
Ctree: A Compact Two-level Bidirectional Tree for Indexing
XML Data

Qinghua Zou

 Shaorong Liu
Computer Science Department

University of California – Los Angeles
{zou,sliu,wwc}@cs.ucla.edu

 Wesley Chu

ABSTRACT
Indexing XML data to facilitate query processing has been a
popular subject of study in recent years. Most of previous studies
can be classified into three categories: path indexing, node
indexing and sequence-based indexing. Many of them cannot
answer both single-path and branching queries with various value
predicates very efficiently. In this paper, we propose a novel
compact tree (Ctree) structure, which provides not only concise
path summaries but also detailed element relationships, and a
configurable index scheme based on data statistics. We develop an
efficient Ctree-based method for processing a tree structure query
with various value constraints. Efficiency of our method is
achieved by: (1) summarizing a large database into a condensed
structure view to prune irrelevant search space; (2) evaluating a
tree structure query directly without expensive join operations; (3)
using Ctree properties such as trivial groups and bi-direction to
reduce query processing time; (4) using a new element-referring
schema to avoid expensive join operations between the matches
for value constraints and those for structure constraints. Our
experiments reveal that Ctree is efficient in evaluating XML
queries. It is about an order of magnitude faster than most
previous methods.

1. INTRODUCTION
With the growing popularity of XML, more and more information
is being stored and exchanged in the XML format [1]. XML is
essentially a textual representation of the hierarchical (tree-like)
data where a meaningful piece of data is bounded by matching
tags, such as <name> and </name>. To cope with the tree-like
structures in the XML model, several XML-specific query
languages have been proposed recently (e.g. XPath[23],
XQuery[24], etc.) to provide flexible query mechanisms. An
XML query typically consists of two parts: structure constraints
and value constraints. Structure constraints are usually
represented by a tree structure, which can have a single-path or
multiple branches. And value constraints can be some Database
style (DB-style for short) predicates, such as equality or
inequality. But they can also be some Information Retrieval style
(IR-style for short) predicates such as containment predicates.

The semi-structure nature of XML data and the flexible
mechanisms provided XML queries introduce new challenges to
database indexing methods. An index on XML data’s structures is
expected to a covering index such that the index alone can
facilitate the evaluation of both single-path and multiple branches
tree-structure queries without expensive joins.

Currently, there are three major approaches for indexing XML
data’s structures. 1) Path indexing [6, 5, 4, 2, etc.]: create a path
summary index from XML data. Path indexing greatly speed up
the evaluation of single-path queries. But a path index either is
too large for practical use or does not preserve enough details to
answer branching queries. 2) Node indexing [11, 20]: create
indexes on each node in an XML data tree by some numbering
schemes. They are very efficient in determining the hierarchical
relationships between any two nodes and support all kinds of
queries. But node index approaches usually require expensive join
operations to answer a query. 3) Sequence-based indexing [18,
15]: transform both XML documents and queries into sequences
and evaluate queries based on sequence matching. These
approaches support flexible queries without join operations. But
they either may have false alarms in query results or require a lot
of post-processing to guarantee result accuracy.

In addition, value indexing is important for efficient evaluation of
XML queries with various value predicates. Many of previous
approaches either have no value indexes or index the
heterogeneous values uniformly. They either index a value as an
entire string which is not efficient for containment value
predicates, or as a set of words which is not efficient for equality
or numerical range search. Such uniform value treatment and
indexes are not suitable for the heterogeneous nature of XML
values.

Finally, most previous
approaches use global IDs
such as preorder to refer
elements. Such a referring
schema is expensive to
maintain when updating and
requires join operations
between the matches for
structure constraints and
those for value constraints.
In this paper, we address the above challenges in the following
four aspects.
First, a novel, compact tree structure, called Ctree, is constructed.
As shown in Figure 1, Ctree is a two-level bidirectional tree where
an array in a group represents a list of elements and points to their
parents. Ctree provides a concise structure summary at its group
level and detailed element relationships at its element level. A
Ctree is very compact in the index size compared to other index
approaches. For example, for the DBLP dataset, the size of Ctree
is about 67% of the size of node index and about 77% of the size

Figure 1: Ctree-A two level tree

Group level:
 downward link

Element level:
 upward link

1:article

2:title

3:author

0:dblp

of path index. Further, Ctree properties such as trivial groups and
bi-direction can speed up query evaluation. Therefore, Ctree is
well-suited for indexing XML structure.

Second, inspired by relational databases where an expert designs
schema and creates indices, we propose a user configurable index
scheme for each group based on its statistics. We analyze basic
data types in XSchema [22] and introduce five types of value
index. We also propose a set of basic value treatments such as
stemming, removing stop words, transferring to lower case, etc.
Finally, the value statistics of each group are presented to users
for configuring the proper value treatment options and index
types.
Third, a Ctree-based query processing method is developed,
which first locates a set of relevant groups on the group-level,
then processes value constraints only on the nodes in relevant
groups, which significantly narrows the value constraints, and
finally evaluates element level structure constraints. This three-
step strategy is very effective and prunes search space at early
processing stage.
Fourth, instead of using global IDs, Ctree provides two types of
element references: a relative reference and an absolute reference.
This novel element-referring schema reduces the cost for updating
and avoids the expensive join operation between the results from
evaluating structure and value constraints.
We have conducted a set of experiments to compare the
performance of the Ctree approach with path index, node index
and sequence-based index. Our study shows that our Ctree
approach is at least an order of magnitude faster than node index
and also outperforms path index and sequence-based index.
The rest of the paper is organized as follows. Section 2 introduces
our XML data model. It then provides the definition for Ctree,
along with some properties. In Section 3 we present how to build
Ctree along with the configurable value index. Section 4 develops
the Ctree-base query processing method. In Section 5 we present
experimental results that show the effectiveness of our approach.
Section 6 reviews related works. We conclude our work in
Section 7.

2. FOUNDATION
We describe XML data model in Section 2.1, then move to Ctree
and its properties in Section 2.2.

2.1 XML Data Model and Query Model
We model an XML document as an ordered, labeled tree where
nodes corresponds to elements and attributes and edges represent

element inclusion relationships in the XML documents. To
simplify our discussion, we assume that each node is a triple (id,
label, <value>), where id uniquely identifies the node, label is the
tag name of the node and the optional value is the value of its
corresponding element (or attribute) in the XML document.
For example, Figure 2 shows a sample XML data tree which has
19 nodes numbered from 1 to 19 as shown by the circles with the
nodes’ labels shown beside the circles. The names of the nodes
are shown beside the nodes. The value of a node is linked to the
node by a dotted line. For instance, there are 13 values associated
with the 13 leaf nodes respectively in Figure 2.
Note that in the paper, we treat an attribute as a subelement of an
element and a reference IDREF as a special type of value.
We now introduce the terminologies for label path and equivalent
nodes, which are useful for describing Ctree.
Definition 1 (Label path) A label path for a node v in an XML
data tree D, denoted as LP(v), is a sequence of dot-separated
labels of the nodes on the path from the root node to node v.
For example, node 8 in Figure 2 can be reached from the root
node 1 through the path: node 1� node 6 � node 8. Therefore
the label path for node 8 is dblp.thesis.author.
Definition 2 (Equivalent node) Two nodes in an XML data tree
D are equivalent if they have the same labeled path.
For example, in Figure 2, node 8 and 12 are equivalent since their
label paths are the same: dblp.thesis.author.
With the definition of equivalent node, we can infer that if two
nodes are equivalent in an XML data tree D, then their parent
nodes are equivalent in D. For example, the parent nodes of node
8 and 12 are node 6 and 10 respectively, which are equivalent
nodes.

