest possible model, aware of the fact that simpler
models will generate finer partitions and therefore more fragmentation of the image.

When we haveM objects moving in the scene, or even when we have a single object that is moving with a more general
motion, such as general rigid motion, or piecewise rigid, or even non-rigid, we decompose the scene into segments each of
which corresponds to a portion that is well-modeled by pure translational motion. Now, assume we haveM objects moving
in the scene with constant velocitiesV1 . . . VM , the velocity fieldv can be partitioned into a number of regions{Ωj}j=1...M

each corresponding to a different velocityVj (see also section 2). Since there is ascale ambiguitybetween the magnitude
of the velocityVj of a regionΩj and the magnitude of the corresponding depth maps (see eq. (8)), objects that are moving
along the same direction are clustered together. In other words, we can only partition the velocity field into regions with
uniform motion direction.

In our implementation, we represent the regions implicitly using signed distance functions [18, 19]. The regions{Ωj}j=1...M

are implicitly represented by levelset functions. For simplicity, we consider the case of two regions, so that a single levelset
function suffices. However, the extension to more than two regions is straightforward and can be achieved by considering
more levelset functions. The levelset functionφ is a mapφ : Ω 7→ R, so that

Ω1 = {x ∈ Ω : φ(x) ≥ 0}
Ω2 = {x ∈ Ω : φ(x) < 0} = Ω\Ω1.

(9)

Using the Heaviside functionH

H(z) =
{

1, if z ≥ 0
0, if z < 0 (10)

we can equivalently write
Ω1 = {x ∈ Ω : H(φ(x)) = 1}
Ω2 = {x ∈ Ω : H(φ(x)) = 0}. (11)

This notation will be useful later when we will define more explicitly the cost functional introduced in eq. (4).

3.2. A Model for Motion-Blurred Images
Under the assumption that the depth maps is smooth, we can substitute the model in eq. (2) with a PDE whose solution
u : R2 × [0,∞) 7→ R, (x, t) 7→ u(x, t), at each timet represents an image with a certain amount of blurring. In formulas,
we have thatJ(y) = u(y, T ), whereT is related to the amount of blurring ofJ . We use the followinganisotropic diffusion
partial differential equation: {

u̇(y, t) = ∇ · (D(y)∇u(y, t)) t > 0
u(y, 0) = r(y) ∀y ∈ Ω (12)

whereD
.=

[
d11 d12

d21 d22

]
with dij : R2 7→ R for i, j = 1, 2 andd12 ≡ d21, is calleddiffusion tensor. We assume that

dij ∈ C1(R2) (i.e. the space of functions with continuous partial derivatives inR2) for i, j = 1, 2, and2 D(y) ≥ 0 ∀y ∈ R2.

The symbol∇ is the gradient operator
[

∂
∂y1

∂
∂y2

]T

with y = [y1 y2]T , and the symbol∇· is the divergence operator
∑2

i=1
∂

∂yi
. Notice that there is a scale ambiguity between the timeT and the diffusion tensorD. We will setT = 1

2 to
resolve this ambiguity.

When the motion field is constant, it is easy to show that2tD = ∆T 2vvT . In particular, at timet = T = 1
2 we have

D = ∆T 2vvT . Now, in the space-varying case we let

D(y) = ∆T 2v(y)v(y)T . (13)

In particular, when eq. (8) is satisfied, we have

D(y) = ∆T 2 V V T

s2(y)
. (14)

2SinceD is a tensor, the notationD(y) ≥ 0 means thatD(y) is positive semi-definite.
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Notice that the diffusion tensor just defined is guaranteed to be always positive semi-definite.

Remark 3. The advantage of using the PDE-based model just introduced in eq.(12) versus using the integral-based model
of eq.(3) becomes more evident at the algorithmic implementation level. The two models yield (approximately) the same
solutions, but behave differently in the cases of motion-blurring due to small velocities and motion-blurring due to large
velocities. The integral-based model is more efficient in the latter case, but less efficient in the former one. Vice versa, the
PDE-based model is more efficient for small velocities, but more inefficient for large ones. The range of velocities for which
our problem yields a sensible solution is more biased towards small velocities, thus favoring the PDE-based model.

