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Abstract

Reliable multicast is a critical network service for key applications in mobile
ad hoc networks (MANETs). Multimedia applications and data transfer ap-
plications have different QoS demands: delay-bounded delivery and 100% data
delivery guarantee. In the paper, we present two reliable multicast protocols to
meet these demands: Collaborative Opportunistic Recovery Algorithm (CORA)
and Collaborative Assured Recovery Algorithm (CARA). CORA seeks to im-
prove delivery ratio with bounded delay and minimal communication overhead.
CARA is an extension of CORA designed for applications that require 100%
delivery guarantee.

CORA uses Packet-Based Distance Vector (PBDV) scheme to provide local
packet recovery service. The function of PBDV is to minimize communication
overhead and packet recovery latency while maximizing packet delivery ratio.
In addition, NACK aggregation and multicast congestion control techniques
are integrated into CORA to address “NACK implosion” and data forwarding
congestion problems respectively.

CARA extends CORA with the digital fountain concept, achieving strong
reliability even in the presence of mobility and heavy channel errors.

We demonstrate the effectiveness of CORA and CARA through comprehen-
sive simulation studies.
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0.1 Introduction

Multicast communication is an efficient means to support key applications of
mobile ad hoc networks (MANET) such as teleconferencing and data dissemina-
tion. These applications require both high data reliability and timeliness guar-
antees even in the presence of mobility, random link error, and frequent outages.
Characteristics of MANET such as limited resources, dynamic topology, vulner-
ability to network congestion, challenge a reliable multicast protocol. Thus, it
is extremely arduous to develop a reliable protocol which achieves both deter-
ministic reliability and bounded-delay guarantee. In general, only the second
condition–bounded delay–is strictly demanded in most multicast applications.
For instance, multimedia (e.g., audio or video) multicasting applications favor
bounded latency over high reliability (say 100% packet delivery ratio). Clearly
better delivery ratio is critical to improve quality of service (QoS). Neverthe-
less, the extra cost required for acquiring more data by loss recovery should be
minimized, and it is imperative that lost packets be recovered within bounded
latency. In contrast, data transmission applications such as Wb (distributed
whiteboard tool) [9] and battlefield data dissemination (e.g., multicast trans-
mission of situation awareness and commands from the command post to squad
leaders) need deterministic reliability. In fact, in those applications, strict la-
tency and overhead are less important than 100% delivery ratio. Therefore, a
reliable multicast protocol should be designed with consideration of the appli-
cations’ demands.

In the paper, we consider two categories of reliability: (1) best-effort, op-
portunistic reliability and (2) strong reliability, and accordingly present two
MANET reliable multicast protocols: Collaborative Opportunistic Recovery
Algorithm (CORA) and Collaborative Assured Recovery Algorithm (CARA).

The main goal of CORA is to minimize recovery overhead and maximize
reliability within bounded latency. To achieve this goal we pursue three di-
rections: (1) recover needed data within minimal distance; (2) reduce number
of packet loss; and (3) minimize control overheads caused by loss recovery so
that impact on regular data delivery is minimized. Accordingly, CORA ad-
dresses these challenges by employing (1) a localized recovery with the aid of
neighbor nodes; (2) a congestion control scheme to reduce the probability of
loss; and (3) a combination of promiscuous listening, NACK-piggyback, and
NACK-aggregation to reduce control overheads. A unique feature of CORA is
Packet-Based Distance Vector (PBDV) routing, which permits to rapidly locate
copies of the missing packet while providing several other assistant features in
local recovery and NACK. Each node maintains an opportunistic PBDV routing
table for each multicast group.

Next, CARA is proposed to guarantee strong reliability. CARA builds on
CORA. It is a source-centric recovery procedure employing digital fountain ap-
proach [4]. The digital fountain approach allows flexibility at each receiver in
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that original source data can be reconstructed from any disjoint subset of a
threshold size of the encoding symbols1. Thus, digital fountain approach is ro-
bust against temporary network disconnections, high mobility, random errors,
and intermittent attacks.

The main contributions of CORA and CARA are: (1) efficient, low latency,
scalable local recovery scheme based on PBDV; (2) ECN based end-to-end con-
gestion control that accounts for virtual neigbhorhood congestion and can dis-
criminate between congestion and random loss; (3) the effective application of
the digital fountain approach to highly mobile, lossy scenarios.

The rest of the paper is organized as follows. Section 0.2 describes CORA/CARA’s
conformity and comparison with reliable multicast protocols in both IP and
MANET area. Detail protocol description follows in Section 0.3 and simulation
study in Section 0.4. Finally Section 0.5 concludes the paper.

0.2 Comparison with related work

We may categorize existing reliable multicast protocols into three classes: (1)
a source-oriented reliable multicast; (2) a receiver-oriented approach; and (3) a
cooperative router approach.

First, in a source oriented reliable multicast, a source is responsible to guar-
antee the reliability using techniques such as digital fountain [4] and reliable
broadcast [23]. In the digital fountain approach, using a smart FEC coding
scheme, the source node takes the burden of data reliability control. Reliable
broadcast addresses the problem of reliable atomic delivery (all-or-nothing) of
messages. This protocol provides a reliable multicast by performing two phases:
scattering and gathering. In scattering phase, a source propagates the data to
all members and all ACKs are collected to the source in gathering phase. This
approach suffers from potential ACK implosion.

The second class—receiver oriented—includes most of the reliable proto-
cols such as SRM (Scalable Reliable Multicast) [9], Anonymous Gossip (AG)
[6], Route-Driven Gossip (RDG) [17], Reliable Adaptive Lightweight Multicast
(RALM) [36] and Multicast Dissemination Protocol (MDP) [18]. In this ap-
proach, each receiver cooperates with other receivers and with the source to
recover lost packets. This approach can be further categorized, based on whom
the “recovery” NACK is sent, into multicast-NACK approach: a NACK is sent
to the entire group (e.g., SRM), unicast-NACK approach: a NACK is sent to
the source node (e.g., RALM) and GOSSIP-based protocol: a NACK is sent to
another member (e.g., AG, RDG).

Lastly, a cooperative router approach could be hop-to-hop reliable multicast
protocols such as Pump Slowly Fetch Fast (PSFQ) [37] and Reliable Multi Seg-

1Symbol in coding theory is a block of data to represent coding alphabet, e.g., of the size
several bits or several bytes. A data packet may be comprised of multiple symbols. We use
the term “symbol” whenever coding theory is involved.
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ment Transport (RMST) [33] and NACK aggregation technique [32] where each
intermediate router smartly aggregates duplicate NACKs. Hop-to-hop reliable
multicast guarantees the reliable multicast data transmission at each forward-
ing node by using forward-and-send mechanism. A forward node sends a data
packet if it is delivered in sequence. Otherwise, it tries to recover the lost pack-
ets before sending a new packet to next hop node. This approach can reduce
the recovery overhead and latency, however, it does not work well in a dynamic
network with node mobility.

The brief descriptions of protocols follow.

Digital fountain approach [4] is a source-centric reliable multicast using a
smart FEC (Forward Error Correction) coding scheme. The ideal semantics of
digital fountain is threshold based and set oriented, that is, the original source
symbols can be reconstructed intact from any subset of the encoded symbols,
as long as the size of the subset is bigger than or equal to the size of the original
data. This way, any recipient can dynamically join a multicast session nearly at
any time. Digital fountain approach can be very effective in MANET environ-
ment. Fragile links and frequent outages may temporarily disconnect a multicast
receiver from the source. Once a receiver recovers the path (i.e., re-join), it can
receive the rest of the encoded data. However, digital fountain users pay the
price of extra encoding/decoding latency and of huge buffer requirements at the
receivers. Thus, the approach is not appropriate for multimedia applications.

