
OpenGL Extensions Guide
Graphics & Animation: 3D Drawing

2010-02-24

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, and Mac OS are
trademarks of Apple Inc., registered in the
United States and other countries.

DEC is a trademark of Digital Equipment
Corporation.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

OpenGL Extensions Guide 7

Overview 7
OpenGL Extensions by Task 8

Working With Vertex Data 8
Working With Textures 9
Using Pixel Buffers 10
Using Framebuffer Objects 11
Optimizing Flushing 11
Working With Depth and Stencil Buffers 11
Working With Lighting, Fog, and Shadow Effects 12
Using Vertex Programs 12
Using Fragment Programs 13
Using Shader Objects 13
Supporting Data Types and Formats 14
Imaging and Blending 15
Tessellation 15
Binding and Loading Parameters 16
Multisampling and Using Mipmaps 16
Using Point Sprites 16
Working With Raster Positions 16

OpenGL Extensions 16
GL_APPLE_aux_depth_stencil 16
GL_APPLE_client_storage 17
GL_APPLE_element_array 17
GL_APPLE_fence 17
GL_APPLE_float_pixels 17
GL_APPLE_flush_buffer_range 17
GL_APPLE_flush_render 17
GL_APPLE_object_purgeable 18
GL_APPLE_packed_pixels 18
GL_APPLE_pixel_buffer 18
GL_APPLE_rgb_422 18
GL_APPLE_specular_vector 18
GL_APPLE_texture_range 19
GL_APPLE_transform_hint 19
GL_APPLE_vertex_array_object 19
GL_APPLE_vertex_array_range 19
GL_APPLE_vertex_program_evaluators 19
GL_APPLE_ycbcr_422 19
GL_ARB_color_buffer_float 19
GL_ARB_depth_texture 20

3
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

GL_ARB_draw_buffers 20
GL_ARB_fragment_program 20
GL_ARB_fragment_program_shadow 20
GL_ARB_fragment_shader 20
GL_ARB_half_float_pixel 20
GL_ARB_half_float_vertex 21
GL_ARB_imaging 21
GL_ARB_multisample 21
GL_ARB_multitexture 21
GL_ARB_occlusion_query 21
GL_ARB_pixel_buffer_object 21
GL_ARB_point_parameters 22
GL_ARB_point_sprite 22
GL_ARB_shader_objects 22
GL_ARB_shader_texture_lod 22
GL_ARB_shading_language_100 22
GL_ARB_shadow 22
GL_ARB_shadow_ambient 22
GL_ARB_texture_border_clamp 23
GL_ARB_texture_compression 23
GL_ARB_texture_compression_rgtc 23
GL_ARB_texture_cube_map 23
GL_ARB_texture_env_add 23
GL_ARB_texture_env_combine 23
GL_ARB_texture_env_crossbar 24
GL_ARB_texture_env_dot3 24
GL_ARB_texture_float 24
GL_ARB_texture_mirrored_repeat 24
GL_ARB_texture_non_power_of_two 24
GL_ARB_texture_rectangle 24
GL_ARB_texture_rg 24
GL_ARB_transpose_matrix 25
GL_ARB_vertex_blend 25
GL_ARB_vertex_buffer_object 25
GL_ARB_vertex_program 25
GL_ARB_vertex_shader 25
GL_ARB_window_pos 26
GL_ATIX_pn_triangles 26
GL_ATI_array_rev_comps_in_4_bytes 26
GL_ATI_blend_equation_separate 26
GL_ATI_blend_weighted_minmax 26
GL_ATI_pn_triangles 26
GL_ATI_point_cull_mode 26
GL_ATI_separate_stencil 26
GL_ATI_texture_compression_3dc 27
GL_ATI_texture_env_combine3 27

4
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

GL_ATI_texture_float 27
GL_ATI_texture_mirror_once 27
GL_ATI_text_fragment_shader 27
GL_EXT_abgr 27
GL_EXT_bgra 27
GL_EXT_bindable_uniform 28
GL_EXT_blend_color 28
GL_EXT_blend_equation_separate 28
GL_EXT_blend_func_separate 28
GL_EXT_blend_minmax 28
GL_EXT_blend_subtract 28
GL_EXT_clip_volume_hint 29
GL_EXT_compiled_vertex_array 29
GL_EXT_depth_bounds_test 29
GL_EXT_draw_buffers2 29
GL_EXT_draw_range_elements 29
GL_EXT_fog_coord 29
GL_EXT_framebuffer_blit 30
GL_EXT_framebuffer_multisample 30
GL_EXT_framebuffer_object 30
GL_EXT_framebuffer_sRGB 30
GL_EXT_geometry_shader4 30
GL_EXT_gpu_program_parameters 30
GL_EXT_gpu_shader4 31
GL_EXT_multi_draw_arrays 31
GL_EXT_packed_depth_stencil 31
GL_EXT_paletted_texture 31
GL_EXT_rescale_normal 31
GL_EXT_secondary_color 31
GL_EXT_separate_specular_color 31
GL_EXT_shadow_funcs 32
GL_EXT_shared_texture_palette 32
GL_EXT_stencil_two_side 32
GL_EXT_stencil_wrap 32
GL_EXT_texture_compression_dxt1 32
GL_EXT_texture_compression_s3tc 32
GL_EXT_texture_env_add 33
GL_EXT_texture_filter_anisotropic 33
GL_EXT_texture_integer 33
GL_EXT_texture_lod_bias 33
GL_EXT_texture_mirror_clamp 33
GL_EXT_texture_rectangle 34
GL_EXT_texture_sRGB 34
GL_EXT_transform_feedback 34
GL_IBM_rasterpos_clip 34
GL_NV_blend_square 34

5
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

GL_NV_conditional_render 34
GL_NV_depth_clamp 35
GL_NV_fog_distance 35
GL_NV_fragment_program2 35
GL_NV_fragment_program_option 35
GL_NV_light_max_exponent 35
GL_NV_multisample_filter_hint 35
GL_NV_point_sprite 35
GL_NV_register_combiners 35
GL_NV_register_combiners2 36
GL_NV_texgen_reflection 36
GL_NV_texture_shader 36
GL_NV_texture_shader2 36
GL_NV_texture_shader3 36
GL_NV_vertex_program2_option 36
GL_NV_vertex_program3 36
GL_SGIS_generate_mipmap 37
GL_SGIS_texture_edge_clamp 37
GL_SGIS_texture_lod 37
GL_SGI_color_matrix 37

Document Revision History 39

6
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Companion guide OpenGL Programming Guide for Mac OS X

Overview

OpenGL Extensions Guide is a reference for the extensions that Mac OS X supports. The guide provides a
short summary of each extension, a link to the official specification, availability information, and hardware
renderer support. Availability refers to the version of the Mac OS that introduces the extension. Renderers
is a list of the renderers that, at the time of the extension’s introduction in Mac OS X, supported the extension.
To get complete availability and renderer information for a particular extension, you should also consult
OpenGL Capabilities. This multidimensional table lists extensions and parameter values by the Mac OS X
versions, renderers (graphics adaptors), and CPU hardware that supports each.

As the OpenGL specification evolves, it introduces more extensions that can you use to optimize performance
or add cool effects to your OpenGL application. In addition to looking at the specification for an extension,
you may want to consult the appropriate OpenGL specification that introduced that extension. Keep in mind
that each version of the OpenGL specification modifies the previous one.

 ■ OpenGL 1.1 Specification adds vertex arrays, polygon offset, logical operations, texture image formats,
texture replace environment, texture proxies, copy texture and subtexture, and a number of other minor
changes to the base OpenGL 1.0 specification.

Availability: Available in Mac OS X v10.0 and later.

Renderers: All

 ■ OpenGL 1.2.1 Specification (PDF) adds 3D texturing, BGRA pixel formats, packed pixel formats, normal
rescaling, separate specular color, texture coordinate edge clamping, texture LOD control, vertex array
draw element range, and the imaging subset to the OpenGL 1.1 specification. (The imaging subset is
optional. See GL_ARB_imaging (page 19).)

Availability: Available in Mac OS X v10.0 and later.

Renderers: Radeon, Radeon Mobility, Radeon 7500 Mobility, Radeon 8500, Radeon 9000, Radeon 9200,
Radeon 9600, Radeon 9800, GeForce 3, GeForce 4Ti, GeForce F

 ■ OpenGL 1.3 Specification (PDF) adds Compressed Textures, Cube Map Textures, Multisample, Multitexture,
Texture Add Environment Mode, Texture Combine Environment Mode, Texture Dot3 Environment Mode,
Texture Border Clamp, and Transpose Matrix to the OpenGL 1.2 specification.

Availability: Available in Mac OS X v10.1 and later.

Renderers: Radeon, Radeon Mobility, Radeon 7500 Mobility, Radeon 8500, Radeon 9000, Radeon 9200,
Radeon 9600, Radeon 9800, GeForce 3, GeForce 4Ti, GeForce FX

Overview 7
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://developer.apple.com/graphicsimaging/opengl/capabilities/
http://www.opengl.org/documentation/specs/version1.1/glspec1.1/index.html
http://www.opengl.org/documentation/specs/version1.2/opengl1.2.1.pdf
http://www.opengl.org/documentation/specs/version1.3/glspec13.pdf

 ■ OpenGL 1.4 Specification (PDF) adds automatic Mipmap Generation, Blend Squaring, Imaging Subset
changes, Depth and Shadow textures, Fog Coordinates, Multiple Draw Arrays, Point Parameters, Secondary
Color, Separate Blend Functions, Stencil Wrap, Texture Crossbar Environment Mode, Texture level of
detail (LOD) bias, Texture Mirrored Repeat, and Window Raster Position.

