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1 Summary

The finite-state probabilistic array was proposed some time ago [Paz68] as a theo-
retical model of polynomially nonlinear statistical interactions among the mem-
bers of populations—multiway, multi-machine, or multi-parent interactions—
producing state-distribution variabilities from generation to generation in the
population, analogous to the variabilities studied in genetics or population bi-
ology. These machine-like stochastic systems are revisited here, with attention
directed toward new details about asymptotic behavior. It is now possible to
obtain more definitive results about the potential of such systems to exhibit pro-
found disequilibrium, asymptotically over time, as the state-distributions evolve.
The concepts and techniques used are suggested by chaos theory, aided by ex-
ploratory computational visualization of examples. The 2-state case is explored
in detail, with brief remarks on systems with larger state sets. The principal
results for 2-state systems are as follows: (i) there exist infinite-periodicity (i.e.,
chaotic) two-state systems of polynomial degree d (modeling d-way interactions),
in particular for d as small as 5; (ii) two-state systems with quadratic nonlinear-
ity (two-way or two-parent interactions, d=2) can evolve only non-chaotically,
exhibiting periods of at most 2 in the time-sequence of state distributions.

2 Probabilistic Machines and Linear Iterations

We review very briefly the conventional probabilistic model in automata theory;
the main objective is to observe that the corresponding distributional transfor-
mations are linear and have simple asymptotics under iteration.

For a time-sequential finite-state probabilistic machine which is autonomous
(free of inputs, or with only a constant clocked-time input), the only significant
quantities are the states, the state-to-state (conditional) transition probabili-
ties, and the (unconditional) state-occupancy probabilities. In this setting, a
machine with n states is defined by specifying its one-step transition probabili-
ties aij , i, j = 1, 2, . . . , n; the interpretation is that aij is the numerical label on
the directed edge from state #i to state #j in the state graph, or the ij entry
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in an n×n Markov matrix A:

aij ≥ 0 for all i, j, and
∑

j

aij = 1 for each i . (1)

The “next state” distribution is obtained from the “present state” distribution
and the one-step transition probabilities:

P [next state = j] =

n
∑

i=1

P [present state = i] aij , j = 1, 2, . . . , n, (2)

This defines a mapping F of distribution-vectors into distribution-vectors, i.e., a
finite-state stochastic transformation (f.s.s.t.), which in this case is specified by
linear equations and can therefore be called a linear f.s.s.t.:

x′ = F (x) , or (x′
1, x

′
2, . . . , x

′
n) = F (x1, x2, . . . , xn) ,

x′
j =

n
∑

i=1

xiaij , j = 1, 2, . . . , n . (3)

This is an obvious stochastic extension of the concept of a mapping from
the present state to the next state in conventional deterministic automata; here,
“state” is generalized to “distribution over the states.” The time-sequential ac-
tion of a deterministic automaton generates a sequence of states starting from
the initial state. In the same way, a probabilistic automaton generates a time-
sequence of vectors, each of which is a distribution over the states, i.e., a list of
the n state-occupancy probabilities at one instant in clocked discrete time. As
time advances, the distribution vector evolves, following a trajectory determined
by the iteration of the f.s.s.t. F as defined in (3), starting from some initial dis-
tribution vector π; the calculations are also expressible through repeated matrix
multiplications by A:

π0 = F 0(π) = π = πA0 (A0 ≡ I)

π1 = F (π) = πA

π2 = F (π1) = F (F (π)) = F 2(π) = π1A = πAA = πA2

... (4)

πt = F (πt−1) = F (F (· · ·F (π) · · ·)) = F t(π) = πt−1A = πA · · ·AA = πAt

...

Evidently it is appropriate to call this situation linear, referring either to the
scalar linear relationships in (3) or to the vector/matrix linear operations in
the right-hand sides of (4). Summarizing: {iterated linear finite-state stochastic
transformations} ≡ {repeated multiplication of probability vectors by a finite
Markov matrix} ≡ {state occupancy probability evolution in finite-state proba-
bilistic machines}.



        

There is a unique correspondence between a linear map F and its realization
as a probabilistic machine, expressible through

aij = jth component of F (state i) = Fj(state i) (5)

where “state i ” means the corresponding degenerate probability vector:

state i ≡ (0, . . . , 0, 1, 0, . . . , 0)
(1 in ith position)

. (6)

Deterministic machines, the conventional building blocks for models in au-
tomata theory, are included as a subcase of (3) in which all aij values are 0 or
1. In this case the transformations F can likewise be called deterministic. In
the deterministic case, if the initial distribution π is degenerate—concentrated
on a single state—then a sequence of iterations of F applied to π corresponds
(through (6)) to the actual sequence of states of the machine as it operates in
clocked time. However, if the initial distribution π is not degenerate, it is clear
that even a deterministic F will in general produce a sequence of nondegenerate
probability distributions upon iteration.

For linear finite-state stochastic mappings, the asymptotics of the time-
sequence of iterations shown in (4) can be described using known facts about
Markov chains. For these simple systems, questions related to convergence of
the state-distribution to equilibrium (fixed point of the mapping), or existence
of periodicities (as well as transients, absorbing states, etc.), can all be settled
in a well-established manner via calculations using only the connectivities and
numerical labels of the state graph, i.e., the information contained in the matrix
A of state-transition probabilities. In particular, the time-sequence (4) can be
written explicitly as a formula consisting of a linear combination of at most n
terms, constant and real or complex exponentials, i.e., the solution to the linear
difference equation πt+1 = πtA, expressible through the eigenvalues/eigenvectors
of A (see, e.g., [Kle75]). Thus the linear finite-state case is completely charac-
terizable and has quite restricted asymptotic behavioral complexity. Consider
the following elementary 2-state examples:

#1: A =

(

0.6 0.4
0.4 0.6

)

; #2: A =

(

1 0
0 1

)

; #3: A =

(

0 1
1 0

)

. (7)

System #1 has a single fixed point (0.5, 0.5) and all starting distributions π =
(x, 1−x) converge to this fixed point under the iterations (4). System #2 is the
“identity” for which every point π = (x, 1 − x) is a fixed point trivially. System
#3 has the single fixed point (0.5, 0.5), but in addition it is immediately clear
by inspection that the points (0, 1) and (1, 0) have period 2; more generally, for
π = (x, 1− x), πA = (1− x, x) and ((πA)A) = (x, 1− x) yielding an indefinitely
repeated 2-cycle, so for each x, 0 ≤ x ≤ 1, the distribution (x, 1− x) has period
2. Thus it can be said that System #3 has infinitely many periodic points, but
again in a trivial manner, since all have the same period 2 (the fixed point and
the period 2 arise from the two eigenvalues +1 and −1 of A). These examples



           

should suffice to recall that, for a linear system, there can be at most finitely
many distinct features (such as periodicities), bounded above by the number n
of states or dimensions.

3 The Nonlinear Generalization

We now introduce certain nonlinear finite-state stochastic transformations.
There are, of course, unlimited possibilities for defining nonlinear mappings.
Here we consider a form of polynomial nonlinearity, which will be seen to be (i)
a natural generalization of the linear case described above, (ii) interpretable as a
stochastic model of interactions that are more intricate than those governed by
single state-to-state transitions in finite-state machines, and, most significantly,
(iii) with the potential for exhibiting an infinity of periods, leading to asymptotic
disequilibrium or chaos.