2.2 Ctree and its Properties
Now we are ready to introduce Ctree which is a compact,
complete, and accurate tree representation for XML data tree. A
Ctree is a two-level bidirectional tree: group level and element
level. At group level, it provides path summary information and
contains edges from parent groups to their child groups. At
element level, a Ctree has links pointing from child elements to
their parent elements.
Similar to most path index approaches, Ctree clusters equivalent
nodes in D into groups where each group corresponds to a distinct
label path. That is, if two nodes are equivalent, we put them into
the same group in Ctree. Unlike traditional approaches where

Figure 2: A Example of XML data tree

dblp

96

1

2

3 5

year

author title

article

A B C John Sam

6

7 9

year

author title

B C D John A B D

16

17 18 19

author
author title

Sam 96 John

13

14 15

 author
title

B C95

10

11 12

year

title

A C D

thesis thesis article article

4 8

nodes in a group are unordered, Ctree orders the nodes into an
array by their preorder in D. An edge is added from group A to
group B if A’s label path is the direct prefix of B’s label path.
For example, an ordered path summary for the XML data tree
(Figure 2) is illustrated in Figure 3a. Each dotted box in Figure 3a
represents a group and the numbers in a box are the identifiers
(IDs) of the nodes of D. Each group has a label and a unique
group identifier which are listed above the boxes. For example,
nodes 2, 13, 16 in Figure 2 are in the same group 1 since their
label paths are the same: dblp.article.
As shown in past research, such path summaries greatly facilitate
the evaluation of single-path expressions by searching only the
relevant part of a tree, and the answers can be found without any
expensive join operations. For example, for a query (Q1)
/dblp/article/author, the path summary implies that all the nodes
in group 3, i.e. 4, 15, and 18, are the answers because their label
paths are all dblp.article.author.

However, such path summaries are insufficient for answering
branching queries due to their incompleteness. They do not
preserve the hierarchical relationships among individual nodes in
a data tree D. For example, with the path summary in Figure 3a,
we cannot determine the hierarchical relationships between node
2 in group 1 and node 4 in group 3. Such hierarchical
relationships are important for answering branching queries. For
example, for a query (Q2) “find an article element which is a
subelement of dblp and has both subelement title and year”, i.e.
/dblp/article[title and year], the path summary in Figure 3a
indicates that nodes in group 1 are candidate answers. However,
we cannot decide which nodes in group 1 can answer Q2 unless
the hierarchical relationships between individual nodes in group 1,
2, and 3 are provided.
To overcome this problem, we propose Ctree which uses array
index to represent elements and the values in arrays to point to the
parent elements. Figure 3b shows the Ctree T1 for the XML data
tree in Figure 2. Instead of keeping these “absolute” node IDs
inside each group as shown in Figure 3a, a Ctree transforms such
“absolute” IDs into their “relative” position within each group.
For example, nodes 2, 13 and 16 in group 1 are transformed into 0,
1, and 2 which are their relative positions in group 1 respectively.
Since such a relative position can be mapped to an array index,

each group g in a Ctree T is associated with an array, denoted by
T.grps[g].pid[]. Each index k of the array represents a node, called
node-k for short, and the value T.grps[g].pid[k] points to its parent
node. For example, T.grps[4].pid[1]=2 indicates that node-2 in
group 1 is the parent of node-1 in group 4 as shown by the dotted
arrow line in Figure 3b. With the Ctree in Figure 3b, we can
answer not only single path but also branching queries. For
example, to answer the query /dblp/article[title and year], the
arrays associated with groups 2 and 4 contain 0 and 2 and imply
that the node-0 and node-2 in group 1 are the answers.
By comparing Figure 3b with Figure 3a, the numbers in Figure 3a
are in chaos in a sense while the numbers in Figure 3b are in
orderly condition. For example, the numbers in shaded groups are
the same as their array indices and can be removed. After
removing these numbers, the Ctree is about half the size of the
path summary. Furthermore, the equivalences of array indices and
its values in the shaded groups can be used to speed up query
processing.
The formal definition for a Ctree for an XML data tree T is
defined as follows:
Definition 3 (Ctree) A Ctree for an XML data tree D, denoted as
TD, is an ordered labeled tree {G, E} where

1) G is the set of groups in TD which have one-to-one
relationships with the label paths in D. Each group, g,
has a unique identifier and a label, denoted as g.gid and
g.label respectively.

2) E is the set of directed edges in TD that connect these
groups. An edge is added from group g1 to group g2 if
the label path of g1 is the longest prefix of the that of g2.

3) Each group g in TD is associated with an array of
integers, denoted as g.pid[], where the array index
represents a list of equivalent nodes ordered by their
preorder in D and the array values point to the
corresponding parent elements.

The definitions 3(1) and 3(2) provide a path summary for an XML
data tree D, while 3(3) adds to each group in a Ctree the
hierarchical relationships among individual elements in D to
guarantee its completeness. A Ctree has parent-to-child edges at
the group level and provides child-to-parent links at its element
level as illustrated by the dotted line in Figure 3b. Such a
bidirectional tree makes Ctree superior to other indexing methods.
For a group gc and its parent group g, a node in g may have no
child in gc. For example, the node-1 in group 1 has no child in
group 4. It is also possible that a node in g can have one or more
child nodes in gc. If every node in group g has exactly one child in
gc, we call gc a trivial group, which is formally defined as follows:

Definition 4 (Trivial Group) A group g in a Ctree is called a
trivial group iff it is the same size as its parent group and
g.pid[k]=k (∀ k, 0≤k<g.size).

For example, groups 2, 3, 6 and 7 in Figure 3b are trivial groups.
That is, every article (or thesis) element has exactly one sub-
element title and year in Figure 2. Such information is valuable
for query optimization. For example, for a query Q3 “find an
article element that has a sub-element title and a sub-element
year”, i.e. //article[title and year], the Ctree directly returns all
nodes in group 1 as answers without further checking the element-
level information.

Figure 3: Examples of path summary and Ctree for the XML
data tree in Figure 2.

