
A Scalable Hybrid Overlay Multicast Architecture for Large-Scale Applications

Li Lao1, Jun-Hong Cui2, Mario Gerla1

llao@cs.ucla.edu, jcui@cse.uconn.edu, gerla@cs.ucla.edu
1 Computer Science Department, University of California, Los Angeles, CA 90095

2 Computer Science & Engineering Department, University of Connecticut, Storrs, CT 06029

Technical Report TR040008
02-09-2004

Computer Science Department

UCLA

Abstract— We propose a two-tier overlay multicast architecture to effi-
ciently support large-scale multicast applications. In this architecture, overlay
multicast scheme is adopted in the backbone domain, while application-layer
multicast protocol is responsible for the communication between the limited
number of end users in access domains. Our two-tier architecture is able to
provide efficient resource utilization with less control overhead, especially for
large-scale real-time applications. It also alleviates the forwarding state scal-
ability problem of overlay multicast and simplifies multicast tree construction
and maintenance when there are large numbers of groups ongoing in the net-
works. Based on this architecture, we also suggest a cost-based pricing model
for the overlay ISPs to charge multicast groups. We believe this pricing model
provides incentives for both service providers and clients to adopt our multi-
cast service scheme. Simulation studies indicate that this architecture performs
well in several common scenarios, and it is scalable to group size as well as to
the number of co-existing groups.

I. I NTRODUCTION

In this paper, our goal is to design a scalable, efficient, and
practical multicast architecture. Multicast is defined as the
communication mechanism among more than one machines.
Starting from the inception of the concept, there are mainly
three architectural tracks which targets efficient and practical
multicast service support: IP multicast, application-layer mul-
ticast1, and overlay multicast.

IP multicast treats multicast delivery as a primitive opera-
tion at the network level. It utilizes a tree delivery structure,
on which data are only replicated at branching routers and are
forwarded only once over each link. And routers are responsi-
ble for maintaining group routing tables. This approach makes
IP multicast fast, resource efficient and scale well to support
very large multicast groups. However, even after approxi-
mately 20 years of multicast research and engineering efforts
(since Stephen Deering established the IP multicast model [18]
in 1988), IP multicast is still far from being widely deployed
on the Internet. As a matter of fact, the Mbone (a multicast
testbed in the Internet) is the only global multicast infrastruc-
ture available. This is due to many technical reasons as well as
marketing reasons. The most critical ones include: the lack of
a scalable inter-domain routing protocol, the state scalability
issue with a large number of groups, the lack of support in ac-

1We use application-layer multicast to refer those multicast protocols which
only involve end hosts, without the support from intermediate proxies

cess control and transport services, the requirement of global
deployment of multicast-capable IP routers and the lack of ap-
propriate pricing models, as make Internet Service Providers
(ISPs) reluctant to deploy and provide multicast service. To
alleviate some of the difficulties, solutions in alternative archi-
tectural tracks have been proposed to provide multicast ser-
vice: application-layer multicast and overlay multicast.

Application-layer multicast [12] [6] [28] [26] [22] [30] [37]
[9] implements multicast-related features exclusively at end
systems, and does not require infrastructure support from in-
termediate nodes (such as routers or proxies). Data packets are
transmitted between end hosts via unicast, and are only repli-
cated at end hosts. Though highly flexible, it leads to relatively
low bandwidth efficiency, since a data packet may traverse a
physical link multiple times. For large multicast groups, due
to limited bandwidth at end systems, the depth of the multi-
cast tree has to be increased, as leads to long latency for data
delivery. In addition, the control overhead of exchanging in-
formation between peers and establishing multicast trees will
increase as the group size increases. Thus, application-layer
multicast is only suitable for applications with small multicast
groups, such as video conference, multi-player games and dis-
tance education, or for groups with low bandwidth data, such
as news and sports ticker services, and stock quotes and up-
dates. Furthermore, application layer multicast has the same
billing problem as IP multicast: since group members are dis-
tributed all over the Internet and they join or leave the group
at will, neither ISP nor group coordinator is able to measure
the bandwidth usage associated with a group. Without appro-
priate billing methods, ISPs or group coordinators will not be
motivated to provide such services.

In overlay multicast networks [25] [10] [1] [32] [31] [7], a
set of special overlay service nodes deployed by the overlay
ISPs self-organize into an overlay network and deliver data on
multicast distribution trees built on top of the overlay network.
End hosts subscribe to appropriate overlay nodes and receive
data via unicast or local IP multicast. The overlay ISPs are able
to manage the overlay topology to optimize the network perfor-
mance and enable efficient resource usage that is comparable
to IP multicast. The communication overhead to maintain con-

2

(c)(a) (b)

end host

router

overlay node

Fig. 1. A comparison of (a) application layer multicast, (b) overlay multicast and (c) hybrid overlay multicast (SHOMA).

trol and data delivery path is also reduced, since the commu-
nication is now limited inside the overlay network and inside
each overlay node’s local scope. So for large-scale applications
or applications with high bandwidth requirement, for example,
content distribution applications including Internet TV, web
caching, file distribution, and video streaming, overlay multi-
cast approach has more advantages compared with application-
layer multicast. By observing these differences between appli-
cation layer multicast and overlay multicast schemes, we be-
lieve that without explicit support from the infrastructure, it is
not possible to build practically deployable multi-point distri-
bution systems that can scale well beyond a few hundred to a
few thousand client.

Overall, it seems that overlay multicast is the recent trend
for scalable multicast service support. However, unlike
application-layer multicast, which completely eliminates mul-
ticast routing functionalities from intermediate nodes (routers
or proxies), overlay multicast does involve the overlay service
nodes (i.e., proxies) to assist multicast routing. That is, proxy
nodes need to establish and maintain multicast tree routing in-
formation for each multicast group. When there are a large
number of multicast groups, the limitations of proxy process-
ing power and network interface bandwidth will be challenged.
In other words, overlay multicast inherits the state scalabil-
ity problem from IP multicast. Further more, in overlay ser-
vice networks, it is even more important to provide appropriate
pricing models in order to stimulate ISPs’ interests in multicast
service deployment.

Motivated by the above critical issues, in this paper, we pro-
pose a two-tier multicast architecture, called Scalable Hybrid
Overlay Multicast Architecture (SHOMA), to provide scal-
able, efficient, and practical multicast support for large-scale
applications. In this architecture, we advocate the notion of
multicast service overlay network (MSON) as the backbone
service domain. MSON consists service nodes or proxies
which are strategically deployed by the MSON provider. In
MSON, the traffic intensity is very high and efficient net-
work resource management becomes a very critical issue. To
solve the state scalability issue, we adopt aggregated multi-
cast approach [21], with multicast data transmitted on aggre-

gated trees. For end hosts (group members), they subscribe to
MSON, by transparently connecting to some special proxies
(called member proxy) advertised by the MSON provider. In-
stead of communicating with its member proxy using unicast,
an end host could form a cluster with other end hosts close by.
In the cluster, application-layer multicast is used for efficient
data delivery between the limited number of end users. A high
level comparison of application-layer multicast, overlay multi-
cast, and SHOMA is illustrated in Fig. 1.

Our two-tier architecture is able to provide efficient resource
utilization with less control overhead, especially for large-scale
real-time applications. It also alleviates the forwarding state
scalability problem of overlay multicast and simplifies mul-
ticast tree construction and maintenance when there are large
numbers of groups ongoing in the networks: overlay proxies in
the backbone service domain employ “aggregated multicast”
and maintain multicast state for aggregated delivery trees in-
stead of individual groups. Therefore, our architecture scales
to multicast group size as well as to number of coexisting mul-
ticast groups. To our best knowledge, this paper is the first one
to address the state scalability problem in overlay multicast.

Based on this architecture, we also suggest a cost-based
pricing model for the overlay ISPs to charge multicast groups.
We believe this pricing model provides incentives for both
service providers and clients to adopt our multicast service
scheme.