An n-state f.s.s.t. F is said to be polynomial of degree d if it can be expressed
in the form

x′
j =

∑

1≤i1,i2,...,id≤n

xi1xi2 · · ·xidai1i2···idj (8)

where the coefficients ai1i2···idj satisfy

(1 ≥) ai1i2···idj ≥ 0 for all i1, i2, · · · , id, j , (9)
∑

j

ai1i2···idj = 1 for all i1, i2, · · · , id . (10)

Using the terminology introduced in an earlier study [Paz68], we call any
array A =‖ ai1i2···idj ‖ satisfying (9,10) a probabilistic array ; A is said to be an
n-state (d + 1)-array (referring to the number of indexing subscripts). For each
fixed j the a-coefficients constitute a sheet of A; the sheets are substochastic
(condition (9)) and sum to an all-ones sheet (condition (10)). The conditions
(9,10) generalize the Markov-matrix conditions (1) to arrays, and the relation-
ships (8) generalize the linear case (3) to a polynomial nonlinearity.

This view of the polynomial transformation—as obtained from a multi-
sheeted array—is in agreement with the concept of array multiplication [Paz68]:
(8) describes the n components of a nonlinear vector/array product π′ = πA, a
special case of an array/array product C = AB, which is not only noncommu-
tative but also nonassociative. A simple illustration is given in the Appendix.
The time-sequential display (4) of notations for repeated iterations, introduced
for the linear case, can also be applied in the nonlinear case, but because of
nonassociativity, the products on the right-hand sides of (4) must be interpreted
to mean that proper parenthesization is maintained:

πAAA means (((πA)A)A), etc., and At is not used by itself.

Polynomial transformations and probabilistic arrays can be referred to in-
terchangeably; a transformation is “realized by” an array. However, this is not



          

quite the simple one-to-one correspondence of the linear case (noted above in
connection with (5)). Some of the array coefficients are adjustable, within limited
ranges, while producing the same values x′

j in (8), as in the simple example (18)
of the next Section; the Appendix has further details on coefficient relationships
and ranges.

Nonlinear transformations like (8) are seen in theoretical modeling of, e.g.,
biological processes (genetics, population growth), genetic algorithms, belief
networks (in artificial intelligence), and multiway machine interactions [Paz68,
May76, Pea91, Rab95]. The following model interpretation of (8) is particu-
larly easy to describe, and can serve as a guide to the notation. A “current
generation” of individuals of n “types,” represented by the n states and their
probabilities (or “proportions”), become parents of the children who are the
members of the “next generation.” For d=2, this takes place in accordance with
specified conditional probability values

ai1i2 j = P [child’s state = j | state of parent #1 = i1 & state of parent #2
= i2].

The state distribution (x1, x2, . . . , xn) for parents is then transformed into the
children’s distribution (x′

1, . . . , x
′
n) using (8) with d=2:

x′
j =

∑

1≤i1,i2≤n

xi1xi2ai1i2 j . (11)

Here, the probabilities xi1 and xi2 are multiplied because the two parents are
selected independently from the population and the parents are considered to be
statistically identical, i.e., drawn as a random sample of size 2 with the common
distribution (x1, x2, . . . , xn). For d > 2, the interpretation is the same, with d
parents per child. Iteration of (8) or (11) produces a trajectory (time sequence
of state distribution vectors) which might be called an evolution, i.e., a history
of generation-to-generation changes in the population characteristics.

4 The Two-State (One-Dimensional) Case

First, a remark on a familiar geometrical fact: the set of all n-state probability
vectors forms a space of dimension n−1, namely the convex polytope formed by
the intersection of the unit n-cube with the hyperplane x1+x2+· · ·+xn = 1. For
example, the set of all 3-component probability vectors consists of the boundary
and interior of a triangle, whose vertices are identified with the states through
the correspondence (6). Thus, in geometric terms, an n-state f.s.s.t. maps an
(n − 1)-dimensional simplex into itself. Therefore, two-state transformations
are, in effect, one-dimensional mappings, and can accordingly be simplified, in
notations and calculations, as follows.

With n = 2 and π = (x1, x2) = (x1, 1− x1), π
′ = (x′

1, x
′
2) = (x′

1, 1− x′
1), the

two components of a stochastic mapping π′ = F (π) are

x′
1 = F1(x1, x2) ≥ 0, x1 ≥ 0, x2 ≥ 0, x1 + x2 = 1,



          

x′
2 = F2(x1, x2) ≥ 0, x1 ≥ 0, x2 ≥ 0, x1 + x2 = 1,

x′
1 + x′

2 = 1.

Substituting x1 = x, x2 = 1 − x, f(x) = F1(x, 1 − x), this reduces to

x′ = f(x), 0 ≤ x ≤ 1 (12)

1 − x′ = 1 − f(x), 0 ≤ x′ ≤ 1

and the second equality is redundant, so only a single mapping f of one scalar
variable needs to be considered; f is a one-dimensional stochastic transformation,
i.e., maps [0, 1] into [0, 1]. Likewise, for the iterates of F ,

F t(x1, x2) = F (F (. . . F (x1, x2) . . .)) ,

it suffices to consider the one-dimensional iterates

f t(x) = f(f(. . . f(x) . . .)).

For n = 2, in the polynomial mapping definition (8), the coefficients ai1i2···id1

and ai1i2···id2 = 1−ai1i2···id1 form the two 2×· · · 2×2 [d-fold] sheets of a 2×· · · 2×2
[(d+1)-fold] array. The condition that all ai1i2···idj “sum to 1 over sheets,” i.e.,
that the sum over the (d+1)st coordinate is 1 for each element, reduces for n = 2
to the simple observation that the two sheets sum to the all-ones sheet. Therefore
in the two-state case we can largely ignore the second sheet, which is obtainable
from the first by subtractions from 1; this corresponds to the above-mentioned
redundancy of F2(x, 1 − x) = 1 − f(x). Thus to specify any particular 2-state
example, it is actually only necessary to give one 2 × . . . × 2 [d-fold] sheet of
coefficients ai1i2···id which lie between 0 and 1; i.e., the multivariate polynomial
definition (8) can be reduced to the one-variable specification

f(x) = x′ =
∑

i1,i2,...,id=1,2
(xi1

,...,xid
= x or (1−x))

xi1xi2 · · ·xidai1i2···id (13)

=

d
∑

k=0

ck xk(1 − x)(d−k) =

d
∑

k=0

Ck xk . (14)

The alternate forms (14) simply take note of the fact that the terms of the
polynomial can be collected in any convenient manner. Some coefficient values
are not uniquely fixed for a given mapping f , as is easily seen, e.g., from the
simple example (18) below.

For a two-state model with d = 2, i.e., a two-state quadratic system, the
defining relationship x′ = f(x), in terms of the a−coefficients, becomes simply

x′ = a11x
2 + (a12 + a21)x(1 − x) + a22(1 − x)2 (15)

where the four a−coefficients form a substochastic 2 × 2 sheet
(

a11 a12

a21 a22

)

.



       

For example,
x′ = x2 + (1 − x)2 (16)

is a stochastic 2-state quadratic transformation realizable by the array (first
sheet)

(

1 0
0 1

)

which is a deterministic realization. Likewise, the example

x′ = 2x(1 − x) (17)

is produced by the sheet
(

0 1
1 0

)

To see that there may be some freedom of choice for “off-diagonal” a-values,
it suffices to consider another simple example; e.g., the two distinct choices

(

1 0.5
0.7 0.4

)

and

(

1 0.2
1 0.4

)

produce the same mapping

x′ = x2 + 1.2x(1 − x) + 0.4(1 − x)2 . (18)

Such variations in the array realizing a given nonlinear function are not signif-
icant for our purposes; nonuniqueness is simply a consequence of the stochas-
tic constraints in the alternate formulations in (13) and (14), in which the a-
coefficients are “uncollected,” while the c- or C-coefficients are “collected.” (For
the corresponding formulations in the general multistate case, see the Appendix.)