2:title

(a) Ordered path summary

6
10

1
0:dblp

1:article

2:title

5:thesis

8:year

 7:author

2
13
16

3
14
17

 3:author

4
15
18 4:year

5
19

6:title
7

11
8

12
9

1
00

1
22 3:author

00
21

00
11

00
11

0 0
0 1

00
11
22

0 0
0 1
0 2

00

-1 0
0:dblp

1:article

4:year

5:thesis

6:title

8:year

7:author

(b) Ctree T1

parent

The array pid[] in a trivial group can be removed from the Ctree
without losing information since we know the function pid[k]=k.
This will reduce the size of Ctree. In our experiments, we found
that trivial groups are very common in various XML datasets.
Therefore, the size of a Ctree is usually much smaller than that of
its counterpart path index.
Depending on the context, we can refer to a node in a Ctree group
by two types of references: absolute reference and relative
reference which are defined as follows:
Definition 5 (Absolute Reference and Relative Reference) The
absolute reference to the (k+1)th node in a group g (0 ≤ k < g.size)
is denoted as g.gid:k and its relative reference is k.

For example, the absolute reference to the second node in group 4
in Figure 3b is 4:1. If the referring context is clear, its relative
reference is 1.

Theorem 1 For any group g in a Ctree, the values in g.pid[] are in
increasing order, i.e. ∀ i, j (0≤i<j<g.size) g.pid[i] ≤ g.pid[j].

This can be inferred from Definition 3(3) where the equivalent
nodes in a group are ordered by their preorder in D and the
continuous preorder numbers.

As shown in Figure 4, group g1 is the
ancestor of group g2, i.e., there is a
group level path from g1 to g2.

Theorem 2 The ancestor-child
function y=anc(x) from g2 to g1 is an
increasing function.
Theorem 2 can be inferred by recursively using Theorem 1. The
theorem means that a1≤ a2 whenever d1< d2 in Figure 4. This
property can be used for query processing.

3. A Ctree-based XML INDEXING
The architecture for a Ctree-based XML indexing and querying
system is illustrated in Figure 5. There are three function parts in
the system architecture: a Scan module, an Index Builder and a
Query Processor. There are also three data parts: the source XML
Data, the Configuration file, and the Ctree Index Data.

A Ctree index for XML documents is created by three steps. First,
XML data is sent to the Scan module that collects statistical
information about the data. This information is stored in an Excel
spreadsheet and presented to a user. Second, based on the
statistics information, a user selects a set of index options for each

group of equivalent nodes. Third, based on the user’s index
configurations, the Index Builder constructs a Ctree and builds
value indexes on the data.
When a query comes in, the Query Processor evaluates the query
based on the Ctree structure and value indices, and returns the
query results to the user. We present the Ctree-based query
evaluation process in Section 4.
In this section, we first describe the index configuration process.
Then we introduce five value index types supported in our system.
We present how the Index Builder creates a Ctree on XML raw
data based on a user’s index configurations in section 3.3. Finally
we discuss how to use a Ctree to update the XML data and the
Ctree simultaneously.

3.1 Index Configurations
Previous XML indexing approaches create indexes uniformly on
each node, each path, or each sequence of XML documents. No
consideration is given to the heterogeneous nature of XML data
model which allows any user-defined tags. Tags in an XML
document usually can be classified into three categories: (1)
Semantic Tags; (2) Presentation Tags; and (3) Annotation Tags.
Semantic Tags describe the semantics of corresponding elements,
such as <title>, <author> and <year> in Figure 6. Presentation
tags sense the tone of displaying, such as <scp> which informs a
browser to display the text bounded by <scp> and </scp> in lower
cases. Finally, the text bounded by annotation tags represents a
document author’s comments and annotations, such as <note> in
Line 9. The heterogeneous tags in an XML document call for a
non-uniform indexing scheme where some individual tags and
some annotations (i.e. element tags and their values) may be
ignored during indexing.

Similarly, the heterogeneous element values in XML documents
call for a non-uniform value index scheme to support the diverse
value constraints in XML queries.
To this end, we propose a user configurable index framework
which allows a user to specify ignorable individual tags and
annotations. It also allows a user to specify how to index an
element’s value: whether to index an element’s value as a whole
string, or as a bag of tokens, or as a number. More importantly,
our configurable index framework allows a user to specify how to
treat an element’s value, such as whether to remove words with no
discriminative power, i.e. stop words, and whether to transform
words to its canonical form to support keyword searching and to
reduce index size.

Scan

IndexBuilder

Configuration
Spreadsheet

Query
Processor

Configure

Results

Figure 5: Architectural Overview of Ctree.

XML Data

Query

Human

Ctree Invert

List DTime Number

ID

Ctree Index Data

Figure 4: y=anc(x) is an
increasing function.

g2

d1

d2

g1

a1
a2

y=anc(x)

01 <article key=”books/abc/webb03”>
02 <author> Webb </author>
03 <title> A K<scp>NOWLEDGE</scp> Based Web Data
04. Integration and Exchange </title>
05. <year> 2003 </year>
06. <pages> 180 -200 </pages>
07. <body>
08. <sec>The problem of information integration
09. <note>see reference 2</note> and exchange …
10. </sec>
11. </body> </article>

Figure 6: An Example XML Document.

3.1.1 Scan
To facilitate index configurations, we use a Scan module to
collect statistics information from XML documents while parsing.
This statistics information is stored in a spreadsheet for ease of
browsing and configuration.
Since equivalent nodes in an XML data tree usually have similar
structure and value characteristics, a Scan module collects a set of
statistics information about a group of equivalent nodes. The
statistics information is stored in an Excel’s worksheet (PreSum).
Each row in the worksheet stores some statistics information
about a group of equivalent nodes as listed below:

1) Group Label: the label of the group, such as title.
2) Group depth: the depth of the group.
3) # of nodes: the number of equivalent nodes in the group
4) Max value length (mLen): maximal value length for the

nodes in the group.
5) Min value length (mLen): Minimal value length for the

nodes in the group.
6) Digit#: number of tokens composed by pure digits in the

values of nodes in the group. A token is defined as a set of
continuous digits or letters or mixed digits and letters
without delimiting spaces.

7) Word#: number of tokens composed by pure letters in the
values of the nodes in this group.

8) Mixed#: number of tokens composed by mixed digits and
letters in the values of the nodes in this group.

The items 1)-3) summarize a group’s structure characteristics
while 4)-8) summarize a group’s value characteristics. The group
statistics can be further grouped by tag names. For example, the
grouped statistics information for the DBLP dataset collected by
the Scan module is presented on the worksheet named TagNames
as shown in Figure 7. This statistics information can help a user to
select index options for each group.

Figure 7: Collecting statistics from source XML data.

3.1.2 Configuration
With the collected statistics information, a user can specify a tag
index type, and value index type, and select a set of value

treatment options for each group, which are described in detail as
follows:
• Tag index type: To configure how to index a tag. We currently

support three tag index types: 1) keep, which means that a
user wants to keep these tags during indexing; 2) overlook,
which means that a user wants to ignore these individual tags
but keep their values during indexing; 3) skip, which means a
user wants to ignore the whole annotation, i.e. both tags and
values, during indexing.

An example of index configurations for the DBLP dataset is
illustrated in Figure 8. The option overlook on the cell M30
(column M, row 30) means that the tags <i> and </i> will be
overlooked during indexing. The option Skip on the cell M29
means that the elements named sub will be skipped as a whole.