Availability: Available in Mac OS X v10.2.3 and later.

Renderers:

 ■ OpenGL 1.5 Specification (PDF) adds Buffer Objects, Occlusion Queries, Shadow Functions, as well as
introducing the ARB_shader_objects, ARB_vertex_shader and ARB_fragment_shader extensions.

Availability: Available in Mac OS X v10.3.9 and later.

Renderers: GeForce 6800, GeForce FX, Radeon X800, Radeon 9600/9700/9800

 ■ OpenGL 2.0 Specification (PDF) adds Shader Objects, Shader Programs, and the OpenGL Shading Language
as core features. It also adds Multiple Render Targets, Non-Power-Of-Two Textures, Point Sprites, Separate
Blend Equations and Separate Stencils.

Availability: Available in Mac OS X v10.4.4 and later.

Renderers: Radeon X1600/X1900, Quadro FX 4500, GeForce 6800 or better.

 ■ OpenGL 2.1 Specification (PDF) adds Shader Language 1.20, Non-Square Matrices, Pixel Buffer Objects,
and sRGB Textures.

Availability: Available in Mac OS X v10.5 and later.

Renderers: Apple Software Renderer

OpenGL Extensions by Task

Working With Vertex Data

GL_ARB_vertex_buffer_object (page 25)
Increases data transfer rate by caching data in high-performance graphics memory on the server.

GL_EXT_transform_feedback (page 34)
Defines a transform feedback mode for recording vertex attributes for each primitive that OpenGL
processes.

GL_ATI_array_rev_comps_in_4_bytes (page 26)
Provides an optimized data transfer path for rendering vertex array data on certain ATI hardware
when individual components are smaller than 4 bytes per component.

GL_ARB_vertex_blend (page 25)
Provides the ability to replace the single modelview transformation with a set of n vertex units.

GL_APPLE_vertex_array_object (page 19)
Handles multiple vertex arrays as array objects, similar to texture objects.

GL_EXT_multi_draw_arrays (page 31)
Provides function for handling multiple lists of vertices in one call.

GL_APPLE_vertex_array_range (page 19)
Specifies to use client memory for vertex arrays.

8 OpenGL Extensions by Task
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://www.opengl.org/documentation/specs/version1.4/glspec14.pdf
http://www.opengl.org/documentation/specs/version1.5/glspec15.pdf
http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf
http://www.opengl.org/registry/doc/glspec21.20061201.pdf

GL_APPLE_vertex_program_evaluators (page 19)
Supports the use of one- and two-dimensional evaluators with vertex program attributes.

GL_EXT_draw_range_elements (page 29)
Adds a vertex array rendering command (glDrawRangeElementsEXT) that is a restricted form of
the glDrawElements command.

GL_APPLE_element_array (page 17)
Improve draw-elements style vertex indices submission performance by allowing index arrays.

GL_EXT_compiled_vertex_array (page 29)
Allows caching or precompiling static vertex array for more efficient rendering.

Working With Textures

GL_ARB_texture_float (page 24)
Extends internal formats for textures that have 16- and 32-bit floating-point components.

GL_ARB_texture_non_power_of_two (page 24)
Relaxes the size restrictions for the 1D, 2D, cube map, and 3D texture targets.

GL_ARB_texture_rectangle (page 24)
Adds a new texture target that supports 2D textures without requiring power-of-two dimensions.

GL_EXT_texture_compression_dxt1 (page 32)
Provides compressed textures that allow for significantly reduced texture storage.

GL_APPLE_texture_range (page 19)
Allows application to provide hints for texture storage and to specify a memory range for texture
data.

GL_EXT_texture_mirror_clamp (page 33)
Extends texture wrapping to include three mirroring modes.

GL_EXT_texture_sRGB (page 34)
Supports the sRGB color space for textures.

GL_ARB_texture_mirrored_repeat (page 24)
Extends the set of texture wrap modes to include a mirrored repeat mode.

GL_APPLE_client_storage (page 17)
Allows applications to cache textures locally for use by OpenGL.

GL_ARB_texture_env_combine (page 23)
Adds a texture environment function that lets you combine texture operations.

GL_ARB_texture_env_crossbar (page 24)
Adds the capability to use the texture color from other texture units as sources to the GL_COMBINE_ARB
environment function.

GL_ARB_texture_cube_map (page 23)
Provides a texture generation scheme for cube map textures, where the current texture is a set of six
2-dimensional images that represent the faces of a cube.

GL_ARB_texture_border_clamp (page 23)
Adds a texture clamping algorithm for clamping texture coordinates at all mipmap levels such that
the GL_NEAREST and GL_LINEAR filters return only the color of the border texels.

GL_ARB_texture_env_add (page 23)
Adds support for the texture environment function GL_ADD.

OpenGL Extensions by Task 9
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

GL_ATI_texture_compression_3dc (page 27)

GL_ARB_texture_compression (page 23)
Provides a framework and formats for compressed textures.

GL_EXT_texture_lod_bias (page 33)
Allows adding a bias value to the texture level-of-detail parameter.

GL_EXT_texture_env_add (page 33)
Add a texture environment function for adding textures.

GL_SGIS_texture_edge_clamp (page 37)
Defines an algorithm that clamps texture coordinates at all mipmap levels such that the texture filter
never samples a border texel.

GL_EXT_texture_compression_s3tc (page 32)
Adds texture compression functionality specific to the S3 S3TC format.

GL_ARB_texture_compression_rgtc (page 23)
Provides new texture compression formats suitable for red and red-green textures.

GL_ATI_texture_env_combine3 (page 27)
Adds texture combination operations, including GL_MODULATE_ADD, GL_MODULATE_SIGNED_ADD,
and GL_MODULATE_SUBTRACT.

GL_EXT_paletted_texture (page 31)
Adds texture formats and calls that support paletted textures.

GL_EXT_shared_texture_palette (page 32)
Defines a shared texture palette to use in place of the texture object palettes provided by the
GL_EXT_paletted_texture extension.

GL_ATI_texture_mirror_once (page 27)
Extends the set of texture wrap modes to include two modes that effectively use a texture map twice
as large as the original image in which the additional half of the new image is a mirror image of the
original image.

GL_EXT_texture_rectangle (page 34)
Adds a texture target that supports 2D textures without requiring power-of-two dimensions.

GL_ARB_texture_env_dot3 (page 24)
Adds dot product operations for textures.

GL_EXT_texture_filter_anisotropic (page 33)
Provides support for anisotropic texturing filtering schemes without specifying an anisotropic filtering
formula.

GL_SGIS_texture_lod (page 37)
Imposes two constraints related to the texture level of detail parameter.

GL_ARB_multitexture (page 21)
Adds support for multiple texture units.

Using Pixel Buffers

GL_ARB_pixel_buffer_object (page 21)
Allows you to use buffer objects with pixel data.

GL_APPLE_pixel_buffer (page 18)
Supports offscreen buffers for accelerated rendering and texturing.

10 OpenGL Extensions by Task
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://www.opengl.org/registry/specs/EXT/paletted_texture.txt

Using Framebuffer Objects

GL_EXT_framebuffer_object (page 30)
Provides an offscreen buffer for rendering.

GL_EXT_framebuffer_multisample (page 30)
Extends framebuffers to allow multisampling.

GL_EXT_framebuffer_blit (page 30)
Uses separate framebuffer bindings for drawing and reading and defines a function for transferring
data between them.

Optimizing Flushing

GL_APPLE_fence (page 17)
Defines primitives that you can insert into the OpenGL command stream to monitor command
completion.

GL_APPLE_object_purgeable (page 18)
Supports marking storage for OpenGL objects as purgeable or nonpurgeable.

GL_APPLE_flush_render (page 17)
Submits pending OpenGL commands but does not copy the results to the screen.

GL_APPLE_flush_buffer_range (page 17)
Supports flushing a subrange of a buffer object.

Working With Depth and Stencil Buffers

GL_EXT_packed_depth_stencil (page 31)
Supports interleaving the depth and stencil buffers into one buffer.

GL_EXT_depth_bounds_test (page 29)
Adds a test for deciding whether to discard a fragment based on a user-defined minimum and
maximum depth value.

GL_APPLE_aux_depth_stencil (page 16)
Allocates a separate depth buffer for the color buffer and for each auxiliary buffer.

GL_ARB_depth_texture (page 20)
Defines a depth texture format to use for shadow casting.

GL_NV_depth_clamp (page 35)
Supports rasterizing line and polygon primitives without clipping the primitive to the near or far clip
volume planes.

GL_EXT_stencil_wrap (page 32)
Defines two stencil operations that wrap the result.

GL_EXT_stencil_two_side (page 32)
Provides two-sided stencil testing.

GL_ATI_separate_stencil (page 26)
Provides the ability to modify the stencil buffer based on the facing direction of the primitive that
generates the fragment.

OpenGL Extensions by Task 11
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

GL_ARB_occlusion_query (page 21)
Supports querying the number of samples that a primitive or group of primitives draws.