The example
x′ = 3.6x(1 − x) , (19)

which is in appearance similar to the realizable (17), cannot be a stochastic two-
state quadratic transformation since it has no probabilistic array realization:
from (15), with substochastic values a12 and a21, we see that the coefficient of
x(1 − x) cannot be 3.6; in fact it cannot exceed 2.

The transformations (17) and (19) are instances of the logistic mapping

x′ = Kx(1 − x) , (20)

which has been used, e.g., in modeling population growth [May76], and is the
canonical example leading to the study of chaos in iterated mappings [Fei80].
As a growth model, (20) describes the number of individuals in the current
population as a function of the number in the immediately preceding generation
(where “number” may mean a scaled or normalized fraction of individuals of
a certain type), and the progress of the iterations shows how the population
varies from generation to generation. We shall review definitions of the term
“chaos” below, but accepting the intuitive concept of “complex and unsettled



       

asymptotic behavior with an infinity of periods,” it is well-known [e.g., Fei80]
that (20) begins to exhibit chaotic behavior when the “growth factor” K ≥ 3.57
approximately; (17) is not chaotic.

Since (19) cannot be realized as a 2-state probabilistic array, although the
mapping is stochastic, the following question immediately arises: are there any
two-state quadratic stochastic mappings which are chaotic? We show here that
there are none (Section 8). This leads to the question: allowing the degree d
to be sufficiently large (more than 2), are there any chaotic two-state stochastic
mappings? This is answered in the affirmative (Section 7), with examples and
details showing values of d sufficient to ensure the possibility of chaos.

We make frequent use of the family of examples of the form

x′ = xd + (1 − x)d (21)

which defines, for each d, a one-dimensional (2-state) stochastic mapping of
degree d. This can be realized by the choice in (14) of c0 = a11···1 = 1 , cd =
a22···2 = 1, and all other ck = 0; note that this choice gives a deterministic
realization. For odd degree d, collecting powers of x in (21) yields a polynomial
of degree d − 1 in x, but the system as a whole is still properly said to be of
degree d, since it cannot be realized with a lower-degree probabilistic array; this
is a reflection of the fact that the ignored “redundant” polynomial F2(x, 1−x) =
1 − f(x) contains a degree-d term. The same remarks apply to d for multistate
mappings in general; see the Appendix.

5 Chaos Defined

We use standard terminologies such as the following, for a general transformation
F : y = f(x) which maps some set E, e.g., a metric space, into itself.

An orbit: a set {x, F (x), F (F (x)), . . .}
(unordered set of points of “trajectory”
or sequence of iterations from initial x)

a fixed point x of F : a point x such that F (x) = x
periodic point x, period k: F k(x) = x

and k is least (F j(x) 6= x, j < k)
periodic orbit or k-cycle: F (p1) = p2, . . . , F (pk−1) = pk , F (pk) = p1

(each pi has period k; fixed points of F k)
the periods of F : set of integers,

the periods of all periodic points

and, for one-dimensional maps f which are differentiable functions of one real
variable,

critical point: x such that f ′(x) = 0
attracting periodic point: x of period k and |(fk)′(x)| < 1

(an attractor or sink)
repelling periodic point: x of period k and |(fk)′(x)| > 1 .



         

Reducing the concept of “chaos” in iterated maps to a formal definition is
subject to some variability in different application contexts; however, one widely
quoted mathematical characterization [Dev89] consists of the following three
conditions, for a mapping F : E → E.

(c1) F has sensitive dependence on initial conditions
(c2) F is topologically transitive
(c3) periodic points are dense in E .

It has been shown that the three conditions are not independent and can be
reduced to two by eliminating (c1) [Ban92], or all three can be replaced with a
single combined condition [Tou97]

(c0) each pair of nonempty open sets shares a periodic orbit.

Nevertheless, the original three conditions are of interest because they have rea-
sonable intuitive meanings. First, “sensitive dependence. . . ” suggests future
unpredictability from small deviations from a starting point, and is defined sim-
ply by requiring that, given any x, neighborhood N of x, and δ > 0, there is
y ∈ N and k such that |F k(x) − F k(y)| > δ. Topological transitivity embodies
the idea of mixing or indecomposability, i.e., rules out a breakup into two or
more noninteracting subsystems: for any pair of nonempty open subsets U, V of
E, F k(U)∩V is nonempty for some sufficiently large k. The density of periodic
points suggests a residue of regularity embedded within the unpredictability.
Clearly all three concepts are in accord with informal ideas of chaotic behavior.
The definition itself (or one of its combined replacements) does not yield gen-
erally usable procedures for deciding whether a particular example is chaotic;
typically, some ad-hoc analysis is needed, although it is occasionally possible
to make use of topology-preserving conversions of previously established chaotic
maps.

We direct our attention mainly to a related condition, which also suggests
chaos intuitively, namely

(c4) the existence of an infinity of integers each of which is a period.

Condition (c4) is adequate for our purposes, and is of particular interest because
it directly contrasts with the very restricted situation in the linear case (not more
than n periods) illustrated by the linear examples (7). Superficially (c4) appears
to be possibly both wider and narrower than (c3); e.g., the infinity of periodic
points guaranteed by (c3) might not all have different periods, and the infinity
of periods from (c4) might not yield density of periodic points, and (c1,c2) also
need to be considered. However, for examples of one-dimensional polynomial
maps such as those discussed in Section 7 below, after establishing (c4) it is
feasible (on a case-by-case basis) to verify the other conditions as well; we do
not pursue the details here.1

1Condition (c4) also would suffice in some situations where the set E is restricted (F : E →
E), e.g., f(x) = Kx(1 − x) for K > 2 +

√
5 which is known to be chaotic on a Cantor set

[Dev89] (this is not a stochastic example).



         

6 Graphical Tools

One-dimensional examples can be illustrated and explored graphically with sev-
eral types of charts. First, straightforward graphical overlays of f and some
of its iterates fk (functional compositions), together with the 45-degree line
I(x)=x, will assist in identifying fixed points and some periodic points (new
crossings of I by graphs fk). Such points may then be accurately evaluated
numerically, whether or not f is chaotic, since no temporal asymptotics are in-
volved; i.e., the graphs are used in a “purely analytic” manner. See, e.g., Figs.
2,8,12.1 In contrast, there are charts depicting what might be called “experimen-
tal data,” even though computed reproducibly with apparently high precision;
these charts show points, typically large numbers of points, generated by com-
puting repeated iterations of f starting from some chosen initial x-value; i.e.,
charts of x, f(x), f(f(x)), . . . . The appearance of such “experimental” charts
may vary with the initial condition, but often may be strikingly similar for a
range of initial conditions, therefore suggesting trends to study in seeking formal
verification of chaos/nonchaos for f . In the accompanying Figures, three types
of experimental charts appear, as follows.

An “orbit chart” is a one-dimensional view in which iterated values are
plotted on the x axis, perhaps with elongated vertical markers for better visual
display; the appearance is reminiscent of a “bar-code.” For examples, see Figs.
1 and 6.

A “sorted chart” is a two-dimensional figure, a nondecreasing plot of iterated
values as ordinates, with their positions in the sorted list of values (minimum to
maximum) as abcissas. If suitably normalized, a sorted chart can be thought of
as an experimental estimate of a cumulative probability distribution of points
visited in the long run. In a sorted chart, periodicities may be revealed by the
appearance of multiple horizontally flat segments or “stairtreads.” The possibil-
ity of chaos is suggested by monotone increasing segments; e.g., a sorted chart
having the appearance of a diagonal line would suggest that, in the long sequence
of iterations, “all” (i.e., arbitrarily many) values have been visited with roughly
equal frequency. Vertical segments suggest “gaps,” i.e., intervals which may not
be (re)visited. For examples of sorted charts, see Figs. 4,7,11. In Fig. 4, the
dominance of two levels suggests an attracting 2-cycle (there is one, as can be
deduced from the corresponding function plots in Fig.2).

