Learning via online mechanics tests: update and extension

Mundeep Gill & Martin Greenhow Brunel University

Contentions

- a. Students find mechanics hard because it's synoptic.
- b. Students go wrong at specific points triggered by lack of mastery of basic skills and knowledge, often from algebra and calculus.
- c. Student errors are not random but arise from malrules.
- d. These mal-rules can be usefully categorised.
- e. Testing via CAA with extensive feedback can be effective.

Part 1: Technical Issues

Randomisation

Agolf ball is thrown horizontally and hits the ground a horizontal distance of 17m from the thrower 2s later.
Find the speed and height of projection.
Ignore the effect of air resistance and take the numerical value of g to be 9.8ms ⁻² .
Give your answer to 2 decimal places and include the minus sign where necessary.
The speed of projection isms ⁻¹ and the height of projection ism.
Submit

A stone is thrown horizontally and hits the ground a horizontal distance of 13m from the thrower 6s later.
Find the speed and height of projection.
Ignore the effect of air resistance and take the numerical value of g to be 9.8ms ⁻² .
Give your answer to 2 decimal places and include the minus sign where necessary.
The speed of projection isms ⁻¹ and the height of projection ism.
Submit

Dynamic functionality

Your answers were wrong. Your answers 1, 2 and 4 should have been: 0, 712.47, and -89.22.

The beam is in equilibrium, so,

$$F_{\text{total}} = R_{X}\mathbf{i} + \begin{bmatrix} R_{y} + Q - 17 - 37 - \int_{14.5}^{20} w(x)dx \end{bmatrix} \mathbf{j} = 0$$

$$\Rightarrow R_{X}\mathbf{i} + \begin{bmatrix} R_{y} + Q - 17 - 37 - \int_{14.5}^{20} 6x dx \end{bmatrix} \mathbf{j} = 0$$

Now,

$$\int_{14.5}^{20} 6x \, dx = 3 \left[x^2 \right]_{14.5}^{20} = 569.25$$

Mal-rules in action

Three forces $\mathbf{F}_1 = 6\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$, $\mathbf{F}_2 = 10\mathbf{i} + 12\mathbf{j} + 11\mathbf{k}$ and $\mathbf{F}_3 = 16\mathbf{i} + 19\mathbf{j} + 20\mathbf{k}$ act at points with position vectors

 $r_1 = 24i + 26j + 22k$, $r_2 = 31i + 32j + 30k$ and $r_3 = 42i + 40j + 37k$ respectively.

Find an expression for the cosine of the angle between \mathbf{F}_1 and \mathbf{F}_2 .

Part 2: Results of trials

Error taxonomy

Error Type	Classification
Assumption	Students assume certain things that are not true, for example, in projectile
	questions, that vertical velocity is equal to initial velocity.
Calculation	Method correct but calculation errors are made.
Copying	Copying values incorrectly.
Definition	Not knowing the definition of terms given in question text, e.g. magnitude.
Formulas	Incorrectly stating/recalling formulas.
Incorrect Values	Using incorrect values in method, for example, when substituting values
Used	into formulas.
Knowledge	Knowledge students are lacking that would enable them to answer
	questions.
Methodology	Students attempt to use an incorrect method to answer a question.
Modelling	Generic definition, e.g. ignoring forces, such as gravity, acting on particles.
Procedural	Method student attempts to use is correct but can only do initial/certain
	stages of the method. They stop halfway through when they do not know
	the stages that follow or when they are unable to interpret initial results.
Reading	Reading the question text incorrectly and confusing the value of variables.
Trigonometry	Basic definitions of cosine, sine and tan incorrect. This is most apparent in
	questions where students are required to resolve forces.

Efficacy of feedback: what do students say about it (FAST Project)

Quantity and timing of the feedback

■ Strongly Agree ■ Agree ■ Undecided ■ Disagree ■ Strongly Disagree

Efficacy of feedback: what do students say about it

Quality of the feedback

■ Strongly Agree ■ Agree ■ Undecided ■ Disagree ■ Strongly Disagree

Efficacy of feedback: how long do students retain it

Efficacy of feedback: Indicators for understanding exam scripts

Efficacy of feedback: Analysis of marks

Conclusion

- Mal-rules apply in other areas of maths (science?)
- Error taxonomy applies in other areas of maths (science?).
- CAA is a popular resource to use.
- CAA is effective, if skills are tested and full feedback is given.