GL_NV_conditional_render (page 34)
Allows a program to conditionally execute rendering commands based on an occlusion query.

GL_EXT_clip_volume_hint (page 29)
Defines hints that indicate whether the application requires volume clipping for primitives.

GL_ATI_point_cull_mode (page 26)

Working With Lighting, Fog, and Shadow Effects

GL_EXT_separate_specular_color (page 31)
Adds a second color to rasterization only if you have enabled lighting.

GL_APPLE_specular_vector (page 18)
Provides an alternative lighting model that produces results similar to, and often more realistic than,
the existing lighting model.

GL_NV_light_max_exponent (page 35)
Extends the maximum shininess and spot exponent beyond 128.0.

GL_NV_texgen_reflection (page 36)
Provides two new texture coordinate generation modes for texture-based lighting and environment
mapping.

GL_ARB_shadow (page 22)
Produces a Boolean texture value by comparing the texture R coordinate to a depth texture value.

GL_ARB_shadow_ambient (page 22)
Supports ambient and shadow lighting without the need for multiple texture units.

GL_ARB_point_parameters (page 22)
Supports additional geometric characteristics of points.

GL_EXT_shadow_funcs (page 32)
Supports eight binary texture comparison functions

GL_EXT_fog_coord (page 29)
Supports explicit per-vertex fog coordinates for fog computations.

GL_NV_fog_distance (page 35)
Supports application-control of fog distance computations.

GL_EXT_secondary_color (page 31)
Supports application-control of the RGB components of the secondary color used in the
color-summation stage.

Using Vertex Programs

GL_ARB_vertex_program (page 25)
Supports application-defined programs for computing vertex parameters.

GL_NV_vertex_program2_option (page 36)
Extends the standard ARB_vertex_program language and execution environment.

12 OpenGL Extensions by Task
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

GL_NV_vertex_program3 (page 36)
Provides additional vertex program functionality to extend the standard ARB_vertex_program
language and execution environment.

Using Fragment Programs

GL_ARB_fragment_program_shadow (page 20)
Removes the interaction between the GL_ARB_fragment_program (page 20) and
GL_ARB_shadow (page 22) extensions.

GL_NV_fragment_program2 (page 35)
Provides additional fragment program functionality to extend the GL_ARB_fragment_program (page
20) specification.

GL_NV_fragment_program_option (page 35)
Provides additional fragment program functionality to extend the standard
GL_ARB_fragment_program (page 20) language and execution environment.

GL_ARB_fragment_shader (page 20)
Defines fragment shader objects.

GL_ARB_draw_buffers (page 20)
Extends fragment programs and shaders to allow multiple output colors, and for directing those
outputs to multiple color buffers.

GL_EXT_draw_buffers2 (page 29)
Provides separate blend and write-masks for each color output.

GL_ARB_fragment_program (page 20)
Supports programs that compute fragment parameters.

GL_ATI_text_fragment_shader (page 27)
Defines a fragment processing model for expressing fragment color blending and dependent texture
address modification.

Using Shader Objects

GL_ARB_shading_language_100 (page 22)
Indicates support for OpenGL Shading Language.

GL_ARB_shader_objects (page 22)
Add support for shader and program objects.

GL_ARB_shader_texture_lod (page 22)
Provides shader writers explicit control of level of detail for texture operations.

GL_ARB_vertex_shader (page 25)
Adds programmable vertex-level processing.

GL_EXT_gpu_shader4 (page 31)
Extends the OpenGL Shading Language to support recently added hardware capabilities.

GL_EXT_geometry_shader4 (page 30)
Defines a shader for programmatically generating primitives.

GL_NV_texture_shader (page 36)
Provides defines texture shader stage for mapping sets of texture coordinates to filtered colors.

OpenGL Extensions by Task 13
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

GL_NV_texture_shader2 (page 36)
Adds texture_shader functionality to support texture shader operations for 3D textures.

GL_NV_texture_shader3 (page 36)
Extends the GL_NV_texture_shader functionality.

Supporting Data Types and Formats

GL_APPLE_ycbcr_422 (page 19)
Provides support for 2vuy and 2yuv texture formats.

GL_APPLE_rgb_422 (page 18)
Exposes a raw Y'CbCr format for pixel data.

GL_APPLE_packed_pixels (page 18)
Supports packed pixels in host memory.

GL_ARB_half_float_pixel (page 20)
Introduces a data type for half-precision (16-bit) floating-point quantities.

GL_ARB_half_float_vertex (page 21)
Allows a half-precision (16-bit) floating-point quantity to be used in vertex calculations.

GL_ARB_color_buffer_float (page 19)
Adds floating-point pixel formats.

GL_ATI_texture_float (page 27)
Adds texture internal formats with 32- and 16-bit floating-point components.

GL_APPLE_float_pixels (page 17)
Adds texture types, texture internal formats and color buffers composed of both 32 bit and 16 floating
point numbers.

GL_ARB_texture_rg (page 24)
Adds one and two channel texture formats.

GL_EXT_texture_integer (page 33)
Allows for true integer formats to be used in textures.

GL_EXT_abgr (page 27)
Extends the list of host-memory color formats, providing a reverse-order alternative to image format
RGBA.

GL_EXT_bgra (page 27)
Extends the list of host-memory color formats

GL_EXT_framebuffer_sRGB (page 30)
Allows framebuffers to be created with non-linear sRGB formats.

GL_SGI_color_matrix (page 37)
Adds a 4x4 matrix stack to the pixel transfer path.

GL_ARB_transpose_matrix (page 25)
Supports the transfer of application matrices stored in row major order to the OpenGL implementation.

GL_NV_register_combiners (page 35)
Provides an extremely configurable mechanism know as "register combiners" for computing fragment
colors.

14 OpenGL Extensions by Task
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

GL_NV_register_combiners2 (page 36)
Extends the register combiners functionality to support more color constant values that are unique
for each general combiner stage.

GL_EXT_rescale_normal (page 31)
Adds a normal rescaling to the transformation of the normal vector into eye coordinates.

GL_APPLE_transform_hint (page 19)
Provides a hint which allows Open GL to choose to implement certain state dependent algebraic
simplifications in the geometry transformation.

Imaging and Blending

GL_ARB_imaging (page 21)
Provides support for color tables, convolution, color matrix, histogram, constant blend color, blend
subtract and blend min/max.

GL_EXT_blend_equation_separate (page 28)
Defines a blend equations for separating RGB and alpha blend factors and for combining source and
destination blend terms.

GL_EXT_blend_color (page 28)
Defines a constant color to include in blending equations.

GL_EXT_blend_minmax (page 28)
Defines two equations that produce the minimum (or maximum) color components of the source
and destination colors.

GL_EXT_blend_subtract (page 28)
Defines two blending equations that produce an effect based on the difference of two input value.

GL_NV_blend_square (page 34)
Provides four additional blending factors.

GL_EXT_blend_func_separate (page 28)
Adds a function that supports independent RGB and alpha blend factors.

GL_ATI_blend_equation_separate (page 26)

GL_ATI_blend_weighted_minmax (page 26)

Tessellation

GL_ATI_pn_triangles (page 26)
Supports letting OpenGL internally tessellate input geometry internally into curved patches.

GL_ATIX_pn_triangles (page 26)

OpenGL Extensions by Task 15
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

Binding and Loading Parameters

GL_EXT_gpu_program_parameters (page 30)
Adds procedures that load multiple consecutive program environment parameters using a single call
instead of multiple calls.

GL_EXT_bindable_uniform (page 28)
Adds bindable uniform variables to the OpenGL shading language.

Multisampling and Using Mipmaps

GL_SGIS_generate_mipmap (page 37)
Defines a mechanism by which OpenGL can derive the entire set of mipmap arrays when provided
with only the base level array.

GL_NV_multisample_filter_hint (page 35)
Provides a hint that permits implementations to provide an alternative method of resolving the color
of multisampled pixels.

GL_ARB_multisample (page 21)
Adds an antialiasing algorithm that samples multiple times at each pixel in a primitive.

Using Point Sprites

GL_NV_point_sprite (page 35)
Allows applications to use points rather than quads for such things as particle systems.

GL_ARB_point_sprite (page 22)
Provides support for point sprites.

Working With Raster Positions

GL_ARB_window_pos (page 26)
Provides a set of functions to directly set the current raster position in window coordinates, bypassing
the modelview matrix, the projection matrix and the viewport-to-window mapping.

GL_IBM_rasterpos_clip (page 34)
Extends the semantics of the raster position functions.

OpenGL Extensions

GL_APPLE_aux_depth_stencil
Allocates a separate depth buffer for the color buffer and for each auxiliary buffer.

16 OpenGL Extensions
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://www.opengl.org/registry/specs/APPLE/aux_depth_stencil.txt

Discussion
When you use this extension, and the depth buffer size is nonzero, OpenGL automatically allocates a separate
depth buffer for the color buffer and for each auxiliary buffer. Similarly, if the stencil buffer size is nonzero,
OpenGL allocates a separate stencil buffer for the color buffer and each auxiliary buffer.

GL_APPLE_client_storage
Allows applications to cache textures locally for use by OpenGL.

Discussion
Provides facilities supplanting the OpenGL mechanism to update the working texture set, allowing and
requiring applications to cache textures locally for use by OpenGL.