The rest of this paper is organized as follows. Section II
illustrates our strong motivations for advocating MSON, and
gives a brief overview of aggregated multicast approach. In
Section III, we present our hybrid overlay multicast architec-
ture in detail. In Section IV, we propose a pricing model to
solve billing issues of multicast service. Then Section V eval-
uates the performance of hybrid overlay multicast architecture
through simulations. Finally, we offer an overall summary of
our contributions in Section VII.

3

II. BACKGROUND

A. Multicast State Scalability and Aggregated Multicast

Multicast state scalability is among the technical difficulties
that delay the deployment of IP multicast. Conventional IP
multicast protocols establish and maintain a multicast tree per
group or per group/source, and require each router to maintain
separate states for individual groups or group/sources. Hence,
large number of co-existing groups mean large amount of state
to be maintained at routers and high multicast tree setup and
maintenance control overhead. This state scalability problem
is even exacerbated in backbone networks, because there are
potentially enormous multicast groups crossing backbone do-
main.

The state scalability has prompted some research in for-
warding state reduction. Most schemes attempt to reduce for-
warding state by “intra-group” or “inter-group” state aggre-
gation. [35] [33] [14] propose intra-group aggregation ap-
proaches, which try to reduce forwarding state at non-branched
routers, but they mainly target networks with a larger number
of sparse groups. Some inter-group aggregation schemes try
to achieve state reduction by aggregating forwarding state at
routers [29] [34]. Thaler and Handley analyze the aggregata-
bility of forwarding state in [34] using an input/output filter
model. Radoslavov et. al. propose algorithms to aggregate for-
warding state and study the bandwidth-memory tradeoff with
simulations in [29]. However, the state aggregatability of this
type of schemes heavily depends on multicast address alloca-
tion. It should be noted that all the schemes mentioned above
are dedicated to solve the state explosion issue without exam-
ining the control overhead explosion one.

To solve the state scalability problem in IP multicast, a
scheme called aggregated multicast has been proposed in [21].
The key idea is to force multicast groups to share a single dis-
tribution tree. This enforcement takes place at the edge routers
of the network. Data packets from different groups are multi-
plexed on the same distribution tree, callaggregated tree. Each
data packet of these groups is encapsulated and travels on the
aggregated tree. This way, routers in the middle of the network,
namely core routers, need to keep state only per aggregated
tree, which are much less in number than the groups they are
servicing. Of course, edge routers of the network need to main-
tain sufficient information to multiplex and demultiplex groups
in and from aggregated trees. Aggregated multicast can reduce
the required multicast state at core routers. It can also reduce
the management overhead for the distribution trees, since there
are fewer trees to be established and maintained. Fig. 2 illus-
trates the basic idea of aggregated multicast.

In aggregated multicast, we need to match groups to aggre-
gated trees. The group-tree matching problem hides several
subtleties. The set of the group members and the tree leaves
are not always identical. A match isperfectfor a group, if all
the tree leaves have group members. A match could also be
a leaky match, if there are leaves of the tree that do not have
group members. In other words, we send data to part of the

A, Eg2

A, D, Eg1

....

A, D, E g0

MembersGID

Multicast Groups

....

A-B, B-C, B-E, C-DT0

Tree LinksTID

Aggregated Trees

Groups g0, g1, g2 share one
aggregated tree T0. T0 is a
perfect match for g0 and g1,
But it is a leaky match for g2. A

B
C

E

D

(g0, g1, g2)
(g0, g1, g2)

(g0, g1)
T0

Fig. 2. An illustration of aggregated multicast

tree that has no receivers. A disadvantage of the leaky match
is that some bandwidth is wasted to deliver data to nodes that
are not member of the group. Namely, we trade off bandwidth
for state scalability.

As we mentioned earlier, the state scalability problem also
exists in overlay multicast, since each overlay proxy node acts
similarly to a router when establishing multicast trees and for-
warding multicast packets. In fact, due to the limitations of
the proxy processing power and network interface bandwidth,
the state scalability problem is even worse. This is because the
performance of proxies will be degraded significantly when
the routing tables are huge, and the bandwidth becomes even
more scarce when there are a large amount of tree maintenance
messages. For the MSON providers, however, they want to
gain more revenue forever, which means that they more cus-
tomers forever. Thus, we employ aggregated multicast scheme
in MSON, by which the number of multicast distribution trees
can be significantly reduced. As a result, the required mem-
ory and processing power at each overlay proxy node are
also reduced, which makes packet forwarding faster. In ad-
dition, there is less communication overhead associated with
tree setup and maintenance. Therefore, aggregated multicast
becomes a powerful tool to improve the scalability and effi-
ciency of MSON. Finally, aggregated multicast can also facili-
tate fast failure recovery with less control overhead, and assist
to support end user access control and establishing practical
pricing model as will be addressed in the following sections.

III. SCALABLE HYBRID OVERLAY MULTICAST

ARCHITECTURE

We design Scalable Hybrid Overlay Multicast Architecture
(SHOMA) to provide scalable and efficient multicast services
to end users. In this section, we describe our proposed archi-
tecture in more details.

A. An Overview

SHOMA is a two-tier multicast architecture. In this archi-
tecture, multicast service overlay network (MSON) is advo-
cated as the service backbone domain. In MSON, overlay

4

proxies are strategically placed to form an overlay network,
on top of which aggregated multicast distribution trees are
built for data delivery. By using aggregated multicast, mul-
tiple groups are forced to share a single aggregated tree. Each
aggregated tree is assigned a tree address, which is unique in
MSON, while transparent to the end users. Data packets are
encapsulated at incoming proxies, transmitted on aggregated
trees, and decapsulated at outgoing proxies. Outside MSON,
end users subscribe to MSON, by transparently connecting to
some special proxies (called member proxy) advertised by the
MSON provider. Each member proxy organizes some end
users into a cluster, where an application layer multicast tree
(also denoted as peer-to-peer or P2P multicast tree in this pa-
per) is formed for data delivery among the cluster members.
Therefore, SHOMA is built above network and transport lay-
ers.

Each (SHOMA) group is identified by a URL-like unique
name. Group names have the form ofshoma://groupname.xxxmson.com/
2. End users (sources and receivers) explicitly subscribe to the
group, by sending out a join request containing the URL-like
group name. Through DNS, this request will reach the DNS
server of the MSON, in which there resides agroup registry
server. It is the responsibility of the group initiator to reg-
ister the group in the group registry server. In other words,
the group registry server maintains the member information
of each group, thus it is easy for the MSON to implement its
member access control policy. After receive SHOMA join re-
quest, the DNS server will send a list of IP addresses of the
advertised member proxies back to the subscriber. How to
choose an appropriate member proxy will be described later
in Section III-B.

Inside MSON, there are three types of proxy nodes:
1. Member proxies: when an end user joins a group, its join

request is re-directed by the MSON DNS server to an approx-
imate proxy at the edge of overlay networks, which will then
subscribe to multicast groups on behalf of end host members.
These proxies are referred as “member proxies” since they are
members of the multicast groups inside the overlay service
backbone domain (MSON). In this way, multiple end hosts of
the same group might be attached to one member proxy, and
we call this set of end users and their member proxy as a “clus-
ter”. Member proxies participate in multicast data forwarding
of both backbone domain and user access domains (outside
MSON). After receiving join request for a groupg, the mem-
ber proxies will set up a peer-to-peer multicast tree in the local
cluster and relay join request to a predetermined proxy (i.e.,
“host proxy” for groupg) to establish the overlay multicast
tree in backbone domain.

2. Host proxies: in backbone domain, each group is man-
aged by a host proxy. After receiving a join request forg re-
layed by a member proxy, this host proxy conducts multicast
routing and group-tree matching mechanisms to map groupg

2The URL-like naming approach has been adopted by many systems, such
as CDN (content dilivery networks), Yoid [22], Scattercast [1], Overcast [25],
etc.

