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ABSTRACT 
Indexing XML data to facilitate query processing has been a 
popular subject of study in recent years. Most of previous studies 
can be classified into three categories: path indexing, node 
indexing and sequence-based indexing. Many of them cannot 
answer both single-path and branching queries with various value 
predicates very efficiently. In this paper, we propose a novel 
compact tree (Ctree) structure, which provides not only concise 
path summaries but also detailed element relationships, and a 
configurable index scheme based on data statistics. We develop an 
efficient Ctree-based method for processing a tree structure query 
with various value constraints.  Efficiency of our method is 
achieved by: (1) summarizing a large database into a condensed 
structure view to prune irrelevant search space; (2) evaluating a 
tree structure query directly without expensive join operations; (3) 
using Ctree properties such as trivial groups and bi-direction to 
reduce query processing time; (4) using a new element-referring 
schema to avoid expensive join operations between the matches 
for value constraints and those for structure constraints. Our 
experiments reveal that Ctree is efficient in evaluating XML 
queries. It is about an order of magnitude faster than most 
previous methods. 

1. INTRODUCTION 
With the growing popularity of XML, more and more information 
is being stored and exchanged in the XML format [1]. XML is 
essentially a textual representation of the hierarchical (tree-like) 
data where a meaningful piece of data is bounded by matching 
tags, such as <name> and </name>. To cope with the tree-like 
structures in the XML model, several XML-specific query 
languages have been proposed recently (e.g. XPath[23], 
XQuery[24], etc.) to provide flexible query mechanisms. An 
XML query typically consists of two parts: structure constraints 
and value constraints. Structure constraints are usually 
represented by a tree structure, which can have a single-path or 
multiple branches. And value constraints can be some Database 
style (DB-style for short) predicates, such as equality or 
inequality. But they can also be some Information Retrieval style 
(IR-style for short) predicates such as containment predicates. 

The semi-structure nature of XML data and the flexible 
mechanisms provided XML queries introduce new challenges to 
database indexing methods. An index on XML data’s structures is 
expected to a covering index such that the index alone can 
facilitate the evaluation of both single-path and multiple branches 
tree-structure queries without expensive joins.  

Currently, there are three major approaches for indexing XML 
data’s structures. 1) Path indexing [6, 5, 4, 2, etc.]: create a path 
summary index from XML data. Path indexing greatly speed up 
the evaluation of single-path queries. But a path index either is 
too large for practical use or does not preserve enough details to 
answer branching queries. 2) Node indexing [11, 20]: create 
indexes on each node in an XML data tree by some numbering 
schemes. They are very efficient in determining the hierarchical 
relationships between any two nodes and support all kinds of 
queries. But node index approaches usually require expensive join 
operations to answer a query. 3) Sequence-based indexing [18, 
15]: transform both XML documents and queries into sequences 
and evaluate queries based on sequence matching. These 
approaches support flexible queries without join operations. But 
they either may have false alarms in query results or require a lot 
of post-processing to guarantee result accuracy. 

In addition, value indexing is important for efficient evaluation of 
XML queries with various value predicates. Many of previous 
approaches either have no value indexes or index the 
heterogeneous values uniformly. They either index a value as an 
entire string which is not efficient for containment value 
predicates, or as a set of words which is not efficient for equality 
or numerical range search. Such uniform value treatment and 
indexes are not suitable for the heterogeneous nature of XML 
values.  

Finally, most previous 
approaches use global IDs 
such as preorder to refer 
elements. Such a referring 
schema is expensive to 
maintain when updating and 
requires join operations 
between the matches for 
structure constraints and 
those for value constraints. 
In this paper, we address the above challenges in the following 
four aspects. 
First, a novel, compact tree structure, called Ctree, is constructed. 
As shown in Figure 1, Ctree is a two-level bidirectional tree where 
an array in a group represents a list of elements and points to their 
parents.  Ctree provides a concise structure summary at its group 
level and detailed element relationships at its element level. A 
Ctree is very compact in the index size compared to other index 
approaches. For example, for the DBLP dataset, the size of Ctree 
is about 67% of the size of node index and about 77% of the size 

Figure 1: Ctree-A two level tree
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of path index. Further, Ctree properties such as trivial groups and 
bi-direction can speed up query evaluation. Therefore, Ctree is 
well-suited for indexing XML structure. 

Second, inspired by relational databases where an expert designs 
schema and creates indices, we propose a user configurable index 
scheme for each group based on its statistics. We analyze basic 
data types in XSchema [22] and introduce five types of value 
index. We also propose a set of basic value treatments such as 
stemming, removing stop words, transferring to lower case, etc.  
Finally, the value statistics of each group are presented to users 
for configuring the proper value treatment options and index 
types. 
Third, a Ctree-based query processing method is developed, 
which first locates a set of relevant groups on the group-level, 
then processes value constraints only on the nodes in relevant 
groups, which significantly narrows the value constraints, and 
finally evaluates element level structure constraints. This three-
step strategy is very effective and prunes search space at early 
processing stage. 
Fourth, instead of using global IDs, Ctree provides two types of 
element references: a relative reference and an absolute reference. 
This novel element-referring schema reduces the cost for updating 
and avoids the expensive join operation between the results from 
evaluating structure and value constraints. 
We have conducted a set of experiments to compare the 
performance of the Ctree approach with path index, node index 
and sequence-based index. Our study shows that our Ctree 
approach is at least an order of magnitude faster than node index 
and also outperforms path index and sequence-based index. 
The rest of the paper is organized as follows. Section 2 introduces 
our XML data model. It then provides the definition for Ctree, 
along with some properties. In Section 3 we present how to build 
Ctree along with the configurable value index. Section 4 develops 
the Ctree-base query processing method. In Section 5 we present 
experimental results that show the effectiveness of our approach. 
Section 6 reviews related works. We conclude our work in 
Section 7.  