GL_APPLE_element_array
Improve draw-elements style vertex indices submission performance by allowing index arrays.

GL_APPLE_fence
Defines primitives that you can insert into the OpenGL command stream to monitor command completion.

Discussion
This extension lets you get fine-grained control over flushing. You can monitor whether OpenGL has executed
a particular command and issue a finish command for a subset of the command stream. By using this extension,
you can more efficiently synchronize the activity of the CPU and GPU, thereby avoiding unnecessary wait
times.

GL_APPLE_float_pixels
Adds texture types, texture internal formats and color buffers composed of both 32 bit and 16 floating point
numbers.

GL_APPLE_flush_buffer_range
Supports flushing a subrange of a buffer object.

Discussion
You can improve the performance of your application by using this extension when your application needs
to write only to a subrange. This extension introduces two buffer object features: nonserialized buffer
modification and explicit subrange flushing for buffer objects that are mapped.

GL_APPLE_flush_render
Submits pending OpenGL commands but does not copy the results to the screen.

OpenGL Extensions 17
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://www.opengl.org/registry/specs/APPLE/client_storage.txt
http://www.opengl.org/registry/specs/APPLE/element_array.txt
http://www.opengl.org/registry/specs/APPLE/fence.txt
http://www.opengl.org/registry/specs/APPLE/float_pixels.txt
http://www.opengl.org/registry/specs/APPLE/flush_buffer_range.txt
http://developer.apple.com/graphicsimaging/opengl/extensions.html#GL_APPLE_flush_render

Discussion

In single buffered mode the glFlush and glFinish functions submit the command stream and copy the
resulting image to the screen. This extension defines two functions—glFlushRenderAPPLE and
glFinishRenderAPPLE—that submit pending OpenGL commands but do not copy the results to the screen.

The extension also provides the function glSwapAPPLE which:

 ■ Copies the rendered image for the current context to the screen without the need for context argument

 ■ Works symmetrically in both single and double buffered modes.

GL_APPLE_object_purgeable
Supports marking storage for OpenGL objects as purgeable or nonpurgeable.

Discussion
Using this extension, you can eliminate unnecessary paging of resources. The typical options are to mark
objects as purgeable and released or as unpurgeable and retained. OpenGL uses these settings as a
guide when managing memory resources.

GL_APPLE_packed_pixels
Supports packed pixels in host memory.

Discussion
A packed pixel is represented entirely by one unsigned byte, one unsigned short, or one unsigned integer.

GL_APPLE_pixel_buffer
Supports offscreen buffers for accelerated rendering and texturing.

Discussion
You can use pixel buffers (also called pbuffers) to get accelerated performance when rendering to and
texturing from a surface.

GL_APPLE_rgb_422
Exposes a raw Y'CbCr format for pixel data.

Discussion
It provides a new pixel format for unconverted video pixel data. Applications that use this are expected to
provide a fragment shader that performs a color space transformation to RGB.

GL_APPLE_specular_vector
Provides an alternative lighting model that produces results similar to, and often more realistic than, the
existing lighting model.

18 OpenGL Extensions
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://www.opengl.org/registry/specs/APPLE/object_purgeable.txt
http://developer.apple.com/graphicsimaging/opengl/extensions/apple_packed_pixels.html
http://oss.sgi.com/projects/ogl-sample/registry/APPLE/pixel_buffer.txt
http://www.opengl.org/registry/specs/APPLE/rgb_422.txt
http://www.opengl.org/registry/specs/APPLE/specular_vector.txt

GL_APPLE_texture_range
Allows application to provide hints for texture storage and to specify a memory range for texture data.

GL_APPLE_transform_hint
Provides a hint which allows Open GL to choose to implement certain state dependent algebraic simplifications
in the geometry transformation.

GL_APPLE_vertex_array_object
Handles multiple vertex arrays as array objects, similar to texture objects.

Discussion
This extension allows your application to change vertex array pointers more efficiently, by collecting them
into an OpenGL object. Binding a vertex array object changes all of the vertex pointers with a single function
call.

GL_APPLE_vertex_array_range
Specifies to use client memory for vertex arrays.

Discussion
When you use this extension, the GPU perform DMA transfers of your vertex data. Much of the benefit of this
extension has been superseded by vertex buffer objects (GL_ARB_vertex_buffer_object (page 25)),
which is part of the core OpenGL 1.5 specification.

GL_APPLE_vertex_program_evaluators
Supports the use of one- and two-dimensional evaluators with vertex program attributes.

Discussion
This extension operates comparable to normal evaluators.

GL_APPLE_ycbcr_422
Provides support for 2vuy and 2yuv texture formats.

GL_ARB_color_buffer_float
Adds floating-point pixel formats.

Discussion
This extension adds pixel formats with either 16-bit or 32-bit floating-point RGBA color components. It also
provides a function to control how pixel data is clamped.

OpenGL Extensions 19
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://www.opengl.org/registry/specs/APPLE/texture_range.txt
http://www.opengl.org/registry/specs/APPLE/transform_hint.txt
http://www.opengl.org/registry/specs/APPLE/vertex_array_object.txt
http://www.opengl.org/registry/specs/APPLE/vertex_array_range.txt
http://www.opengl.org/registry/specs/APPLE/vertex_program_evaluators.txt
http://www.opengl.org/registry/specs/APPLE/ycbcr_422.txt
http://www.opengl.org/registry/specs/ARB/color_buffer_float.txt

GL_ARB_depth_texture
Defines a depth texture format to use for shadow casting.

Discussion
You can also use this extension for image-based rendering or displacement mapping.

GL_ARB_draw_buffers
Extends fragment programs and shaders to allow multiple output colors, and for directing those outputs to
multiple color buffers.

Discussion
This extension extends ARB_fragment_program and ARB_fragment_shader to allow multiple output colors,
and provides a mechanism for directing those outputs to multiple color buffers.

For More Information
GL_ARB_fragment_shader
GL_ARB_fragment_program

GL_ARB_fragment_program
Supports programs that compute fragment parameters.

Discussion
A fragment program is a sequence of floating-point 4-component vector operations that determines how
to transform a set of program parameters (not specific to an individual fragment) and an input set of
per-fragment parameters to a set of per-fragment result parameters. You can write instruction sequences
for fragment programs using the fragment programming model defined by this extension.

GL_ARB_fragment_program_shadow
Removes the interaction between the GL_ARB_fragment_program (page 20) and GL_ARB_shadow (page
22) extensions.

GL_ARB_fragment_shader
Defines fragment shader objects.

Discussion
A fragment shader object is a type of shader object that, when attached to a program object, you can compile
and link to produce executable code that runs on the OpenGL fragment processor. See the ARB_shader_objects
extension.

For More Information
GL_ARB_shader_objects

GL_ARB_half_float_pixel
Introduces a data type for half-precision (16-bit) floating-point quantities.

20 OpenGL Extensions
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://www.opengl.org/registry/specs/ARB/depth_texture.txt
http://www.opengl.org/registry/specs/ARB/draw_buffers.txt
http://opengl.org/registry/specs/ARB/fragment_shader.txt
http://www.opengl.org/registry/specs/ARB/fragment_program.txt
http://www.opengl.org/registry/specs/ARB/fragment_program.txt
http://www.opengl.org/registry/specs/ARB/fragment_program_shadow.txt
http://www.opengl.org/registry/specs/ARB/fragment_shader.txt
http://opengl.org/registry/specs/ARB/shader_objects.txt
http://www.opengl.org/registry/specs/ARB/half_float_pixel.txt

Discussion
The floating-point format is very similar to the IEEE single-precision floating-point standard, except that it
has only 5 exponent bits and 10 mantissa bits.

GL_ARB_half_float_vertex
Allows a half-precision (16-bit) floating-point quantity to be used in vertex calculations.

Discussion
Allows the half-float pixel format introduced in the GL_ARB_half_float_pixel (page 20) extension to be
used when specifying vertex data or calculations.

GL_ARB_imaging
Provides support for color tables, convolution, color matrix, histogram, constant blend color, blend subtract
and blend min/max.

Discussion
Complete imaging subset providing: Color Tables, Convolution, Color Matrix, Histogram, Constant Blend
Color, Blend Subtract and Blend Min/Max.

GL_ARB_multisample
Adds an antialiasing algorithm that samples multiple times at each pixel in a primitive.

Discussion
You can use multisampling on all Open GL primitives: points, lines, polygons, bitmaps, and images.

GL_ARB_multitexture
Adds support for multiple texture units.

GL_ARB_occlusion_query
Supports querying the number of samples that a primitive or group of primitives draws.

GL_ARB_pixel_buffer_object
Allows you to use buffer objects with pixel data.

Discussion
This extension expands on the interface provided by the GL_ARB_vertex_buffer_object extension (and later
integrated into OpenGL 1.5). It lets you use buffer objects to pixel data as well as vertex data. By using this
extension, increase the speed at which OpenGL executes pixel commands.

OpenGL Extensions 21
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://www.opengl.org/registry/specs/ARB/half_float_vertex.txt
http://oss.sgi.com/projects/ogl-sample/registry/ARB/imaging.txt
http://www.opengl.org/registry/specs/ARB/multisample.txt
http://www.opengl.org/registry/specs/ARB/multitexture.txt
http://www.opengl.org/registry/specs/ARB/occlusion_query.txt
http://www.opengl.org/registry/specs/ARB/pixel_buffer_object.txt
http://oss.sgi.com/projects/ogl-sample/registry/ARB/vertex_buffer_object.txt

GL_ARB_point_parameters
Supports additional geometric characteristics of points.