 1
B , g)

 1
 , g)(g

 0

 1
 , g)(g

 0
 0

(g

C

Fg , g
 1 0

(B, T)
1

Member Proxy Distribution

P2P Tree Maintenance
Encapsulation/Decapsulation
A, D, E:

Member Access Control

Aggregated Tree (B, T)
1

D

E

A

Group Tree Mapping Table

Group-Tree Matching

GroupsTree

Fig. 3. A big picture of SHOMA, where F is group registry server/DNS server,
B is host proxy, A, D and E are member proxies, groupsg0 andg1 shares
the bi-directional aggregated tree (B,T1).

to an aggregated tree. To improve the state scalability in a
further step, SHOMA adopts bi-directional aggregated trees in
backbone domain. An aggregated tree is identified by a pair of
the host proxy IP address and a tree ID allocated by the host
proxy. Note that a host proxy is only present in the control
plane and may not be involved in data delivery. It can even
be dynamically changed during the lifetime of a session, when
it no longer has appropriate trees for that group due to group
membership dynamics, or when it fails. The host proxy for a
groupg can be randomly selected or by applying a hash func-
tion (calledgroup-to-hosthashing function).

3. Forwarding proxies: those proxies which are neither
member proxies, nor host proxies, are referred as “forwarding
proxies”. They are mainly responsible for forwarding multi-
cast data inside the backbone domain.

These three types of proxies can have different processing
power and bandwidth capacity commensurate with their func-
tionalities. For example, host proxies should be very powerful
in processing capability in order to perform computationally-
intensive tasks such as group-tree matching; forwarding prox-
ies require higher bandwidth to accomplish successful data de-
livery; and member proxies require both. Note that, it is pos-
sible that some member proxies are “forwarding” proxies for
some groups as well.

In a nutshell, in SHOMA, member proxies control mem-
ber access policy and manage peer-to-peer multicast trees in
its cluster, and host proxies conduct group-tree matching and
manage aggregated multicast trees in the backbone domain. A
big picture of SHOMA is illustrated in Fig. 3

We have discussed the main components of SHOMA (for-
warding, member and host proxies) and their functionalities.
In the following, we describe this architecture in more details.
To facilitate our description, we divide the control messages
into two types: P-type and O-type. The messages that facil-
itates end users to join or leave groups and peer-to-peer tree
construction are P-type, such asP-JOIN, P-LEAVE and P-
TREE. The messages used to help matching groups to trees
inside MSON are O-type, which includesO-JOIN, O-JOIN-

5

member proxies
A, D, E:

F

3

2

A

1

D

E

B C

R

(registry server)

1: P-QUERY(G)

3. P-JOIN(G)

2: P-REPLY(G, (A, D, E))

Fig. 4. Member R of groupg queries host proxy B for member proxy list.

ACK O-LEAVE, O-GRAFTandO-PRUNE.

B. Member Proxy Selection

When an end host joins groupg, it first queries the MSON
DNS server using a URL-like group name to obtain a list of
available member proxies, identifies an appropriate proxym,
and sends aP-JOIN(g) request tom (as shown in Fig. 4).
Although the choice of member proxies should depend on
application-specific requirements, we provide some general
guidelines for selecting a good member proxy.

The first criteria is low distance or latency. It can be obtained
from round-trip-time (RTT), which measures the communica-
tion delay between an end user and a member proxy. After
obtaining member proxy list, the end user measures the RTT
values to all eligible proxies and discretizes the RTT values
into per-determined levels. The RTT discretization improves
the stability of RTT values and allows other metrics to be con-
sidered when the proxies have similar RTTs.

The second criteria is low workload. Workload can be deter-
mined by the total number of end users a proxy currently han-
dles or total amount of access bandwidth in use at the proxy.
This metric can reflect the processing delay or available band-
width at the proxy node. The workload is measured by the
proxy itself and can be obtained by the end users in centralized
or distributed fashion. In the centralized method, the MSON
DNS server maintains the workload of all member proxies and
distributes this information to a new member in the query re-
sponse message. In the distributed approach, each member
proxy piggybacks its workload when end user measures RTT.
After collecting RTTs and workload for all member proxies,
the end user selects the one with lowest RTT. If multiple prox-
ies fall into the same RTT level, the workload is used to break
the tie.

This member proxy selection method allows a client to
choose a good proxy; however, it incurs a latency of at least
an RTT between the client and the proxy. In order to reduce
the latency of the join process, the new member can subscribe
to a proxy randomly selected from the member proxy list and
receives data temporarily from this proxy. If the performance
with this temporary proxy node is not satisfactory, the user can
probe eligible member proxies. To avoid an end user oscil-

3

5

B

F

1

2

A

(host proxy)

C

E

D

R

4

1. P-JOIN(G)

2. O-JOIN(G)

3. O-JOIN-ACK(G, (B,T))

4. O-GRAFT(G, (B,T))

5. P-TREE(G, A, NONE)

Fig. 5. Member R joins groupg with host proxy B.

lating between proxies with similar distance, the end user is
allowed to switch proxy only if the RTT to the new proxy can
upgrade to a higher level. If this is the case, the end host un-
subscribes from the old proxy and subscribes to the new proxy.

C. Member Join and Leave

Outside MSON, an end host joins groupg by subscribing to
an appropriate member proxym. After receivingP-JOIN(g)
request, member proxym checks if it already belongs to group
g. If yes, it has the group-tree matching information and sup-
presses this request to save communication overhead. On the
other hand, if it has not joined the group, it will use the group-
to-host hashing function to get the host proxyh, and then
sendO-JOIN(g)requesth. After conducting the group-to-tree
matching, the host proxyh establishes or finds an appropriate
aggregated tree, say,T . It will send back aO-JOIN-ACK(g, T)
message tom. If m has not joined the delivery treeT , it will
graft to the tree by sendingO-GRAFT(T)message towardsh.

Now that groupg has been mapped toT inside backbone do-
main,m constructs or updates the peer-to-peer multicast treet
in its local cluster and replies the new member aP-TREE(g,
parent, children)message, whereparent and children repre-
sents the information for establishing P2P multicast treet (We
will discuss P2P multicast tree construction protocol in Sec-
tion III-F). From now on, this member will start to receive
packets forg relayed bym. An example of member join is
illustrated in Fig. 5.

When an end host leaves groupg, it sends aP-LEAVE(g)
message to its member proxym. The proxy may adjust the
local multicast delivery tree and distribute the tree change to
the rest of the cluster withP-TREE(g, parent, children)mes-
sages. If no more receivers are attached tom, m propagates
a O-LEAVE(g)message to the host proxyh, which may trig-
ger a group-tree matching process. If no other member prox-
ies belong to groupg, the host proxy will remove the group-
tree matching betweeng andT . This group-tree mapping may
trigger removal of the treeT when there are no other groups
mapped ontoT . In this case,h sendsO-LEAVE-ACK(T)mes-
sages to the tree leaves ofT , which will in turn prune from
the tree by sendingO-PRUNE(T). This procedure is shown in
Fig. 6. In case the end host leaves the group ungracefully, its
member proxy will be able to detect this from periodic “heart-

6

3

B

E

DC

A

R

F

(host proxy)
4

2

1

1: P-LEAVE(G)

2: O-LEAVE(G)

4. O-PRUNE(B,T)

3. O-LEAVE-ACK(B,T)

Fig. 6. Member R leaves groupg with host proxy B.

4

1: P-JOIN(G)
2: O-JOIN(G)
3. O-JOIN-ACK(G, (B,T’))
4. O-TREE-SWITCH(G, (B,T’))
5. O-GRAFT(B,T’)
6. P-TREE(G, D, NONE)

D

F

(host proxy)
B

A

1

2
3

5

5

E

R

R’

C

5

6

Fig. 7. Groupg starts with member R. A new member R’ joins group and
group switches from (B,T) to (B, T ′).

beat” message exchange.
In the backbone domain, when the member proxies of a

groupg are changed due to end host join-or-leave dynamics, its
original aggregated treeT may not be able to cover the group
again. In this case, the tree switch procedure is triggered, as
shown in Fig. 7. The host proxy first finds or establishes an
appropriate treeT ′ for g and removesg from T . It notifies the
member proxies to join the new treeT ′ and leaveT by using
messageO-TREE-SWITCH(g, T’). Note that this tree switch
process may trigger the establishment of a new treeT ′ and/or
the removal of the old treeT .