2. FOUNDATION 
We describe XML data model in Section 2.1, then move to Ctree 
and its properties in Section 2.2.   

2.1 XML Data Model and Query Model 
We model an XML document as an ordered, labeled tree where 
nodes corresponds to elements and attributes and edges represent 

element inclusion relationships in the XML documents. To 
simplify our discussion, we assume that each node is a triple (id, 
label, <value>), where id uniquely identifies the node, label is the 
tag name of the node and the optional value is the value of its 
corresponding element (or attribute) in the XML document.  
For example, Figure 2 shows a sample XML data tree which has 
19 nodes numbered from 1 to 19 as shown by the circles with the 
nodes’ labels shown beside the circles. The names of the nodes 
are shown beside the nodes. The value of a node is linked to the 
node by a dotted line. For instance, there are 13 values associated 
with the 13 leaf nodes respectively in Figure 2.   
Note that in the paper, we treat an attribute as a subelement of an 
element and a reference IDREF as a special type of value.  
We now introduce the terminologies for label path and equivalent 
nodes, which are useful for describing Ctree. 
Definition 1 (Label path) A label path for a node v in an XML 
data tree D, denoted as LP(v), is a sequence of dot-separated 
labels of the nodes on the path from the root node to node v. 
For example, node 8 in Figure 2 can be reached from the root 
node 1 through the path: node 1� node 6 � node 8. Therefore 
the label path for node 8 is dblp.thesis.author. 
Definition 2 (Equivalent node) Two nodes in an XML data tree 
D are equivalent if they have the same labeled path. 
For example, in Figure 2, node 8 and 12 are equivalent since their 
label paths are the same: dblp.thesis.author. 
With the definition of equivalent node, we can infer that if two 
nodes are equivalent in an XML data tree D, then their parent 
nodes are equivalent in D. For example, the parent nodes of node 
8 and 12 are node 6 and 10 respectively, which are equivalent 
nodes.   

2.2 Ctree and its Properties 
Now we are ready to introduce Ctree which is a compact, 
complete, and accurate tree representation for XML data tree. A 
Ctree is a two-level bidirectional tree: group level and element 
level. At group level, it provides path summary information and 
contains edges from parent groups to their child groups. At 
element level, a Ctree has links pointing from child elements to 
their parent elements.  
Similar to most path index approaches, Ctree clusters equivalent 
nodes in D into groups where each group corresponds to a distinct 
label path. That is, if two nodes are equivalent, we put them into 
the same group in Ctree. Unlike traditional approaches where 

Figure 2: A Example of XML data tree 
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nodes in a group are unordered, Ctree orders the nodes into an 
array by their preorder in D. An edge is added from group A to 
group B if A’s label path is the direct prefix of B’s label path.  
For example, an ordered path summary for the XML data tree 
(Figure 2) is illustrated in Figure 3a. Each dotted box in Figure 3a 
represents a group and the numbers in a box are the identifiers 
(IDs) of the nodes of D. Each group has a label and a unique 
group identifier which are listed above the boxes. For example, 
nodes 2, 13, 16 in Figure 2 are in the same group 1 since their 
label paths are the same: dblp.article. 
As shown in past research, such path summaries greatly facilitate 
the evaluation of single-path expressions by searching only the 
relevant part of a tree, and the answers can be found without any 
expensive join operations. For example, for a query (Q1) 
/dblp/article/author, the path summary implies that all the nodes 
in group 3, i.e. 4, 15, and 18, are the answers because their label 
paths are all dblp.article.author.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, such path summaries are insufficient for answering 
branching queries due to their incompleteness. They do not 
preserve the hierarchical relationships among individual nodes in 
a data tree D. For example, with the path summary in Figure 3a, 
we cannot determine the hierarchical relationships between node 
2 in group 1 and node 4 in group 3. Such hierarchical 
relationships are important for answering branching queries. For 
example, for a query (Q2) “find an article element which is a 
subelement of dblp and has both subelement title and year”, i.e. 
/dblp/article[title and year],  the path summary in Figure 3a 
indicates that nodes in group 1 are candidate answers. However, 
we cannot decide which nodes in group 1 can answer Q2 unless 
the hierarchical relationships between individual nodes in group 1, 
2, and 3 are provided.  
To overcome this problem, we propose Ctree which uses array 
index to represent elements and the values in arrays to point to the 
parent elements. Figure 3b shows the Ctree T1 for the XML data 
tree in Figure 2.  Instead of keeping these “absolute” node IDs 
inside each group as shown in Figure 3a, a Ctree transforms such 
“absolute” IDs into their “relative” position within each group. 
For example, nodes 2, 13 and 16 in group 1 are transformed into 0, 
1, and 2 which are their relative positions in group 1 respectively. 
Since such a relative position can be mapped to an array index, 

each group g in a Ctree T is associated with an array, denoted by 
T.grps[g].pid[]. Each index k of the array represents a node, called 
node-k for short, and the value T.grps[g].pid[k] points to its parent 
node. For example, T.grps[4].pid[1]=2 indicates that node-2 in 
group 1 is the parent of node-1 in group 4 as shown by the dotted 
arrow line in Figure 3b. With the Ctree in Figure 3b, we can 
answer not only single path but also branching queries. For 
example, to answer the query /dblp/article[title and year], the 
arrays associated with groups 2 and 4 contain 0 and 2 and imply 
that the node-0 and node-2 in group 1 are the answers.  
By comparing Figure 3b with Figure 3a, the numbers in Figure 3a 
are in chaos in a sense while the numbers in Figure 3b are in 
orderly condition. For example, the numbers in shaded groups are 
the same as their array indices and can be removed.  After 
removing these numbers, the Ctree is about half the size of the 
path summary. Furthermore, the equivalences of array indices and 
its values in the shaded groups can be used to speed up query 
processing.  
The formal definition for a Ctree for an XML data tree T is 
defined as follows: 
Definition 3 (Ctree) A Ctree for an XML data tree D, denoted as 
TD, is an ordered labeled tree {G, E} where 

1) G is the set of groups in TD which have one-to-one 
relationships with the label paths in D. Each group, g, 
has a unique identifier and a label, denoted as g.gid and 
g.label respectively.  

2) E is the set of directed edges in TD that connect these 
groups. An edge is added from group g1 to group g2 if 
the label path of g1 is the longest prefix of the that of g2.  

3) Each group g in TD is associated with an array of 
integers, denoted as g.pid[], where the array index 
represents a list of equivalent nodes ordered by their 
preorder in D and the array values point to the 
corresponding parent elements.  

The definitions 3(1) and 3(2) provide a path summary for an XML 
data tree D, while 3(3) adds to each group in a Ctree the 
hierarchical relationships among individual elements in D to 
guarantee its completeness. A Ctree has parent-to-child edges at 
the group level and provides child-to-parent links at its element 
level as illustrated by the dotted line in Figure 3b. Such a 
bidirectional tree makes Ctree superior to other indexing methods. 
For a group gc and its parent group g, a node in g may have no 
child in gc. For example, the node-1 in group 1 has no child in 
group 4. It is also possible that a node in g can have one or more 
child nodes in gc. If every node in group g has exactly one child in 
gc, we call gc a trivial group, which is formally defined as follows:  

Definition 4 (Trivial Group) A group g in a Ctree is called a 
trivial group iff it is the same size as its parent group and 
g.pid[k]=k (∀ k, 0≤k<g.size). 

For example, groups 2, 3, 6 and 7 in Figure 3b are trivial groups. 
That is, every article (or thesis) element has exactly one sub-
element title and year in Figure 2. Such information is valuable 
for query optimization. For example, for a query Q3 “find an 
article element that has a sub-element title and a sub-element 
year”, i.e. //article[title and year], the Ctree directly returns all 
nodes in group 1 as answers without further checking the element-
level information. 