Discussion
You can use this extension to render particles or tiny light sources, commonly referred to as light points.

GL_ARB_point_sprite
Provides support for point sprites.

Discussion
Applications such as particle systems have tended to use OpenGL quads rather than points to render their
geometry, since they would like to use a custom-drawn texture for each particle, rather than the traditional
OpenGL round antialiased points, and each fragment in a point has the same texture coordinates as every
other fragment.

GL_ARB_shader_objects
Add support for shader and program objects.

Discussion
This extension adds calls that are necessary to manage shader objects and program objects as defined in
the OpenGL 2.0 white papers by 3Dlabs.

GL_ARB_shader_texture_lod
Provides shader writers explicit control of level of detail for texture operations.

GL_ARB_shading_language_100
Indicates support for OpenGL Shading Language.

GL_ARB_shadow
Produces a Boolean texture value by comparing the texture R coordinate to a depth texture value.

Discussion
You can use this extension to implement shadow maps.

GL_ARB_shadow_ambient
Supports ambient and shadow lighting without the need for multiple texture units.

Discussion
When you use this extension, you need to specify the texture value to use when the texture comparison
function fails. Normally this value is zero. By allowing an arbitrary value you can get functionality which
otherwise requires you to use multiple texture units and an an advanced texture combine extension (such
as that provided by the extension GL_NV_register_combiners).

22 OpenGL Extensions
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://www.opengl.org/registry/specs/ARB/point_parameters.txt
http://www.opengl.org/registry/specs/ARB/point_sprite.txt
http://www.opengl.org/registry/specs/ARB/shader_objects.txt
http://www.opengl.org/registry/specs/ARB/shader_texture_lod.txt
http://www.opengl.org/registry/specs/ARB/shading_language_100.txt
http://www.opengl.org/registry/specs/ARB/shadow.txt
http://www.opengl.org/registry/specs/ARB/shadow_ambient.txt
http://oss.sgi.com/projects/ogl-sample/registry/NV/register_combiners.txt

GL_ARB_texture_border_clamp
Adds a texture clamping algorithm for clamping texture coordinates at all mipmap levels such that the
GL_NEAREST and GL_LINEAR filters return only the color of the border texels.

Discussion
The clamping algorithm is GL_CLAMP_TO_BORDER_ARB.

GL_ARB_texture_compression
Provides a framework and formats for compressed textures.

Discussion
Allows OpenGL applications to use compressed texture images by providing both a framework upon which
extensions providing specific compressed image formats can be built and a set of generic compressed internal
formats that allow applications to specify that texture images should be stored in compressed form without
needing to code for specific compression formats.

GL_ARB_texture_compression_rgtc
Provides new texture compression formats suitable for red and red-green textures.

Discussion
These formats are optimized to reduce the storage requirements of red or red-green textures.

GL_ARB_texture_cube_map
Provides a texture generation scheme for cube map textures, where the current texture is a set of six
2-dimensional images that represent the faces of a cube.

GL_ARB_texture_env_add
Adds support for the texture environment function GL_ADD.

Discussion
This extension implements the following equation:

Cv = Cf + Ct

GL_ARB_texture_env_combine
Adds a texture environment function that lets you combine texture operations.

Discussion
The function GL_COMBINE_ARB lets you program combine operations: GL_REPLACE, GL_MODULATE, GL_ADD,
GL_ADD_SIGNED_ARB, GL_SUBTRACT_ARB, and GL_INTERPOLATE_ARB.

OpenGL Extensions 23
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://www.opengl.org/registry/specs/ARB/texture_border_clamp.txt
http://www.opengl.org/registry/specs/ARB/texture_compression.txt
http://www.opengl.org/registry/specs/ARB/texture_compression_rgtc.txt
http://www.opengl.org/registry/specs/ARB/texture_cube_map.txt
http://www.opengl.org/registry/specs/ARB/texture_env_add.txt
http://www.opengl.org/registry/specs/ARB/texture_env_combine.txt

GL_ARB_texture_env_crossbar
Adds the capability to use the texture color from other texture units as sources to the GL_COMBINE_ARB
environment function.

GL_ARB_texture_env_dot3
Adds dot product operations for textures.

Discussion
You can supply these operation to a texture combination function: GL_DOT3_RGB_ARB and
GL_DOT3_RGBA_ARB.

GL_ARB_texture_float
Extends internal formats for textures that have 16- and 32-bit floating-point components.

Discussion
The 32-bit floating-point components are in the standard IEEE float format. The 16-bit floating-point
components have 1 sign bit, 5 exponent bits, and 10 mantissa bits. The extension clamps floating-point
components to the limits of the range represented by their format.

GL_ARB_texture_mirrored_repeat
Extends the set of texture wrap modes to include a mirrored repeat mode.

Discussion
The GL_MIRRORED_REPEAT_ARB texture wrap mode effectively uses a texture map that is twice as large at
the original image to accommodate the original image and its mirror image.

GL_ARB_texture_non_power_of_two
Relaxes the size restrictions for the 1D, 2D, cube map, and 3D texture targets.

Discussion
Conventional OpenGL texturing is limited to images with power-of-two dimensions and an optional 1-texel
border.

GL_ARB_texture_rectangle
Adds a new texture target that supports 2D textures without requiring power-of-two dimensions.

Discussion
Without this extension, OpenGL limits textures to images that have power-of-two dimensions and an optional
1-texel border.

GL_ARB_texture_rg
Adds one and two channel texture formats.

24 OpenGL Extensions
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://www.opengl.org/registry/specs/ARB/texture_env_crossbar.txt
http://www.opengl.org/registry/specs/ARB/texture_env_dot3.txt
http://www.opengl.org/registry/specs/ARB/texture_float.txt
http://www.opengl.org/registry/specs/ARB/texture_mirrored_repeat.txt
http://www.opengl.org/registry/specs/ARB/texture_non_power_of_two.txt
http://www.opengl.org/registry/specs/ARB/texture_rectangle.txt
http://www.opengl.org/registry/specs/ARB/texture_rg.txt

Discussion
Adds red and red-green texture formats optimized for use in shaders. A typical use for these formats is for
luminance or intensity values.

GL_ARB_transpose_matrix
Supports the transfer of application matrices stored in row major order to the OpenGL implementation.

GL_ARB_vertex_blend
Provides the ability to replace the single modelview transformation with a set of n vertex units.

Discussion
The number of vertex units is constrained to an implementation-defined maximum. Each unit having its own
modelview transform matrix and weight that is used to scale and sum the final eye-space vertex.

GL_ARB_vertex_buffer_object
Increases data transfer rate by caching data in high-performance graphics memory on the server.

Discussion
Although this extension is typically used for vertex arrays, the same API is used by other extensions to allow
you to use buffer objects to cache other types of data.

GL_ARB_vertex_program
Supports application-defined programs for computing vertex parameters.

Discussion
A vertex program is a sequence of floating-point 4-component vector operations that determines how a set
of program parameters (defined outside of the OpenGL glBegin and glEnd command pair) and an input
set of per-vertex parameters are transformed to a set of per-vertex result parameters.

GL_ARB_vertex_shader
Adds programmable vertex-level processing.

Discussion
Using this extension, you can write vertex shaders in a high level language as defined in the OpenGL Shading
Language specification. The language itself is not discussed here. A vertex shader replaces the transformation,
texture coordinate generation and lighting parts of OpenGL, and it also adds texture access at the vertex
level. Furthermore, management of vertex shader objects and loading generic attributes are discussed. A
vertex shader object, attached to a program object, can be compiled and linked to produce an executable
that runs on the vertex processor in OpenGL. This extension also defines how such an executable interacts
with the fixed functionality vertex processing of OpenGL 1.4.

OpenGL Extensions 25
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://www.opengl.org/registry/specs/ARB/transpose_matrix.txt
http://www.opengl.org/registry/specs/ARB/vertex_blend.txt
http://www.opengl.org/registry/specs/ARB/vertex_buffer_object.txt
http://www.opengl.org/registry/specs/ARB/vertex_program.txt
http://www.opengl.org/registry/specs/ARB/vertex_shader.txt

GL_ARB_window_pos
Provides a set of functions to directly set the current raster position in window coordinates, bypassing the
modelview matrix, the projection matrix and the viewport-to-window mapping.

Discussion
Furthermore, clip testing is not performed, so that the current raster position is always valid.

GL_ATIX_pn_triangles

GL_ATI_array_rev_comps_in_4_bytes
Provides an optimized data transfer path for rendering vertex array data on certain ATI hardware when
individual components are smaller than 4 bytes per component.

GL_ATI_blend_equation_separate

GL_ATI_blend_weighted_minmax

GL_ATI_pn_triangles
Supports letting OpenGL internally tessellate input geometry internally into curved patches.

Discussion
Using this extension, you can produce smoother, more organic looking geometry. You can control the amount
of tessellation to apply to each triangle using a global stat variable.

GL_ATI_point_cull_mode

GL_ATI_separate_stencil
Provides the ability to modify the stencil buffer based on the facing direction of the primitive that generates
the fragment.

