

PEER ASSESSED PROBLEM BASED CASE STUDIES

Elizabeth Folland

BACKGROUND

Students

- Undergraduates
- BSc Food And Agriculture

Student learning route

- 1st year -disciplines
- 2nd year -application
- 3rd year –practicum
- Module -interdisciplinary

Industrial Link

Knowledge Transfer Partnership Associate

Staff

- Academic tutors- multidiscipline
- Technical support

Key Elements

- Problem Solving Exercise
 Case study based on a bakery
- Peer AssessmentDevelops the role of reflection and evaluation
- 3. Presentation and Peer Assessment of Solutions
- 4. Debrief

Problem Solving Exercise

PREPARATION

Academic tutor/KTP Associate

- Identify a potential source of case study material Pre packed sandwiches
- Create a working brief
 Improve shelf life of bakeries own brand sandwiches
- Provide a theoretical structure
 Factors in bread quality, determination of crop quality etc

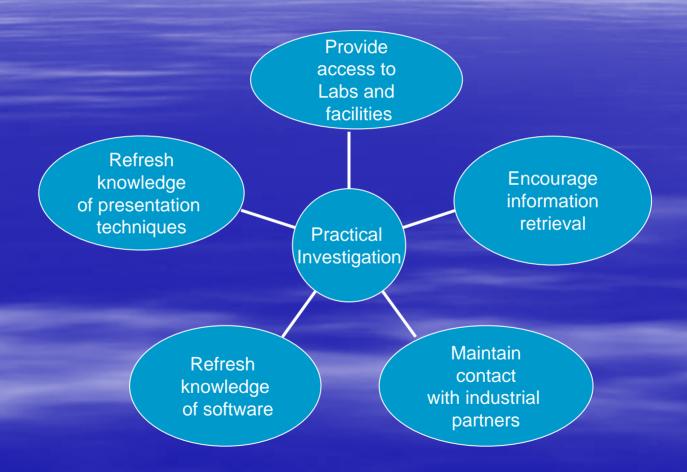
Technical

- Problem solve in preparation to support students
- Provide resources

Preparation for the practical task

Students put in the role of consultants to the industrial partner

KTP Associate Presentation:


- Transfer relevant knowledge
 Analysis of UK production, Company position in market place, potential customer base, consumer preferences
 Basic principles of sandwich manufacture
- Identify problem
 Discuss role of raw materials in production
 Identify issues with fillings and bread type

Preparation for the Practical Task

Academic and technical team:

- Encourage reflection on knowledge
 Qualitative and quantitative analysis
 Analytical knowledge of food composition
 Chemical/instrumental analysis
- Creation of 'consultant' groups and working plans
 Brainstorming
 Project Plan
 Set time scales

Practical Investigation

PEER ASSESSMENT TASK

Introduction
Definition

Student/tutor understanding

Anonymous procedure

Objectivity

Selection of general elements for presentation

e.g. Communication, Structure, Content

Selection of criteria matrix for each element

Engagement with audience/Readability of slides

Introduction/Rationale, Flow of information

Relevance, scientific basis, fitness for purpose

Devise Marking Strategy

Mark Allocation/Balance for each element

Marking Scale

Numeric

Linear

Categories

Presentation/mini conference

Before Presentation

- Examples of Benchmark presentations
- Rehearsal facilities
- Peer assessment process reinforced

During presentation

Students evaluate each group's performance

After presentation

- Scrutiny of evaluation sheets
- Allocation of marks

DEBRIEF

Academic moderation

Industrial partner

Respond to presentations
Reinforces value of solutions to industry

Dissemination of good practice

Easy and difficult aspects of practical and assessment tasks Supportive, constructive criticism

Reflection on Practice

Encourage student thoughts on personal strengths and weaknesses in learning experience.

RECOMMENDATIONS

Case Study

Ensure size and scope of case study is manageable and at the right intellectual level Provide guidelines to drive the learning process

Provide sound theoretical base

Encourage student autonomy

Encourage close links between staff, students and industrial partner

Peer Assessment

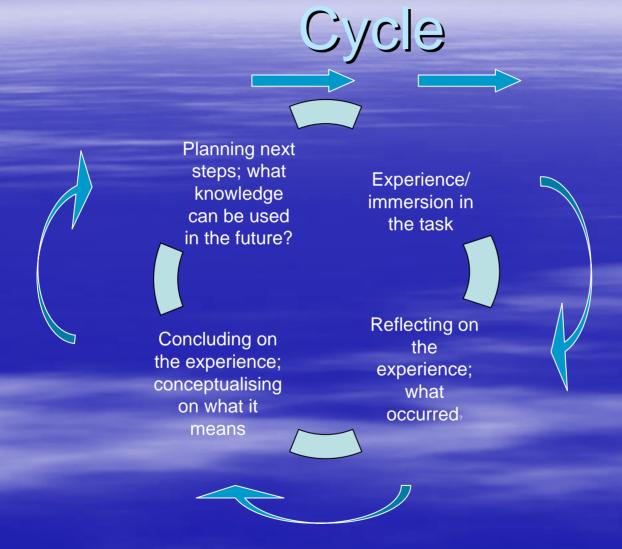
Honesty and openness

Reassurance

Encourage ownership

Advantages of using problem based peer assessed learning

For the students


- Introduction to commercial consultancy
- Application of theoretical knowledge to real life problems
- Develops teamwork skills
- Encourages student centred learning
- Enhances student IT skills
- Encourages reflection on peers work
- Encourages critical evaluation of own work

Advantages of using problem based peer assessed learning assessment

For staff

- Ensures relevancy of theoretical and practical teaching
- Facilitates the link between teaching and research
- Highlights potential areas for research and development
- Strengthens the links between industry and academia,
 Promotes collaboration between industry and the University
- Promotes deeper understanding of industry problems

Kolb's Experiential Learning

Summary

' First teach them the relevant basic science, then teach them the relevant applied science, then give them a practicum in which to practice applying that science to the problems of everyday life' (Donald A Schön 1987)