Figure 8: Index configuration for DBLP dataset

• Value index type: To choose a value index type to index the
values of a group. Currently six options are available: 1) No
index, if a user specifies this value index type for a group,
then the values of this group will not be indexed; 2) Invert; 3)
Number; 4) DTime; 5) List; and 6) ID. The latter five choices
will be explained in detail in Section 3.2.

• Value treatment options: To specify a set of treatments to
process the values of a group before indexing. Currently,
four treatment functions are supported in our system. 1) S
Function: Provides four options digit, word, all and whole
for the user to define which kinds of tokens to index. 2) Stop
Function. Removes the words with weak discriminative
powers such as articles and pronouns. 3) Lower Function.
Transforms a value into lower cases before indexing. 4)
Stemming Function. Transforms a value into to its canonical
forms before indexing. For example, “clustering”, “clusters”
and “clustered” will be transformed to “cluster”.

For example, the option on the cell O7 (column O, row 7) in
Figure 8 means that a user is only interested in indexing the digits
tokens in values for elements year. The option on the cell O8
means that a user wants to index the values for elements school as
a whole.

Note that a user can configure index options for a tag which are
applied to a set of groups of the tag name. A user can also make

configurations for a specific group, which has higher priority than
the tag-level configurations.

3.2 Value Index Types
The heterogeneous nature of element values in XML documents
calls for multiple value index types according to the values’
characteristics. In this paper, we propose five value index types:
Invert, List, Number, DTime and ID to support values of common
XML data types in the XML schema [22], such as xs:string and
xs:decimal, etc., and some special data values such as values for
IDREF attributes. Each value index type supports a common
search function:
 List Search (gid, predicate)
That is, given a group identifier and a value predicate, the
function returns a list of elements that satisfy the value predicate.
This search function plays an important role in our Ctree-based
query evaluations (Section 4). For example, suppose a user is
interested in finding books authored by “David” in the DBLP
dataset, i.e. /book/author[contains(., “David”)] in XQuery. The
Ctree-based query evaluation algorithm first locates the group 88
for the path /book/author and then calls the search function:
Search(88, “David”) which returns only 27 authors in group 88
with “David” in their names. In contrast, most previous indexing
approaches return the 13,218 author names containing “David”
since their inverted value indices use global element IDs, and then
join the 13,218 author names with the results for /book/author.
The Invert and ID value index types are global in that they are
shared among groups. A Ctree has at most one Invert value index
and one ID value index. The other three value index types (i.e.
List, Number and DTime) are local in that each of them is
associated with a particular group. A Ctree can have several List,
Number and DTime value indices. Global value index types use
absolute element references and local value index types use
relative element references.

• Invert Type: This type treats a value as a bag of tokens and
creates a mapping from each token to a list of absolute
element references whose values contain this token. These
absolute references are sorted in the ascending order; that is,
references are first sorted by their group identifiers and then
by relative references. This facilitates a group-based search.

• List Type: Some groups have only a limited number of distinct
values, for instance, a person’s education. For such values,
we create a unique value identifier for each distinct value and
associate the identifier with a list of elements having this
value.

• Number Type: Numerical values are indexed by a Number
type, which sorts numerical values of a group in ascending
order. Number type supports numerical range search. More
specifically, given a numerical range (a, b), it returns a list of
relative node references whose values are greater than a and
less than b.

• DTime Type: The DTime type transfers a string expression of
date or time into an integer and creates indexes on the
integers, which minimizes index size and computation
overhead by eliminating string comparisons.

• ID Type: The ID type is used to index the special IDREF
values in XML documents. It creates a map for a referring

node to a referred node, where the nodes are represented by
their absolute element references but not the IDREF values.

3.3 Constructing a CTree
3.3.1 Ctree Index
To support efficient and scalable query processing, Ctree index
stores the following mapping information:
• The nameHt: Tag name�nid. A hash table maps each tag

name to a unique name identifier (nid). Using identifiers
rather than string minimizes index size and computational
overhead.

• The nid2Gids[][]: nid�gids. An array, for a given tag name
identifier nid, returns a list of group identifiers (gids) that
correspond to the tag name.

• The pathHt: path�gid. A hash table, for a given label path,
returns the group identifier corresponding to the label path.
For example, it returns group 3 for the label path
dblp.article.author in the Ctree T1 in Figure 3b. This
mapping can facilitate the evaluation of simple path
expression queries.

At the group level, Ctree stores a set of attributes (gid, size, depth,
nid, pgid, pid[], pos[], len[]) where gid and size, representing the
group identifier and the number of descendant groups, can be
used to determine the ancestor-descendant relationship between
any pair of groups in constant time. For example, for groups g1
and g2, g1 is an ancestor of g2 if and only if g1.gid < g2.gid ≤ g1.gid
+ g1.size. The pgid points to the parent group. At element level,
for each element, Ctree stores the relative reference of its parent
element, its position, and its length in the arrays pid[], pos[], and
len[] respectively.

3.3.2 IndexBuilder
Algorithm 1 shows the IndexBuilder which takes a file path,
where a set of XML documents reside, and a configuration Excel
file for the documents as input and creates a Ctree for the
documents. Line 1 reads the configuration directly from the Excel
file and uses it to build an empty instance of Ctree. Line 2 opens
an XML file one at a time and reads it with a SAX parser. Lines 3
to 15 show the main event processing.

Lines 4 to 6 process an open tag recording element information
such as positions and degrees and resetting its text content. If the
current group grp is configured as Select, then Ctree group cgrp is
pointed to grp. For a text node, it simply records the text as in line
7. For a close tag, if the configuration of grp is Overlook, then
add its text is added to its parent element as in lines 10 and 11; if
it is Select, then add the element information into the Ctree and
process its text for adding into the value index.

When finished with reading all XML documents, Index Builder
builds the value index as shown in line 16. Then the Ctree is fully
created and can be serialized onto hard disk for reuse.

3.4 Updating Ctree
There has been previous works on updating XML data [17] and
some works on updating XML index [9,2], but how to use XML
index to assist updating both XML data and XML index
simultaneously has not been addressed in previous research. We
propose to use Ctree to query and update XML source data. Due
to space limitations, we only discuss inserting and removing a
single element using a Ctree.

Algorithm 2 shows the main steps to insert an element e into
group g at the position k in a Ctree T. It first gets a proper
position and inserts the element into the XML document. Then
information is inserted into T as in line 2. Line 3 updates the
element level links for the child groups of g. Line 4 updates the
part of the value index affected by the changes in group g‘s
references. Finally, we update the positions and lengths
information for the affected elements. Similarly, Algorithm 3
illustrates the main steps to remove an element e from group g at
the position k in the Ctree T.

Previous works use global IDs to refer elements. Updating an
element from a XML document affects not only a large number of
the remaining elements’ IDs but also their corresponding
positions and lengths information in a XML document.
Furthermore, changing an element’s ID incurs updating the value
index for the element. There also has been some previous work

that uses dynamic labeling schemes to reserve some IDs for each
node. Updating an element in a XML document does not affect
other elements’ IDs when there is a spare ID at the updating point,
but it still requires updating other information such as positions
and lengths.