A “diagonal phase portrait” (using the terminology of [Dev89]) is an (x, y)
chart in which, starting with x0 and generating successive iterated values xt, a
vertical line segment is drawn from the point (xt, xt) on the diagonal line to the
point (xt, f(xt) = xt+1), then a horizontal segment to the point (xt+1, xt+1), etc.,
thus showing the relationship of the trajectory to the f graph and the 45-degree
line; both may optionally appear in the same graph as overlays. In a diagonal
phase portrait, progress toward an attracting fixed point may be revealed as a
sequence of “stairsteps” of decreasing size, or by a shrinking square-sided spiral;

1All Figures are collected at the end of the paper. Many of the Figures are plots in the unit
square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, but the axes may be unequally sized for convenience in display;
the diagonal y ≡ x is indeed a 45-degree line when these scalings are taken into account.



     

an attracting period 2 is suggested by a box as limit-cycle, etc., while chaos is
suggested by a “largely black” plotted result. Figs. 3,5,10 show diagonal phase
portraits. In the simple example of Fig. 3, from the starting point near the upper
right corner, a downward stairstep approaches the fixed point, and then spirals
outward (since the fixed point is repelling) toward a period 2 limit box.

Tracing the first few iterations as a diagonal phase portrait, for various trial
starting x-values, can assist in demonstrating that an example f has, e.g., an
attracting or repelling fixed point or a periodic cycle. This is called graphical
analysis in [Dev89] and has been widely used in the literature on iterated maps;
we make use of the idea in several arguments. Of course this is only intended
to be a shorthand indication that a formal verification is easy to obtain and
therefore need not be written out in detail, at least in visually simple cases.

As noted above, chaotic behavior is suggested by an extensive “blackened”
appearance for orbit charts and phase portraits, and by the presence of intervals
of steady increase in sorted charts. Of course, these computational/visual aids
must be used with caution and are exploratory only, suggesting an avenue for
formal investigation. The infinity of periodic points associated with chaotic
maps is ultimately inaccessible via finite-precision computer-generated data and
plots, but plots do make “close visits,” and are therefore useful in the sense
that they may display “silhouettes” yielding clues about underlying behavior.
(Various “close-visiting” properties are known to hold (e.g., the “shadowing
lemma” [Pei92]).)

Our illustrative calculations and chart generations are done to 80 bit IEEE
extended precision or better. In the Figures, examples of experimental-data
plots are shown for moderate numbers of iterations (100 to 1000), but we have
examined much larger iteration numbers (up to 20,000 in some cases), and have
varied the initial x choices, to increase confidence that the plots are “typical.”
As the number of iterations increases, aside from the ultimate limitations of
finite precision computer arithmetic, the effects of even coarser granularities of
graphic/printed displays will eventually begin to mask subtle details; again this
emphasizes that such charts are to be taken as guides to further study rather
than as solutions. On the other hand, as already noted, graphs of functions
used in a purely analytic manner (e.g., for rootfinding) do lead to solutions
with whatever accuracy is desired through use of standard numerical routines,
and as suggested in [Dev89], nests of small containing intervals may likewise be
accessible to accurate calculation, in tracing the progress of iterations.

7 Chaos in Two-State Systems

We have noted that the chaotic logistic map (20) with K = 3.6 is not realiz-
able with a two-state array of degree d=2; see the remark after (19). However,
the question of its array-realizibility with two states but higher degree can be
pursued: is there a one-variable polynomial f(x) which can be written in the
form (14) for some d > 2 but is actually equal to 3.6x(1 − x) ? A brute-force
approach can be taken, choosing a trial degree d and equating to zero all coef-



        

ficients of powers of x except for 3.6x and −3.6x2; the coefficients must also be
constrained to lie within ranges derived from the stochastic conditions on the
array a-values, or equivalently by the requirement that each ck-coefficient in (14)
must lie between 0 and

(

d
k

)

. A solution is obtainable, e.g., for d = 9; we omit
these calculations (they are summarized in the Appendix).

This establishes that there do indeed exist higher-degree chaotic 2-state
array-realizable systems. However, instead of relying on the known behavior
of a particular logistic map, we choose to discuss in detail a different example
which is of considerably lower degree, d = 5, and is independently analyzable.

The mapping to be studied is (21) with d = 5:

f(x) = x5 + (1 − x)5 [ = 5x4 − 10x3 + 10x2 − 5x + 1 ] . (22)

This mapping is realizable using a 2 × 2 × 2 × 2 × 2 substochastic sheet which
can be selected to be deterministic: the elements of the sheet are

a11111 = 1, a22222 = 1, a−−−−− = 0 otherwise,

and of course the complementary values (0 → 1, 1 → 0) appear in the ignored
second sheet, to complete a 2-state 6-array realization. In Fig. 8 the function
(22) and its iterates up to the sixth are plotted. It is clear that the sixth iterate
has new crossings of the diagonal—crossings not shared by the function itself or
the first five iterates—so 6 is one of the periods of f .

We shall now make use of the Sarkovskii ordering; the following is a very
brief summary (see, e.g., [Dev89]). Let ≻ denote the following ordering of the
positive integers:

3 ≻ 5 ≻ 7 ≻ 9 ≻ · · · ≻ 2·3 ≻ 2·5 ≻ · · · 223 ≻ 225 ≻ · · · ≻ 233 ≻ · · · ≻ · · ·
· · · ≻ · · · ≻ 24 ≻ 23 ≻ 22 ≻ 2 ≻ 1 (23)

(the first line begins with all odd integers except 1, and eventually lists all inte-
gers which are not powers of 2; the second line lists all powers of 2 in decreasing
order ending with 20 = 1). The principal result is the

Theorem: if f is a continuous real function, k is a period of f , and
k ≻ ℓ, then ℓ is a period of f .

Consequently, an infinity of periods is guaranteed whenever it can be shown that
f has period 3, or any other period which is not a pure power of 2.

Returning to our example, the period 6=213 appears early in the Sarkovskii
ordering (23), and therefore we can immediately conclude that f exhibits in-
finitely many periods. Note that for this example, 6 is the smallest number
available for application of Sarkovskii’s result (graphs of the third and fifth it-
erates do not yield new diagonal crossings).

Some of the “experimental evidence,” as provided by sorted charts of iter-
ation values, is shown in Fig. 7, supporting the idea that f is chaotic. These
charts do not exhibit a visible collection of flat “stair-treads.” Instead there is a
generally monotone increasing trend, consistent with the known presence of an



       

infinity of periodicities, and further suggesting that there may be no attracting
periodic cycles; this will be verified below. Further support for the hypothesis
of chaoticity is given by diagonal phase portraits such as Figs. 5 and 10, which
do not seem to exhibit consistently traversed limit-cycle “boxes,” although this
is more difficult to decide in a phase portrait if there are overlying “black” (sup-
posedly chaotic) regions.

Another obvious feature in the sorted charts is the “gap” (vertical segment)
in the range of values, indicating an interval not visited (except possibly for
the first few iterations when a starting x-value is chosen in the gap interval).
As can be seen in Fig. 8, the fixed point of f (x ≈ 0.245) lies within this
interval and is a repelling fixed point (i.e., at this point the the function has a
slope which is larger than 1 in absolute value). The interval can be quantified,
aided by graphical analysis with diagonal phase portraits; the calculations are
not pursued here, but the phenomenon can be seen by inspecting the phase
portraits in Figs. 5 and 10, which show an inner “white box” region that is not
entered (or, if initially entered, is left and not reentered).