Figure 3: Examples of path summary and Ctree for the XML 
data tree in Figure 2. 
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The array pid[] in a trivial group can be removed from the Ctree 
without losing information since we know the function pid[k]=k. 
This will reduce the size of Ctree.  In our experiments, we found 
that trivial groups are very common in various XML datasets. 
Therefore, the size of a Ctree is usually much smaller than that of 
its counterpart path index.   
Depending on the context, we can refer to a node in a Ctree group 
by two types of references: absolute reference and relative 
reference which are defined as follows: 
Definition 5 (Absolute Reference and Relative Reference) The 
absolute reference to the (k+1)th node in a group g (0 ≤ k < g.size) 
is denoted as g.gid:k and its relative reference is k. 

For example, the absolute reference to the second node in group 4 
in Figure 3b is 4:1. If the referring context is clear, its relative 
reference is 1. 

Theorem 1 For any group g in a Ctree, the values in g.pid[] are in 
increasing order, i.e. ∀ i, j (0≤i<j<g.size) g.pid[i] ≤ g.pid[j]. 

This can be inferred from Definition 3(3) where the equivalent 
nodes in a group are ordered by their preorder in D and the 
continuous preorder numbers.    

As shown in Figure 4, group g1 is the 
ancestor of group g2, i.e., there is a 
group level path from g1 to g2.  

Theorem 2 The ancestor-child 
function y=anc(x) from g2 to g1 is an 
increasing function. 
Theorem 2 can be inferred by recursively using Theorem 1.  The 
theorem means that a1≤ a2 whenever d1< d2 in Figure 4. This 
property can be used for query processing. 

3. A Ctree-based XML INDEXING 
The architecture for a Ctree-based XML indexing and querying 
system is illustrated in Figure 5. There are three function parts in 
the system architecture: a Scan module, an Index Builder and a 
Query Processor.  There are also three data parts: the source XML 
Data, the Configuration file, and the Ctree Index Data. 
 
 
 
 
 
 
 
 
 
 
 
A Ctree index for XML documents is created by three steps. First, 
XML data is sent to the Scan module that collects statistical 
information about the data. This information is stored in an Excel 
spreadsheet and presented to a user. Second, based on the 
statistics information, a user selects a set of index options for each 

group of equivalent nodes.  Third, based on the user’s index 
configurations, the Index Builder constructs a Ctree and builds 
value indexes on the data.   
When a query comes in, the Query Processor evaluates the query 
based on the Ctree structure and value indices, and returns the 
query results to the user. We present the Ctree-based query 
evaluation process in Section 4. 
In this section, we first describe the index configuration process. 
Then we introduce five value index types supported in our system. 
We present how the Index Builder creates a Ctree on XML raw 
data based on a user’s index configurations in section 3.3. Finally 
we discuss how to use a Ctree to update the XML data and the 
Ctree simultaneously. 

3.1 Index Configurations 
Previous XML indexing approaches create indexes uniformly on 
each node, each path, or each sequence of XML documents. No 
consideration is given to the heterogeneous nature of XML data 
model which allows any user-defined tags. Tags in an XML 
document usually can be classified into three categories: (1) 
Semantic Tags; (2) Presentation Tags; and (3) Annotation Tags. 
Semantic Tags describe the semantics of corresponding elements, 
such as <title>, <author> and <year> in Figure 6. Presentation 
tags sense the tone of displaying, such as <scp> which informs a 
browser to display the text bounded by <scp> and </scp> in lower 
cases. Finally, the text bounded by annotation tags represents a 
document author’s comments and annotations, such as <note> in 
Line 9. The heterogeneous tags in an XML document call for a 
non-uniform indexing scheme where some individual tags and 
some annotations (i.e. element tags and their values) may be 
ignored during indexing. 
 
 
 
 
 
 
 
 
 
Similarly, the heterogeneous element values in XML documents 
call for a non-uniform value index scheme to support the diverse 
value constraints in XML queries.  
To this end, we propose a user configurable index framework 
which allows a user to specify ignorable individual tags and 
annotations. It also allows a user to specify how to index an 
element’s value: whether to index an element’s value as a whole 
string, or as a bag of tokens, or as a number. More importantly, 
our configurable index framework allows a user to specify how to 
treat an element’s value, such as whether to remove words with no 
discriminative power, i.e. stop words, and whether to transform 
words to its canonical form to support keyword searching and to 
reduce index size. 
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Figure 5: Architectural Overview of Ctree. 
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05.   <year> 2003 </year> 
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11.    </body> </article> 

Figure 6: An Example XML Document. 



3.1.1 Scan 
To facilitate index configurations, we use a Scan module to 
collect statistics information from XML documents while parsing. 
This statistics information is stored in a spreadsheet for ease of 
browsing and configuration. 
Since equivalent nodes in an XML data tree usually have similar 
structure and value characteristics, a Scan module collects a set of 
statistics information about a group of equivalent nodes. The 
statistics information is stored in an Excel’s worksheet (PreSum). 
Each row in the worksheet stores some statistics information 
about a group of equivalent nodes as listed below: 

1) Group Label: the label of the group, such as title. 
2) Group depth: the depth of the group. 
3) # of nodes: the number of equivalent nodes in the group 
4) Max value length (mLen): maximal value length for the 

nodes in the group. 
5) Min value length (mLen): Minimal value length for the 

nodes in the group. 
6) Digit#: number of tokens composed by pure digits in the 

values of nodes in the group. A token is defined as a set of 
continuous digits or letters or mixed digits and letters 
without delimiting spaces. 

7) Word#:  number of tokens composed by pure letters in the 
values of the nodes in this group. 

8) Mixed#: number of tokens composed by mixed digits and 
letters in the values of the nodes in this group. 

The items 1)-3) summarize a group’s structure characteristics 
while 4)-8) summarize a group’s value characteristics. The group 
statistics can be further grouped by tag names. For example, the 
grouped statistics information for the DBLP dataset collected by 
the Scan module is presented on the worksheet named TagNames 
as shown in Figure 7. This statistics information can help a user to 
select index options for each group. 

 
Figure 7: Collecting statistics from source XML data. 

3.1.2 Configuration 
With the collected statistics information, a user can specify a tag 
index type, and value index type, and select a set of value 

treatment options for each group, which are described in detail as 
follows: 
•  Tag index type: To configure how to index a tag. We currently 

support three tag index types: 1) keep, which means that a 
user wants to keep these tags during indexing; 2) overlook, 
which means that a user wants to ignore these individual tags 
but keep their values during indexing; 3) skip, which means a 
user wants to ignore the whole annotation, i.e. both tags and 
values, during indexing. 