In contrast, A Ctree has several important advantages when
updating XML documents:
• A Ctree changes fewer element references when updating an

XML document than previous methods. For example,
inserting a new element into a group in a Ctree affects only
the elements after the inserting point in that group and has no
effect on other groups.

• The fast access of parent elements in a Ctree enables it to use
relative element positions (the offsets within their parents)
which can significantly reduce the number of affected
elements and thus reduce the costs for updating the positions
and lengths information.

• Finally, using relative reference and private value indices
reduces the value index updating costs.

4. QUERY EVALUATION
In this paper, we model an XML query Q as a tree TQ where each
node corresponds to an
element (or attribute) in Q
and an edge represents an
element-inclusion
relationship. An edge in a TQ
can be either a parent-child
(PC) edge, denoted as “/”, or
an ancestor-descendant (AD)
edge, denoted as “//”. Value
constraints in Q become value
constraints of corresponding
nodes in TQ. We assume that each query has an element or
attribute that a user wants to return and we call its corresponding
node in TQ target node. To distinguish a target node from other
nodes in TQ, we emphasize it with a box. For example, Figure 9 is
a tree representation of the following query (Q4):

/dblp/article [contains (.//author, “John”) and year > 94]/title
In this example, a user is interested in titles of the articles under
dblp which have a descendant element author containing “John”
and a sub-element year with value greater than 94.

4.1 CTSearch: Ctree-based query processing
We propose a novel Ctree-based query evaluation CTSearch
(Algorithm 4), which processes a query, TQ, in the three steps:

Algorithm 1: Indexer: building Ctree with value index based
on user configuration

Input: P, a file path where XML documents reside.
 C, an Excel file for index configuration
Output: T, Ctree index object with value index
1 Read C and build a Ctree object T to fill in information.
2 For each XML file, open a reader r and read till the end
3 Case (open tag):
4 Record position and degree into �info[r.dep]
5 Current group�grp and reset text[r.dep];
6 If (grp is configured to Select) then cgrp = grp;
7 Case (text node): Add r.text to text[r.dep];
8 Case (close tag):
9 If (grp is configured to Skip) break.
10 If (grp is configured to Overlook)
11 Add text[r.dep] to text[r.dep-1] and break;
12 Add element info to the Ctree T;
13 If (cgrp is configured to have a value index)
14 Process text[r.dep] and add into the value index.
15 cgrp=cgrp�parent;
16 Build value index for each group;
17 Return T

>94

dblp

article

author year title
John

Figure 9: Tree pattern query
Algorithm 2: Add an element into a XML file using Ctree.

Input: D, a source XML document to add an element
 T, A Ctree to be updated
Output: Updated D and T.
//Add element e into group g at position k
1 Insert e at proper position in D.
2 Insert the info of e into group g at position k.
3 For each g’s child c, if k≤c.pid[i], then c.pid[i]= c.pid[i]+1.
4 Update value index for elements of g with reference ≥k.
5 Update affected elements’ positions and lengths info.

Algorithm 3: Remove an element from a XML file using Ctree

Input: D, a source XML document to contain an element
 T, A Ctree to be updated
Output: Updated D and T.
//Remove element e from group g at position k
1 Remove e at its position in D.
2 Remove the info of e from group g at position k.
3 For each g’s child c, if c.pid[i]≥k, c.pid[i]= c.pid[i]-1.
4 Update value index for elements of g with reference ≥k.
5 Update affected elements’ positions and lengths info.

First, a Group Level Frame Finder (Section 4.2) locates a set of
frames, where each frame is an assignment of Ctree groups to the
query nodes that satisfy a query’s tree-structure. For example,
there is one frame consisting of groups (0, 1, 3, 4, 2) in the Ctree
(Figure 3b) for Q4, which are matches to query nodes (dblp,
article, author, year, title) respectively.

Second, CTSearch evaluates the query’s value constraints using
value indices. As discussed in Section 3, all value indices
implement a Search function with two parameters: a group
identifier and a value predicator. The Search function returns a
list of nodes in the group that satisfy the value predicator. For
example, there are two value constraints in Q3: author=“John”
and year>94. For the first value constraint, CTSearch calls the
function Search(3, “John”) since group 3 is a match for query
node author in step 1. Nodes 3:0 and 3:1 are retuned. That is,
node 4 and 15 in Figure 2, satisfy the value predicator. Similarly,
node 4:0 (i.e. node 5 in Figure 2) is returned by evaluating the
second value constraint on value indices.
Finally, CTSearch evaluates element level structure constraints
(Section 4.3) and returns the query results to the user. This step
can be done by analyzing element level pointers.
This three-step query evaluation strategy offers several important
advantages:
• It is very efficient as it only searches the relevant part of the

tree hierarchy with the guidance of a Ctree’s group-level
representation.

• It supports early pruning. If there is no answer available, it
terminates at the earliest possible stage. For example, for a
query //article[author =”John”]/address on DBLP, our
CTSearch will return zero match at the first step since the
path //article/address does not exist in the Ctree for the
DBLP dataset. However, traditional node index approaches
require a set of expensive join operations, such as a join
operation between the 11629 matches for node article and
716488 matches for node author in DBLP.

• Evaluating value constraints based on a frame significantly
reduces the possible matches.

4.2 Group Level Frame Finder
There are two kinds of nodes in a query tree TQ: fixed nodes and
variable nodes. A query node, u, is a fixed node if the path from
the query root to u does not contain “//” and “*”, such as node
dblp, article, year and title in Figure 9. A query node, u, is a
variable node if the path from the query root to u contains “//” or
“*”, such as node author and year in Figure 9.

A fixed query node can have at most one group match in a Ctree,
which can be easily determined by the hash table pathHt, because
every group in a Ctree represents a unique label path. For example,
group 2 in Figure 3b is the match for node title whose label path
is dblp.article.title. Similarly, the matches for query nodes dblp,
article and year are group 0, 1, 4 respectively.

Unlike a fixed node, a variable query node can be matched to
more than one group in a Ctree. For a variable query node, we can
determine its candidate matches by first finding its name identifier
nid1 from the hash table nameHt and then retrieving the list of
candidate group identifiers from the array nid2Grps[][] with nid1,
i.e. nid2Grps[nid1][]. After identifying candidate matches for all
the variable nodes in TQ, we can apply structural join algorithms
to get frames [3][16][12]. For example, the variable query node
author in Q4 has two candidate matches in the Ctree (Figure 3b):
group 3 and group 7. Since the parent query node article is
matched to group 1, group 3 is the only choice for article and the
frame for TQ4 is {0, 1, 3, 4, 2}.

Algorithm 5 shows the FrameFinder which locates all frames in a
Ctree. It first determines the matches for the fixed query nodes in
TQ (Line 1). Line 2 processes the candidate matches for each
variable node in TQ. A structural join algorithm is used to
determine the match for each variable node in TQ (line 3). Finally
line 4 outputs a list of frames.