3.3. Motion-Blur Segmentation and Image Restoration
We infer the radiancer, the depth maps, the velocities{V1, V2} and the partition{Ω1, Ω\Ω1} of the scene by minimizing
the following least-squares functional with Tikhonov regularization (cf. [20])

E =
N∑

i=1

∫

Ω1

(ui(x, T, V1)− Ii(x))2 dx+

+
∫

Ω\Ω1

(ui(x, T, V2)− Ii(x))2 dx+

+α ‖r − r∗‖2 + β ‖∇s‖2 +

+γ

(∫

Ω

s(x)dx−M

)2

+ ν ‖∇H(φ(x))‖2 ,

(15)

i.e. we seek for
Ω̂1, r̂, ŝ, V̂1, V̂2 = arg min

Ω1,r,s,V1,V2
E (16)

whereα, β, γ andν are positive regularization parameters,r∗ is a prior3 for r andM is a suitable positive number4. The last
term imposes a length constraint on the boundary ofΩ1. One can choose the norm‖ · ‖ depending on the desired space of
solutions. We choose theL2 norm for the radiance and the components of the gradient of the depth map.

In this functional, the first two terms take into account the discrepancy between the model and the measurements; the
third and fourth term are classical regularization functionals, penalizing large deviations of the radiance from the prior and
imposing some regularity on the estimated depth map. The fifth term fixes the scale ambiguity between the depth maps and
the velocity fieldv. To fix the scale ambiguity we choose the mean of the depth maps to be equal to a constantM , so that
small changes ofs will not result in sensible variations of this term. Finally, the last term imposes a length constraint on the
boundary ofΩ1 thus penalizing boundaries that are too fragmented or irregular.

To minimize the cost functional (16) we employ a gradient descent flow. For each unknown we compute a sequence
converging to a local minimum of the cost functional, i.e. we have sequencesr̂(x, τ), ŝ(x, τ), V̂1(τ), V̂1(τ), φ̂(τ), such that

r̂(x) = lim
τ 7→∞

r̂(x, τ),

ŝ(x) = lim
τ 7→∞

ŝ(x, τ),

V̂1 = lim
τ 7→∞

V̂1(τ),

V̂2 = lim
τ 7→∞

V̂2(τ),

φ̂(x) = lim
τ 7→∞

φ̂(x, τ),

(17)

At each iteration we update the unknowns by moving in the opposite direction of the gradient of the cost functional with

3We do not have a preferred prior for the radiancer. However, it is necessary to introduce this term to guarantee that the estimated radiance does not
diverge. In practice, one can use as a priorr∗ one of the input images, or a combination of them, and choose a very smallα.

4As mentioned in subsection 3.1, there is a scale ambiguity between the velocity fieldv and the depth map of the scene. We choose to fix a scale quantity
of the depth map rather than fixing the velocity field. We choose the mean of the depth maps to be equal to the constantM .
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respect to the unknowns. In other words, we let

∂r̂(x, τ)
∂τ

.= −∇r̂E(x),
∂ŝ(x, τ)

∂τ

.= −∇ŝE(x),

∂V̂1(τ)
∂τ

.= −∇V̂1
E,

∂V̂2(τ)
∂τ

.= −∇V̂2
E,

∂φ̂(x, τ)
∂τ

.= −∇φ̂E(x).

(18)

It can be shown that the above iterations decrease the cost functional asτ increases. The computation of the above gradients
is rather involved due to the fact that the explicit solutionu of eq. (12) is not available, but yields the following formulas that
can be easily implemented:

∇rE(x) =
N∑

i=1

wi(x, T, V1)H(φ(x))+

+
N∑

i=1

wi(x, T, V2)(1−H(φ(x)))+

+2α (r(x)− r∗(x))

∇sE(x) = 2
V T

1 e1(x)V1

s3(x)
H (φ(x))+

+2
V T

2 e2(x)V2

s3(x)
(1−H (φ(x)))+

+2γ
(∫

Ω

s(x)dx−M

)

∇V1E = −
∫

Ω1

[1 0]e1(x)V1 + V T
1 e1(x)