The details of multicast routing, group-tree matching and
peer-to-peer tree construction algorithms will be explained in
the following sections.

D. Multicast Routing in MSON

When a host proxy cannot find an appropriate group-tree
mapping for a multicast group, it needs to run multicast rout-
ing algorithm to establish a new multicast delivery tree. In
SHOMA, the group-tree matching algorithm is compatible
with existing multicast routing protocols such as CBT [5], PIM
[17], and SSM [24]. For single-source applications, source
based trees result in higher performance (i.e., less latency) than
core based tree. Conversely, for applications with multiple
sources, core based tree reduce multicast tree setup and main-
tenance overhead. Considering that bi-directional trees can
achieve better tree aggregation regardless of how many sources
there are, we design our multicast trees to be bi-directional.

Thus, when a host proxy needs to construct a new multicast
tree (if current aggregated trees are inappropriate for a group),
it uses CBT to compute a bi-directional multicast tree with the
host proxy itself as the core.

E. Group-Tree Matching in MSON

To map a multicast group to an aggregated tree, a host proxy
needs to conduct group-tree matching algorithm. In this sec-
tion, we present a simple algorithm while with a small amount
of additional control overhead.

First, we define bandwidth waste function. As mentioned
earlier in Section II, leaky match can aggregate more groups
into a multicast tree, but it introduces extra bandwidth waste.
Hence, it is necessary to control the amount of bandwidth
waste for leaky match. Assume that an aggregated treeT is
shared by groupsgi, 1 ≤ i ≤ n, each of which has a native
treeT0(gi) (a native tree of a group is a perfect match for that
group and it can be computed using multicast routing algo-
rithms). With the assumption that all multicast groups have
same bandwidth request, we define theaverage bandwidth
wastefor T :

δ(T) =
n× C(T)−

∑n
i=1 C(T0(gi))∑n

i=1 C(T0(gi))

=
n× C(T)∑n

i=1 C(T0(gi))
− 1,

(1)

whereC(T) is the cost of treeT , i.e., the total cost of tree
T ’s links. It should be noted that a host proxy needs to know
the tree topology information to compute average bandwidth
waste. To overcome this complexity, we propose anestimated
bandwidth waste function that takes into account only the
group member and tree leaf information:

δest(T) =
n× |leaf(T)|∑n

i=1 |leaf(T0(gi))|
− 1

=
n× |leaf(T)|∑n

i=1 |gi|
− 1,

(2)

A group-tree matching algorithm similar to the one
proposed in Bi-dirEctional Aggregated Multicast Protocol
(BEAM) [16] can be used to map a group to an aggregated
tree, and set up or remove trees accordingly. The basic idea is
as follows: the host proxy attempts to map the group to existing
aggregated trees if the tree can cover all group members and
the estimated bandwidth wasteδest is less than a pre-defined
bandwidth waste thresholdbth. If this fails, it will use multi-
cast routing protocol to compute the native multicast tree for
this group as the aggregated tree (as illustrated in Section III-D
and set up this new tree. If this group was originally mapped
to a different tree, the old mapping is removed and the new
mapping is installed. This group-tree matching algorithm en-
ables group-tree mapping to adapt to membership dynamics
and link metric changes. In addition, it allows the host proxy
of a group to be changed when the current proxy does not have

7

an appropriate tree while another host proxy does. This ap-
proach increases group aggregatibility at the cost of delay for
tree construction and message communication overhead.

Furthermore, real-time multicast applications such as video
streaming and video-conferencing call for multicast services
with Quality of Service (QoS) support. To provide QoS sup-
port in our architecture, the host proxy should collect link
state information and group membership information, enforce
admission control for new multicast group request, and per-
form QoS-aware group-tree matching algorithm. QoS support
also requires traffic conditioning at member proxies to control
source rate. Details on aggregated QoS multicast provisioning
can be found in [15].

F. P2P Multicast outside MSON

We use application layer multicast outside MSON, consid-
ering its self-organization capability and higher efficiency than
unicast. By subscribing appropriate member proxies, end users
form into different clusters. In each cluster, nodes communi-
cate in a P2P fashion. When an end user sends packets to the
group, the packets are transmitted to all other end users in the
same cluster and to the member proxy as well. The member
proxy will relay these packets to other member proxies (at the
edge of the MSON), which will in turn deliver the data to the
group members in their clusters.

In our architecture, every cluster has one special node, that
is, the member proxy. This proxy is relatively more power-
ful and stable than end users and it maintains membership in-
formation. This characteristics fits a centralized method natu-
rally. Therefore, we use an approach similar to ALMI [28] in
P2P multicast tree construction. For each member, the member
proxy randomly selects a subset of users to be monitored and
sends this user list to the member. Each member sends probing
packets to the subset of users and its parent periodically, and
reports the information (such as delays) to the member proxy.
After the proxy collects all information, it calculates appropri-
ate P2P multicast delivery trees and distributes them to the end
users in the form of(parent, children). Finally, end users
will connect with their children and deliver data packets to
them through unicast connections. During the tree transition
period, the multicast packets are sent on old routes as well as
new routes for a short time to avoid data loss.

The constructed multicast distribution trees can be either
bi-directional or unidirectional. Bi-directional trees accom-
modate both single- and multi-source group communications,
whereas unidirectional trees provide services with higher qual-
ity. Depending on which performance metric is the most im-
portant, different multicast trees (for example, Minimum Span-
ning Tree, Compact Tree [32], Degree-Constrained Shortest
Path Tree [12], or Shortest Widest Path Tree [11] [36]) can be
established.

Since the member proxy nodes periodically computing new
multicast trees, the clusters are able to maintain high-quality
multicast tree in presence of group dynamics and transient fail-
ure of links or nodes. If a member leaves ungracefully or if a

path between two neighbors becomes broken, these events can
be detected from periodic probing and the multicast tree will be
repaired by member proxies. Due to the limited size of each
cluster, the control message overhead is expected to be very
small.

G. Discussions

Member and Source Access ControlOne critical problem
in traditional IP multicast is the lack of effective access control
mechanisms. In SHOMA, access control can be managed by
the group registry server. Since every end user needs to ob-
tain the list of available member proxies, it has to contact the
MSON DNS server and the group registry server in the first
place. Consequently, the group registry server will rule out the
ineligible end hosts.

Besides member access control, the sources of a group may
also need to be explicitly controlled for security reasons. In
this case, bi-directional trees may not be able to prevent unau-
thorized members from injecting packets into the network.
There are two solutions to this problem. If there are limited
sources in a local cluster (such as Internet TV or video stream-
ing), one source-based tree is constructed for each source, and
packets sent from unauthorized source will be dropped. When
there are a large number of sources in a local cluster, multiple
source-based trees will result in enormous overhead. Then a
source-based tree rooted at the proxy can be constructed. The
sources will send data packets to the proxy directly, which fil-
ters out unauthorized packets and relays the remaining packets
to other nodes in the local cluster. There is a tradeoff of higher
tree maintenance overhead versus longer latency between these
two methods, and the choice should be made depending on the
average number of sources in a cluster.

Fault Recovery of Multicast Trees Since the MSON
provider buys bandwidth from higher tier ISPs and the over-
lay proxy nodes are specially designed servers, it is expected
that proxy and link failures do not occur very often and it is
quite unlikely for network partition to take place in the back-
bone domain. However, our architecture still takes account of
these situations, and uses a pre-planned restoration approach
for fast recovery.