4.3 Element Level Structure Match
The last step in CTSearch evaluates element-level structure
constraints and returns relevant elements in the groups matching a
query’s target node, which we call target groups. For example, for
TQ4 (Figure 9) and the Ctree T1 (Figure 3b), the first two steps of
CTSearch determine that all the elements in groups {0, 1, 2} and
elements {3:0, 3:1} and {4:0} satisfy the group-level structure
and value constraints. Now the last step of CTSearch should
return relevant elements in group 2 which can answer TQ4.
Relevant nodes in the target groups can be determined by
projecting results for non-target query nodes to the target groups.
Depending on a query node’s position within a query tree, a
projection direction for a query node can be either downward or
upward. A query node’s projection direction is downward if it is
on the path from the root node to the target node, such as node
dblp and article in TQ4. Otherwise, its projection direction is
upward, such as node author and year in TQ4.
Algorithm 6 shows the StruEvaluator which, given a query tree
TQ and a frame in a Ctree after the first two steps’ processing,
returns a list of nodes in the target group that are the answers to
TQ. Line 1 computes a projection direction for each query node in

Algorithm 5: FrameFinder: mapping gids����query nodes.

Input: T, a Ctree with value index
 TQ, a query execution tree
Output: F, A list of mappings from gids� TQ.nodes.
//
1 Get the gid for each fixed node by checking the hash table

T.pathHt; if not existed, then return ∅ .
2 Assign candidate gids to each variable node by the label of

the node.
3 Apply structural join algorithms to determine the matches for

each variable node.
4 Return a list of assignments.

Input: T, a Ctree with value index
 TQ, a query tree
Output: A list of elements in T that satisfy the TQ.
//
1 Evaluate group level structure constraints:
 Call FrameFinder to get a list of frames.
2 For each frame, do
3 Evaluate value constraints on the frame.
4 Evaluate element level structure constraints:
 Call StruEvaluator to a list of matched elements;
5 Output the list of elements;

Algorithm 4: CTSearch: Ctree-based query processing.

TQ as discussed above. Line 2 classifies query nodes in TQ into
two ordered lists: query nodes with upward projection directions,
UN, and query nodes with downward projection directions, DN.
Nodes in UN are ordered by the ascending post-orders in TQ so
that each node, u, can project their results to its parent node, p(u),
before p(u) projects its results upward. Similarly, nodes in DN are
ordered by the ascending pre-orders in TQ so that each node, v,
can project their results to its child node or direct descendant, c(v),
before c(v) projects its results downward. For example, for TQ4 in
Figure 9, UN= {author, year} and DN = {dblp, article, title}.
Line 3 projects the results of the nodes in UN upward into their
parents. (Section 4.3.1) Line 4 projects the results of the nodes in
DN downward to their child in DN. (Section 4.3.2)

4.3.1 MapUp Function
Algorithm 7 describes the MapUp function, which projects the
results of a query node c upwards to its parent query node n so
that the results of n will be updated to reflect the structure
constraint from the node c.

Since the edge between n and c on TQ can be an ancestor-
descendant relationship, there are some groups in between the two
groups assigned to n and c, i.e. n.gid and c.gid. Figure 10(a)
shows a case where one group g links the two groups in a Ctree T.

MapUp starts from group c.gid and projects the results one group
upward at each loop until the group n is reached as shown in lines
1 to 7. Line 8 intersects the two element lists. Note that no
mapping operation is required for a trivial group as shown in line
2, which reduces the computing time.

For example, the results for author in TQ4, elements {3:0, 3:1} in
the Ctree T1 (Figure 3b.) are projected to article whose current
results are {1:0, 1:1, 1:2}. The updated results for article are {1:0,

1:1}. Then, the result {4:0} for year is projected to article whose
current results are {1:0, 1:1}. Since element 1:0 is the parent of
element 4:0, the updated result for article is {1:0}.

4.3.2 MapDown Function
After the nodes in UN are projected upward, the StruEvaluator
algorithm iteratively projects the results for the query nodes in DN
downward until it reaches the target node.
For example, for TQ4, DN = {dblp, article, title}. First, the
MarkDown function is called to project the results {0:0} for dblp
to its child node article, whose current result is {1:0}. Since
element 0:0 is the parent of element 1:0, the updated result for
article are still {1:0}. Then we project the {1:0} to the target
query node title, whose current results are {2:0, 2:1, 2:2}. Since
element 2:0 is the only child of element 1:0, the answer is {2:0}.

Figure 10(b) illustrates the MapDown algorithm as shown in
Algorithm 8. It starts from the first element s in c.R and follows
the links to determine the ancestor p in the group n.gid. For the
case p is in n.R, line 4 finds p’ with the maximal continuous
number in n.R from p, line 5 determines the maximal descendant
q in the group c.grp of p’ which can be done by a binary search,
and line 6 adds the elements between s and q in c.R into the
output list R. Lines 8 to 10 show the case p is not in n.R where we
can overlook a list of elements in c.R as marked by “×” in Figure
12(b). The correctness of the MapDown algorithm can be proved

Input: TQ, a query tree with a target node ut
 F, a frame after Step 1& 2 and gt is the target group
Output: A list of nodes in gt that are answers for TQ.
//
1 Determine the projection direction for each query node.
2 Let UN = {v1, v2, …, vm} be the list of query nodes with

upward projection directions, ordered by their post-orders
in TQ; DN = {u1, u2, …, un} be the list of query nodes
with downward projection directions, ordered by their
pre-order in TQ.

3 For each node in UN, project its result upward to its parent
node by calling MapUp function.

4 For each node in DN, project its result downward to its child
in DN by calling MapDown function.

5 Return the list of relevant nodes in the target node.

Algorithm 6: StruEvaluator: Evaluating element level
structure constraints.

c g n c g n

√

×

1 2 1

2

3
4

n.R c.R n.R c.R
(a) MapUp (b) MapDown

s
q

p
p'

Figure 10: Illustration of MapUp and MapDown where there
is an ad edge from n to c and only one group g in between

Algorithm 7: MapUp: mapping the results from a query node
up to its parent node.

Input: T, a Ctree with value index
 n, a query node in query tree.
 c, a child node of n.
Output: n.R, updated the results of the query node n..
1 for(g=c.gid, R=c.R; g!=n.gid; g=g�parent) do
2 if(g is a trivial group) continue;
3 for(i=0, a=new ArrayList(), old=-1; i<R.Count; i++)
4 if(R[i]�pid!=old)
5 old = R[i]�pid;
6 a.Add(old);
7 R=a;
8 n.R=n.R ∩ R;

Algorithm 8: MapDown: mapping the results from a query
node down to a child node.