[
1
0

]

s2(x)
dx

∇V2E = −
∫

Ω\Ω1

[1 0]e2(x)V2 + V T
2 e2(x)

[
1
0

]

s2(x)
dx

∇φE(x) =
(

g1(x)− g2(x)−∇ · ∇φ(x)
|∇φ(x)|

)
δ(φ(x))

(19)

where forj = 1, 2 we define

ej(x) =
N∑

i=1

∫ T

0

∇ui(x, t, Vj)∇wi(x, T − t, Vj)T dt

gj(x) =
N∑

i=1

(ui(x, T, Vj)− Ii(x))2
(20)

andwi(x, t, Vj) satisfies the following adjoint parabolic equation




ẇ(y, t) = ∇ · (D(y)∇w(y, t))
w(y, 0) = u(y, T )− Ii(y)
(D(y)∇w(y, t)) · n = 0

(21)

with D(x) = ∆T 2
i

VjV T
j

s2(x) . Similarly, the notationui(x, t, Vj) denotes the solution of the PDE eq. (12) where the diffusion

tensorD(x) = ∆T 2
i

VjV T
j

s2(x) .
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Figure 1: Left: setup of the scene without motion-blur (static scene and static camera). The depth map is stair-shaped. The
steps on the top are closer to the camera than the steps on the bottom. Right: setup of the scene with motion-blur. The
two disks on the stair move from left to right, while the remaining part of the stair moves along the top-left to bottom-right
diagonal. The texture of the two disks has been brightened to make them more visible.

Figure 2: First from the left: synthetically generated radiance. It is the image of the scene when both scene and camera are
static. Second and third from the left: motion-blurred images captured with different shutter intervals. The motion blur of
the third image is three times the motion blur of the second image. Rightmost: final deblurred radiance estimated from the
two input images. The reconstruction presents some artifacts at the locations corresponding to the boundaries of the disks.

4. Experiments with Synthetic Data
In this set of experiments we synthetically generate a scene whose depth map is a stair-shaped object (see Figure 1). Two
disks at opposite corners (see image on the right in Figure 1) move sideways (left to right) while the remaining part of the
object moves along the top-left to bottom-right diagonal. When the scene is static, the image we capture coincides with the
radiance of the object (see leftmost image in Figure 2). The second and third image from the left of Figure 2 show the two
input images captured for different shutter intervals. The shutter interval of the third image is three times the shutter interval
of the second image. Also notice that the amount of motion blur is larger on the top of the image than on the bottom. This
effect is due to the depth map of the scene. The rightmost image of Figure 2 is the resulting deblurred image that we restored
from the given input. Notice that the reconstruction is fairly close to the original radiance (leftmost image in Figure 1),
although there are some artifacts at locations corresponding to the boundary of the two disks. This is due to the error between
the correct segmentation of the scene and the estimated segmentation (see Figure 3). In Figure 3 we show a few snapshots
of the segmentation evolution of the two moving objects. The motion field direction is correctly estimated. Also, notice
that the levelset representation easily handles topological changes of the represented contour. In Figure 4 we show some
snapshots of the deblurring evolution. More precisely, the first three snapshots from the left correspond to the first three steps

Figure 3: Snapshots of the evolution of segmentation together with motion estimation on synthetic data. Motion is initialized
with vertical direction.
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Figure 4: Snapshots of the evolution of the deblurring of the radiance. Leftmost: the radiance is initialized with the most
motion-blurred image. Second and third from the left: at the second and third iteration, the radiance sharpness improves
dramatically. Rightmost: the recovered radiance compares well with the original radiance (see leftmost image in Figure 2).

Figure 5: Estimated depth map. Left: visualization of the depth map as a gray level intensities image. Light intensities
correspond to points that are close to the camera, while dark intensities correspond to points that are far from the camera.
Right: reconstruction of the setup of the scene by using the recovered radiance and the reconstructed depth map.

in the iterative scheme, while the rightmost snapshot corresponds to the last estimation step of the radiance. Although the
radiance is initialized with the most blurred image (the third image from the left in Figure 2), it converges rather quickly to
the deblurred image. Finally, in Figure 5 we show the reconstructed scene with the estimated depth map. On the left we
have a gray level image of the estimated depth map. Light intensities correspond to points that are close to the viewer, while
dark intensities correspond to points that are far from the viewer. On the right we show the reconstructed setup using the
estimated depth map and the recovered radiance.