Returning to the hypothesis that there exist no attracting periodic cycles
(which in a sense suggests the “most chaotic” of behaviors), this is verifiable for
the example, through a combination of further graphical/numerical inspections
and use of known theorems; we give only a brief sketch of the ideas.

It is instructive, although not necessary, to evaluate numerically the periodic
points and slopes up to period 6; see the Appendix. It suffices here simply to
observe that, as can be seen by close inspection of Figs. 8, there are 12 new
crossings of the diagonal by the 6th iterate, all of which can be calculated easily
to any desired accuracy and will be found to fall into two 6-cycles; the slopes
for the 6th iterates, evaluated on these 6-cycles, are greater than one in absolute
value, and therefore these cycles are repelling. The same can be said for smaller
periods (there is a 2-cycle and a 4-cycle). Note that for evaluation of slopes, we
can make use of the identity

(fk)′(pi) = f ′(p1)f
′(p2) · · · f ′(pk) (24)

which applies to the points of a k-cycle {p1, p2, . . . , pk}. This identity follows
from differentiating (fk)(x) via the chain rule and substituting the cyclic rela-
tionships among the pi and f(pi). The Appendix lists values obtained using (24)
with f ′(x) = 5(x4 − (1 − x)4). Again, accurate slope values are not important
here; we only observe that they are larger than one in absolute value.

To investigate the existence/nonexistence of attracting cycles in general, we
appeal to the negativity of the Schwartzian derivative, and its consequences.
Reviewing the facts briefly [Dev89]: The Schwartzian derivative Sf is defined
by

Sf(x) =
f ′′′(x)

f ′(x)
− 3

2

(

f ′′(x)

f ′(x)

2
)

. (25)

If this is negative (values of −∞ are allowed), and if f has m critical points
(points of zero slope), then f can have at most m attracting periodic orbits



      

(plus possibly two more associated with excursions to ±∞, which need not
concern us here because of the stochastic constraint on the mappings studied);
i.e., to each of these orbits at least one critical point of f must be attracted.

To apply this result to our example, note that a function of the form xd+(1−
x)d has exactly one critical point in [0,1], namely x = 0.5, where f is minimum;
thus if the Schwartzian derivative is negative, it follows immediately that there
is at most one attracting cycle. In addition, further graphical analysis of (22)
starting from the single critical point 0.5 can be used to aid in verifiying that
there are no attractions of this point (details omitted, but the phenomenon is
clearly visible in Fig. 11(a)). The overall conclusion, then, is that this f has no
attracting periodic points, if Sf is negative for this example f . The Schwartzian
derivative of (22) is

f(x) =
(120x− 60)/(5x4 − 5(1 − x)4) − (3/2)((20x3 + 20(1 − x)3)

(5x4 − 5(1 − x)4))2
, (26)

which is easily verified (numerically or analytically) to be negative, including the
expected −∞ value at the critical point 0.5; the Schwartzian is an even function
about this point, and is in fact negative for all real x. A plot is shown in Fig. 9.

To summarize, the d = 5 example (22) has an infinity of periods, so is chaotic
in this sense, and moreover has no attracting cycles. To establish conformance
to a full formal definition (Section 5), one would need to verify that periodic
points are dense in [0, 1] or a subset and transitivity holds (or that an equivalent
combined condition holds); although this is not needed for our purposes, we
remark that it is feasible to adapt techniques [Dev89] involving the “first return
map.”

The family of examples x′ = xd + (1 − x)d for other values of d can also
be examined, aided by graphical inspection, suggesting chaotic behavior for,
e.g., d=6,7,8,9. However for d=3,4 apparently regular behavior is observed,
with simple limit cycles; for d=4 see Figs. 1,2,3,4. We return to this issue
in Section 10. The chaotic case d=9 is of some interest because there is an
attracting periodic cycle, evidence of which appears in, e.g., sorted charts such
as those in Fig. 11. This example is indeed chaotic because it can easily be found
numerically to have period 3, the first entry in the Sarkovskii ordering. We omit
the calculations of periodic points and slopes; the results show that there is
a period-8 orbit with slope less than one in absolute value, verifying that the
orbit is attracting. This must be the only attracting orbit: the Schwartzian is
again negative, and calculations will verify that the single critical point x=0.5
is immediately attracted to the 8-orbit as in Fig. 11(a), and the points of a
small containing interval, say (0.499, 0.501), are likewise attracted. For other
starting values, the attracting cycle is visibly embedded in chaotic behavior as
in Fig. 11(b), and both the starting point and the number of iterations plotted
will affect the apparent “percentage” of embedding (this is somewhat illusory, of
course, since the example possesses an infinity of periods no matter what seems
to dominate in a particular computed picture).



         

8 Regularity of Two-State Quadratic Systems

Proposition. For n = 2 states and degree d = 2, chaos cannot occur; i.e., a
one-dimensional stochastic quadratic map f of the form (15) can exhibit only
finitely many periods, in fact at most period 2, for any permitted values of the
four aij-coefficients.

This is established through a case analysis showing that, in addition to the
obvious fixed point(s), there may be period-2 points for some coefficient values,
but that no greater periodicities will be encountered, because the relevant points
are attracting; i.e., in all cases either |slope of f | < 1 at a fixed point or if not
then a subsequently-appearing 2-cycle is such that |slope of f2| < 1 at the
period-2 points.

For notational convenience in this analysis, the coefficients of the quadratic
(15) are renamed as follows:

x′ = f(x) = ax2 + bx(1 − x) + c(1 − x)2 [ 0 ≤ a, c ≤ 1, 0 ≤ b ≤ 2 ]

= f(1)x2 + (4f(0.5) − f(1) − f(0))x(1 − x) + f(0)(1 − x)2

= (a + c− b)x2 + (b− 2c)x + c

= Ax2 + Bx + c . (27)

This one-dimensional mapping f arises from the first substochastic sheet of
a 2×2×2 array (i.e., a 2-state 3-array) of the form

( (

a b1
b2 c

) (

1 − a 1 − b1
1 − b2 1 − c

) )

with off-diagonal values satisfying b1 + b2 = b (b ≤ 2 since 0 ≤ b1, b2 ≤ 1).
The slope and curvature of the quadratic f are given by

Slope : f ′(x) = 2Ax + B

Curvature : f ′′(x) = 2A = −2(b− a− c) (28)

Without loss of generality f can be assumed to be convex-cap; i.e., the constant
curvature f ′′ can be taken to be negative: A < 0, b > a + c. Positive curvature
can be handled in an identical manner, or through consideration of the mapping
arising from the second sheet of the probabilistic array. Cases of zero curvature,
i.e., reduction of f to a linear or constant function (i.e., realizable by a 2-state
Markov chain), can be dismissed immediately, aided by simple graphical inspec-
tion showing one of: a single attracting fixed point in the interval [0, 1]; or a
trivial “all-points-are-fixed” situation when f(x) = x; or a trivial “all-2-cycles”
situation when f(x) = 1 − x (corresponding to the three Markovian examples
(7)). The case c = 0 (f(0) = 0) can also be dismissed: f(x) = (Ax + B)x has a
fixed point at x = 0 with slope B = b, attracting all points if b ≤ 1; if b > 1 the
additional fixed point at x0 = (b− 1)/(b− a) (b− a = −f ′′/2 > 0) appears with
|f ′(x0)| = 2− b ≤ 1 and all points iterate toward x0. Furthermore, a = f(1) < 1
can be assumed (otherwise, with f a convex-cap quadratic, there is only the
trivial attracting fixed point x = 1.)