Input: T, a Ctree with value index
 n, a query node in query execution tree.
 c, a child node of n.
Output: c.R, updated with the MapDown results.
1 for(i=0, R=new ArrayList(); i<c.R.Count;) do
2 The mapping point from c.R[i] into n�p;
3 if(p in n.R)
4 The maximal continous number from p in n.R�p;
5 The maximal descendant id of p in c.grp�q;
6 while(c.R[i]<q) R.add(c.R[i++]);
7 else
8 The maximal continous number from p not in n.R�p;
9 The maximal descendant id of p in c.grp�q;
10 while(c.R[i]<q) i++;
11 c.R= R;

by Theorem 2. Intuitively, for any element between s and q in
Figure 10b, its projected point on group n will be between p and
p’. Therefore, if the elements [p, p’] are in n.R, then the elements
in c.R in the range [s, q] will satisfy the structure constraints from
n; and if the elements [p, p’] are not in n.R, then the elements in
c.R in the range [s, q] will not satisfy the structure constraints
from n.

5. EXPERIMENTAL RESULTS
We have implemented Ctree in DotNET C# for XML indexing.
We have also implemented a path index method similar to
DataGuide*1 [6], and a node index method similar to XISS [11], a
sequence index approach similar to ViST[18] in C# for
comparison purposes. Experiments were run on a 2.8 GHz PC-
compatible machine with 1GB of RAM running Windows XP. To
focus on the comparison of query execution time, we loaded each
index data into the RAM before testing so that no IO operation for
reading the index data was required.
For our experiments, we used public XML databases DBLP [10]
and the XML benchmark database XMARK [21]. DBLP is a
popular computer science bibliography database and XMARK is a
synthetic on-line auction database. Both of them are widely used
in benchmarking XML index methods. The characteristics of
these two datasets are illustrated in Table 1.

Table 1: Characteristics of the Datasets DBLP and XMARK
Dataset Size

(MB)
Max

Depth
Element# Element# in

trivial groups
Percent

DBLP 134 6 3,736,406 1,311,532 35%
XMARK 117 12 2,048,193 1,255,826 61%

As shown in Table 1, the DBLP dataset is relatively shallow with
a maximal depth of 6 and contains about 3.7 millions of elements
including attributes. XMARK is relatively deep with a depth of
12 and has about 2 million elements. It is interesting to note that
there are large percentages of elements belonging to trivial groups,
about 35% on DBLP and 61% on MARK. Since trivial groups
can be removed from a Ctree and be used for speeding up
evaluating structure constraints (Section 4.4), a Ctree is much
smaller and more efficient than previous approaches.

5.1 Index Size
Figure 11 shows the space requirements for four indexing
approaches: Ctree, Data Guide*, XISS, and ViST. ViST requires
decomposing the DBLP dataset into documents at the depth 1 in
order to keep document sequences short. Since the content values
in XMARK datasets are quite heterogeneous and it is hard to
choose the proper depth to decompose, we have not done any
comparison with ViST on XMARK.
We noticed that XISS incurs the most space overhead on the two
datasets since it builds indices on each element. Data Guide*
requires more space than ViST and Ctree.

1 Since DataGuide cannot answer branching path expressions

without accessing the original XML data, we implemented the
DataGuide index with an additional array mapping from an
element’s ID to its end position to make it a covering index for
branching path expression queries.

0

20

40

60

80

100

120

in
de

x
si

ze
 (M

 b
yt

es
)

DBLP XMARK

Ctree
Data Guide*
XISS
ViST

Figure 11: Comparison of the index size of different methods

over DBLP and XMARK.
A Ctree requires the least space due to two reasons. First, a Ctree
does not need to keep element-level links for trivial groups. As we
can see from Table 1, the percentages of elements in trivial groups
are quite large because of the common one-to-one relationships in
both datasets. Second, the diverse value index schemes in Ctree
also reduce of space overhead. For example, transforming a string
“$1,234,567.99” into a number reduces index size.

5.2 Comparison on DBLP Dataset
Table 2 lists 6 queries that were tested on the DBLP dataset and
have ascending complexity. Figure 12 summarizes the query
performance of four index methods: Ctree, DataGuide*, XISS and
PRIX. We notice that for most of the queries, Ctree significantly
outperforms the other three approaches.

Table 2: Sample queries over DBLP
 Description Answer#
Q1 /inproceedings/title 212,273
Q2 /book/author[contains(., “David”)] 27
Q2 /*/author[contains(., “David”)] 13,218
Q4 //author[contains(., “David”)] 13,218
Q5 /article[contains(./author,“David”) and ./year=1995] 258
Q6 /article[contains(./author,“David”) and ./year≥1995] 2,195

Q1 is a single path query and there are no value constraints
involved. The Ctree and DataGuide* approaches have similar
query performance, while it takes longer for XISS approach as it
requires join operations. The value constraints in Q2 slow down
the DataGuide* approach against the Ctree approach, although
both approaches have similar time requirement for processing
structural constraint. In the Ctree, indexes for a specific value,
such as “David”, are sorted according to element’s absolute
reference, which puts the elements of the same group together.
Processing value constraints in Ctree is similar to range search in
an ordered list. On the other hand, DataGuide* and XISS require
expensive join operations between two ordered lists when
processing value constraints. Since Q3 and Q4 uses wildcards or
“//” edges and involves a large number of join operations,
DataGuide* and XISS take 15 times longer than Ctree. Q5 and Q6
are queries with two branches and again Ctree significantly
outperforms the other two approaches.

0
20
40
60
80

100
120
140
160
180
200

Ti
m

e
(m

se
c)

Q1 Q2 Q3 Q4 Q5 Q6

Ctree
DataGuide*
XISS

Figure 12: Comparing Ctree with path index and node index

on DBLP in relative time for each query

5.3 Comparison on XMARK
We choose six XMARK [21] benchmark queries for our
comparison study as shown in Table 3. Q2 and Q4 are designed to
test the performance of ordered access: Q2 for element index and
Q4 for tag order. Q15 and Q16 are to evaluate the performance of
long path traversals. Q18 is to compare function application. Q20
is for aggregations.

Table 3: Sample queries over XMARK
 Description Answer#
Q2 Return the initial increases of all open auctions. 10,830
Q4 List the reserves of those open auctions where

person18829 issued a bid before person10487.
2

Q15 Print the keywords in emphasis in annotations of
closed auctions.

180

Q16 Return the IDs of those auctions that have one or
more keywords in emphasis.

160

Q18 Convert the currency of the reserve of all open
auctions to another currency.

5,922

Q20 Group customers by their income and output the
cardinality of each group.

1

Figure 13 shows the comparison results. For all the six queries,
Ctree outperforms the other two methods by an order of
magnitude.

0

200

400

600

800

1000

1200

Ti
m

e
(m

se
c)

Q2 Q4 Q15 Q16 Q18 Q20

Ctree
DataGuide*
XISS

Figure 13: Comparing Ctree with path index and node index

on XMARK in relative time for each query.

5.4 Comparison with ViST
We also compared Ctree with ViST on DBLP using the four
queries (table 4). The first two queries contain only structure
constraints while the last two queries also contain value
constraints. Table 4 also shows the number of answers for each
query.

Table 4: Queries for comparing Ctree with ViST
 Description Answer#
Q1 /inproceedings/title 212,273
Q2 //www[author, url] 7
Q3 //article/author=”Jim Gray” 35
Q4 //title=”A Query Language for XML.” 1

Table 5 shows the performance comparisons between Ctree and
ViST the four queries listed in Table 4. Ctree correctly answers all
the queries. ViST only answers queries Q1 and Q2 correctly and
contains false positives in the answers for Q3 and Q4. Ctree
performs significantly better than ViST for queries Q1, Q2 and
Q3 and has comparable performance for Q4.