The employment of aggregated multicast greatly facilitates
the fault tolerance of SHOMA. Aggregated multicast reduces
the number of trees to be maintained by the overlay network,
so the backup tree computation and maintenance cost is sig-
nificantly reduced. In addition, since the recovery is done
for aggregated multicast trees rather than individual groups,
there is less communication overhead when a failure occurs.
When a new aggregated tree is established, the host proxy
computes a backup tree by using some redundant tree fault-
tolerance schemes, such as the algorithm described in [27] and
[20]. When a proxy or link failure occurs, it can be detected
by the lack of “heartbeat” message exchange caused by the
failed proxy or failed link and propagates this information to
all other proxy nodes. The host proxies determine the affected
aggregated trees, retrieve their backup trees, and switches the

8

related multicast groups to the backup trees.
Resilience of Member and Host ProxiesMember proxies

and host proxies have special functionalities that needs to be
separately handled when they fail. If a member proxy dies,
the end hosts are able to detect the failure and will contact the
MSON DNS server and the group registry server to re-join the
group. In case of a host proxy failure, a new host proxy is
chosen from the backup proxy list, and then member proxies
will switch to new host proxies, which will conduct group-tree
matching and assign new multicast trees.

Load Balancing When there is a large number of
bandwidth-demanding multicast groups in the overlay net-
work, the overlay links may be congested and the multicast
trees traversing these links will yield poor performance for end
users. To detect congested links, the overlay proxies need to
monitor the current congestion conditions on its adjacent links
and report overloaded link back to host proxies. For reserved
or assured services, the admission control module in the host
proxy will take account of the QoS requirements and available
resources, and decides whether a multicast group can be ad-
mitted [15]. For best-effort traffics, the host proxies will try
to bypass those congested links when executing the group-tree
matching procedure.

The working load at member proxies can also be unbalanced
if a member proxy is particularly popular. When the MSON
provider provisions the network resource usage, it can hide the
overloaded proxies from the multicast sessions by not provid-
ing these proxies as available member proxies to end users. In
addition, when an end user tries to find a member proxy node
before it joins a group, it uses working load as one criteria. In
this way, the end user tends to find a lightly-loaded proxy node.

Heterogeneity Handling For high-bandwidth applications
such as video-streaming, the inherent heterogeneity of current
Internet has made multicast a challenging problem, since there
is no single rate that can fit the demand of receivers with differ-
ent bandwidth and processing capabilities. A promising solu-
tion to this problem is to divide the group members into a num-
ber of homogeneous sub-groups, which has been adopted in
existing overlay multicast architectures [1] [10]. Even though
this approach solves user heterogeneity problem, it exacerbates
the state scalability problem, because multiple multicast trees
are now needed for each multicast group. SHOMA, on the
other hand, can be seamlessly integrated with this approach
by significantly decreasing the number of aggregated trees to
manage.

IV. PRICING MODEL

Ideally, a MSON architecture should provide MSON ISPs
with practical means of accounting the cost of a multicast
group and billing the group initiator or group members accord-
ingly. Its pricing scheme should bring revenue to ISPs to mo-
tivate them to deploy the services, and promote customers to
purchase the services by saving money for them. In this sec-
tion, we suggest such a pricing model for ISPs who deploy
SHOMA architecture.

ISPs are not willing to deploy new services unless they can
maximize profit and minimize cost. Multicast, irrespective of
in which layer it is implemented, achieves bandwidth savings
over unicast by minimizing the transmission of duplicate pack-
ets over every link. Hence, it seems that ISPs should prefer
existing multicast architectures over unicast for higher profit.
However, this is not the case. Clearly, it is not feasible for
an ISP to account the resource usage of multicast communica-
tion in IP multicast or application-layer multicast, in that the
group membership information is distributed in routers (which
may belong to different ISPs) or non-cooperating end hosts. In
contrast, in SHOMA, host proxies are responsible for main-
taining group information inside MSON and member proxies
control member hosts in local clusters. With this information
at hand, ISPs are able to estimate resource usage such as band-
width consumption in MSON. Note that we do not consider
the bandwidth usage outside MSON, since we expect the end
users to bear the responsibility and have the freedom to select
appropriate Internet connections to maximize application per-
formance within their budget limit.

Generally, the major cost for ISPs to deploy SHOMA ser-
vices can be categorized into bandwidth cost and equipment
cost. Bandwidth cost is the amount of bandwidth leased from
tier-one ISPs, and it depends on factors such as number of
groups, group size, membership distribution, and group du-
ration. Equipment cost includes the deployment and mainte-
nance cost of storage, memory, CPU, etc. Therefore, in our
scheme, the ISPs charge every group a usage-based price for
bandwidth cost and a flat-rate price for equipment cost.

Bandwidth Price Our proposed bandwidth price is based
on Chuang-Sirbu Law, which states that for IP multicast the
cost of a multicast tree varies at the 0.8 power of the multicast
group size [13]:

Lm

Lu

= Nk
m (3)

whereLm is the total number of links in the multicast distribu-
tion tree,Lu the average number of links in a unicast path,Nm

the multicast group size, andk a scaling factor. Recent study
shows that a similar power law relationship with a power value
of approximately 0.9 exists in application-layer multicast trees
[19]. Based on these studies, we propose that when a multicast
group is leaky matched to an aggregated SHOMA tree with a
bandwidth waste threshold ofbth, the relative bandwidth cost
of this multicast tree is bounded by:

Lm

Lu

= bth ×Nk′

p (4)

whereNp is the number of participating member proxies of
the multicast group, andk′ is a scaling factor empirically de-
termined by ISPs. In other words, the price for the multicast
groupPm is calculated based on the price of unicast service
for the same groupPu:

Pm = bth ×Nk′

p × Pu

Np

= bth ×Nk′−1
p × Pu

(5)

9

In fact, ISPs can set a price in the range of [Pm, Pu]:

P1 = Pm + α× (Pu − Pm) (α ∈ [0, 1]) (6)

By setting appropriateα, overlay ISPs has the flexibility to
take account into marketing factors such as variations of de-
mand and supply, promotion discounts, etc. In addition, this
price is able to compensate for the cost of overlay ISPs to pur-
chase bandwidth from tier-one ISPs, and meanwhile it is still
lower than what the customers need to pay for unicast services.
Consequently, both overlay ISPs and customers are willing to
deploy and use this kind of services.

Equipment Price Because the equipment price is not af-
fected significantly by group size, a flat-rate price should suf-
fice. For each multicast group, its equipment price is:

P2 = β × Ceq

Ng
(β ≥ 1) (7)

whereCeq is the total amount of equipment cost, andNg is the
total number of multicast groups. Similar toα in P1, β is used
to control the net profit forP2.

Finally, the total price of a multicast group is the sum of
bandwidth costP1 and equipment costP2:

Ptotal = P1 + P2 (8)

After the price is charged by overlay ISP, it is up to the group
coordinator or initiator to decide how to share the cost among
the group members. It can use existing approaches, such as
Equal Tree Split (ETS), Equal Link Split among Downstream
members (ELSD), or Equal Next-Hop Split (ENHS), to decide
the receivers’ share of the charge [23]. Depending on which
approach the group coordinator prefers, the host proxy of this
group may need to collect relevant information from member
proxies and deliver the summarized data to the group coordi-
nator.

V. SIMULATION STUDIES

In this section, we evaluate the performance of our architec-
ture by using NS-2 simulations [3]. We compare SHOMA with
a scalable application layer multicast protocol NICE [6], an
IP multicast protocol (Core-Based Tree [5]), and non-scalable
unicast protocol in a wide variety of network topologies. We
find that SHOMA can achieve very competitive performance
for large groups with hundreds (or even thousands) of mem-
bers.

A. Network Topologies and Group Membership Model

To comprehensively evaluate our architecture, we use two
types of network topologies. The first type of network topolo-
gies is generated using the Transit-Stub Model developed by
Institute of Georgia Technology [8]. These topologies have
50 transit domain routers and 500-2000 stub domain routers.
Each end host is attached to a stub router uniformly at random.
To test the scalability of different schemes, we focus on large

group sizes and vary the number of members in each group
from 200 to 1000.