      

To summarize, it suffices to restrict attention to cases in which

0 ≤ a < 1, 0 < c ≤ 1, a + c < b ≤ 2 (29)

and further restrictions on the coefficients to be studied will be introduced in
stages below. First, some typical functions f (and f2) are graphed in Fig. 12;
graphs (i) through (v) show functions satisfying the constraints (29), while for
contrast (vi) is the logistic map (19) which does not satisfy the constraints.

In cases where the slope of f at its fixed point p0 is less than one in absolute
value, e.g., Fig. 12(i), it is immediately clear (with the aid of simple graphical
analysis) that all starting x-values in the unit interval will be attracted to p0;
in these cases there can be no periodic cycles and further study is not needed,
because there can be no new crossings of the diagonal I(x) = x by any of the
functions f2, f3, . . . .

In Figs. 12(iii) and (iv), the slope of f at p0 is > 1 in absolute value, and
the presence of two new crossings of I by the second iterate f2 shows that there
is a 2-cycle; in Fig. 13 the cycle is outlined as a square, as it would appear as a
limit in a diagonal phase portrait. The slopes of f2 at the periodic points are
small in absolute value, so the cycle is attracting.

It must be demonstrated that these are the only behaviors possible. Specif-
ically, it remains to show that if there is a 2-cycle, the slopes at the period-2
points cannot be larger than one in absolute value. We approach this through a
series of further restrictions to those cases in which a 2-cycle can actually occur,
with verification that several significant x and y values are then constrained in
such a way that the main conclusion follows.

Let p0 be the fixed point of f in the interval [0, 1], and let s0 be the slope at
p0. Let e be the point at which f assumes its maximum value m as a convex-cap
quadratic on the real line; i.e., in some cases the maximizing point e may lie
outside [0, 1]. Then

0 = f ′(e) = 2Ae + B, e =
B

−2A
=

b− 2c

2[b− (a + c)]
(30)

m = f(e) = Ae2 + Be + c = −Ae2 + c =
B2

−4A
+ c (31)

s0 = f ′(p0) = 2Ap0 + B = 2A(p0 − e) (32)

p0 =
B − s0

−2A
= e +

−s0

−2A
. (33)

The fixed point p0 and the slope s0 may be expressed in terms of the coefficients
of f by solving Ax2 + Bx + c = x:

p0 =
[

−(B − 1) −
√

(B − 1)2 − 4Ac
]

/2A (34)

s0 = 1 −
√

(B − 1)2 − 4Ac = 1 −
√

(b− 1)2 + 4c(1 − a) (35)

p0 =
b− 2c

2[b− (a + c)]
+

√

(b− 1)2 + 4c(1 − a) − 1

2[b− (a + c)]
(36)



     

Changing −√ to +
√

in (34) produces an irrelevant fixed point, outside of [0,1],

to the left of the origin: f(x) is a convex-cap quadratic behaving asymptotically
like −x2 as x → ∞, so a negative-x crossing of the 45-degree line is necessarily
present, whenever there is a positive crossing point p0. According to (35),we can
say the following about the slope at the relevant fixed point p0 in [0, 1]:

s0 < 0 if (b− 1)2 + 4c(1 − a) > 1 (37)

s0 < −1 if (b− 1)2 + 4c(1 − a) > 4 (38)

This is clearly possible within the coefficient ranges (29). The choices a = 0, b =
2, c = 1 yield the largest attainable magnitude:

max[(b− 1)2 + 4c(1 − a)] = 5 (then s0 = 1 −
√

5 = −1.23607). (39)

The slope s0 when positive must be < 1, since the largest attainable positive
value is s0 = 1 − √

ǫ for small positive ǫ, e.g., ǫ = 4c(1 − a) with c close to 0
and a close to 1 (satisfying (29)). Therefore, in the cases of interest here, at
least (37) is added to the list of restrictions on coefficients, or the stronger (38)
is assumed as appropriate.

With s0 negative, a graph showing f and the 45-degree line I must have the
feature that f crosses I from above/left to below/right; i.e., the pair (p0, p0) will
be seen below/right of the pair (e,m), since the latter is the “peak of the cap”
of the quadratic curve and the region of negative slopes is [x > e]: m = f(e) >
f(p0) with e < p0. (It can also be seen from (32) that p0 > e, for negative s0

and negative curvature 2A). The maximizing point e may sometimes be to the
left of [0, 1] (an exact evaluation is not needed here—both cases are allowed in
the argument).

Now consider the second iterate f2 = f(f); this function potentially has
four fixed points, the roots of the quartic f2(x) − x. Two real fixed points are
always present, identical to those of f : p0 and an irrelevant outside point (in
Fig. 12(v), this point would be below the lower left corner of the displayed area).
If there are two more real roots of f2(x) − x in [0, 1], they are the source of a
2-cycle. We wish to verify that, as anticipated, the two new points appear when
s0 < −1. Call these period-2 points p1 and p2 (p1 < p2); their locations and
f2−slopes are to be studied.

The slope and curvature of f2 are

(f2)′(x) = f ′(f(x))f ′(x) (40)

(f2)′′(x) = f ′′(f(x))[f ′(x)]2 + f ′(f(x))f ′′(x) (41)

There are potentially three critical points—zero-slope points—for f2, namely the
maximum point e for f (f ′(e) = 0), and possibly two solutions (if real-valued)
of f(x) = e. These solutions correspond to the intersections, if they exist, of
the convex-cap quadratic f with the horizontal line y ≡ e; two intersections if
e < m, one if e = m, and none if e > m. The latter two cases are inapplicable
here, with the restriction to e < p0 < m already in effect. So f(x) = e = −B/2A



      

has two real solutions, which can be written in the form

B ±
√
B2 − 2B − 4Ac

−2A
= e±

√

e2 − (c− e)/A . (42)

The two points are symmetrically located about e, which is an obvious property
of f2 = f(f): considered as a function defined on the entire real line, f(f(x))
inherits from f(x) its even symmetry about x = e. Let r denote the significant
solution, the one using +

√
in (42), so r > e. At e, f2 has a local minimum,

while there are local maxima at both r and its companion point ((42) with −√ ),
as can be seen from the curvature values:

(f2)′′(e) = (2A)(0) + f ′(m)(2A) = (−)(−) > 0 (43)

(f2)′′(r) = (2A)[f ′(r)]2 + (0)(2A) = (−)(+) < 0 (44)

(the second holds at the companion point as well). For the signs we note that
A < 0 is assumed, and m > e = point of zero slope for f , so f has negative slope
at m.

The two local maxima of f2 have the same value as the maximum of f :
f(f(r)) = f(e) = m. For large |x| the quartic f2(x) is asymptotic to A3x4 with
A < 0, so r and its companion are in fact points of global maxima for f2 when
its domain is extended to the real line. Thus the horizontal line x ≡ m touches
all three maxima, one for f and two for f2, the curves of f and f2 otherwise lie
below this line, and the local minimum of f2 occurs midway between its maxima,
at the same point e of even symmetry where f is maximum. The extended graph
of f2 is therefore verified to have a smooth symmetric “M-shape” in the cases
we are now considering; see Fig. 12(v). The portions of the graphs of f and f2

seen within the unit square may encompass one or more of the three extrema;
this is evident in (i) through (iv) of Fig. 12. The −√ choice in (42) lies to the
left of e and, for the cases being considered, does not play a role in determining
crossings of the 45-degree line, so this companion point need not be mentioned
further.