Reliable multicast protocols developed in IP multicast include SRM [9][8]
and RMTP [24][13]. Those protocols address the issue how to handle poten-
tial “NACK/ACK” implosion problem. In SRM, each member, which detects a
packet loss, multicasts a NACK to the entire multicast group. Before sending a
NACK, to prevent NACK implosion, each receiver waits for a random NACK
timer to suppress the duplicate NACKs. RMTP handles ACK-implosion prob-
lem by providing a multi-level ACK tree. In RMTP, members are grouped into
a several local groups with a Designated Receiver (DR) in each region. An
ACK from a receiver will be forwarded along the multi-level ACK tree. Each
DR aggregates ACKs from its members in the region and forwards them to its
higher-level DR.

MDP (Multicast Dissemination Protocol) [18] supports reliable and conges-
tion controlled multicast transmission. It mainly targets a reliable bulk data
transmission in a network with high loss rate and heterogeneous conditions.
MDP also uses FEC coding scheme (e.g., Reed-solomon code) to endure high
loss rate effectively. Besides, MDP proposes a rate-based congestion control
which extends TCP-like scheme to multicasting.

These IP reliable multicast protocols assume the construction of a fixed mul-
ticast tree by the underlying IP multicast protocol. In MANET, routes change
frequently leading to prohibitively high tree maintenance costs. Therefore the
methods used by these Internet protocols are not practical in MANET.



UCLA #TR040005 4

RALM (Reliable Adaptive Lightweight Multicast) protocol [36] is another
receiver-oriented recovery mechanism developed for MANET reliable multicast.
RALM favors reliability over throughput. RALM works in two phases: (1) free-
wheeling where a sender sends out data packets with the input sending rate from
the application and (2) congestion control phase where the sender retransmits
the lost packets using a NACK/ACK scheme. When a node detects the packet
loss(es), it transmits a NACK. Once the source receives the NACKs, it restores
the lost packets to each requester (a source picks up one requester at a time
in a round-robin fashion for the recovery) and verifies recovery from the ACK
issued by each requester. RALM suffers from potential NACK implosion and
extremely low throughput with large group and network size. Thus, it has the
limitation of scalability.

Lastly, gossip-based multicast protocols [3] feature smart members and scal-
ability. Recently, Anonymous Gossip [6] and Route Driven Gossip [17] were pro-
posed to improve best-effort reliability for MANET multicast protocols. Those
ideas extend and apply the gossip approach [3] to be fitted in wireless ad hoc
networks. The basic idea of the gossip approach is to transmit a recovery request
for the lost packets to an arbitrary member, instead of the source. Because of
the dynamic MANET topology, it is hard for each member to acquire/maintain
total routing information to all members in the multicast group. Thus, an effi-
cient algorithm is necessary to find a proper target member to send a query with
low cost. In anonymous gossip[6], a receiver starts recovery of the lost packets
by sending gossip requests to other randomly chosen multicast members. To
learn routes to other members, AG slightly modifies the underlying multicast
protocol. This modification requires extra overhead. In contrast, route-driven
gossip [17] exploits the underlying unicast routing table to select members (gos-
sipers) for the recovery request. A receiver sends a gossip request to (possibly
multiple) member(s) chosen in its Active View. Each node’s Active View in-
cludes the members where the routes (by unicast routing) to those members are
known to this node. Thus, it reduces the overhead and improves the efficiency
over AG. AG and RDG achieve scalability by distributing recovery overhead
to the entire multicast group instead of centralizing at the sender. However,
those protocols have two weaknesses: (1) no guarantee of strong reliability and
(2) unbounded recovery latency (it may take quite a few trials to find the node
which has a copy of the lost packet).

The CORA/CARA architecture differs from above reliable multicast schemes
because of the smart source/forwarder/recipient design choice. We observe that
Internet reliable multicast schemes do not rely on the smart forwarder approach
mainly due to “the end-to-end argument” [29]. However, Internet schemes can
rely on fixed multicast tree and other means available in wired networks. In
contrast, MANETs are highly dynamic. The self-organizing nature of MANETs
requires that all participants pay a reasonable price to help each other to provide
network services in the presence of mobility and channel errors.

According to measurements on various portable computing devices [34][7][30],
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the wireless interface incurs non-trivial communication overheads in terms of en-
ergy consumption. In particular for the awake mode of 802.11 interfaces, power
consumed in the transmit state for transmissions over me-dium/large distances
is significantly higher than the one consumed in the receive state or the idle state.
On the other hand, nowadays mobile devices, even low-end pocket devices, nor-
mally have megabytes of memory installed. As shown in several system-level
measurements [14], memory access only consumes a small portion of power—
many off-the-shelf low-power memory systems consume less than 1mW power
while wireless interfaces consume hundreds of mW . Based on this observation,
CORA/CARA implement not only smart receivers and smart sources as previ-
ous reliable multicast protocols did, but also smart forwarders and thus trade
communications for memory.

The smart forwarders in CORA/CARA play two important roles: (1) De-
pending on memory availability, they cache packets recently forwarded. The
caching incurs no extra communication overhead. Now that the smart source,
forwarders, and recipients constitute a connected subnet inside the MANET, it
is feasible to run an efficient Distance Vector scheme on the subnet, to track the
cached packets, so that recipients can efficiently recover lost packets before the
deadline. (2) To improve upon end-to-end congestion control, we implements
explicit congestion detection and notification at the smart forwarders.

0.3 Protocol Design

0.3.1 Design assumptions

The basic idea of CORA’s loss recovery is to recover a packet from the nearest
point that has cached the needed packet. While the lost packet can be recov-
ered from the source, sending a NACK to a source will cause potential NACK
implosion. Thus, local recovery and NACK aggregation are essential to proto-
col scalability. Similar to a NACK aggregation techniques used in IP multicast
router assistance design [32][12], each intermediate forwarder in CORA, i.e.,
each router on the path back to source aggregates NACK messages. We assume
that either the underlying multicast protocol provides shortest paths to source
as part of a source tree (e.g., ODMRP and MAODV) or it is possible to slightly
modify the underlying protocol (e.g., MCEDAR [31] and CAMP [19] to acquire
such a tree.

CORA also assumes that a multicast data packet can be distinguished by
a unique identifier, 〈group address, source address, sequence number〉). The
sequence number field is increased by 1 at the sender for each new packet. All
nodes cache forwarded (or received for a leaf member) multicast packets dur-
ing the last Tmax seconds (where Tmax is approximately the round trip time
along the network diameter). This implies that both group members and non-
member forwarders are required to cache received packets. Then a packet can
be recovered from a node’s local cache if this node participated in the underlying
unreliable multicast within Tmax time.
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Furthermore, every node in the network maintains a Packet-Based Distance
Vector (PBDV) routing table to register lost data packets in table entries. Unlike
data packets, PBDV table entries are compact and consume small amount of
space (< 20 bytes per entry). Therefore, a CORA node tries to maintain a
PBDV table for a multicast group even if the node is neither a member nor
a forwarder of the group. Each entry contains simple DV route information
to reach the nearest node that has cached the packet. Then each node makes
available its own PBDV table to help other nodes to recover their loss packets
within minimal distance.

PBDV does not use proactive or explicit messages thus avoiding extra com-
munication overheads. Rather, PBDV routing information is obtained reactively
and opportunistically. CORA nodes extensively exploit NACK piggyback and
wireless promiscuous listening to acquire PBDV routing information: (1) By
(over-)hearing a data packet, a node knows the packet sender has the packet. (2)
Nodes can piggyback their own PBDV metrics in control messages like NACK.
Other nodes overhearing these control messages can compute appropriate PBDV
metrics. The piggyback communication overhead is tractable and small because
each PBDV metric consumes tiny space (8-bit hop count in our simulation).