An example of index configurations for the DBLP dataset is 
illustrated in Figure 8. The option overlook on the cell M30 
(column M, row 30) means that the tags <i> and </i> will be 
overlooked during indexing. The option Skip on the cell M29 
means that the elements named sub will be skipped as a whole. 

 
Figure 8: Index configuration for DBLP dataset 

•  Value index type: To choose a value index type to index the 
values of a group. Currently six options are available: 1) No 
index, if a user specifies this value index type for a group, 
then the values of this group will not be indexed; 2) Invert; 3) 
Number; 4) DTime; 5) List; and 6) ID. The latter five choices 
will be explained in detail in Section 3.2. 

•  Value treatment options: To specify a set of treatments to 
process the values of a group before indexing. Currently, 
four treatment functions are supported in our system. 1) S 
Function: Provides four options digit, word, all and whole 
for the user to define which kinds of tokens to index. 2) Stop 
Function. Removes the words with weak discriminative 
powers such as articles and pronouns. 3) Lower Function. 
Transforms a value into lower cases before indexing. 4) 
Stemming Function. Transforms a value into to its canonical 
forms before indexing. For example, “clustering”, “clusters” 
and “clustered” will be transformed to “cluster”.  

For example, the option on the cell O7 (column O, row 7) in 
Figure 8 means that a user is only interested in indexing the digits 
tokens in values for elements year. The option on the cell O8 
means that a user wants to index the values for elements school as 
a whole. 

Note that a user can configure index options for a tag which are 
applied to a set of groups of the tag name.  A user can also make 



configurations for a specific group, which has higher priority than 
the tag-level configurations.  

3.2 Value Index Types 
The heterogeneous nature of element values in XML documents 
calls for multiple value index types according to the values’ 
characteristics. In this paper, we propose five value index types: 
Invert, List, Number, DTime and ID to support values of common 
XML data types in the XML schema [22], such as xs:string and 
xs:decimal, etc., and some special data values such as values for 
IDREF attributes. Each value index type supports a common 
search function:  
 List Search (gid, predicate) 
That is, given a group identifier and a value predicate, the 
function returns a list of elements that satisfy the value predicate. 
This search function plays an important role in our Ctree-based 
query evaluations (Section 4). For example, suppose a user is 
interested in finding books authored by “David” in the DBLP 
dataset, i.e. /book/author[contains(., “David”)] in XQuery. The 
Ctree-based query evaluation algorithm first locates the group 88 
for the path /book/author and then calls the search function: 
Search(88, “David”) which returns only 27 authors in group 88 
with “David” in their names. In contrast, most previous indexing 
approaches return the 13,218 author names containing “David” 
since their inverted value indices use global element IDs, and then 
join the 13,218 author names with the results for /book/author. 
The Invert and ID value index types are global in that they are 
shared among groups. A Ctree has at most one Invert value index 
and one ID value index. The other three value index types (i.e. 
List, Number and DTime) are local in that each of them is 
associated with a particular group. A Ctree can have several List, 
Number and DTime value indices. Global value index types use 
absolute element references and local value index types use 
relative element references.  

•  Invert Type: This type treats a value as a bag of tokens and 
creates a mapping from each token to a list of absolute 
element references whose values contain this token. These 
absolute references are sorted in the ascending order; that is, 
references are first sorted by their group identifiers and then 
by relative references. This facilitates a group-based search.  

•  List Type: Some groups have only a limited number of distinct 
values, for instance, a person’s education. For such values, 
we create a unique value identifier for each distinct value and 
associate the identifier with a list of elements having this 
value. 

•  Number Type: Numerical values are indexed by a Number 
type, which sorts numerical values of a group in ascending 
order. Number type supports numerical range search. More 
specifically, given a numerical range (a, b), it returns a list of 
relative node references whose values are greater than a and 
less than b. 

•  DTime Type: The DTime type transfers a string expression of 
date or time into an integer and creates indexes on the 
integers, which minimizes index size and computation 
overhead by eliminating string comparisons.  

•  ID Type: The ID type is used to index the special IDREF 
values in XML documents. It creates a map for a referring 

node to a referred node, where the nodes are represented by 
their absolute element references but not the IDREF values.  

3.3 Constructing a CTree 
3.3.1 Ctree Index 
To support efficient and scalable query processing, Ctree index 
stores the following mapping information: 
•  The nameHt: Tag name�nid. A hash table maps each tag 

name to a unique name identifier (nid). Using identifiers 
rather than string minimizes index size and computational 
overhead. 

•  The nid2Gids[][]: nid�gids.  An array, for a given tag name 
identifier nid, returns a list of group identifiers (gids) that 
correspond to the tag name.   

•  The pathHt: path�gid. A hash table, for a given label path, 
returns the group identifier corresponding to the label path. 
For example, it returns group 3 for the label path 
dblp.article.author in the Ctree T1 in Figure 3b. This 
mapping can facilitate the evaluation of simple path 
expression queries.   

At the group level, Ctree stores a set of attributes (gid, size, depth, 
nid, pgid, pid[], pos[], len[]) where gid and size, representing the 
group identifier and the number of descendant groups, can be 
used to determine the ancestor-descendant relationship between 
any pair of groups in constant time. For example, for groups g1 
and g2, g1 is an ancestor of g2 if and only if g1.gid < g2.gid ≤ g1.gid 
+ g1.size. The pgid points to the parent group.  At element level, 
for each element, Ctree stores the relative reference of its parent 
element, its position, and its length in the arrays pid[], pos[], and 
len[] respectively. 

3.3.2 IndexBuilder 
Algorithm 1 shows the IndexBuilder which takes a file path, 
where a set of XML documents reside, and a configuration Excel 
file for the documents as input and creates a Ctree for the 
documents.  Line 1 reads the configuration directly from the Excel 
file and uses it to build an empty instance of Ctree.  Line 2 opens 
an XML file one at a time and reads it with a SAX parser.  Lines 3 
to 15 show the main event processing. 

Lines 4 to 6 process an open tag recording element information 
such as positions and degrees and resetting its text content.  If the 
current group grp is configured as Select, then Ctree group cgrp is 
pointed to grp. For a text node, it simply records the text as in line 
7.  For a close tag, if the configuration of grp is Overlook, then 
add its text is added to its parent element as in lines 10 and 11; if 
it is Select, then add the element information into the Ctree and 
process its text for adding into the value index.  

When finished with reading all XML documents, Index Builder 
builds the value index as shown in line 16.  Then the Ctree is fully 
created and can be serialized onto hard disk for reuse. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Updating Ctree 
There has been previous works on updating XML data [17] and 
some works on updating XML index [9,2], but how to use XML 
index to assist updating both XML data and XML index 
simultaneously has not been addressed in previous research.  We 
propose to use Ctree to query and update XML source data. Due 
to space limitations, we only discuss inserting and removing a 
single element using a Ctree.  