26 OpenGL Extensions
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://www.opengl.org/registry/specs/ARB/window_pos.txt
http://ati.amd.com/developer/atiopengl.pdf
http://developer.apple.com/graphicsimaging/opengl/extensions/ATI_array_rev_comps_in_4_bytes.html
http://ati.amd.com/developer/atiopengl.pdf
http://ati.amd.com/developer/atiopengl.pdf
http://ati.amd.com/developer/atiopengl.pdf
http://ati.amd.com/developer/atiopengl.pdf
http://ati.amd.com/developer/atiopengl.pdf

Discussion

GL_ATI_texture_compression_3dc

Discussion

GL_ATI_texture_env_combine3
Adds texture combination operations, including GL_MODULATE_ADD, GL_MODULATE_SIGNED_ADD, and
GL_MODULATE_SUBTRACT.

Discussion
This extension requires the GL_ARB_texture_env_combine extension.

GL_ATI_texture_float
Adds texture internal formats with 32- and 16-bit floating-point components.

Discussion
The 32 bit floating-point components are in the standard IEEE float format. The 16 bit floating-point
components have 1 sign bit, 5 exponent bits, and 10 mantissa bits. Floating-point components are clamped
to the limits of the range representable by their format.

GL_ATI_texture_mirror_once
Extends the set of texture wrap modes to include two modes that effectively use a texture map twice as large
as the original image in which the additional half of the new image is a mirror image of the original image.

Discussion
The modes are GL_MIRROR_CLAMP_ATI and GL_MIRROR_CLAMP_TO_EDGE_ATI. Using this extension, you
can use images whose edges don’t match.

GL_ATI_text_fragment_shader
Defines a fragment processing model for expressing fragment color blending and dependent texture address
modification.

GL_EXT_abgr
Extends the list of host-memory color formats, providing a reverse-order alternative to image format RGBA.

GL_EXT_bgra
Extends the list of host-memory color formats

OpenGL Extensions 27
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://ati.amd.com/developer/atiopengl.pdf
http://ati.amd.com/developer/atiopengl.pdf
http://oss.sgi.com/projects/ogl-sample/registry/ARB/texture_env_combine.txt
http://ati.amd.com/developer/atiopengl.pdf
http://ati.amd.com/developer/atiopengl.pdf
http://ati.amd.com/developer/atiopengl.pdf
http://www.opengl.org/registry/specs/EXT/abgr.txt
http://www.opengl.org/registry/specs/EXT/bgra.txt

Discussion
This extension provides formats that, when reversed, match the memory layout of Mac OS CGrafPort and
GWorld data types so that applications can use the same data in both Mac OS API calls and OpenGL pixel
API calls.

GL_EXT_bindable_uniform
Adds bindable uniform variables to the OpenGL shading language.

Discussion
A bindable uniform variable uses storage that is not allocated by the compiler or linker, but is instead backed
by a buffer object.

GL_EXT_blend_color
Defines a constant color to include in blending equations.

GL_EXT_blend_equation_separate
Defines a blend equations for separating RGB and alpha blend factors and for combining source and destination
blend terms.

Discussion
EXT_blend_func_separate introduced separate RGB and alpha blend factors. EXT_blend_minmax
introduced a distinct blend equation for combining source and destination blend terms.
(EXT_blend_subtract and EXT_blend_logic_op added other blend equation modes.) OpenGL 1.4
integrated both functionalities into the core standard.

GL_EXT_blend_func_separate
Adds a function that supports independent RGB and alpha blend factors.

Discussion
Using this extension, you can independently set the RGB and alpha blend factors for blend operations that
require source and destination blend factors.

GL_EXT_blend_minmax
Defines two equations that produce the minimum (or maximum) color components of the source and
destination colors.

GL_EXT_blend_subtract
Defines two blending equations that produce an effect based on the difference of two input value.

Discussion
Using this extension, you can call the BlendEquationEXT function with either of these modes:
FUNC_SUBTRACT_EXT or FUNC_REVERSE_SUBTRACT_EXT.

28 OpenGL Extensions
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://www.opengl.org/registry/specs/EXT/bindable_uniform.txt
http://www.opengl.org/registry/specs/EXT/blend_color.txt
http://www.opengl.org/registry/specs/EXT/blend_equation_separate.txt
http://www.opengl.org/registry/specs/EXT/blend_func_separate.txt
http://www.opengl.org/registry/specs/EXT/blend_minmax.txt
http://www.opengl.org/registry/specs/EXT/blend_subtract.txt

GL_EXT_clip_volume_hint
Defines hints that indicate whether the application requires volume clipping for primitives.

Discussion

GL_EXT_compiled_vertex_array
Allows caching or precompiling static vertex array for more efficient rendering.

GL_EXT_depth_bounds_test
Adds a test for deciding whether to discard a fragment based on a user-defined minimum and maximum
depth value.

Discussion
OpenGL performs the depths bounds test on each fragment, after the scissor test and before the alpha test.
The test compares the depth value stored at the location given by the coordinates of the incoming fragment
coordinates (xw, yw) to a minimum and maximum depth value that you supply. If the stored depth value is
outside the range (exclusive), OpenGL discards the incoming fragment.

GL_EXT_draw_buffers2
Provides separate blend and write-masks for each color output.

Discussion
This extension builds on the behavior of GL_ARB_draw_buffers (page 20) by allowing separate masks and
blends to apply to each color output. The same blend operation is still applied to all outputs.

GL_EXT_draw_range_elements
Adds a vertex array rendering command (glDrawRangeElementsEXT) that is a restricted form of the
glDrawElements command.

Discussion
Calling glDrawRangeElementsEXT requires your application to specify the range of possible indices that
are referenced in the draw command. By reducing the range of possible indices, some OpenGL hardware
renderers can process the vertex data more efficiently.

GL_EXT_fog_coord
Supports explicit per-vertex fog coordinates for fog computations.

Discussion
You can use this extension as an alternative to a using a fragment depth-based fog equation.

OpenGL Extensions 29
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://www.opengl.org/registry/specs/EXT/clip_volume_hint.txt
http://www.opengl.org/registry/specs/EXT/compiled_vertex_array.txt
http://www.opengl.org/registry/specs/EXT/depth_bounds_test.txt
http://www.opengl.org/registry/specs/EXT/draw_buffers2.txt
http://www.opengl.org/registry/specs/EXT/draw_range_elements.txt
http://www.opengl.org/registry/specs/EXT/fog_coord.txt

GL_EXT_framebuffer_blit
Uses separate framebuffer bindings for drawing and reading and defines a function for transferring data
between them.

Discussion
This extension modifies the GL_EXT_framebuffer_object (page 30) extension by splitting the framebuffer
object binding point into separate bindings for drawing and reading. Using this extension, you can copy
directly from one framebuffer to another. It also adds the BlitFramebufferEXT function, which transfers
a rectangular array of pixel values from one region of the source framebuffer to another in the destination
framebuffer. This function can also perform data conversion where allowed.

GL_EXT_framebuffer_multisample
Extends framebuffers to allow multisampling.

Discussion
This extension alters GL_EXT_framebuffer_object (page 30) to allow multisample buffers. An application
can use this extension to exercise more direct control over antialiasing operations in their programs.

GL_EXT_framebuffer_object
Provides an offscreen buffer for rendering.

Discussion
Framebuffers give you an alternative to using the buffers provided by the windowing system to OpenGL.

GL_EXT_framebuffer_sRGB
Allows framebuffers to be created with non-linear sRGB formats.

Discussion
The sRGB format is a standards-driven, non-linear color space that roughly corresponds to the 2.2 gamma
correction. This extension allows framebuffer objects to be created and manipulated in the sRGB color space.

GL_EXT_geometry_shader4
Defines a shader for programmatically generating primitives.

Discussion
OpenGL executes geometry shaders after transforming vertices, but prior to color clamping, flat shading,
and clipping.

GL_EXT_gpu_program_parameters
Adds procedures that load multiple consecutive program environment parameters using a single call instead
of multiple calls.

Discussion
By using this extension, you can reduce the amount of CPU overhead involved in loading parameters.

30 OpenGL Extensions
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://www.opengl.org/registry/specs/EXT/framebuffer_blit.txt
http://www.opengl.org/registry/specs/EXT/framebuffer_multisample.txt
http://www.opengl.org/registry/specs/EXT/framebuffer_object.txt
http://www.opengl.org/registry/specs/EXT/framebuffer_sRGB.txt
http://www.opengl.org/registry/specs/EXT/geometry_shader4.txt
http://www.opengl.org/registry/specs/EXT/gpu_program_parameters.txt

GL_EXT_gpu_shader4
Extends the OpenGL Shading Language to support recently added hardware capabilities.

GL_EXT_multi_draw_arrays
Provides function for handling multiple lists of vertices in one call.

Discussion
These functions behave identically to the standard OpenGL 1.1 functions glDrawArrays and
glDrawElements except that they handle multiple lists of vertices in one call. Using this extension you can
use one function l to render more than one primitive such as triangle strip, triangle fan, and so on.

GL_EXT_packed_depth_stencil
Supports interleaving the depth and stencil buffers into one buffer.

Discussion
Typically this extension interleaves depth and stencil buffers with 24 bits of depth precision and 8 bits of
stencil data.