0.3.2 CORA recovery overview

CORA works in two phases: multicast forwarding and loss recovery. In first
phase, the source sends data packets using the underlying unreliable multicast
protocol, with the sending rate adjusted by congestion control as later discussed
in this section. Upon detecting packet loss, a multicast group member initiates
loss recovery process which runs in background.

On each member, the recovery process includes four sequential steps:

1. PBDV recovery : If the lost packet sequence number has a valid entry in
PBDV, the member initiates explicit request to the neighbor pointed in
the PBDV entry. The retrieval may require a few hops as directed by
PBDV.

2. Local recovery : For lost packets with invalid PBDV entries (i.e., PBDV
metric for that packet is ∞), the member tries to recover the missing
packets from one-hop neighbors. This is implemented by an efficient
NACK/REPLY handshake: the member issues a short NACK with broad-
cast network address, and any neighbor sends back a short reply (after a
random backoff to prevent collisions) if it has cached some of the lost pack-
ets or knows where they are. PBDV update metrics are piggybacked in
both NACK-broadcast and replies. Thus nodes within two hops away of
the requester can update their PBDV table accordingly. For cached pack-
ets on one-hop neighbors, CORA chooses not to send back these (long)
data packets immediately to the requester. Instead, short replies are sent
back to notify the requester about the cached packets. This design choice
will be justified later in this section.
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Figure 1: A sample scenario

3. PBDV retry : PBDV recovery is performed again if there is any reply
during local recovery step. There is no “second chance” (of local recovery)
for packets not recoverable from this retry.

4. Source recovery : For the remaining missing packets, the member sends a
NACK unicast to its upstream node toward the source until all the lost
packets are recovered or the application delay bound expires.

Example 1 Fig. 1 illustrates an example of CORA recovery process for a single
multicast group. In the figure S is the source node, {B, G, H, I} are members
of the group, {A,E, F} are forwarding nodes or forwarders in the underlying
multicast protocol, and C is neither a member nor a forwarder. Two nodes
within each other’s transmission range are connected by a solid link if the link
is in underlying multicast tree, or by a dotted link otherwise.

The source S sends packets with sequence numbers from 1 to 4. The under-
lying multicast protocol delivers them to members; some packets are lost. The
bracket beside a forwarder or a member represents the set of cached packets.
The curly bracket next to node C represents its most recent PBDV table, i.e.,
packets 1 and 4 are 1 hop away in the direction of H, packet 3 is 1 hop away in
the direction of E. We now briefly describe CORA recovery process on members
H and G. Fig. 1 depicts the moment right before H starts recovery.

1. H detects that packet 2 and 3 are lost. This time H’s PBDV recovery
returns no result. Later we will see other nodes, such as G, can take
advantage of PBDV recovery.

2. H initiates its local recovery process. H locally broadcasts a NACK to its
neighbor nodes. In the NACK H piggybacks its PBDV metrics, that is,
0 for packet 1 and 4, ∞ for packet 2 and 3. All local nodes update their
PBDV metrics for packet 2 and 3 upon hearing this NACK—there is no
PBDV change on node C and E, but G takes note that packet 1 is one
hop away in the direction of H.

3. Since E can recover packet 3 from its cache and C knows packet 3 is one
hop away in the direction of E, both E and C send back a short REPLY to



UCLA #TR040005 8

H. Choosing the best metric (1 for E < 2 for C), H now knows packet 3 is
one hop away from E. H then unicasts an explicit REQUEST to recover
packet 3 from E (it doesn’t matter whether E is H’s upstream node or
not).

Obviously one NACK-broadcast may incur multiple replies. As a result,
RTS/CTS based CSMA/CA cannot be used. Therefore, in CSMA both
NACK and its replies must be short messages so that there is no significant
performance degradation due to hidden terminals.

4. All nodes within two-hop range of H also update their PBDV metrics upon
hearing the replies. There is no PBDV change on node A, but B and F
know packet 4 is one hop away from E, G knows packet 3 is two hops
away in the direction of C.

5. H is still missing packet 2; it thus enters the source recovery step. This
results in a NACK-unicast to its upstream node E. E cannot recover
2 and then sends a NACK-unicast to its upstream node A. The same
story repeats and finally S receives the NACK-unicast. The source then
retransmits packet 2 for H.

6. It is important to note that multiple members may start source recovery
at same time to request the same packet. This situation is likely caused by
early packet loss near the source. Therefore, source S should not unicast
the lost packet back to each requesting member. CORA solves this problem
by exploiting wireless broadcast and a “breadcrumb” (BC) navigation bit—
each NACK-unicast forwarder sets the BC bit to 1, then resets it to 0 when
the coming back data packet is forwarded upon a set BC bit. This way,
minimal transmission is used while all requesting members can receive the
data packet from the source.

In this example, both E and A set their BC bits (for packet 2) during
NACK-unicast forwarding. When packet 2 comes back from source S,
both A and E will cache it and locally re-broadcast it, then reset their BC
bits to 0.

7. H recovers packet 2 and its CORA recovery process ends if no further
packet loss is detected.

8. Now G starts loss recovery. Its PBDV table knows that packet 1 is one hop
away from H and packet 3 is two hops away in the direction of C. Using
PBDV recovery G sends out explicit REQUESTs to H and E, respectively.
The same “breadcrumb” navigation technique is also used for each multi-
hop request because there may be multiple distributed members requesting
the same lost packet in the neighborhood.

9. G enters local recovery process and issues a NACK-broadcast to recover
packet 2. By H and C’s REPLY (C knows packet 2 is one-hop away from
H when E rebroadcasts it in H’s source recovery phase), all nodes within
two-hop range of G update their PBDV metrics.
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10. Finally G sends an explicit REQUEST to H and recovers packet 2.

0.3.3 CORA packet type

As seen in the above example, CORA implements five different packet types:

1. DATA: DATA packets deliver application data. In CORA, each data
packet is identified by

〈G,S, seqNo〉,
where G is multicast group address, S is data source address, and seqNo
is data packet sequence number. We use 〈S, seqNo〉 as packet ID in each
multicast group.

2. NACK: A member sends a NACK control message to complain lost data
packets and meanwhile to advertise its PBDV metrics. The member can
send a NACK-broadcast using a broadcast address, or a NACK-unicast
using a node’s address. NACK-broadcast is used in local recovery and
NACK-unicast is used in source recovery. In either case the NACK trans-
mission is heard by all neighbors due to the wireless broadcast medium.

3. REPLY: Upon receiving a NACK-broadcast, a node sends back a REPLY
control message if (1) the node has cached some of the lost data packets,
or (2) the node can locate some of the lost packets in its local PBDV
routing table.

4. REQUEST: This packet is used to request data packet “retransmission”
to a node which has the packet. When a member can locate some lost
packets using its PBDV entries, it unicasts REQUEST packets to the
corresponding next-stops. If several lost packets have the same next-stop
(next hop) in the PBDV routing table, the member aggregates multiple
requests into a single REQUEST packet for each next-stop.

5. REJECT: When a CORA node cannot forward REQUEST packet due to
invalid PBDV entry, it optionally sends back a REJECT message to flush
the related PBDV routing tables.

More details of each packet will be explained and discussed in following protocol
details.

Note that a CORA node does not aggregate multiple NACKs for different
sources or groups, i.e., the recovery process is separately performed for each
source and group. Thus the extension of recovery process to multiple group
and sources is straightforward. For sake of simplicity, we explain the recovery
process of packets from a single source S in a multicast group G. Pkt(k) refers
a source packet with sequence number k from now on.
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0.3.4 PBDV table maintenance

Each node maintains a PBDV routing table for each multicast group. Each
PBDV table has the format:

packetID = (S, seqNo) nextStop D Ts BC
32-bit 32-bit 32-bit 8-bit 32-bit 1-bit

where packetID is the key column identifying each lost packet; nextStop is the
best-known next stop’s address to reach the destination which caches the data
packet identified by packetID; D is distance metric in distance vector schemes
(hop count in our simulation); Ts is timestamp, so that an entry is recycled after
timeout Tmax; and BC (“bread crumb” bit) indicates that the current node is
on the recovery forwarding path of the missing packet, thus upon receiving the
needed packet the node should rebroadcast it to its neighbors. Using BC flag,
each node forwards only once the REQUEST or NACK for a packet. When
the BC bit for a packet is set, a node needs not to forward duplicate NACKs
or REQUESTs for the packet. Also by this implicit aggregation mechanism,
when the needed data packet comes back, the forwarder uses wireless broadcast
rather than multiple unicasts to serve multiple members waiting for the same
lost data packet.