The second type of network topology is abstracted from a
real network topology, AT&T IP backbone [4], which has a
total of 123 nodes: 9 gateway routers, 9 backbone routers, 9
remote GSR (Gigabit Switch Routers) access routers, and 96
remote access routers. The abstract topology is constructed
as follows: the attached remote access routers of a gateway
or backbone router is “contracted” into onecontracted node.
In addition, we create a neighbor node calledexchange node
for each gateway router in the backbone, since gateway routers
represents connectivity to other peering networks and/or In-
ternet public exchange points. This abstraction procedure re-
sults in a simplified network of 54 nodes. Each end host are
randomly assigned to a contracted node or exchange node ac-
cording toRandom Node Weight Model. In this model, each
router is assigned a weight, which represents the probability
that this router has attached end host(s) participating in a mul-
ticast group. Thus, for a group with fixed group size, the num-
ber of group members attached to a router is proportional to
this router’s weight. For the different routers in this abstracted
network, gateway nodes and backbone nodes are assumed to
be core routers only and are assigned weight 0. Each access
router is assigned a weight of 0.01, and a contracted node’s
weight is the summation of the weights of all access routers
from which it is contracted. Exchange nodes are assigned a
weight of 0.9 since they usually connects to peering networks
and tend to have large number of group members.

B. Implementation Issues

We have implemented a simplified version of SHOMA ar-
chitecture in NS-2. In this implementation, the host proxy
constructs Core-Based Trees rooted at itself when conducting
group-tree matching. Inside the local cluster, member proxy
distributes to end hosts a subset of group members inside the
cluster, collects delay information from the end hosts, and then
calculates a minimum spanning tree based on this delay infor-
mation.

It is clear that the overlay network topology (eg, the loca-
tion of overlay nodes and overlay links, and the selection of
host proxies and member proxies) will affect the performance
of SHOMA significantly. However, the construction of opti-
mal overlay network topology is another problem and is out
of the scope of this paper. Therefore, in this study, we choose
to construct overlay network in a heuristic way. In the simu-
lations using Transit-Stub synthetic topologies, we randomly
select 80% of the transit nodes (i.e., 40 nodes) as member and
host proxies. For each experiment, we repeat the same sim-
ulation with different sets of proxy nodes and take the aver-
age value for each metric. For the AT&T backbone topology,
we select gateway routers (9 nodes) as member and host prox-
ies. After the overlay nodes are determined, the overlay links
are constructed based on the shortest paths between every pair
of overlay nodes: if a shortest path goes through intermedi-
ate overlay node(s), then it is not eligible as overlay link. The

10

0

2000

4000

6000

8000

10000

0 200 400 600 800 1000 1200

T
ot

al
 c

os
t

Group size

SHOMA
NICE

Unicast
IP Multicast

Fig. 8. Tree Cost vs. group size in Transit-Stub topology.

links that do not violate this constraint are preserved as overlay
links.

C. Multicast Tree Performance

We use the following metrics to compare the multicast tree
performance of these different schemes.Multicast tree cost
is measured by the number of links in a multicast distribu-
tion tree. It quantifies the efficiency of the multicast routing
schemes. Application level multicast trees and unicast paths
may traverse an underlying link more than once, and thus they
usually have a higher cost than IP multicast trees. To mea-
sure the quality of data paths, we randomly select a member
as source and measure the link stress and path length when
data are transmitted from source to all members on the mul-
ticast trees.Link Stressis defined as the number of identical
data packets delivered over each link. IP multicast trees has
the least link stress since only a single copy of a data packet is
sent over each link.Path Lengthis the number of links from
the source to a member. Unicast and shortest-path multicast
schemes are usually optimized on this metric and thus have
smallest path lengths.

In simulation experiments, a set of end hosts join the multi-
cast group during an interval of 400 seconds. Then we collect
the metrics after the multicast tree has stabilized. We found
that SHOMA is able to converge within 10 seconds of simula-
tion time after the join process is completed. In contrast, NICE
tree needs hundreds of seconds of simulation time to stabilize,
when the parameter is set as in [6].

Multicast tree cost in Transit-Stub topology We first use
the Transit-Stub topology with 50 transit routers and 1000 stub
routers to evaluate the performance of SHOMA. In Fig. 8, we
plot the tree cost of SHOMA, NICE, and CBT as group size in-
creases from 200 to 1000. As a reference, we also include the
total link cost of the unicast paths from source to each mem-
ber. Compared with the cost of unicast paths, NICE trees re-
duce the cost by 30-46%, SHOMA is able to reduce the cost
by approximately 61-70%, and CBT trees save the cost by 68-
80%. Clearly, the performance of SHOMA trees is close to
that of the CBT, which represents the best performance that
can be achieved by any application layer multicast or overlay
multicast schemes. By using overlay proxies inside MSON,

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200

A
ve

ra
ge

 li
nk

 s
tr

es
s

Group size

SHOMA
NICE

Unicast
IP Multicast

Fig. 9. Average stress vs. group size in Transit-Stub topology.

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200

A
ve

ra
ge

 p
at

h
le

ng
th

Group size

SHOMA
NICE

Unicast
IP Multicast

Fig. 10. Average path length vs. group size in Transit-Stub topology.

SHOMA outperforms NICE in all cases with respect to mul-
ticast tree cost, and the cost difference increases with group
size.

Average link stress in Transit-Stub topologyFig. 9 shows
the average link stress for these four schemes as the group size
varies. IP multicast maintains a unit stress since no duplicate
packets are transmitted on the same link. SHOMA trees exhibit
average link stress between 1.19 and 1.51, whereas the average
link stress of NICE trees is always higher than 2.00. In both
SHOMA and NICE, the link stress do not vary greatly with
different group size. However, unicast is not as scalable as
SHOMA and NICE, since its link stress keeps increasing when
group size grows.

Average path length in Transit-Stub topology As illus-
trated in Fig. 10, SHOMA trees show average path length that
is closer to the two best schemes unicast and CBT than NICE.
For instance, at group size 1000, SHOMA adds an additional
latency of 4.67 hops to the path length of CBT (10.65 hops) on
average, whereas NICE trees increase the latency by an aver-
age value of 11.07 hops.

Link stress distribution in AT&T topology We carry out
the same set of experiments on AT&T backbone topology, and
observe a similar trend as the Transit-Stub topology. As a fur-
ther step, we plot the cumulative distribution of stress and path
length in Fig. 11 and 12 when group size is 200. As shown in
Fig. 11 it is evident that SHOMA and NICE outperform uni-
cast in terms of link utilization efficiency, since the maximum

11

160

180

200

220

240

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 li

nk
s

Link stress

(Unicast truncated
Extends to stress = 199)

SHOMA
NICE

Unicast

Fig. 11. Stress distribution for 200 members in AT&T topology.

0

50

100

150

200

250

0 5 10 15 20

N
um

be
r

of
 m

em
be

rs

Path length (hops)

SHOMA
NICE

Unicast
IP Multicast

Fig. 12. Path length distribution for 200 members in AT&T topology.

link stress of these two schemes (i.e., 29 for SHOMA and 26
for NICE) is significantly smaller than that of unicast, which
is 199. In addition, SHOMA uses fewer number of links than
NICE, while its maximum link stress is comparable to that of
NICE. In SHOMA, 231 links out of 236 links in total has unit
stress, and only 9 links have stress higher than 5. In NICE, 174
links out of a total number of 241 links has unit stress, and 27
links have stress higher than 5.

Path length distribution in AT&T topology As for path
length distribution, Fig. 12 again confirms our earlier observa-
tion that the path lengths from a random source to each mem-
ber achieved by SHOMA is closer to shortest path length in
unicast scheme: 81.9% members have path lengths within 10
hops. On the other hand, in NICE, approximately half group
members use paths between 10 to 18 hops. We want to point
out that when the group size increases, the metric difference
between NICE and SHOMA is even more clearly observed,
and thus more benefits can be achieved by using SHOMA for
large groups.