GL_EXT_paletted_texture
Adds texture formats and calls that support paletted textures.

Discussion
A paletted texture consists of a palette of colors and image data that specifies indices into the color palette.
Using this extension, you can reduce the amount a data needed to define a texture.

GL_EXT_rescale_normal
Adds a normal rescaling to the transformation of the normal vector into eye coordinates.

Discussion
The normal vector is rescaled after it is multiplied by the inverse modelview matrix and before it is normalized.

GL_EXT_secondary_color
Supports application-control of the RGB components of the secondary color used in the color-summation
stage.

Discussion
The default color is (0,0,0,0). You can use this extension only in RGBA mode and when the GL_LIGHTING
parameter is disabled.

GL_EXT_separate_specular_color
Adds a second color to rasterization only if you have enabled lighting.

OpenGL Extensions 31
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://www.opengl.org/registry/specs/EXT/gpu_shader4.txt
http://www.opengl.org/registry/specs/EXT/multi_draw_arrays.txt
http://www.opengl.org/registry/specs/EXT/packed_depth_stencil.txt
http://www.opengl.org/registry/specs/EXT/shared_texture_palette.txt
http://www.opengl.org/registry/specs/EXT/rescale_normal.txt
http://www.opengl.org/registry/specs/EXT/secondary_color.txt
http://www.opengl.org/registry/specs/EXT/separate_specular_color.txt

Discussion
This extension works only when you have RGBA lighting enabled. You use this extension to produce textured
objects that have specular highlights that are the color of the lights.

GL_EXT_shadow_funcs
Supports eight binary texture comparison functions

Discussion
This extension generalizes the GL_ARB_shadow (page 22) extension to support all eight binary texture
comparison functions rather than just the GL_LEQUAL and GL_GEQUAL functions.

GL_EXT_shared_texture_palette
Defines a shared texture palette to use in place of the texture object palettes provided by the
GL_EXT_paletted_texture extension.

GL_EXT_stencil_two_side
Provides two-sided stencil testing.

Discussion
The stencil-related state (stencil operations, reference value, compare mask, and write mask) can be different
for front- and back-facing polygons.

GL_EXT_stencil_wrap
Defines two stencil operations that wrap the result.

Discussion
The new operations are similar to what the GL_INCR and GL_DECR parameters specify, but they wrap the
result instead of saturating it.

GL_EXT_texture_compression_dxt1
Provides compressed textures that allow for significantly reduced texture storage.

Discussion
Reducing texture storage is advantageous because of the smaller memory capacity of many embedded
systems compared to desktop systems. Smaller textures also provide a welcome performance advantage
since embedded platforms typically provide less performance than desktop systems. S3TC compressed
textures are widely supported and used by applications. The DXT1 format is used in the vast majority of cases
in which S3TC compressed textures are used.

GL_EXT_texture_compression_s3tc
Adds texture compression functionality specific to the S3 S3TC format.

32 OpenGL Extensions
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://www.opengl.org/registry/specs/EXT/shadow_funcs.txt
http://www.opengl.org/registry/specs/EXT/shared_texture_palette.txt
http://www.opengl.org/registry/specs/EXT/paletted_texture.txt
http://www.opengl.org/registry/specs/EXT/stencil_two_side.txt
http://www.opengl.org/registry/specs/EXT/stencil_wrap.txt
http://www.opengl.org/registry/specs/EXT/texture_compression_dxt1.txt
http://www.opengl.org/registry/specs/EXT/texture_compression_s3tc.txt

Discussion
This functionality is subject to all the requirements and limitations described by the extension GL_ARB_tex-
ture_compression extension, which supports DXT1, DXT3, and DXT5 texture compression formats. The S3
S3TC format is also known as DXTC other 3D API.)

GL_EXT_texture_env_add
Add a texture environment function for adding textures.

Discussion
The function GL_ADD implements the following equation:

Cv = Cf + Ct

GL_EXT_texture_filter_anisotropic
Provides support for anisotropic texturing filtering schemes without specifying an anisotropic filtering formula.

GL_EXT_texture_integer
Allows for true integer formats to be used in textures.

Discussion
While color components are normally stored as integers, these integer values are mapped to the 0.0 to 1.0
floating point range. This extension is used in conjunction with the GL_EXT_gpu_shader4 (page 31)
extension to allow true integer values to be stored in textures and used in shader programs.

GL_EXT_texture_lod_bias
Allows adding a bias value to the texture level-of-detail parameter.

Discussion
Provides a means to bias the lambda (a texture level-of-detail parameter that determines which mipmap
levels and their relative mipmap weights for use in mipmapped texture filtering) by a constant (signed) value.

GL_EXT_texture_mirror_clamp
Extends texture wrapping to include three mirroring modes.

Discussion
The three mirroring modes are:

 ■ GL_MIRROR_CLAMP_EXT

 ■ GL_MIRROR_CLAMP_TO_EDGE_EXT

 ■ GL_MIRROR_CLAMP_TO_BORDER_EXT

These modes effectively use a texture map that is twice as large as the original image to accommodate the
original image and its mirror image.

OpenGL Extensions 33
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://www.opengl.org/registry/specs/ARB/texture_compression.txt
http://www.opengl.org/registry/specs/ARB/texture_compression.txt
http://www.opengl.org/registry/specs/EXT/texture_env_add.txt
http://www.opengl.org/registry/specs/EXT/texture_filter_anisotropic.txt
http://www.opengl.org/registry/specs/EXT/texture_integer.txt
http://www.opengl.org/registry/specs/EXT/texture_lod_bias.txt
http://www.opengl.org/registry/specs/EXT/texture_mirror_clamp.txt

GL_EXT_texture_rectangle
Adds a texture target that supports 2D textures without requiring power-of-two dimensions.

GL_EXT_texture_sRGB
Supports the sRGB color space for textures.

Discussion
The sRGB color space is based on typical (non-linear) monitor characteristics expected in a dimly lit office. It
has been standardized by the International Electrotechnical Commission (IEC) as IEC 61966-2-1. The sRGB
color space roughly corresponds to 2.2 gamma correction.

GL_EXT_transform_feedback
Defines a transform feedback mode for recording vertex attributes for each primitive that OpenGL processes.

Discussion
This extension is similar to the GL_NV_transform_feedback extension.

GL_IBM_rasterpos_clip
Extends the semantics of the raster position functions.

Discussion
It provides an enable that allows a raster position that would normally be clipped to be treated as a valid
(albeit out-of-viewport) position.

GL_NV_blend_square
Provides four additional blending factors.

Discussion
This extension supports these blending factors:

 ■ GL_SRC_COLOR and GL_ONE_MINUS_SRC_COLOR for source blending factors

 ■ GL_DST_COLOR and GL_ONE_MINUS_DST_COLOR for destination blending factors

GL_NV_conditional_render
Allows a program to conditionally execute rendering commands based on an occlusion query.

Discussion
This extension builds on the GL_ARB_occlusion_query (page 21) extension by allowing a developer to
submit drawing commands on an occlusion query that may not have completed. If the query has not
completed, the application can choose either to stall until it does, or to submit the potentially occluded
geometry anyway.

34 OpenGL Extensions
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://developer.apple.com/graphicsimaging/opengl/extensions/ext_texture_rectangle.html
http://www.opengl.org/registry/specs/EXT/texture_sRGB.txt
http://www.opengl.org/registry/specs/EXT/transform_feedback.txt
http://opengl.org/registry/specs/NV/transform_feedback.txt
http://www.opengl.org/registry/specs/IBM/rasterpos_clip.txt
http://www.opengl.org/registry/specs/NV/blend_square.txt
http://www.opengl.org/registry/specs/NV/conditional_render.txt

GL_NV_depth_clamp
Supports rasterizing line and polygon primitives without clipping the primitive to the near or far clip volume
planes.

Discussion
Side clip volume planes still clip normally

GL_NV_fog_distance
Supports application-control of fog distance computations.

Discussion

GL_NV_fragment_program2
Provides additional fragment program functionality to extend the GL_ARB_fragment_program (page 20)
specification.

Discussion
This extension is similar to the GL_NV_fragment_program_option (page 35) extension, in that it extends
the standard GL_ARB_fragment_program language and execution environment.

GL_NV_fragment_program_option
Provides additional fragment program functionality to extend the standardGL_ARB_fragment_program (page
20) language and execution environment.

GL_NV_light_max_exponent
Extends the maximum shininess and spot exponent beyond 128.0.

GL_NV_multisample_filter_hint
Provides a hint that permits implementations to provide an alternative method of resolving the color of
multisampled pixels.

Discussion

GL_NV_point_sprite
Allows applications to use points rather than quads for such things as particle systems.

Discussion

GL_NV_register_combiners
Provides an extremely configurable mechanism know as "register combiners" for computing fragment colors.

OpenGL Extensions 35
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://www.opengl.org/registry/specs/NV/depth_clamp.txt
http://www.opengl.org/registry/specs/NV/fog_distance.txt
http://www.opengl.org/registry/specs/NV/fragment_program2.txt
http://www.opengl.org/registry/specs/NV/fragment_program_option.txt
http://www.opengl.org/registry/specs/NV/light_max_exponent.txt
http://www.opengl.org/registry/specs/NV/multisample_filter_hint.txt
http://www.opengl.org/registry/specs/NV/point_sprite.txt
http://oss.sgi.com/projects/ogl-sample/registry/NV/register_combiners.txt

GL_NV_register_combiners2
Extends the register combiners functionality to support more color constant values that are unique for each
general combiner stage.