The local minimum of f2 at e has value f(f(e)) = f(m). In (i), (ii), and (v)
of Fig. 12, this value appears to be positioned above e on the vertical line y = e
and therefore also above the 45-degree line, and in the “borderline” case (iii) the
location is at the origin; formal verification is needed that other locations can
be ruled out. This will be seen to be of importance in establishing non-chaotic
behavior; in contrast, for the classical chaotic logistic map (19), the minimum of
f2 dips below the 45-degree line, as illustrated in Fig. 12(vi). To verify f(m) > e,
we may equivalently show that m < r: both r and m lie to the right of e and
thus are in the region of the x-axis where f has negative slope, so m < r ⇐⇒
f(m) > f(r). We calculate the difference r − m, the left side of (42) (+ sign)
minus the right side of (31), and show that it is positive for the cases being
considered:

r −m =
2B + 2

√
B2 − 2B − 4Ac−B2 + 4Ac

−4A
=

√
β − (β/2)

−2A
(45)

where β = B2 − 2B − 4Ac = [(b− 1)2 + 4c(1 − a)]−1 = (1−s0)
2−1 (46)



      

Since the function
√
x−x/2 is positive for 0 < x < 4, β should be checked to see

if it lies in this range. Using (46) with (39)(37)(38), we see that β ≤ 5−1 = 4 and
β > 1−1 = 0, so β is indeed restricted as desired. Fig. 12(iii) shows a boundary
case of β = 4 (s0 = 1 −

√
5); (ii) illustrates β = 3 (s0 = −1), (iv) depicts a

typical intermediate case with s0 < −1, and Fig. 13 repeats this case with labels
and lines drawn to emphasize the relationships that have been established.

With Fig. 13 as a guide, the argument can now be completed. Let us trace
the progress of the graph of f2 from left to right. Beginning at its local minimum,
which is left/above (e, e), f2 passes through (p0, p0) and reaches its maximum
below/right of the 45-degree line I. According to (40) (or (24)), the slope of f2

at p0 is

(f2)′(p0) = (f ′(p0))
2 (47)

which is positive and greater than one precisely when s0 < −1. In this case,
the trace just described must progress from left to right by crossing I at (p0, p0)
from below to above; therefore, there must be two intermediate crossings of I, at
p1 and p2, positioned below and above p0, and these two crossings of I must be
left-to-right with positive slopes smaller than one (slope values greater than one
at these points would require new intermediate critical points and/or crossings
of f2, but none can appear since all possibilities have previously been accounted
for). This completes the argument as desired, verifying a small (positive and <
1) slope value at the 2-cycle points whenever they appear. From (24), these two
slopes have the common numerical value given by

(f2)′(p1) = (f2)′(p2) = f ′(p1)f
′(p2) . (48)

We observe that for strongly negative s0-slope values, the points e and r
are typically near the left and right ends inside the interval [0,1] as in Fig. 13,
but these points could also fall at the ends as in Fig. 12(iii), or even slightly
outside the interval to the left and right, within the coefficient constraints. In
these cases,the conclusions reached regarding 2-cycle slopes would obviously con-
tinue to be valid (e.g., the x axis of the template Fig. 13 could be extended to
accommodate the points and the same constructions would hold).

9 Remarks on Multidimensional Maps

In a lengthy series of investigations beginning in the late 1950s, Ulam and Stein
[Ste93] considered many examples of polynomially nonlinear multidimensional
mappings, using exploratory computational visualization. In our terminology,
these examples can be seen to be finite-state stochastic transformations realizable
by 3-state or 4-state deterministic arrays with degrees d = 2 or d = 3. It was
observed, within the limits of the experimental computational tools available
at the time of these studies, that quadratic mappings all seemed to lead to
non-chaotic behavior, but that there were interesting degree-3 examples which
seemed to be chaotic (instead of the more recent term “chaos,” a richly complex



      

trajectory or “mess” was precisely the same idea referred to in that work). One
of these examples is

x′ = 6xyz + 3xz2 + 3yz2 + 3y2z + z3 (49)

y′ = x3 + y3 + 3x2z (50)

z′ = 3xz2 + 3x2z (51)

[ z = 1 − x− y, z′ = 1 − x′ − y′ ]

(the state-probability vector (x1, x2, x3) = (x, y, z) here). This is easily seen to
be realizable by a 3-state 4-array which is deterministic (three 3 × 3 × 3 sheets,
one each for the x, y, and z dimensions, with all 0 and 1 element values, obtained
from inspection of the defining equations above; e.g., a−−− 1 = 1 for −−−= one
of the 6 permutations of {1, 2, 3}, etc.). There are three coordinate dimensions
but the actual geometric dimension is two because of the stochastic constraint,
so there are various choices of axes for plotting purposes; two of the three xyz
axes can be shown, in a planar plot of, e.g., the x and y iteration values, or a
barycentric coordinate transformation of the problem to a triangular region can
be used. A typical (x, y) orbit chart is shown in Fig. 14. The orbit is plotted as
a collection of points (small crosses); a complex “attracting basin” is revealed.
The data are reused in Fig. 15, showing a “trajectory” version of the chart, in
which successive (x, y) points are connected with straight lines; this is redundant,
but serves visually to emphasize the “motion” of the trajectory—the fact that
successive points can be widely separated—another view of the complexity of the
behavior. The attracting basin shown is typical for some ranges of initial (x, y, z)
values; other starting points can yield patterns appearing to be concentrated on
straight lines but still richly complex.

This is generally regarded as a chaotic example, although it remains to prove
exact conformance with some choice of formal definition. An acceptable working
concept of multidimensional chaos needs to be specified more precisely before
these and other examples can be classified fully. It should be kept in mind that
some of the tools available in one dimension are specific to that situation and
do not have exact counterparts in more dimensions; e.g., there is no analog of
the Sarkovskii ordering, so one cannot depend on an appeal to such a general
theorem about periodicities. An approach based on studying projections onto
the axes may have some merit; however, relationships among projections, one-
dimensional iterations, and multidimensional iterations then need to be clarified.

10 Conclusions and Conjectures

In summary, polynomially nonlinear interaction, as modeled by a finite-state
probabilistic array, has strong potential for chaos, except for small numbers
of states and low degree. In particular, 2-state or one-dimensional quadratic
maps are guaranteed to be nonchaotic, while there exist 2-state degree-5 chaotic
examples and many of higher degree. There remains a small gap to investigate in
one dimension, since no chaotic 2-state arrays of degree 3 or 4 have been found;



       

based on investigation of examples, we conjecture that, at least for degree 3,
nonchaoticity prevails. The degree-4 example x4 + (1 − x)4 appears regular,
with a period 2 (see Figs. 1,2,3,4 with comments in Section 5); however, degree
4 remains a speculative borderline situation (the chaotic d=5 example (22) is
actually a degree-4 polynomial, although as already noted the system as a whole
is still properly of degree 5). For more dimensions or states, there are apparently
chaotic examples of degree as low as 3 (as in the Ulam/Stein map discussed
above); i.e., there may be a dimension(states)/degree tradeoff in achieving a
level of complexity necessary for prevalence of chaos. In general, as the array
size (combining states and degree) increases, chaotic behavior is not only possible
but may be typical in a variety of situations. Details of the chaotic/nonchaotic
dichotomy remain to be explored; e.g., are there simply-expressed constraint
conditions (or classes of arrays) that ensure non-chaotic or chaotic behavior?
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Appendix (Details, Calculations)

Array products; nonassociativity . A general n-state k-array A =‖ ai1i2···ik ‖
has indexed elements (which may be from an arbitrary commutative algebra,
i.e., not necessarily real numbers satisfying probabilistic constraints), with each
of the k indexes ranging from 1 to n. If A is an n-state k-array and B is an
n-state ℓ-array, then the product C = AB is defined to be the n-state k-array
with elements

ci1i2···ik =
∑

1≤j1,...,jℓ−1≤n

{

ℓ−1
∏

p=1

ai1i2···ik−1jp

}

bj1j2···jℓ−1ik .