 

 

 

 

 

 

 

Algorithm 2 shows the main steps to insert an element e into 
group g at the position k in a Ctree T.  It first gets a proper 
position and inserts the element into the XML document. Then 
information is inserted into T as in line 2. Line 3 updates the 
element level links for the child groups of g.  Line 4 updates the 
part of the value index affected by the changes in group g‘s 
references.  Finally, we update the positions and lengths 
information for the affected elements. Similarly, Algorithm 3 
illustrates the main steps to remove an element e from group g at 
the position k in the Ctree T.  

Previous works use global IDs to refer elements. Updating an 
element from a XML document affects not only a large number of 
the remaining elements’ IDs but also their corresponding 
positions and lengths information in a XML document.  
Furthermore, changing an element’s ID incurs updating the value 
index for the element. There also has been some previous work 

that uses dynamic labeling schemes to reserve some IDs for each 
node. Updating an element in a XML document does not affect 
other elements’ IDs when there is a spare ID at the updating point, 
but it still requires updating other information such as positions 
and lengths. 

    

 

 

 

 

 

 

In contrast, A Ctree has several important advantages when 
updating XML documents: 
•  A Ctree changes fewer element references when updating an 

XML document than previous methods. For example, 
inserting a new element into a group in a Ctree affects only 
the elements after the inserting point in that group and has no 
effect on other groups.  

•  The fast access of parent elements in a Ctree enables it to use 
relative element positions (the offsets within their parents) 
which can significantly reduce the number of affected 
elements and thus reduce the costs for updating the positions 
and lengths information.   

•  Finally, using relative reference and private value indices 
reduces the value index updating costs. 

4. QUERY EVALUATION 
In this paper, we model an XML query Q as a tree TQ where each 
node corresponds to an 
element (or attribute) in Q 
and an edge represents an 
element-inclusion 
relationship. An edge in a TQ 
can be either a parent-child 
(PC) edge, denoted as “/”, or 
an ancestor-descendant (AD) 
edge, denoted as “//”. Value 
constraints in Q become value 
constraints of corresponding 
nodes in TQ. We assume that each query has an element or 
attribute that a user wants to return and we call its corresponding 
node in TQ target node. To distinguish a target node from other 
nodes in TQ, we emphasize it with a box. For example, Figure 9 is 
a tree representation of the following query (Q4):  

/dblp/article [contains (.//author, “John”) and year > 94]/title 
In this example, a user is interested in titles of the articles under 
dblp which have a descendant element author containing “John” 
and a sub-element year with value greater than 94.  

4.1 CTSearch: Ctree-based query processing 
We propose a novel Ctree-based query evaluation CTSearch 
(Algorithm 4), which processes a query, TQ, in the three steps: 

Algorithm 1: Indexer: building Ctree with value index based 
on user configuration 

Input:  P,  a file path where XML documents reside. 
 C,  an Excel file for index configuration 
Output:  T,  Ctree index object with value index 
1 Read C and build a Ctree object T to fill in information. 
2 For each XML file, open a reader r and read till the end 
3   Case (open tag): 
4   Record position and degree into �info[r.dep] 
5    Current group�grp and reset text[r.dep]; 
6    If  (grp is configured to Select) then cgrp = grp; 
7  Case (text node):  Add r.text to text[r.dep]; 
8  Case (close tag): 
9   If (grp is configured to Skip) break. 
10   If (grp is configured to Overlook) 
11    Add text[r.dep] to text[r.dep-1] and break; 
12   Add element info to the Ctree T; 
13   If (cgrp is configured to have a value index) 
14    Process text[r.dep] and add into the value index. 
15   cgrp=cgrp�parent; 
16 Build value index for each group;  
17 Return T 

>94

dblp

article

author year title
John 

Figure 9: Tree pattern query 
Algorithm 2: Add an element into a XML file using Ctree. 

Input:  D, a source XML document to add an element 
 T, A Ctree to be updated 
Output:  Updated D and T. 
//Add element e into group g at position k 
1 Insert e at proper position in D. 
2 Insert the info of e into group g at position k. 
3 For each g’s child c, if k≤c.pid[i], then c.pid[i]= c.pid[i]+1. 
4 Update value index for elements of g with reference ≥k. 
5 Update affected elements’ positions and lengths info. 

Algorithm 3: Remove an element from a XML file using Ctree

Input:  D, a source XML document to contain an element 
 T, A Ctree to be updated 
Output:  Updated D and T. 
//Remove element e from group g at position k 
1 Remove e at its position in D. 
2 Remove the info of e from group g at position k. 
3 For each g’s child c, if c.pid[i]≥k, c.pid[i]= c.pid[i]-1. 
4 Update value index for elements of g with reference ≥k. 
5 Update affected elements’ positions and lengths info.



First, a Group Level Frame Finder (Section 4.2) locates a set of 
frames, where each frame is an assignment of Ctree groups to the 
query nodes that satisfy a query’s tree-structure. For example, 
there is one frame consisting of groups (0, 1, 3, 4, 2) in the Ctree 
(Figure 3b) for Q4, which are matches to query nodes (dblp, 
article, author, year, title) respectively. 
 

 

 

 

 

 

 

 

 

Second, CTSearch evaluates the query’s value constraints using 
value indices. As discussed in Section 3, all value indices 
implement a Search function with two parameters: a group 
identifier and a value predicator. The Search function returns a 
list of nodes in the group that satisfy the value predicator. For 
example, there are two value constraints in Q3:  author=“John” 
and year>94. For the first value constraint, CTSearch calls the 
function Search(3, “John”) since group 3 is a match for query 
node author in step 1. Nodes 3:0 and 3:1 are retuned. That is, 
node 4 and 15 in Figure 2, satisfy the value predicator. Similarly, 
node 4:0 (i.e. node 5 in Figure 2) is returned by evaluating the 
second value constraint on value indices. 
Finally, CTSearch evaluates element level structure constraints 
(Section 4.3) and returns the query results to the user. This step 
can be done by analyzing element level pointers.  
This three-step query evaluation strategy offers several important 
advantages: 
•  It is very efficient as it only searches the relevant part of the 

tree hierarchy with the guidance of a Ctree’s group-level 
representation. 

•  It supports early pruning. If there is no answer available, it 
terminates at the earliest possible stage. For example, for a 
query //article[author =”John”]/address on DBLP, our 
CTSearch will return zero match at the first step since the 
path //article/address does not exist in the Ctree for the 
DBLP dataset. However, traditional node index approaches 
require a set of expensive join operations, such as a join 
operation between the 11629 matches for node article and 
716488 matches for node author in DBLP. 