Table 5: Comparison with sequence-based approach ViST
 Ctree ViST
 Time (ms) Time (ms) Answer# False Alarm#

Q1 51.7 123.6 212,273 0
Q2 5.4 20.8 7 0
Q3 26.9 267.2 43 8
Q4 20.3 33.8 8 7

6. Related Work
Indexing and querying XML data is one of the major research
fields in recent years. There are currently three major approaches
for indexing XML data: path indexing, node indexing and
sequence-based indexing.
Node index approaches [11, 20] create indexes on each node by
its positional information within an XML data tree. Such an index
schemes can determine the hierarchical relationships between a
pair of nodes in constant time. Also they use a node as a basic
query unit, which provides great query flexibility. Any tree-
structure query can be processed by matching each node in the
query tree and then structurally joining these matches. Quite some
structural join algorithms [16, 3, 12, etc.] have been proposed
lately to support efficient query answering.
Path index approaches create path summaries for semi-structured
data to improve query efficiency. DataGuides [6] indexes each
distinct raw data path to facilitate the evaluation of simple path
expressions. The Index Fabric approach [5] indexes frequent
query patterns which may contain “//” or “*”, in addition to raw
data paths. APEX [4] and D-(k) [2] are two adaptive path
approaches that apply data mining algorithms to mine frequent
paths in the query workload and build indexes accordingly. In
case of changes in the query workload, the structure summaries
are updated accordingly. The structure summary of D-(k) is also
adaptive to updates in XML documents. To handle all kinds of
branching path expressions, F&B index approach [1] indexes each
edge in an XML data tree both forward and backward. But it is
usually too big to be practically useful. To overcome this problem,
F+B approach [7] reduces index size by ignoring unimportant tags
and edges, limiting the depths of branching queries.

Sequence-based indexing approaches [18, 15] transform XML
documents and queries into structure-encoded sequences. They
leverage on the well-studied sub-sequence matching techniques to
find query answers. Since sequence index approaches use the
whole query tree as the basic query unit, they avoid the expensive
join operations and support any tree-structure XML queries.

7. CONCLUSIONS
In this paper, we have proposed Ctree, a compact two-level
bidirectional tree, for indexing XML data. Ctree provides concise
path summaries at its group level and detailed element
relationships at its element levels, which makes it an efficient
covering index for both single-path and branching queries. And
Ctree is very compact because it uses the very common one-to-
one relationships in XML data to reduce index size.
Unlike most of previous approaches that index values uniformly,
we propose a configurable index scheme which supports five
value index types and several value treatment options. As in
relational databases where an expert designs schema and creates
index, we believe that user configurable index scheme satisfies the
heterogeneous XML data model much better than a uniform index
scheme.
Instead of using global IDs, we have proposed two types of
element references: an absolute reference and a relative reference
when its corresponding group is clear in the context. This group-
based element-referring schema avoids join operations between
structure and value evaluation results. And it is easily adaptable to
updates in XML documents.
We have implemented a Ctree-based search method called
CTSearch which evaluates an XML query in three-steps: 1)
locating relevant groups in a Ctree; 2) evaluating value constraints
on the nodes in relevant groups; and 3) evaluating element-level
structure matches. We also have studied Ctree’s performance in
comparison with several influential XML indexing methods. Our
performance study shows that in most situations CTSearch
processes queries at least an order of magnitude faster than
previous methods.

REFERENCES
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the web:

from relations to semistructured data and XML. Morgan
Kaufmann Publishers, Los Altos, CA 94022, USA, 1999.

[2] Q. Chen, A. Lim and K. Ong. D(k)-Index: An adaptive
Structural summary for graph-structured data. In ACM
SIGMOD, June 2003

[3] S.-Y. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, C. Zaniolo.
Efficient Structural Joins on Indexed XML Documents, In
VLDB 2002.

[4] C. Chung, J. Min, and K.Shim. APEX: An adaptive path
index for XML data. In ACM SIGMOD, June 2002.

[5] B. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and
M. Shadmon. A fast index for semistructured data. In VLDB,
2001.

[6] R. Goldman and J. Widom. Dataguides: Enabling query
formulation and optimization in semistructured databases. In
VLDB, pages 436-445, 1997.

[7] R. Kaushik, P.Bohannon, J. Naughton, and H. Korth.
Covering indexes for branching path queries. In ACM
SIGMOD, June 2002.

[8] R. Kaushik, P. Shenoy, P. Bohannon and E. Gudes.
Exploiting Local Similarity for Indexing Paths in Graph-
Structured Data, In ICDE, 2002.

[9] R. Kaushik, P. Bohannon, J. F Naughton, P. Shenoy,
Updates for Structure Indexes, In VLDB, 2002.

[10] Michael Ley. DBLP database web site.
http://www.informatik.uni-trier.de/ ley/db, 2000.

[11] Q. Li and B.Moon. Indexing and querying XML data for
regular path expressions. In VLDB, 2001.

[12] H. Jiang, H. Lu, W. Wang, B.C. Ooi, XR-Tree:
Indexing XML Data for Efficient Structural Joins, In
ICDE, 2003.

[13] T. Milo and D. Suciu. Index structures for path expression.
In Proceedings of 7th International Conference on Database
Theory (ICDT), pages 277-295, January 1999

[14] S. Nestorov, J. Ullman, J. Wiener, S. Chawathe.
Representative objects: concise representations of
semistructured, hierarchical data. In ICDE, April 1997

[15] P. Rao, B. Moon. PRIX: Indexing and querying XML using
Prunfer sequences, In ICDE, March 2004

[16] D. Srivastava, S. Al-Khalifa, H. V. Jagadish, N. Koudas, J.
M. Patel, and Y. Wu. Structural joins: A primitive for
efficient XML query pattern matching. In ICDE 2002

[17] I. Tatarinov, Z.G. Ives, A.Y. Halevy, D.S. Weld. Updating
XML. In SIGMOD, 2001

[18] H. Wang, S. Park, W. Fan, and P. S Yu. ViST: A dynamic
index method for querying XML data by tree structures. In
SIGMOD, 2003.

[19] M. Yoshikawa, T. Amagasa, T. Shimura and S. Uemura.
XRel: A path-based approach to storage and retrieval of
XML documents using relational databases. ACM
Transaction on Internet Technology, 1(1):110-141, August
2001.

[20] C. Zhang, J. Naughton, D. DeWitt, Q. Luo and G. Lohman.
On supporting containment queries in relational database
management systems. In ACM SIGMOD, 2001

[21] XMARK: The XML-benchmark project.
http://monetdb.cwi.nl/ xml, 2002.

[22] XML Schema
http://www.w3schools.com/schema/default.asp

[23] XPath. http://www.w3.org/TR/xpath
[24] XQuery http://www.w3.org/TR/xquery