D. Control Overhead

Recall that overlay multicast schemes (including SHOMA)
generally induce less control overhead than application layer
multicast schemes, since the control message exchange is re-
stricted within limited number of nodes. NICE, a represen-
tative application layer multicast scheme, uses a hierarchical
approach to organize group members into clusters, and the

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200

N
um

be
r

of
 c

on
tr

ol
 m

es
sa

ge
s

(x
10

00
00

)

Group size

SHOMA
NICE

Fig. 13. Control Overhead for single group in Transit-Stub topology.

control overhead of every member is bounded byO(klogN),
wherek is a parameter to determine cluster size, andN is the
total number of group members [6]. Hence, we conduct ex-
periments on the control overhead of SHOMA and NICE for a
single group when group size varies.

Furthermore, by applying aggregated multicast and forcing
multiple groups to share one aggregated tree inside MSON,
we expect SHOMA to reduce multicast tree setup and main-
tenance overhead significantly when there are a large num-
ber of co-existing groups. To examine the amount of benefits
achieved by using aggregated multicast, we compare the con-
trol overhead incurred by SHOMA with or without aggregated
multicast in presence of large number of groups.

Control overhead for single group in Transit-Stub topol-
ogy In this set of experiments, a set of end hosts join the mul-
ticast group during an interval of 400 seconds, and the multi-
cast session ends at 1000 seconds. Then we collect the total
number of control messages transmitted during 1000 simula-
tion seconds. Since control overhead is closely related to val-
ues of user-defined parameters in both schemes, we set the pa-
rameters in NICE as their default values in the released code
[2], and set the parameters in SHOMA correspondingly when-
ever possible. For example, the heartbeat period in NICE is set
to 10 seconds; in SHOMA, the refresh period inside MSON
and local clusters is also set to 10 seconds. We found out
that in NICE, the total number of control messages increases
very rapidly with group size, while in SHOMA, the increase is
much more steady. At group size 1000, SHOMA induces only
about one third the amount of the control messages produced
by NICE.

Control overhead for multiple groups in AT&T topology
To examine the effectiveness of aggregated multicast in reduc-
ing control overhead in presence of large number of simulta-
neously active groups, we compare two versions of SHOMA
(aggregation-enabled and aggregation-disabled) with respect
to the following two metrics: multicast tree setup overhead
and maintenance overhead. In SHOMA, the establishment and
tear-down of multicast trees are accomplished through the re-
lay of O-GRAFTandO-PRUNEmessages and multicast state
update at intermediate proxies, so we quantify the multicast
tree setup overhead by using the total number ofO-GRAFT

12

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
ul

tic
as

t t
re

e
se

tu
p

ov
er

he
ad

Average number of simultaneously active groups

no agg.
bth = 0
bth = 0.1
bth = 0.2

Fig. 14. Multicast tree setup overhead for multiple groups in AT&T topology.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
ul

tic
as

t t
re

e
m

ai
nt

en
an

ce
 o

ve
rh

ea
d

Average number of simultaneously active groups

no agg.
bth = 0
bth = 0.1
bth = 0.2

Fig. 15. Multicast tree maintenance overhead for multiple groups in AT&T
topology.

andO-PRUNEmessages. On the other hand, in each proxy,
the multicast state is maintained as “soft state” and needs to be
explicitly refreshed periodically. We collect the total number
of refresh messages transmitted as the amount of tree mainte-
nance overhead.

In the simulation experiments, we assume multicast group
requests arrive as a Poisson process with arrival rateλ, and
groups’s lifetime has an exponential distribution with mean
µ−1. At steady state, the average number of groups isN̄ =
λ/µ. We fix average group life time as 100 seconds, and
change the group arrival rate in order to get different number
of groups. We run the simulation for 1000 seconds, and col-
lect data after steady state is reached (after 400 seconds in our
scenario). Note that the group-tree matching algorithm pre-
sented in Section III-E controls the bandwidth waste in leaky
match with a thresholdbth, which we vary from 0 to 0.2 in the
simulations.

Fig. 14 and 15 plot the results for multicast tree setup and
maintenance overhead, respectively. In these figures, when
aggregated multicast is disabled, the overhead increases very
rapidly with the number of groups. On the contrary, the curves
for aggregated multicast trees are relatively flat, showing that
the number of multicast trees stabilize after the number of
groups reaches a certain value. We also observe that the more
multicast groups become active, the more communication cost
is reduced in both figures. Whenbth is raised from 0 to 0.2,

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
um

be
r

of
 m

ul
tic

as
t s

ta
te

 e
nt

rie
s

Average number of simultaneously active groups

no agg.
bth = 0
bth = 0.1
bth = 0.2

Fig. 16. Multicast state for multiple groups in AT&T topology.

the control overhead is further reduced, though at the cost of
higher bandwidth waste. This provides overlay ISPs with flexi-
bility of controlling the trade-off of bandwidth cost versus con-
trol overhead by setting appropriatebth.

E. Multicast State Scalability

To investigate the multicast state scalability of SHOMA, we
perform the same set of experiments for multiple groups in
AT&T topology as explained in previous section, and plot the
results for number of multicast forwarding state entries vs. the
average number of simultaneously active groups in Fig. 16.
This figure exhibit a similar trend as Fig. 14 and 15: more
reduction in multicast state when there are more concurrent
groups and more bandwidth is wasted. This figure demon-
strates that SHOMA is scalable to the number of co-existing
groups.

In conclusion, our observations through simulation experi-
ments can be summarized as follows: SHOMA creates mul-
ticast distribution trees with tree cost and average link stress
almost comparable to that of CBT; the data paths on SHOMA
trees have lower latency than those on NICE trees; the control
overhead of SHOMA is significantly less than NICE for large
groups; SHOMA keeps multicast tree setup and maintenance
overhead low in presence of large number of simultaneously
active groups.

VI. RELATED WORK

A. Application-layer Multicast

Recently application layer multicast has emerged as a new
architecture to apply multicast paradigm in the Internet. The
proposed schemes can be classified into two categories: struc-
tured [30] [37] [9], and unstructured [12] [6] [28] [26] [22].
Structured application layer multicast schemes leverage Dis-
tributed Hash Table (DHT)-based overlay networks and build
multicast forwarding trees on top of this structured overlay.
Here we concentrate on unstructured application layer multi-
cast schemes because they are more related to our work.

End System Multicast [12] [11] and Application Level Mul-
ticast Infrastructure (ALMI) [28] are targeted at applications
with small and sparse groups, such as audio and video con-

13

ferences. In End System Multicast, end hosts periodically ex-
change group membership information and routing informa-
tion, build a mesh based on end-to-end measurements, and run
a distributed distance vector protocol to construct a multicast
delivery tree. The authors also demonstrate the importance of
optimizing and adapting the overlay to application-specific re-
quirements such as latency and bandwidth. ALMI uses a cen-
tralized entity to collect membership information, periodically
calculate a minimum spanning tree based on the measurement
updates received from all members, and distribute this infor-
mation to group members.

NICE [6], on the other hand, is designed to support applica-
tions with very large receiver sets and relatively low bandwidth
requirements. It recursively arrange group members into a hi-
erarchical overlay topology, which implicitly defines a source-
specific tree for data delivery. It has been shown that NICE
scales to large groups in terms of control overhead and logical
hops.

Other application layer multicast protocols include TAG
[26] and Yoid [22]. TAG exploits the underlying network
topology when constructing application-layer multicast trees.
In Yoid, each member is responsible for discovering and se-
lecting a parent, and thus multicast trees are constructed with-
out underlying mesh.