Like other distance vector schemes, in the PBDV table each node only keeps
track of the best next-stop and minimal distance to the target destination which
caches the packet. Unlike those destination-based distance vector schemes,
PBDV is packet-based, hence the address of the (remote) destination is not
needed in PBDV.

Distance vector advertisement in PBDV is exchanged via piggybacking on
NACK packets (and REPLY packets if there is any). The packet format of a
NACK or REPLY packet is:

TY PE G S ECN SND RCV seqNo [DV ]
4-bit 32-bit 32-bit 1-bit 32-bit 32-bit 32-bit N-unit

where TY PE is the packet type, NACK or REPLY; G is the multicast group
address; S is the source address of the application session; ECN is the explicit
congestion notification flag (used for congestion control described later); SND is
the packet sender’s address; RCV is the packet receiver’s address, e.g., a broad-
cast address in a NACK-broadcast or the multicast upstream node toward the
source in a NACK-unicast; seqNo is the data sequence number of the first lost
packet; and [DV ] is a fixed field for piggybacking distance vector advertisement
(currently in our simulation N = 32 units/packets and 8-bit per unit/packet).
In the [DV ] field, the i-th unit [DV (i)] is the distance metric about packet ID
〈S, seqNo + i〉 copied from the sender’s PBDV table. If no route is known to
the sender about packet ID 〈S, seqNo + i〉, then the i-th unit [DV (i)] is set to
∞.

In details, a node A updates its PBDV table upon receiving or overhearing
a DATA, a NACK, or REPLY packet from node B as follows:
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• Upon forwarding a data packet of seqNo, the node A caches the packet,
then creates or updates the entry

〈(S, seqNo), A, 0, current time, 0〉.

• Upon overhearing a data packet of seqNo not in local cache, A creates or
updates

〈(S, seqNo), B, 1, current time, 0〉.

• Upon receiving or overhearing a NACK or REPLY with seqNo, A updates
its PBDV table iterating on the embedded [DV ] list. Note that [DV (i)]
affects A’s PBDV table entry identified by 〈S, seqNo + i〉.

1. If a NACK-unicast packet’s RCV = A, i.e., A is the NACK’s des-
ignated forwarder, then A creates an entry for each missing packet
[DV (i)]

〈(S, seqNo + i), NULL,∞, 0, 1〉,
with the BC flag set to 1.

2. Otherwise, if [DV (i)] is less than ∞ (i.e., not an invalid entry), and
([DV (i)] + 1) is less than the current distance D registered in the
corresponding PBDV table entry, then A updates the entry with B’s
address, the new distance metric, and current time.

0.3.5 CORA packet recovery

Upon detecting packet losses, a member first uses PBDV table to locate packets.
If still there is a packet loss (i.e., PBDV routing does not cover all losses), it
issues an NACK to recover the loss. In MANET, the probability of packet loss
is not negligible and thus a NACK for every single loss may cause excessive
NACK implosions as well. To avoid this impact, a NACK can be deferred, for
example, Pkt(k) is NACKed only when k≤seqNonew −N (where seqNonew is
the newest sequence number received from S and N is currently 32 defined in
[DV ] field). And further, we can limit the frequency of issuing NACK, say, a
member should wait Tnack after previous NACK before issuing another NACK if
the previous recovery process is still on-going. In addition, NACK transmissions
are implemented with random backoff to avoid collision. We describe more
details about each recovery category below.

PBDV recovery

A member sends a unicast REQUEST message for Pkt(k) if the entry for Pkt(k)
is found in its PBDV. For each REQUEST forwarder selected by distance vec-
tor routing, if for some reason the forwarder has recently cached the needed
packet Pkt(k), it directly sends back the data packet without further forward-
ing REQUEST. If the forwarder cannot forward the REQUEST because the
route is removed from its PBDV due to timeout Tmax, or because the network
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is partitioned, it optionally sends a REJECT message to the original requester.
Otherwise, it forwards the REQUEST and sets BC = 1 in its PBDV table entry
for Pkt(k).

After sending/forwarding a REQUEST, the sender/forwarder waits for the
needed data packet using a timeout Tpbdv (set to 0.5 second in our simulation). If
the needed data packet is not received within the timeout or a REJECT message
is received, the sender/forwarder removes the route entry from its PBDV table
and/or resets BC bit to 0.

Each node invalidates an PBDV entry if the item is not updated for a timeout
Tmax by checking Ts field.

Local recovery

In local recovery, a member A broadcasts a NACK to neighbor nodes with
RCV field set to broadcast address. After broadcasting a NACK, it sets Tlocal

timer (set to 0.3 second in our simulation) to wait for replies from its one-
hop neighbors. A neighbor node knowing route information or caching some
of the lost packets sends a REPLY to A. As we described previously, the
REPLY packet includes a [DV ] vector for packets identified by sequence number
[seqNo, seqNo + N ] where seqNo is copied from the NACK message and N is
a pre-defined system parameter (32 in our simulation).

Similar to CSMA/CA RTS/CTS handshake’s coverage area, which includes
both RTS sender’s neighborhood and CTS replier’s neighborhood, a NACK-
broadcast and its multiple REPLY messages cover two hops away from the
requester A. Therefore, some two-hop neighbors of the requester A can obtain
PBDV routing information for all packets within the range [seqNo..seqNo+N ].
This design is efficient due to two reasons. (1) Like RTS/CTS handshake in
CSMA/CA, NACK-broadcast/REPLY handshake uses short packets in wireless
transmissions. The communication overhead of such PBDV exchange is the N∗8
bits [DV ] list, which is negligible for a reasonable N value. Because one NACK
can be heard by multiple local nodes, there are potentially multiple replies. As
CSMA/CA cannot be used in the one-NACK-many-REPLIES handshake, two
replies are vulnerable to CSMA hidden-terminal problem if the transmissions
(e.g., data transmission) are long. In contrast, it is well-known that CSMA is
much more efficient when multiple short transmissions are competing the chan-
nel. Therefore, even though some one-hop neighbors can recover some needed
packets from their caches, CORA chooses to send back short REPLY control
packets rather than longer data packets. (2) With reasonable network density
and number of members, there are more intermediate forwarders and members
by two hops away. Since receivers often exhibit heterogeneous packet receptions,
the two-hop neighbors likely have more packets needed by the requester A.

Whenever a node overhear a NACK or an REPLY, its PBDV table is updated
accordingly. For the requester A, after Tlocal timer expires it should re-process
data cache recovery and PBDV recovery again to prevent unnecessary NACK. If
all packets are recovered, the recovery process ends. Otherwise, Source recovery
is invoked.
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Source recovery

If local recovery fails, a NACK will be sent to the previous hop toward the source
following the source-based multicast structure built by the underlying multicast
protocol. After sending an NACK, each receiver sets a timer Tsource ∗ Tbackoff .
After each timeout, it retries the source recovery procedure and doubles the
backoff time Tbackoff . After a few retrials, a receiver gives up the recovery and
sends the data to the application layer. We use very small number of retrials
(e.g., 2) to keep the recovery overhead low.