•  Evaluating value constraints based on a frame significantly 
reduces the possible matches.  

4.2 Group Level Frame Finder 
There are two kinds of nodes in a query tree TQ: fixed nodes and 
variable nodes. A query node, u, is a fixed node if the path from 
the query root to u does not contain “//” and “*”, such as node 
dblp, article, year and title in Figure 9. A query node, u, is a 
variable node if the path from the query root to u contains “//” or 
“*”, such as node author and year in Figure 9. 

A fixed query node can have at most one group match in a Ctree, 
which can be easily determined by the hash table pathHt, because 
every group in a Ctree represents a unique label path. For example, 
group 2 in Figure 3b is the match for node title whose label path 
is dblp.article.title. Similarly, the matches for query nodes dblp, 
article and year are group 0, 1, 4 respectively. 

Unlike a fixed node, a variable query node can be matched to 
more than one group in a Ctree. For a variable query node, we can 
determine its candidate matches by first finding its name identifier 
nid1 from the hash table nameHt and then retrieving the list of 
candidate group identifiers from the array nid2Grps[][] with nid1, 
i.e. nid2Grps[nid1][]. After identifying candidate matches for all 
the variable nodes in TQ, we can apply structural join algorithms 
to get frames [3][16][12]. For example, the variable query node 
author in Q4 has two candidate matches in the Ctree (Figure 3b): 
group 3 and group 7. Since the parent query node article is 
matched to group 1, group 3 is the only choice for article and the 
frame for TQ4 is {0, 1, 3, 4, 2}. 

Algorithm 5 shows the FrameFinder which locates all frames in a 
Ctree.  It first determines the matches for the fixed query nodes in 
TQ (Line 1).  Line 2 processes the candidate matches for each 
variable node in TQ. A structural join algorithm is used to 
determine the match for each variable node in TQ (line 3). Finally 
line 4 outputs a list of frames. 

 

 

 

 

 

 

 

 

4.3 Element Level Structure Match 
The last step in CTSearch evaluates element-level structure 
constraints and returns relevant elements in the groups matching a 
query’s target node, which we call target groups. For example, for 
TQ4 (Figure 9) and the Ctree T1 (Figure 3b), the first two steps of 
CTSearch determine that all the elements in groups {0, 1, 2} and 
elements {3:0, 3:1} and {4:0} satisfy the group-level structure 
and value constraints. Now the last step of CTSearch should 
return relevant elements in group 2 which can answer TQ4. 
Relevant nodes in the target groups can be determined by 
projecting results for non-target query nodes to the target groups. 
Depending on a query node’s position within a query tree, a 
projection direction for a query node can be either downward or 
upward. A query node’s projection direction is downward if it is 
on the path from the root node to the target node, such as node 
dblp and article in TQ4. Otherwise, its projection direction is 
upward, such as node author and year in TQ4.  
Algorithm 6 shows the StruEvaluator which, given a query tree 
TQ and a frame in a Ctree after the first two steps’ processing, 
returns a list of nodes in the target group that are the answers to 
TQ. Line 1 computes a projection direction for each query node in 

Algorithm 5: FrameFinder: mapping gids����query nodes. 

Input:  T,  a Ctree with value index 
 TQ, a query execution tree 
Output:  F,  A list of mappings from gids� TQ.nodes. 
// 
1 Get the gid for each fixed node by checking the hash table 

T.pathHt; if not existed, then return ∅ . 
2 Assign candidate gids to each variable node by the label of 

the node. 
3 Apply structural join algorithms to determine the matches for 

each variable node. 
4 Return a list of assignments. 

Input:  T,  a Ctree with value index 
 TQ, a query tree 
Output:  A list of elements in T that satisfy the TQ. 
// 
1 Evaluate group level structure constraints: 
   Call FrameFinder to get a list of frames.  
2  For each frame, do 
3  Evaluate value constraints on the frame. 
4  Evaluate element level structure constraints:   
    Call StruEvaluator to a list of matched elements; 
5  Output the list of elements; 

Algorithm 4: CTSearch: Ctree-based query processing. 



TQ as discussed above. Line 2 classifies query nodes in TQ into 
two ordered lists: query nodes with upward projection directions, 
UN, and query nodes with downward projection directions, DN. 
Nodes in UN are ordered by the ascending post-orders in TQ so 
that each node, u, can project their results to its parent node, p(u), 
before p(u) projects its results upward. Similarly, nodes in DN are 
ordered by the ascending pre-orders in TQ so that each node, v, 
can project their results to its child node or direct descendant, c(v), 
before c(v) projects its results downward. For example, for TQ4 in 
Figure 9, UN= {author, year} and DN = {dblp, article, title}. 
Line 3 projects the results of the nodes in UN upward into their 
parents. (Section 4.3.1)  Line 4 projects the results of the nodes in 
DN downward to their child in DN. (Section 4.3.2) 

 
 

4.3.1 MapUp Function 
Algorithm 7 describes the MapUp function, which projects the 
results of a query node c upwards to its parent query node n so 
that the results of n will be updated to reflect the structure 
constraint from the node c.   

Since the edge between n and c on TQ can be an ancestor-
descendant relationship, there are some groups in between the two 
groups assigned to n and c, i.e. n.gid and c.gid.  Figure 10(a) 
shows a case where one group g links the two groups in a Ctree T.   

 

 

 

 

 

 

 
MapUp starts from group c.gid and projects the results one group 
upward at each loop until the group n is reached as shown in lines 
1 to 7.  Line 8 intersects the two element lists.  Note that no 
mapping operation is required for a trivial group as shown in line 
2, which reduces the computing time. 

For example, the results for author in TQ4, elements {3:0, 3:1} in 
the Ctree T1 (Figure 3b.) are projected to article whose current 
results are {1:0, 1:1, 1:2}.  The updated results for article are {1:0, 

1:1}. Then, the result {4:0} for year is projected to article whose 
current results are {1:0, 1:1}. Since element 1:0 is the parent of 
element 4:0, the updated result for article is {1:0}. 