To see that this is a nonassociative product, consider the 2-state 3-array

A =

( (

1 0.5
0.5 1

) (

0 0.5
0.5 0

) )

and the 2-state 1-array (i.e., 2-vector) v = (x, y). Briefly summarizing results
obtainable from direct applications of the array product definition:

vA = (x2 + xy + y2, xy) = (quadratic (in x & y), quadratic)

and ((vA)A) = (quartic, quartic);

AA = another 2−state 3−array,

so (v(AA)) = another (quadratic, quadratic) 6= ((vA)A) .

Polynomials; collected powers; coefficients. We may write (8) in an alterna-
tive form which displays the powers of the xi explicitly:

x′
j =

∑

0≤d1,...,dn≤d
d1+···+dn=d

xd1

1 xd2

2 · · ·xdn
n cd1d2···dnj . (52)

The a- and c- coefficients must satisfy

cd1d2···dnj =
∑

dk of i1,...,id=k
k=1,2,...,n

ai1i2···idj , (53)

n
∑

j=1

cd1d2···dnj =
d!

d1!d2! · · · dn!
. (54)

The ranges that are possible for a-values realizing a given mapping can be de-
duced using (53) and (54). Formula (53) follows immediately from comparison
of the polynomials (8) and (52). To obtain (54) consider the identity

x′
1 + x′

2 + · · · + x′
n = 1 = (x1 + x2 + · · · + xn)d (55)

(i.e., components of probability vectors must sum to 1). Substituting (52) in the
left side of (55), using the usual multinomial expansion on the right side, and



        

equating coefficients of like powers, yields (54). In other words, the left side of
(55) simply represents a partitioning of the multinomial expansion of the right
side; this suggests an easy method for constructing examples. In one dimension
(two states), (14) amounts to a specialization of (54), and the relationships
reduce to the simple observation that in the term ckx

k(1 − x)k, the value of
ck (which is itself a sum of a-values) must lie between zero and the binomial
coefficient

(

d
k

)

.
Degree-9 chaotic example derived from logistic map. The numbers c0, . . . , c9

must be upperbounded by 1, 9, 36, 84, 126, 126, 84, 36, 9, 1. Expand the left
side of (14) to express the 10 Ck as linear combinations of the ck (i.e., C0 = c9,
C1 = c8 − 9c9, C2 = c7 − 8c8 + 36c9, etc.). Attempt to choose nonnegative ck
values so that their upperbounds are satisfied and the Ck vanish except for C1 =
3.6, C2 = −3.6. Solution: c0, . . . , c9 = 0, 3.6, 25.2, 75.6, 126, 126, 75.6, 25.2, 3.6, 0.
Degree 9 is the least for which this simple forced fit of 3.6x(1 − x) is successful;
lower degrees are easily checked, by the same direct-comparison approach, and
found to be infeasible.

Formal vs. actual degree. The degrees of some of the n polynomials defined
in (8) may be less than d, after simplification by collection of terms with like
powers as in (52). This suggests that there may sometimes be a need to dis-
tinguish between the formal degree d of the polynomial collection (8) and the
actual degree (≤ d) of a particular evaluated polynomial. However, the sum
over j in (8) must be 1, and this fact, combined with (10), shows that not all
of the n polynomials can have degree less than d; i.e., the formal degree d of a
system (8) always agrees with the actual degree of one or more of its component
polynomials, so in this sense it is unambiguous to say that the degree of a prob-
abilistic system is d. This can also be seen by considering the consequences of
the constraint (55).

Numerical values for the degree-5 example (22). Fixed points and periods
are easily computed by applying a standard numerical rootfinding routine (e.g.,
false position) to the functions fk(x) − x, after inspection of their graphs (see
Fig. 8) to select appropriate subintervals for initial estimates. The results are
as follows, rounded to adequate precision for the illustration (see also [Far92]).
Fixed point of f : 0.2454621. New fixed points of f2: 0.0939116 and 0.6107423, a
single 2-cycle. New fixed points of f3: none. New fixed points of f4: 0.0730441,
0.1532676, 0.4353266, 0.6843791; numbering these points in order, and evaluat-
ing f at each point, we see that the 4-cycle is: 1 → 4 → 2 → 3. New fixed points
of f5: none. There are 12 new fixed points of f6: 0.0632016(#1), 0.0650534,
0.1186134, 0.1353771, 0.1879693, 0.1971804, 0.3337936, 0.3533058, 0.4832531,
0.5319263, 0.7143889, 0.7214919(#12), which constitute two 6-cycles:

1 → 12 → 6 → 7 → 4 → 9; 2 → 11 → 5 → 8 → 3 → 10.
Evaluating f ′ at the periodic points and using (24), we obtain (f6)′(p) = −2.28
for p in the first 6-cycle, and −4.05 for the second; likewise, slopes for 2-cycles
and 4-cycles are −1.96 and −3.26, and the slope of f at its fixed point is −1.6,
so all of these points are repelling (slope absolute values exceed 1), as expected.



        

Figures

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 1: f(x)=x4+(1−x)4, orbit chart, 500 iterations starting from x=0.98.
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Figure 2: f(x)=x
4
+(1−x)

4
, plots of

f(x) and f(f(x)) vs. x.
Figure 3: f(x)=x

4
+(1−x)

4
, diagonal

phase portrait of 500 iterations start-
ing from x=0.98.
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Figure 4: f(x)=x
4
+(1−x)

4
, sorted

chart of 500 iterations, starting from
x=0.98.

Figure 5: f(x)=x
5
+(1−x)

5
, diagonal

phase portrait of 100 iterations start-
ing from x=0.3.
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Figure 6: f(x)=x
5
+(1−x)

5
, orbit chart, 100 iterations starting from x=0.3.
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Figure 7: f(x)=x5+(1−x)5, sorted charts, starting from
x=0.3; 100 iterations shown in (a), 500 iterations in (b).
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Figure 8: f(x)=x5+(1−x)5, plots of f and its iterates up to the
6th. (a): f , f2, f4. (b): f3, f5. (c): f6.
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Figure 9: f(x)=x5+(1−x)5, plot of
the Schwartzian derivative (Sf)(x).

Figure 10: f(x)=x5+(1−x)5, diago-
nal phase portrait, 1000 steps, initial
x=0.5.
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Figure 11: f(x)=x9+(1−x)9, 1000 iterations sorted. Initial x: 0.5 (a), 0.3 (b).
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Figure 12: plots of f(x) and f(f(x)) for the quadratics f(x) = ax
2

+ bx(1 −
x)+ cx

2
. Values of (a, b, c): (13/40, 1.75, 5/8) in (i); (1/8, 2, 6/7) in (ii); (0, 2, 1)

in (iii); (0.02, 2, 0.88) in (iv) and (v); (0, 3.6, 0) in (vi) ((vi) is the logistic map
with K=3.6).
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Figure 13: Enlargement of (iv) above, with labels used
in Section 8.
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Figure 14: Ulam/Stein example; (x, y) points plotted for 1000 iterations, starting
with the initial values x = 0.5, y = 0.2, z = 0.3.
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Figure 15: As above; successive (x, y) points joined with lines; 100 iterations
shown.