As we described in PBDV table maintenance, the upstream node updates its
PBDV table upon receiving the source-oriented NACK. If the i-th unit in the
NACK is unknown ([DV (i)] = ∞), then the upstream node inserts a new entry
〈(S, seqNo + i), NULL,∞, 0, 1〉 with BC set to 1. If the upstream node can
recover some packets in its data cache, it treats these packets as recovered and
acts like the source by broadcasting these packets. The neighbor nodes, following
“BC” bit, will forward the packets by rebroadcasting them until the needed
packets reach the requesters. If all packets are recovered at the node, then this
node stops forwarding the NACK to the source. Otherwise, the node updates
the SND, RCV , and [DV ] fields in NACK based on its PBDV table, then
forwards the NACK to its upstream node again. By this mechanism, duplicate
NACKs can be discarded, that is, if the local BC bits for all lost packets in a
NACK is set to 1, then the NACK will be discarded. This forwarding procedure
is repeated until the source receives the NACK. Upon receiving a NACK, the
source locally broadcasts the lost data packets, and the neighbor node with
BC = 1 will rebroadcasts the data packets until these packets reach the member
requesters.

Discussions

Why use distance vector scheme in packet-based routing? In CORA,
PBDV routing tables are obtained opportunistically. Instead of actively trans-
mitting explicit extra route packets, CORA reactively exploits on-going NACK
and REPLY messages to maintain PBDV tables.

A distance vector scheme is consistent to this design choice because it incurs
minimal communication overhead in packet-based routing. A distance vector
scheme is by its nature a localized protocol—a node only needs to know its best
one-hop neighbor in data forwarding. In most other DV schemes, routing is
destination-based, and the remote destination is a non-local issue. Fortunately
in PBDV, routing is packet-based. PBDV is not trying to route a packet to
certain destination. In contrast, PBDV’s goal is to recover a specific data packet
from anywhere which is the nearest place to the local requester. In NACK and
REPLY control packets we only need to piggyback tiny distance vector metric
(e.g., 8-bit hop-count, or even smaller if MANET’s scale is not very large). We
choose not to embed other information to elongate NACK and REPLY control
packets.

Possibility of loops in PBDV routing Like other distance vector schemes,
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our PBDV table maintenance mechanism does not prevent a loop. Since a node
invalidates an entry by timeouts or receiving REJECT messages, a loop can be
formed.

Example 2 Suppose A has cached a packet needed by C, and a distance vector
driven path for the packet (C→B→A was formed. At node C, this means C’s
table entry is 2 for the needed packet. As A roams out, B tried to recover the
packet from A, but failed. Then B removed the entry, but the optional REJECT
message is either not sent or lost in transmission.

Now by another NACK or REPLY, C advertises the distance vector infor-
mation that C is 2 hops away from the caching point of the needed packet. B
overhears this message and updates its table entry to be 3 on next-stop C, thus
forms a routing loop B→C→B.

Such loops compromise routing integrity and reduce routing performance.
Like sequence based DV schemes (e.g., DSDV [25], AODV [26]), it is feasible
to avoid loop forming by using per-vector timestamp or sequence in PBDV
vector advertisements. We do not follow this approach because we want to
limit the size of NACK and REPLY packets, which must be transmitted us-
ing CSMA due to one-sender-many-repliers requirement. If timestamp or se-
quence is added for each packet in the piggybacked [DV ] advertisement list, the
elongated NACK/REPLY packet transmissions significantly degrade CSMA’s
performance.

In contrast, we choose an efficient design to trivialize the threat caused by
routing loops. Even if a virtual distance vector loop exists on a needed packet’s
forwarding path, the following reasons justify CORA’s design:

• The efficient 1-bit “breadcrumb” navigation design prevents a REQUEST
packet from going around infinitely because BC is set to 1 at first forward-
ing time, then a loop REQUEST packet is dropped at second forwarding
trial as BC is already 1.

• The original requester set a timeout Tpbdv to wait for the needed data
packet. Its PBDV entry is recycled upon timeout.

• PBDV routing table entries are recycled within Tmax time.

Therefore, instead of adding per-vector timestamp or sequence to incur extra
communication overheads, we allow potential temporary inconsistency in PBDV
routing.

0.3.6 Congestion Control

While it is recognized that congestion control is essential to realize a reliable
multicast protocol in MANET, not much work has been done in this field.
In Internet IP multicast, a score of protocols such as TCP-Friendly Multicast
Congestion Control (TFMCC) [38], PGMCC [28] and NORM (Nack-Oriented
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Figure 2: Overview of Congestion Control

Reliable Multicast) [2] have been proposed to extend TCP(-like) unicast con-
gestion control protocol to multiple members. As in TCP, these protocols use
packet loss as an indication of network congestion, since the error probability
due to other reasons is extremely low in wired network. As MANET experiences
comparably high loss rate due to non congestion related reasons such as node
mobility, random link error and jamming, this assumption of congestion and
loss correlation is no longer valid. The risk of conventional congestion control
in a hostile environment, for example is that an adversary could force the pro-
gressive shut off of a multicast stream by simply jamming the channel. Thus,
a loss differentiation is necessary to accomplish an effective TCP-like multicast
congestion control. Several protocols to handle this problem have been proposed
as surveyed in [5]. However, those schemes retain the end to end semantics of
TCP and attempt to discriminate loss based on end-to-end statistics. For ad
hoc, multicast applications the end to end discrimination is extremely difficult
because node mobility, multipath routing and path breakage lead to very dy-
namic fluctuations of end to end statistics such as round round-trip time, packet
delivery ratio and bandwidth estimation.

Thus, we believe that some form of reaction from each intermediate node
(i.e., active queue management) is unavoidable to achieve an effective multicast
congestion control scheme in MANET. Some unicast MANET schemes have
proposed to exploit the cooperation of intermediate nodes (e.g., Ad hoc Trans-
port [35] and Neighborhood RED [39]). However, to our knowledge, not many
cooperative multicast congestion control has been proposed.

In the paper, we mainly focus on developing an ECN based mechanism
considering neighborhood congestion. We do not address here “selective” rate
reduction to handle different terminal speeds and different congestion condi-
tions in different areas. Instead we assume that for the mission to be properly
accomplished all the receivers that are connected to the multicast group must
receive the same data or, in the case of multimedia, the same rate.
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For simplicity, we assume that there is no other traffic except for multicast
data (we ignore the control packets such as NACK, REPLY as the overhead is
negligible). Further we assume fixed packet size and bandwidth in this study.

We introduce congestion detection mechanism first and ECN-based AIMD
rate control following.

To detect network congestion, each node monitors two variables: its own
channel queue length and the transmission delay Tx of a packet. Average value
of each metric is used in the protocol. Recall that multicast uses MAC broadcast
mode and there is no ACK from receivers. Thus the transmission delay Tx of a
packet is the interval from when the packet gets to the front of the queue to the
time the packet is actually transmitted (e.g., in Fig. 2, T2 for packet 2). If the
queue is not empty, this interval is equal to the time between two subsequent
actual transmissions.

As illustrated in Fig. 2, there are two queues that are of interest in evaluating
congestion. One queue is the node’s own channel queue. In our scheme, a node
suspects network congestion if the average queue size exceeds a threshold Q.

Due to the shared medium, a node should consider neighbor nodes’ load
to determine more accurate load given to the network. To count this fact,
we also monitor “virtual”, distributed queue represented by all the packets
residing in all active neighbor nodes competing for the same channel. The larger
this queue, the larger the “stretch” of the transmission time Tx (as the node
will defer to other transmissions before starting its own transmission). Note
that 802.11 broadcast mechanism does not employ RTS/CTS handshaking and
retransmission. Thus, the packet will be deferred only by its own backoff and
the transmissions of neighbor nodes. Thus, the transmission stretch, i.e., ratio of
actual per-packet transmission delay and Tx is a good indication of the virtual
distributed queue congestion.