 

 

 

 

 

 

 

 

 

 

4.3.2 MapDown Function 
After the nodes in UN are projected upward, the StruEvaluator 
algorithm iteratively projects the results for the query nodes in DN 
downward until it reaches the target node.  
For example, for TQ4, DN = {dblp, article, title}. First, the 
MarkDown function is called to project the results {0:0} for dblp 
to its child node article, whose current result is {1:0}. Since 
element 0:0 is the parent of element 1:0, the updated result for 
article are still {1:0}. Then we project the {1:0} to the target 
query node title, whose current results are {2:0, 2:1, 2:2}. Since 
element 2:0 is the only child of element 1:0, the answer is {2:0}. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10(b) illustrates the MapDown algorithm as shown in 
Algorithm 8. It starts from the first element s in c.R and follows 
the links to determine the ancestor p in the group n.gid. For the 
case p is in n.R, line 4 finds p’ with the maximal continuous 
number in n.R from p, line 5 determines the maximal descendant 
q in the group c.grp of p’ which can be done by a binary search, 
and line 6 adds the elements between s and q in c.R into the 
output list R. Lines 8 to 10 show the case p is not in n.R where we 
can overlook a list of elements in c.R as marked by “×” in Figure 
12(b). The correctness of the MapDown algorithm can be proved 

Input:  TQ, a query tree with a target node ut 
 F, a frame after Step 1& 2 and gt is the target group 
Output:  A list of nodes in gt that are answers for TQ. 
// 
1 Determine the projection direction for each query node.  
2 Let UN = {v1, v2, …, vm} be the list of query nodes with 

upward projection directions, ordered by their post-orders 
in TQ; DN = {u1, u2, …, un} be the list of query nodes 
with downward projection directions, ordered by their 
pre-order in TQ. 

3 For each node in UN, project its result upward to its parent 
node by calling MapUp function. 

4 For each node in DN, project its result downward to its child 
in DN by calling MapDown function. 

5    Return the list of relevant nodes in the target node. 

Algorithm 6: StruEvaluator: Evaluating element level 
structure constraints. 

c g n c g n 
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Figure 10: Illustration of MapUp and MapDown where there 
is an ad edge from n to c and only one group g in between 

Algorithm 7: MapUp: mapping the results from a query node 
up to its parent node. 

Input:  T,  a Ctree with value index 
 n,  a query node in query tree.  
 c, a child node of n. 
Output:  n.R, updated the results of the query node n.. 
1 for(g=c.gid, R=c.R; g!=n.gid; g=g�parent) do 
2  if(g is a trivial group) continue; 
3   for(i=0, a=new ArrayList(), old=-1; i<R.Count; i++) 
4   if(R[i]�pid!=old) 
5     old = R[i]�pid; 
6    a.Add(old); 
7   R=a; 
8 n.R=n.R ∩ R; 

Algorithm 8: MapDown: mapping the results from a query 
node down to a child node.

Input:  T,  a Ctree with value index 
 n,  a query node in query execution tree.  
 c, a child node of n. 
Output:  c.R, updated with the MapDown results. 
1 for(i=0, R=new ArrayList(); i<c.R.Count;) do 
2  The mapping point from c.R[i] into n�p; 
3   if(p in n.R) 
4   The maximal continous number from p in n.R�p; 
5    The maximal descendant id of p in c.grp�q; 
6   while(c.R[i]<q) R.add(c.R[i++]); 
7   else 
8   The maximal continous number from p not in n.R�p;
9    The maximal descendant id of p in c.grp�q; 
10   while(c.R[i]<q) i++; 
11 c.R= R; 



by Theorem 2. Intuitively, for any element between s and q in 
Figure 10b, its projected point on group n will be between p and 
p’.  Therefore, if the elements [p, p’] are in n.R, then the elements 
in c.R in the range [s, q] will satisfy the structure constraints from 
n; and if the elements [p, p’] are not in n.R, then the elements in 
c.R in the range [s, q] will not satisfy the structure constraints 
from n. 

5. EXPERIMENTAL RESULTS 
We have implemented Ctree in DotNET C# for XML indexing. 
We have also implemented a path index method similar to 
DataGuide*1 [6], and a node index method similar to XISS [11], a 
sequence index approach similar to ViST[18] in C# for 
comparison purposes.   Experiments were run on a 2.8 GHz PC-
compatible machine with 1GB of RAM running Windows XP. To 
focus on the comparison of query execution time, we loaded each 
index data into the RAM before testing so that no IO operation for 
reading the index data was required. 
For our experiments, we used public XML databases DBLP [10] 
and the XML benchmark database XMARK [21]. DBLP is a 
popular computer science bibliography database and XMARK is a 
synthetic on-line auction database. Both of them are widely used 
in benchmarking XML index methods. The characteristics of 
these two datasets are illustrated in Table 1.   

Table 1: Characteristics of the Datasets DBLP and XMARK 
Dataset Size 

(MB) 
Max 

Depth 
Element# Element# in 

trivial groups 
Percent 

DBLP 134 6 3,736,406 1,311,532 35% 
XMARK 117 12 2,048,193 1,255,826 61% 

As shown in Table 1, the DBLP dataset is relatively shallow with 
a maximal depth of 6 and contains about 3.7 millions of elements 
including attributes.  XMARK is relatively deep with a depth of 
12 and has about 2 million elements.  It is interesting to note that 
there are large percentages of elements belonging to trivial groups, 
about 35% on DBLP and 61% on MARK.  Since trivial groups 
can be removed from a Ctree and be used for speeding up 
evaluating structure constraints (Section 4.4), a Ctree is much 
smaller and more efficient than previous approaches. 

5.1 Index Size 
Figure 11 shows the space requirements for four indexing 
approaches: Ctree, Data Guide*, XISS, and ViST. ViST requires 
decomposing the DBLP dataset into documents at the depth 1 in 
order to keep document sequences short. Since the content values 
in XMARK datasets are quite heterogeneous and it is hard to 
choose the proper depth to decompose, we have not done any 
comparison with ViST on XMARK.  
We noticed that XISS incurs the most space overhead on the two 
datasets since it builds indices on each element. Data Guide* 
requires more space than ViST and Ctree.  

                                                                 
1  Since DataGuide cannot answer branching path expressions 

without accessing the original XML data, we implemented the 
DataGuide index with an additional array mapping from an 
element’s ID to its end position to make it a covering index for 
branching path expression queries. 
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Figure 11: Comparison of the index size of different methods 

over DBLP and XMARK. 
A Ctree requires the least space due to two reasons. First, a Ctree 
does not need to keep element-level links for trivial groups. As we 
can see from Table 1, the percentages of elements in trivial groups 
are quite large because of the common one-to-one relationships in 
both datasets. Second, the diverse value index schemes in Ctree 
also reduce of space overhead. For example, transforming a string 
“$1,234,567.99” into a number reduces index size. 

5.2 Comparison on DBLP Dataset 
Table 2 lists 6 queries that were tested on the DBLP dataset and 
have ascending complexity. Figure 12 summarizes the query 
performance of four index methods: Ctree, DataGuide*, XISS and 
PRIX.  We notice that for most of the queries, Ctree significantly 
outperforms the other three approaches.  