B. Overlay Multicast

Overlay multicast networks provide multicast services
through a collection of strategically placed network proxies.
A number of architectures on this topic have been proposed.
Overcast [25] provides reliable single-source multicast by us-
ing a distributed protocol to build data distribution trees rooted
at a central source. This root is responsible for redirecting a
client’s HTTP requests to a Overcast node, from which the
client receives data using TCP connection. RMX [10] provides
reliable data delivery to heterogeneous end users by using a
set of RMX proxies that are organized into a spanning tree.
The end users are split into a number of locally-scoped mul-
ticast data groups of homogeneous members, each of which
contains a RMX proxy. Each RMX proxy communicates with
peer proxies using TCP and uses simple multicast congestion
control within its data group.

[32] [31] and [7] focus on optimizing the end-to-end de-
lay and access bandwidth usage at the Multicast Service
Nodes. Shi et al proposes a set of heuristic algorithms to
solve minimum-diameter degree-limited spanning tree prob-
lem and bounded-diameter residual-balanced spanning tree
problem [32] [31]. The authors of [7] formulate the problem as
minimum average-latency degree-bounded spanning tree prob-
lem and proposed an iterative distributed algorithm.

Our work is different from above application-layer and over-
lay multicast schemes. We have proposed a complete solution
for providing efficient multicast service, including a two-tier
architecture that scales to both the number of groups and group
size, and a feasible pricing scheme that provides incentives for
both overlay ISPs and end users to adopt this service model.

VII. C ONCLUSIONS ANDFUTURE WORK

We propose and develop an overlay multicast architecture
to support large scale multicast applications in an efficient and
scalable way. Our contribution could be summarized as fol-
lows:
• We adopt overlay multicast scheme in the MSON and appli-
cation layer multicast outside MSON to provide efficient re-
source utilization and reduced control overhead
• By applying aggregated multicast inside overlay network,
the control overhead for establishing and maintaining multicast
trees can be further reduced, and significantly less forwarding
state needs to be maintained at proxy nodes.
• We suggest a pricing scheme that is simple to use, and is able
to stimulate the ISPs and customers to deploy and purchase
related services.
• We show that our approach is very promising in a series of
simulation experiments. We can achieve scalability with re-
gard to group size and number of co-existing groups.

REFERENCES

[1] In Unpublished, available at http://www.cs.berkeley.edu/yatin/papers/.
[2] myns (P2P) simulator alpha release version 0.1.

http://www.cs.umd.edu/ suman/research/myns/index.html.
[3] The Network Simulator - NS-2. http://www.isi.edu/nsnam/ns/.
[4] AT&T IP Backbone, 2001. http://www.ipservices.att.com/backbone/.
[5] A. Ballardie. Core Based Trees (CBT version 2) multicast routing: pro-

tocol specification.IETF RFC 2189, September 1997.
[6] S. Banerjee, C. Kommareddy, and B. Bhattacharjee. Scalable application

layer multicast. InProceedings of ACM SIGCOMM, August 2002.
[7] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and S. Khuller.

Construction of an efficient overlay multicast infrastructure for real-time
applications. InProceedings of IEEE INFOCOM, April 2003.

[8] K. Calvert, E. Zegura, and S. Bhattacharjee. How to model and internet-
work. In Proceedings of IEEE INFOCOM, March 1996.

[9] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. Scribe: A
large-scale and decentralized application-level multicast infrastructure.
IEEE Journal on Selected Areas in Communications, 20(8):1489 – 1499,
October 2002.

[10] Y. Chawathe, S. McCanne, and E. A. Brewer. RMX: Reliable multicast
for heterogeneous networks. InProceedings of IEEE INFOCOM, March
2000.

[11] Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling conferencing
applications on the internet using an overlay multicast architecture. In
Proceedings of ACM SIGCOMM, August 2001.

[12] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system multicast.
In Proceedings of ACM Sigmetrics, June 2000.

[13] J. Chuang and M. Sibru. Pricing multicast communications: A cost-
based approach.Proceedings of the Internet Society INET’98 Confer-
ence, July 1998.

[14] L. H. M. Costa, S. Fdida, and O. C.M. Duarte. Hop-by-hop multicast
routing protocol. InProceedings of ACM SIGCOMM, August 2001.

[15] J.-H. Cui, J. Kim, A. Fei, M. Faloutsos, and M. Gerla. Scalable QoS
multicast provisioning in Diff-Serv-supported MPLS networks. InPro-
ceedings of IEEE GLOBECOM, November 2002.

[16] J.-H. Cui, L. Lao, D. Maggiorini, and M. Gerla. BEAM: A distributed
aggregated multicast protocol using bi-directional trees. InProceedings
of IEEE ICC, May 2003.

[17] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu, and L. Wei. The
PIM architecture for wide-area multicast routing.IEEE/ACM Transac-
tions on Networking, April 1996.

[18] Stephen Deering. Multicast routing in a datagram internetwork.Ph.D
thesis, December 1991.

[19] S. Fahmy and M. Kwon. Characterizing overlay multicast networks. In
Proceedings of IEEE ICNP, November 2003.

[20] A. Fei, J.-H. Cui, M. Gerla, and D. Cavendish. A ”dual-tree” scheme for
fault-tolerant multicast. InProceedings of IEEE ICC, June 2001.

14

[21] Aiguo Fei, Jun-Hong Cui, Mario Gerla, and Michalis Faloutsos. Aggre-
gated Multicast: an approach to reduce multicast state.Proceedings of
Sixth Global Internet Symposium(GI2001), November 2001.

[22] P. Francis.Yoid: Extending the Multicast Internet Architecture. White
papar, http://www.aciri.org/yoid/.

[23] S. Herzog, S. Shenker, and D. Estrin. Sharing the “cost” of multicast
trees: An axiomatic analysis. InProceedings of ACM SIGCOMM, Au-
gust 1995.

[24] Hugh Holbrook and Brad Cain. Source-Specific Multicast for IP.Inter-
net draft: draft-holbrook-ssm-arch-03.txt, November 2001.

[25] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and
J. W. O’Toole Jr. Overcast: Reliable multicasting with an overlay net-
work. In Proceedings of USENIX Symposium on Operating Systems De-
sign and Implementation, October 2000.

[26] M. Kwon and S. Fahmy. Topology aware overlay networks for group
communication. InProceedings of NOSSDAV’02, May 2002.

[27] M. Medard, S. Finn, R. Barry, and R. Gallager. Redundant trees for
preplanned recovery in arbitrary vertex-redundant or edge-redundant
graphs. IEEE/ACM Transactions on Networking, 7(5):641–652, Octo-
ber 1999.

[28] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI: An appli-
cation level multicast infrastructure. InProceedings of the 3rd USNIX
Symposium on Internet Technologies and Systems, March 2001.

[29] P. I. Radoslavov, D. Estrin, and R. Govindan. Exploiting the bandwidth-
memory tradeoff in multicast state aggregation. Technical report, USC
Dept. of CS Technical Report 99-697 (Second Revision), July 1999.

[30] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level
multicast using content-addressable networks. InProceedings of NGC,
November 2001.

[31] S. Shi and J. S. Turner. Routing in overlay multicast networks. InPro-
ceedings of IEEE INFOCOM, June 2002.

[32] S. Shi, J. S. Turner, and M. Waldvogel. Dimensioing server access
bandwidth and multicast routing in overlay networks. InProceedings
of NOSSDAV’01, June 2001.

[33] I. Stoica, T.S. Ng, and H. Zhang. REUNITE: A recursive unicast ap-
proach to multicast. InProceedings of IEEE INFOCOM’00, Tel Aviv,
Israel, March 2000.

[34] D. Thaler and M. Handley. On the aggregatability of multicast forward-
ing state.Proceedings of IEEE INFOCOM, March 2000.

[35] J. Tian and G. Neufeld. Forwarding state reduction for sparse mode mul-
ticast communications.Proceedings of IEEE INFOCOM, March 1998.

[36] Z. Wang and J. Crowcroft. Bandwidth-delay based routing algorithms.
In Proceedings of IEEE GLOBECOM, November 1995.

[37] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatow-
icz. Bayeux: An architecture for scalable and fault-tolerant wide-area
data dissemination. InProceedings of NOSSDAV’01, June 2001.