Typically, if the virtual, distributed queue is congested, the physical queue
is congested as well. But not vice versa, there are cases in which only one or a
few nodes is congested. Thus, we declare the node congested if both queues are
congested i.e., the node’s own queue exceeds a threshold Q and the estimated
virtual queue size exceeds a threshold Qv. To convert transmission delay to a
virtual queue size, we use an algorithm similar to that presented in [39].

When congestion is perceived, a node sets the ECN bit in the next data
packet.

We note that the above congestion detection mechanism is not affected by
wireless errors since those errors have no influence on carrier sensing and trans-
mission time Tx. Wireless errors will of course cause packet loss. But, as we
shall see, the source will not slow down its transmission rate unless a specific
ECN flag is carried by the NACK.

When a member receives a packet with ECN bit set it checks for recent packet
loss (e.g., some sequence numbers are still missing). If so, it sends an NACK with
setting the ECN field to 1 toward the source along a source tree. Otherwise,
if there have been no losses, the node delivers the packet to application and
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ignores the ECN bit. A NACK with ECN bit is forwarded directly to the
source (without NACK aggregation) via a source tree. Local recovery on such
NACK is not attempted as it may aggravate congestion.

The source upon receiving the NACK packet with the ECN set decreases
the rate consistently with the AIMD philosophy.

due to mobility

connection broken
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connection broken
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connection broken
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CORA recovery

join join

join join

join

success
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Figure 3: Interaction between a multicast source and multiple recipi-
ents

In addition, the AIMD scheme based on only NACKs has a potential prob-
lem in that NACKs may not be delivered to the source if the network is already
congested. A source, however, will keep increasing its rate as there is no NACK
(with ECN) and thus lead network collapse. To prevent this failure, we use
regulated ACKing scheme. Using a random probability p where p is adjusted to
member group size, a member sends an ACK to the source with p probability.
We can avoid ACK implosion problem by adaptation on p and ACK aggrega-
tion. For example, if p = 0.01 and there are 1000 receivers, 10 ACKs will be
returned on average from any of the multicast branches. In summary, in the
AIMD feedback control scheme implemented in CORA, the source periodically
increments its rate only if it receives some ACKs and no NACK with ECN bit
set. Either it receives a NACK with ECN bit set or it fails to receive any ACK
within a timeout, the source will decrease the rate.

0.3.7 Strong Reliability: Collaborative Assured Recovery
Algorithm (CARA)

As CORA gives up the recovery of lost packet(s) after a few retrials, it does
not guarantee 100% packet recovery. In particular, with high random error
probability and mobility, the reliability of recovery process will be degraded.
Notably, in such cases, receiver-oriented recovery mechanisms suffer from criti-
cally heavy overhead. Thus, we believe that a source-centric recovery mechanism
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is inevitable to meet strong reliability, especially in highly lossy environments.
CARA, based on our observation, employs digital fountain approach on top of
CORA to support deterministic reliability.

In FEC coding schemes, a source data block of k symbols can be encoded
into a stream of n≥k symbols, so that a recipient can restore the original k
source symbols from any subset of k encoded symbols in the output stream.
Unfortunately, not all FEC coding schemes are implemented so that they sup-
port the digital fountain mode of operation. For some popularly used small
block FEC codes (e.g., Reed-Solomon codes [27], k is in the scale of hundreds),
data carousel has to be used to address dynamic membership [20, 21]. In other
words, although error correction is implemented inside each FEC block, the
forward error correction property does not extend across different FEC blocks.
Therefore, the source must loop through the transmission of all FEC blocks
again and again, and recipients must listen until they have received one copy of
each FEC block. Such data carousel schemes normally overload the source and
the network because they reapeat large numbers of FEC blocks.

Far superior approximations of the digital fountain are large block FEC codes
(e.g., Tornado codes [16]) and expandable FEC codes (e.g., LT codes [15]). In
these coding schemes, a single FEC block can be very large and in fact it can
cover the entire source data file. The price paid for this feature is that a re-
cipient needs slightly more than k encoding symbols to restore the original k
source symbols. If k ∗ (1 + ε) encoding symbols are needed, we say the recep-
tion overhead is ε ∗ 100%, e.g., the reception overhead is 5% if k*1.05 encoding
symbols are needed by the recipients. Byers et al. [4] showed that 5% reception
overhead can recover nearly all source data encoded in Tornado codes.

The choice between delay-bounded CORA and strongly reliable CARA is
application driven. We assume the symbol size (i.e., number of bits needed to
represent coding alphabet) of the underlying large FEC scheme is well known.
Given a buffer capacity k suitable for all MANET nodes, a CARA source di-
vides its application data into large blocks of size k. Six new packet types
are added. Five of them are copies of CORA packet types, i.e., DF DATA,
DF NACK, DF REPLY, DF REQUEST, and DF REJECT. The format of a
CARA packet type is same as its CORA peer, except a seqNo field is replaced
by a 〈blkNo, seqNo〉 composite field. The sixth CARA packet type

〈DFCARA, G, S, blkNo, control message〉

is used by a CARA source to advertise digital fountain parameters used in data
block blkNo, e.g., the values of k and n.

A CARA source can put any number of encoding symbols into a DF DATA
packet and multicast it. A CARA member can restore the original source data
block, namely k source symbols, upon receiving k ∗ (1 + ε) encoding symbols
of the block from a number of DF DATA packets. Based on Figure 1 used in
Example 1, Figure 3 demonstrates a possible scenario for group members B, H,
and I to receive 100% source data encoded by S. At the beginning B is source
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S’s neighbor. After it receives ≈ k
3 encoding symbols, its session is broken due

to mobility. After a while B re-joins the group, it continues to receive another
≈ k

3 encoding symbols when a long burst of wireless interference interrupts its
communication. Fortunately, this does not prevent B from receiving another
≈ k

3 encoding symbols from source S’s unreliable multicast operations. Once
B has received k ∗ (1 + ε) encoding symbols, B uses the well-known large block
FEC decoder to recover 100% source data.

Member H and I are not as lucky as B—since they are multi-hop away, wire-
less interference, late join, and node mobility significantly decrease the number
of encoding packets they received. They failed to accumulate k∗(1+ε) encoding
symbols from S’s unreliable multicast. Nevertheless, CARA inherits CORA’s
multi-pass recovery design. Whenever H and I detect packet loss, they seek
to recover encoding packets by the help from their PBDV tables, their local
neighborhood, and the source S. Therefore, H and I are able to recover enough
encoding symbols to decode 100% source data.

0.4 Performance Simulation Study

We implement CORA in QualNet [1], a packet-level network simulator, and
investigate its behavior under various conditions. Also, we simulate CARA
using QualNet in a highly mobile network. Our simulation study consists of
three parts. (1) We investigate the performance of PBDV in various scenarios.
The main purpose of this experiment is to demonstrate that CORA’s recovery
process achieves much better reliability than UDP with only very small extra
overhead. Moreover, we will also study the effectiveness of an alternate, very
simple FEC scheme. Since the digital fountain approach is not a good solution
for a streaming data due to its latency, we study a simple FEC coding scheme
which is less powerful than digital fountain coding scheme but requires less
latency and thus can be applicable to a multimedia data transmission. (2) Next,
we wil show the advantages of CORAs congestion control scheme compared to
existing multicast congestion control protocols. In this experiment, we will also
show the robustness of CORA against random errors. (3) Finally, CARA will
be evaluated using a large scale mobile network scenario. The experiment aims
to clarify the usefulness of the CARA in highly lossy networks.