Table 2: Sample queries over DBLP 
 Description Answer#
Q1 /inproceedings/title 212,273
Q2 /book/author[contains(., “David”)] 27
Q2 /*/author[contains(., “David”)] 13,218
Q4 //author[contains(., “David”)] 13,218
Q5 /article[contains(./author,“David”) and ./year=1995] 258
Q6 /article[contains(./author,“David”) and ./year≥1995] 2,195

Q1 is a single path query and there are no value constraints 
involved. The Ctree and DataGuide* approaches have similar 
query performance, while it takes longer for XISS approach as it 
requires join operations. The value constraints in Q2 slow down 
the DataGuide* approach against the Ctree approach, although 
both approaches have similar time requirement for processing 
structural constraint. In the Ctree, indexes for a specific value, 
such as “David”, are sorted according to element’s absolute 
reference, which puts the elements of the same group together. 
Processing value constraints in Ctree is similar to range search in 
an ordered list. On the other hand, DataGuide* and XISS require 
expensive join operations between two ordered lists when 
processing value constraints.  Since Q3 and Q4 uses wildcards or 
“//” edges and involves a large number of join operations, 
DataGuide* and XISS take 15 times longer than Ctree. Q5 and Q6 
are queries with two branches and again Ctree significantly 
outperforms the other two approaches. 
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Figure 12: Comparing Ctree with path index and node index 

on DBLP in relative time for each query 

5.3 Comparison on XMARK 
We choose six XMARK [21] benchmark queries for our 
comparison study as shown in Table 3. Q2 and Q4 are designed to 
test the performance of ordered access: Q2 for element index and 
Q4 for tag order. Q15 and Q16 are to evaluate the performance of 
long path traversals.  Q18 is to compare function application. Q20 
is for aggregations. 

Table 3: Sample queries over XMARK 
 Description Answer#
Q2 Return the initial increases of all open auctions. 10,830
Q4 List the reserves of those open auctions where 

person18829 issued a bid before person10487.  
2

Q15 Print the keywords in emphasis in annotations of 
closed auctions. 

180

Q16 Return the IDs of those auctions that have one or 
more keywords in emphasis. 

160

Q18 Convert the currency of the reserve of all open 
auctions to another currency. 

5,922

Q20 Group customers by their income and output the 
cardinality of each group. 

1

Figure 13 shows the comparison results.  For all the six queries, 
Ctree outperforms the other two methods by an order of 
magnitude. 
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Figure 13: Comparing Ctree with path index and node index 

on XMARK in relative time for each query. 

5.4 Comparison with ViST 
We also compared Ctree with ViST on DBLP using the four 
queries (table 4). The first two queries contain only structure 
constraints while the last two queries also contain value 
constraints.  Table 4 also shows the number of answers for each 
query. 

Table 4: Queries for comparing Ctree with ViST 
 Description Answer#
Q1 /inproceedings/title 212,273
Q2 //www[author, url]  7
Q3 //article/author=”Jim Gray” 35
Q4 //title=”A Query Language for XML.” 1

Table 5 shows the performance comparisons between Ctree and 
ViST the four queries listed in Table 4. Ctree correctly answers all 
the queries. ViST only answers queries Q1 and Q2 correctly and 
contains false positives in the answers for Q3 and Q4.  Ctree 
performs significantly better than ViST for queries Q1, Q2 and 
Q3 and has comparable performance for Q4.  

Table 5: Comparison with sequence-based approach ViST 
 Ctree ViST 
 Time (ms) Time (ms) Answer# False Alarm#

Q1 51.7 123.6 212,273 0 
Q2 5.4 20.8 7 0 
Q3 26.9 267.2 43 8 
Q4 20.3 33.8 8 7 

6. Related Work 
Indexing and querying XML data is one of the major research 
fields in recent years. There are currently three major approaches 
for indexing XML data: path indexing, node indexing and 
sequence-based indexing. 
Node index approaches [11, 20] create indexes on each node by 
its positional information within an XML data tree. Such an index 
schemes can determine the hierarchical relationships between a 
pair of nodes in constant time. Also they use a node as a basic 
query unit, which provides great query flexibility. Any tree-
structure query can be processed by matching each node in the 
query tree and then structurally joining these matches. Quite some 
structural join algorithms [16, 3, 12, etc.] have been proposed 
lately to support efficient query answering.  
Path index approaches create path summaries for semi-structured 
data to improve query efficiency. DataGuides [6] indexes each 
distinct raw data path to facilitate the evaluation of simple path 
expressions. The Index Fabric approach [5] indexes frequent 
query patterns which may contain “//” or “*”, in addition to raw 
data paths. APEX [4] and D-(k) [2] are two adaptive path 
approaches that apply data mining algorithms to mine frequent 
paths in the query workload and build indexes accordingly. In 
case of changes in the query workload, the structure summaries 
are updated accordingly. The structure summary of D-(k) is also 
adaptive to updates in XML documents. To handle all kinds of 
branching path expressions, F&B index approach [1] indexes each 
edge in an XML data tree both forward and backward. But it is 
usually too big to be practically useful. To overcome this problem, 
F+B approach [7] reduces index size by ignoring unimportant tags 
and edges, limiting the depths of branching queries.  
 



Sequence-based indexing approaches [18, 15] transform XML 
documents and queries into structure-encoded sequences. They 
leverage on the well-studied sub-sequence matching techniques to 
find query answers. Since sequence index approaches use the 
whole query tree as the basic query unit, they avoid the expensive 
join operations and support any tree-structure XML queries.  

7. CONCLUSIONS 
In this paper, we have proposed Ctree, a compact two-level 
bidirectional tree, for indexing XML data. Ctree provides concise 
path summaries at its group level and detailed element 
relationships at its element levels, which makes it an efficient 
covering index for both single-path and branching queries.  And 
Ctree is very compact because it uses the very common one-to-
one relationships in XML data to reduce index size.  
Unlike most of previous approaches that index values uniformly, 
we propose a configurable index scheme which supports five 
value index types and several value treatment options. As in 
relational databases where an expert designs schema and creates 
index, we believe that user configurable index scheme satisfies the 
heterogeneous XML data model much better than a uniform index 
scheme.  
Instead of using global IDs, we have proposed two types of 
element references: an absolute reference and a relative reference 
when its corresponding group is clear in the context. This group-
based element-referring schema avoids join operations between 
structure and value evaluation results. And it is easily adaptable to 
updates in XML documents.  
We have implemented a Ctree-based search method called 
CTSearch which evaluates an XML query in three-steps: 1) 
locating relevant groups in a Ctree; 2) evaluating value constraints 
on the nodes in relevant groups; and 3) evaluating element-level 
structure matches. We also have studied Ctree’s performance in 
comparison with several influential XML indexing methods. Our 
performance study shows that in most situations CTSearch 
processes queries at least an order of magnitude faster than 
previous methods. 
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