GL_NV_texgen_reflection
Provides two new texture coordinate generation modes for texture-based lighting and environment mapping.

GL_NV_texture_shader
Provides defines texture shader stage for mapping sets of texture coordinates to filtered colors.

Discussion
This extension provide you with more flexibility than standard OpenGL when you want to map texture
coordinates to texture unit RGBA results. It introduce new texture formats and variations on a few existing
ones.

GL_NV_texture_shader2
Adds texture_shader functionality to support texture shader operations for 3D textures.

GL_NV_texture_shader3
Extends the GL_NV_texture_shader functionality.

Discussion
This extension adds several texture shader operations, extending several existing texture shader operations,
adding a new HILO8 internal format, and adding new and more flexible re-mapping modes for dot product
and dependent texture shader operations.

GL_NV_vertex_program2_option
Extends the standard ARB_vertex_program language and execution environment.

Discussion
This extension provides additional vertex program functionality to extend the standard ARB_vertex_program
language and execution environment.

GL_NV_vertex_program3
Provides additional vertex program functionality to extend the standard ARB_vertex_program language
and execution environment.

Discussion
This extension, like the NV_vertex_program2_option extension, provides additional vertex program
functionality to extend the standard ARB_vertex_program language and execution environment.

36 OpenGL Extensions
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://oss.sgi.com/projects/ogl-sample/registry/NV/register_combiners2.txt
http://www.opengl.org/registry/specs/NV/texgen_reflection.txt
http://oss.sgi.com/projects/ogl-sample/registry/NV/texture_shader.txt
http://oss.sgi.com/projects/ogl-sample/registry/NV/texture_shader2.txt
http://oss.sgi.com/projects/ogl-sample/registry/NV/texture_shader3.txt
http://www.opengl.org/registry/specs/NV/vertex_program2_option.txt
http://www.opengl.org/registry/specs/NV/vertex_program3.txt

GL_SGIS_generate_mipmap
Defines a mechanism by which OpenGL can derive the entire set of mipmap arrays when provided with only
the base level array.

Discussion

GL_SGIS_texture_edge_clamp
Defines an algorithm that clamps texture coordinates at all mipmap levels such that the texture filter never
samples a border texel.

Discussion
The GL_CLAMP_TO_EDGE_SGIS algorithm clamps texture coordinates at all mipmap levels such that the
texture filter never samples a border texel.

GL_SGIS_texture_lod
Imposes two constraints related to the texture level of detail parameter.

Discussion
The texture level of detail parameter (LOD) allows a large texture to be loaded and used initially at low
resolution, and to have its resolution raised gradually as more resolution is desired or available.

GL_SGI_color_matrix
Adds a 4x4 matrix stack to the pixel transfer path.

OpenGL Extensions 37
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

http://www.opengl.org/registry/specs/SGIS/generate_mipmap.txt
http://www.opengl.org/registry/specs/SGIS/texture_edge_clamp.txt
http://www.opengl.org/registry/specs/SGIS/texture_lod.txt
http://www.opengl.org/registry/specs/SGI/color_matrix.txt

38 OpenGL Extensions
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

OpenGL Extensions Guide

This table describes the changes to OpenGL Extensions Guide.

NotesDate

Updated for Mac OS X v10.6 and OpenGL 2.1.2010-02-24

39
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

40
2010-02-24 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	OpenGL Extensions Guide
	Contents
	OpenGL Extensions Guide
	Overview
	OpenGL Extensions by Task
	Working With Vertex Data
	Working With Textures
	Using Pixel Buffers
	Using Framebuffer Objects
	Optimizing Flushing
	Working With Depth and Stencil Buffers
	Working With Lighting, Fog, and Shadow Effects
	Using Vertex Programs
	Using Fragment Programs
	Using Shader Objects
	Supporting Data Types and Formats
	Imaging and Blending
	Tessellation
	Binding and Loading Parameters
	Multisampling and Using Mipmaps
	Using Point Sprites
	Working With Raster Positions

	OpenGL Extensions
	GL_APPLE_aux_depth_stencil
	GL_APPLE_client_storage
	GL_APPLE_element_array
	GL_APPLE_fence
	GL_APPLE_float_pixels
	GL_APPLE_flush_buffer_range
	GL_APPLE_flush_render
	GL_APPLE_object_purgeable
	GL_APPLE_packed_pixels
	GL_APPLE_pixel_buffer
	GL_APPLE_rgb_422
	GL_APPLE_specular_vector
	GL_APPLE_texture_range
	GL_APPLE_transform_hint
	GL_APPLE_vertex_array_object
	GL_APPLE_vertex_array_range
	GL_APPLE_vertex_program_evaluators
	GL_APPLE_ycbcr_422
	GL_ARB_color_buffer_float
	GL_ARB_depth_texture
	GL_ARB_draw_buffers
	GL_ARB_fragment_program
	GL_ARB_fragment_program_shadow
	GL_ARB_fragment_shader
	GL_ARB_half_float_pixel
	GL_ARB_half_float_vertex
	GL_ARB_imaging
	GL_ARB_multisample
	GL_ARB_multitexture
	GL_ARB_occlusion_query
	GL_ARB_pixel_buffer_object
	GL_ARB_point_parameters
	GL_ARB_point_sprite
	GL_ARB_shader_objects
	GL_ARB_shader_texture_lod
	GL_ARB_shading_language_100
	GL_ARB_shadow
	GL_ARB_shadow_ambient
	GL_ARB_texture_border_clamp
	GL_ARB_texture_compression
	GL_ARB_texture_compression_rgtc
	GL_ARB_texture_cube_map
	GL_ARB_texture_env_add
	GL_ARB_texture_env_combine
	GL_ARB_texture_env_crossbar
	GL_ARB_texture_env_dot3
	GL_ARB_texture_float
	GL_ARB_texture_mirrored_repeat
	GL_ARB_texture_non_power_of_two
	GL_ARB_texture_rectangle
	GL_ARB_texture_rg
	GL_ARB_transpose_matrix
	GL_ARB_vertex_blend
	GL_ARB_vertex_buffer_object
	GL_ARB_vertex_program
	GL_ARB_vertex_shader
	GL_ARB_window_pos
	GL_ATIX_pn_triangles
	GL_ATI_array_rev_comps_in_4_bytes
	GL_ATI_blend_equation_separate
	GL_ATI_blend_weighted_minmax
	GL_ATI_pn_triangles
	GL_ATI_point_cull_mode
	GL_ATI_separate_stencil
	GL_ATI_texture_compression_3dc
	GL_ATI_texture_env_combine3
	GL_ATI_texture_float
	GL_ATI_texture_mirror_once
	GL_ATI_text_fragment_shader
	GL_EXT_abgr
	GL_EXT_bgra
	GL_EXT_bindable_uniform
	GL_EXT_blend_color
	GL_EXT_blend_equation_separate
	GL_EXT_blend_func_separate
	GL_EXT_blend_minmax
	GL_EXT_blend_subtract
	GL_EXT_clip_volume_hint
	GL_EXT_compiled_vertex_array
	GL_EXT_depth_bounds_test
	GL_EXT_draw_buffers2
	GL_EXT_draw_range_elements
	GL_EXT_fog_coord
	GL_EXT_framebuffer_blit
	GL_EXT_framebuffer_multisample
	GL_EXT_framebuffer_object
	GL_EXT_framebuffer_sRGB
	GL_EXT_geometry_shader4
	GL_EXT_gpu_program_parameters
	GL_EXT_gpu_shader4
	GL_EXT_multi_draw_arrays
	GL_EXT_packed_depth_stencil
	GL_EXT_paletted_texture
	GL_EXT_rescale_normal
	GL_EXT_secondary_color
	GL_EXT_separate_specular_color
	GL_EXT_shadow_funcs
	GL_EXT_shared_texture_palette
	GL_EXT_stencil_two_side
	GL_EXT_stencil_wrap
	GL_EXT_texture_compression_dxt1
	GL_EXT_texture_compression_s3tc
	GL_EXT_texture_env_add
	GL_EXT_texture_filter_anisotropic
	GL_EXT_texture_integer
	GL_EXT_texture_lod_bias
	GL_EXT_texture_mirror_clamp
	GL_EXT_texture_rectangle
	GL_EXT_texture_sRGB
	GL_EXT_transform_feedback
	GL_IBM_rasterpos_clip
	GL_NV_blend_square
	GL_NV_conditional_render
	GL_NV_depth_clamp
	GL_NV_fog_distance
	GL_NV_fragment_program2
	GL_NV_fragment_program_option
	GL_NV_light_max_exponent
	GL_NV_multisample_filter_hint
	GL_NV_point_sprite
	GL_NV_register_combiners
	GL_NV_register_combiners2
	GL_NV_texgen_reflection
	GL_NV_texture_shader
	GL_NV_texture_shader2
	GL_NV_texture_shader3
	GL_NV_vertex_program2_option
	GL_NV_vertex_program3
	GL_SGIS_generate_mipmap
	GL_SGIS_texture_edge_clamp
	GL_SGIS_texture_lod
	GL_SGI_color_matrix

	Revision History