In our study, ODMRP (On-Demand Multicast Routing Protocol) [11] is
used as the underlying ad hoc multicast routing protocol. For the simulation
study, we use the IEEE 802.11 DCF MAC and the two-ray ground path-loss
model for the channel. A node’s transmission range and bandwidth is 376m
and 2Mbits/sec, respectively. Each simulation run continues 200 seconds and
all results are averaged over several runs with various random seeds. In our
simulation, we use recovery bound = 12 seconds. Thus, a recovered packet
will be delivered to the application only if it is recovered within 12 seconds
after sending an NACK. Also, we use N = 32, thus each NACK carries route
information about 32 consecutive packets. For timeout values, we use Tnack = 5
seconds, Tpbdv = 0.5 seconds, Tlocal = 0.3 seconds and Tsource = 4 seconds. We



UCLA #TR040005 20

 0

 0.5

 1

 1.5

 2

5 10 15 20 25 30

D
el

iv
er

y 
R

at
io

Number of Members

CORA 
 CORA + FEC (k=9) 

 UDP 
 SRM 

 RALM 

Figure 4: Delivery Ratio in static network

use the maximum numTry = 2, thus a NACK will be (re)transmitted toward
the source at most two times.

0.4.1 Performance Investigation on Loss Recovery Pro-
cess

In this section, we evaluate the recovery process of CORA and the effectiveness
of a simple FEC scheme in three representative scenarios: (1) a static network;
(2) a mobile network and (3) a static network with lossy channel (due to random
errors). To focus on the loss recovery part of CORA, the congestion control
scheme of CORA is not included in this experiment. The studied FEC coding
scheme works as follows: a source generates an extra parity packet every k
original data packets (assuming a fixed data size). Thus, a receiver can generate
k original packets by receiving any k packets out of k + 1 messages.

Commonly for three scenarios, 100 nodes are randomly placed in 1500 ×
1500 m2 field. Through this experiment, we use only one multicast group with
a single source. Without congestion control scheme, we use CBR (Constant Bit
Rate) application with 10 Kbytes/sec rate using 512 bytes fixed packet size. As
references, we use SRM (Scalable Reliable Multicast) [9][8], RALM (Reliable
Ad hoc Lightweight Multicast) [36] and UDP (User Datagram Protocol). We
exclude gossip-based protocols such as Anonymous Gossip [6] or Route-Driven
Gossip [17] because the approach of gossip-based protocol is totally different
from CORA and there is no easy way to fairly compare these two different ap-
proaches to our knowledge.

First, we present the performance of CORA and the FEC scheme in a static
network with various numbers of members from 5 to 30 in step of five. In this
scenario, with given moderate offered load (10 Kbytes/sec), a packet is dropped
only due to hidden terminal or collision. Note that ODMRP uses IEEE 802.11
DCF broadcast mechanism without RTS/CTS handshaking and retransmission.

Fig. 4 and 5 show the result. In static network with given moderate offered
load, the delivery ratio of UDP is very high. Fig. 4 shows that UDP achieves
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Figure 5: Normalized control overhead (i.e., total number of sent packets v.s.
total number of delivered packets) in static network

Group size 5 10 15 20 25 30
Avg Distance 2.84 2.55 2.27 1.92 1.85 1.80

Table 1: Average recovery distance of a packet

approximately 97% delivery ratio in this case. In other words, about 2 or 3% of
total packets is lost due to the hidden terminal and collision.

In the result, we observe three facts. First of all, the extra overhead of
CORA to that of UDP is very small (less than 10%) and actually decreased as
the number of members increases. As the group becomes denser, the success
probability of local recovery will grow. Table 1 shows the average distance of the
transmission of a recovered packet. The average distance of a recovered packet
is less than 2 (recovered within two hops away) with more than 20 receivers and
keeps decreasing with density. Moreover, even with such a small extra overhead,
the delivery ratio of CORA approaches the upper bound given by RALM. We
also note that CORA limits the recovery bound, thus all packets are recovered
within the bound of 12 seconds.

Secondly, SRM fails even in the static network due to superfluous overhead.
The delivery ratio of SRM becomes even worse than that of UDP. Note that we
observe about 100% reliability with SRM using lower offered load (5Kbytes/sec)
in the same scenario (this result is not included in the paper). In SRM, a receiver
sends a NACK to the entire group to recover packet loss(es). To locate multicast
members, this recovery procedure invokes Join Query flooding which aggravates
the network contention and congestion and thus results in the increase of packet
losses with CSMA mechanism. More packet losses will generate more NACK
packets even worse. Finally, SRM suffers from excessive uncontrolled recovery
overhead as shown in Fig. 5. The normalized control overhead of SRM is
more than 500% of that of UDP. This result shows that the reliable multicast
protocol designed in the MANET should minimize the control overhead and
also consider the congestion control. Without controlling network congestion,
injecting extra packets to recover the lost packets may dramatically aggravate
network congestion and thus performs even worse than unreliable UDP. As we
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Mobility 20 40 60 80 100
Avg Loss 4.23 5.57 6.7 6.84 7.91

Table 2: Average number of lost packets at each NACK issue
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Figure 6: Delivery Ratio in mobile network

clearly demonstrate that SRM does not work well in the MANET scenarios, we
omit the result of SRM in the following results.

Lastly, FEC works efficiently with single packet losses, although it will in-
creases the overhead and end-to-end latency to wait all necessary k packets.

Now, we add node mobility in the network. Each node in the network moves
following random-way point model with min speed “0” and max speed “x”(x
= 20 to 100 meter/sec) and 0 pause time. In this simulation scenario, we use
randomly chosen 10 receivers in a group with a single source.

The results are shown in Fig. 6 and 7. We first note that even though the
redundancy by FEC coding slightly improves the delivery ratio compared to
UDP, the benefit of FEC coding scheme is not significant in the presence of
node mobility. The main reason of this outcome is the fact that, often a loss
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Figure 7: Normalized control overhead in mobile network
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Mobility 20 40 60 80 100
CORA 22.07 28.32 33.81 40.85 38.83

CORA + FEC(k=9) 12.45 19.41 28.99 35.26 34.5

Table 3: Recovery overhead (number of NACKs or transmitted pkts/sec)

event comprises multiple consecutive packet losses in mobile networks rather
than a single packet loss. Once a link breakage happens, it takes a while to
detect the link breakage and discover a new path in most multicast protocols.
During that period, packets fail due to the lack of route. Table 2 illustrates
the average number of lost packets at each NACK issue. We count the all lost
packets even though some of them are already recovered by PBDV recovery
before a receiver issues an NACK.

However, FEC considerably lessens the burden of recovery by improving the
delivery ratio. Table. 3 shows the recovery overhead which includes the total
number of NACKs and retransmitted data packets per 1 second. We compare
the overhead of CORA with and without FEC scheme with k = 9. The potential
advantages of using FEC in reliable multicast are (1) FEC improves the delivery
ratio and thus decreases the number of loss events; (2) FEC allows more flexible
data recovery in that a node needs to recover any k packets out of k + l packets
(l is the number of extra coding packets). Thus, it relaxes the reliability of
recovery process.

Secondly, the delivery ratio of CORA slightly decreases with node mobility.
The main reason of this imperfection is the fact that the node mobility also
degrades the reliability of loss recovery process (the reliability of NACK packets
and data packets). As CORA gives up the packet recovery after a few trials
(say two), some packets are not recovered. And the higher node mobility results
in the larger probability of such a failure. However, still, CORA keeps very low
extra overhead with much better reliability compared to UDP.

Lastly, RALM pays significant extra overhead to fulfill a strong reliability.
Still, it does not achieve 100% in this case as RALM also gives up the recovery
for a packet after considerable number of trials. It pays more than 100% extra
overhead with high mobility (from 40 to 100). The control overhead will become
larger as we increase the number of members and network size. This result of
RALM infers that a receiver-responsible approach to achieve a strong reliability
in the presence of very high loss rate suffers from extremely heavy overhead and
thus may be not very efficient.