5. Experiments with Real Data
To capture real images with different shutter intervals we use the modality described in section 2, i.e. we capture three
motion-blurred images[J̄1, J̄2, J̄3], and then considerJ1 = J̄2 as one input image andJ2 = 1

3

∑3
i=1 J̄i as a second input

image. As in the previous section, the shutter interval for the second imageJ2 is 3 times the shutter interval of the first
imageJ1. In Figure 6 at the top-left corner we show an image of the scene when static. This image coincides with the
radiance of the scene. At the top-right corner we show the recovered image obtained by using our algorithm. As in the
experiments with synthetic data, the reconstruction is fairly close to the radiance of the scene, although there are some
artifacts at locations corresponding to the boundary of the segmented regions. In input we use the image at the bottom-
left corner (which corresponds toJ1) and the image at the bottom-right corner (which corresponds toJ2) of Figure 6. The
background is moving vertically, while the foreground (the cup and the banana) are moving horizontally. In Figure 7 we show
a few snapshots of the segmentation evolution. To make the contour more visible in the illustrations, we changed the original
brightness of the image underneath. Notice that the motion field direction of the scene is correctly estimated. In Figure 8 we
show some snapshots of the deblurring evolution. We use as initial radiance the most motion-blurred image (top-left). The
final estimate of the radiance (bottom-right) is also shown in Figure 6 for comparison with the original radiance. Finally, in
Figure 9 we show the reconstructed depth map of the scene. The images on the top show both the estimated background and
foreground depth map. Notice that the relative position of the two depth maps does not correspond to the depth map of the
original scene. This inconvenience is due to the scale ambiguity between the depth map and the velocity of the scene (see
section 3.1). The left and right bottom images show two views of the estimated depth map of the foreground. Notice that the
qualitative shape of the cup and the banana has been captured.
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Figure 6: Top-left: original radiance. This image has been captured when the scene and the camera were static. Top-right:
recovered radiance. Bottom-left and Bottom-right: input motion-blurred images. The image on the right has been obtained
by averaging3 motion-blurred images similar to the image on the left. The shutter interval of the image on the right is three
times the shutter interval of the image on the left.

Figure 7: Snapshots of the evolution of the segmentation. The brightness of one of the motion-blurred images has been
changed to enhance the contrast between the image and the contour evolution.
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Figure 8: Snapshots of the evolution of deblurring. The radiance is initialized with the most motion-blurred image. The final
estimate of the radiance compares well with the original radiance in Figure 6. However, at locations corresponding to the
boundary of the segmented regions the reconstruction introduces some artifacts.

Figure 9: Estimated depth map. Top-left: depth map visualized as gray level intensities. Lighter intensities correspond to
points close to the camera, while darker intensities correspond to points far from the camera. Top-right: different view of
the estimated depth map. Bottom-left and bottom-right: views of the estimated depth map of the foreground. Notice that the
qualitative shape of the cup and of the banana have been captured.
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6. Summary and Conclusions
We presented a solution to the problem of jointly reconstructing scenes and restoring images from images affected by motion
blurring due to multiple moving objects. We inferred motion field of a scene, depth map and radiance from a collection
of motion-blurred images obtained for different shutter intervals. The presence of multiple objects in the scene, that are
moving along different directions, induces a complex motion field on the blurred images. We found that a good tradeoff
between complexity of the model and accuracy of the representation is to segment the motion field into regions with uniform
translational motion. In addition, we proposed to model motion-blurred images as the solution of an anisotropic diffusion
equation, whose initial conditions depend on the radiance and whose diffusion tensor encodes the depth map of the scene
and the motion field. Finally, an algorithm to infer the unknowns of the model in presented. Inference is performed by
minimizing the discrepancy between the measured images and the ones synthesized via diffusion, which we regularize via
additional Tikhonov regularization terms.
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