The simulation study in the presence of random error follows. For this
experiment, we simulate random errors by using a receiver-side random drop
where a packet is dropped at a receiver. To randomly drop a packet, each
receiver chooses a random number r in the range [0, 1] whenever a new packet
comes in. If r is less than p, the given random error probability, a receiver drops
the packet. Otherwise, it receives the packet. Note that a receiver indicates a
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Figure 8: Delivery Ratio with variable random error probability
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Figure 9: Normalized control overhead with variable random error probability
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node who hears the packet at each hop, different from a member in a multicast
group. We increase the random error probability from 0.01 to 0.15.

Fig. 8 shows the delivery ratio and Fig. 9 demonstrates the normalized
overhead. In the results, three interesting facts are remarked. First, FEC coding
scheme efficiently helps CORA in the presence of random error. A loss event due
to the random error generally includes a single packet loss. One evident trend
is shown in Fig. 9 is that the effectiveness of CORA with FEC increases with
error probability (we can monitor this fact by control overhead change). Control
overhead of CORA considerably grows with high error rate (0.15) compared to
with low error rate (0.01), but the difference of control overheads with CORA
+ FEC (k=4) in two points is negligible.

Secondly, like high mobile cases, CORA cannot achieve very high reliability
with high error probability. However, it still improves the reliability up to 13%
at all cases with less than 10% extra overhead compared to UDP.

The shown results clearly demonstrated that CORA achieves far better re-
liability than UDP (in all cases, it achieved more than 95% reliability) with
minimal overhead. Also, the results show that a simple FEC scheme can be
very useful in the presence of wireless errors.

0.4.2 Study on Congestion Control

We now investigate the performance of our proposed congestion control scheme
compared to RALM and TFMCC (TCP-Friendly Multicast Congestion Con-
trol) [38]. In TFMCC, a sender chooses the CLR (Current Limiting Receiver)
exhibiting the worst throughput using TCP throughput equation [22] among
members. Each TFMCC receiver calculates the permissible throughput from a
predefined equation using as inputs the packet error rate p and the round-trip
time RTT upon receiving a packet. The CLR feedbacks the estimated through-
put Re to the sender using TCP-like acknowledgement, and the sender increases
the rate if the current rate is less than Re and adjusts the current rate to Re

otherwise. As TFMCC is developed for IP multicasting, a TFMCC receiver
assumes that a packet loss indicates network congestion. Thus, TFMCC may
be not robust against wireless errors due to node mobility, random error or
jamming.

In this experiment, we use the same network scenario as in previous ex-
periment but increase the number of groups to five. A source and randomly
chosen ten receivers form a group. For RALM, we use CBR application with 5
Kbytes/sec data rate. We use static network with varying random error proba-
bility from 0 to 0.1.

The result demonstrates a few interesting properties. First of all, CORA
achieves a fairly good throughput compared to TFMCC and RALM. Without
considering wireless losses, the throughput of TFMCC is much lower than that
of CORA. Moreover, the throughput of TFMCC considerably degrades with
increasing random error probability. As RALM sacrifices the throughput to
achieve 100% reliability, it achieves lower throughput than TFMCC and CORA.



UCLA #TR040005 26

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.02  0.04  0.06  0.08  0.1

T
hr

ou
gh

pu
t (

K
by

te
s/

se
c)

Random Error Probability

CORA 
 TFMCC
 RALM 

Figure 10: Throughput with congestion control

p 0 0.01 0.02 0.05 0.1
CORA 0.95 0.96 0.94 0.97 0.96

Table 4: Fairness Index

Secondly, the throughput degradation of CORA with the increment of ran-
dom error probability is not significant once the loss of capacity caused by re-
transmissions is accounted for. As shown in previous experiment with random
error, the control overhead with high error rate (0.10) increases approximately
10% from that with low error rate (0.01). Considering this, the throughput
degradation (about 10%) from p = 0.01 to p = 0.1 is very reasonable. We also
test CORA with varying mobility. Due to the page limitation, the result are
not included in the paper; the general behavior however is similar to that with
random errors in Fig. 10. These results confirm that the congestion mechanism
of CORA is tolerant to random losses (caused by mobility and by random chan-
nel errors). It can thus properly discriminate between congestion and random
loss.

Now, we show the fairness index [10] to show the fairness of CORA. We
measure the throughput (xi) of each source at different group and calculates
the fairness index as follows:

f(x1, · · · , x5) =
(Σ5

i=1xi)2

5Σ5
i=1x

2
i

(1)

Table 4 shows the fairness index for different random channel error rates. As
shown, CORA does not starve any flow among five multicast flows and shows
fair throughputs.

0.4.3 Effectiveness of CARA

As our last experiment, we simulate digital fountain approach in highly mobile
network. In this experiment, we want to show that (1) a smart source-oriented
approach is desirable to achieve a strong reliability with reasonable overhead;
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Figure 11: Total Extra Time (%) (It shows the percentage (over Timeorg)
of difference between (Tleave-Tstart) and Timeorg where Timeorg is the total
transmission time to send K original packets.)

(2) even with digital fountain approach, CARA gives benefit with small extra
cost. We measure the total time to receiver all necessary packets with CARA
and only digital fountain coding scheme. We measure the time = Tleave - Tstart)
where Tstart represents the time of first packet arrival at a receiver and Tleave

is the time when a receiver receives enough packets. For the high loss rate, we
use high node mobility in a large scale network where 500 nodes are randomly
placed in 3000 x 3000 m2 field. We use a multicast group with a source and
20 members. A source pumps in packets with 2Kbytes/sec rate wit 512 bytes
packet size. For the simulation we use N (number of encoded packets) = 400
and K (number of original packets) = 200. We increase the node mobility with
minimum speed = 0 and maximum speed = x meter/sec (the range of x is [20,
200]).

Fig. 11 shows the percentage of extra time to correctly deliver K * (1 +
ε) packets (ε = 0.05) compared to the total time to transmit K packets at the
source. In the result, the average extra time over all receivers and the maximum
extra time measured at the worst receiver are shown. The result demonstrates
that CARA notably reduces the total time to receive all necessary packets with
the aid of recovery process. The benefit of recovery process becomes significant
with increase of node mobility. Also, CARA achieves 100% delivery ratio with
less than 60% extra overhead of time.

0.5 Conclusion

In the paper, we presented two MANET reliable multicast protocols: Collaborative
O-pportunistic Recovery Algorithm (CORA) and Collaborative Assurred Recovery
Algorithm (CARA).

MANET is extremely vulnerable to network overload. Thus, a reliable mul-
ticast protocol, which generally incurs extra recovery overhead, should be de-
signed to function with minimal overhead. Further, congestion control is essen-
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tial to realize the reliable multicast protocol since uncontrolled overload causes
high loss rata and following makeup recovery overhead will aggravate network
congestion.

CORA addressed above two problems by developing Packet-Based Distance
Vector (PBDV) and virtual queue based congestion control. These designs do
not add significant communication cost to underlying reliable multicast pro-
tocol: (1) Data caching incurs zero communication overhead. (2) PBDV is an
on-demand distance vector scheme opportunistically maintained by promiscuous
listening and short control messages. (3) CORA’s passive congestion detection
incurs zero communication overhead, and ECN only adds 1 extra bit in the
messages.

Through our simulation study, we demonstrated three important features of
our proposed ideas. (1) CORA improves reliability with minimal extra recovery
overhead. The localization of CORA improves the scalability with group size.
(2) CORA’s congestion control scheme works effectively in MANET multicast
in spite of its simplicity. (3) CARA shows that digital fountain approach fits
well in dynamic topology in MANET.

In the future, we will enhance the proposed schemes and do more compar-
ative study with recently-proposed reliable multicast protocols in MANETs.
Critical enhancements include robust and secure countermeasures against en-
emy’s attacks. Besides, we will investigate the performance of CORA and CARA
for heterogeneous multicast applications, such as audio/video conference, multi-
media streaming, file download, remote command execution, and mobile group-
ware.
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