Student self-assessment of records of practical work in biology

Dr. Jimmy Chubb

School of Biological Sciences, University of Liverpool, Liverpool L69 3GS

Background to module

Lectures
24 delivered over 12 weeks

Associations Diversity

Free-living to parasitism
Host specificity
Transmission, life cycles Animal parasites in humans Behavioural aspects Host responses
Vertebrate defences
Control: public health
A combined approach

Plant galls
Hosts as habitats
Complex parasite life cycles
Parasite in environment
Infection, establishment
Structural, nutrient exchanges
Modified host behaviour
Regulatory interactions
Immune response
Eradication, anthelmintics

Practical classes

Aim : quality practical work, see range of living parasites

Practical 1 PLANT GALLS

Practical 2 THE VERTEBRATE HOST
Practical 3 THE INVERTEBRATE HOST
run over six weeks, 3 hours per week
three projects
each with laboratory class (3 hours)
class data interpretation/poster session (3 hours) following week
two internet practicals (NOT CONSIDERED HERE)

Key skills for practicals

accurate record of observations
full collection of data
ability to interpret results
proficiency in reaching evidence-based conclusions
self-assessment of quality of work

Evaluating these skills

collect laboratory record books after practicals mark them
provide constructive comments on each book
Increasing student numbers, now about 100 each year, make marking and commenting very time-consuming

Two markers, 100 books
equals
all free time in about 15 working days

Self-instruction

students learn
practical record keeping data appreciation and analysis interpretation and conclusions

Self-assessment

saves marker time, fewer comments on record books self-learning process for student onus of responsibility for quality on student invaluable training
most graduates responsible for quality of own work in future employment

Self-assessment - clear aims and objectives

Oral presentation from lecturer about purpose of laboratory record books importance of recording work at time done self-assessing own laboratory record books

Marking
20\% from laboratory record book
10\% from web project
70\% from 2 hour theory examination

Format of scientific journals used in laboratory record book

1. Introduction (including aims of exercise)
2. Materials and methods
3. Results (drawings, data and observations)
4. Discussion (evaluation of findings)
5. Conclusions

We specify

sections 1 to 3 written during practical classes work stamped to certify done in laboratory
not rewritten, to keep primary observations
scientific layout: model applicable to most reports
expect drawings, tables, interpretative text
students complete Discussion and Conclusions later using check list
need own plus class results (supplied as printed handout)

Self-assessment Criteria and Self-selection of Content

Need criteria to judge quality of work
School of Biological Sciences criteria
List of items for each heading of laboratory record book check list (Table)
each part posed as question every part not needed for each project
students learn by self-selection of appropriate parts

Self-assessment : entry in module handbook

"You should examine the criteria for the degree classes and the questions in the check list. The questions give you a guide to expectations of content in each part of an account. The criteria measure the work in terms of understanding of topic, context, layout, and quality of drawings, diagrams, graphs, data analysis and writing. If, for example, the context is correct, and the quality falls within the upper second degree class criteria, then the work will be within this class. A decision whether the work is at the top, the bottom or at some intermediate point within the class, is made, allocating a mark using odd numbers only. This is more difficult, but if all the class criteria are fulfilled plus all the relevant components, you will be looking for a mark at the top of the class. If the account does not fulfil all the class criteria, but does not drop to the class below, and omits relevant components, then the mark will be at the bottom of the class range. It is worth stating that in biology it is unusual to give marks much over 80% or significantly under 30\%."

Self-Assessment

started 1990
1996-97 66 students (78\%) self-assessed work
until 1995 conducted by printed forms
forms submitted with laboratory record book
from 1996 computer-based (Macromedia's Authorware)

2000-01 back to forms - simpler, easier, more effective

Computer-based questionnaire
design - simple and attractive questions - "friendly" style sound - emphasise user-friendly nature colour - attractive student can complete at own pace prompts to enter proper detail feed back alerts student of errors errors ignored up to file submission written to a locked folder on LAN protected from unauthorised scrutiny stored - user name entered at "log-on" printed for evaluation with laboratory record book

Self-Assessment - positive aspects

marked improvement in quality of laboratory record books since introduction (1990-91 to 2001-02)
number of comments necessary on books during marking significantly reduced
self-assessment gives format for making comments
saves marking time (estimated at 25\%)
enhances student learning by personal involvement
puts onus of responsibility on student

Comparison of predicted with actual marks

compared predicted with actual mark ($\mathrm{n}=66$)
26 (39\%) actual mark lower than self-assessment 17 (26\%) predicted actual mark 23 (35\%) actual mark higher Figure 1 actual marks Figure 2 self-assessment predictions
both distributions similar mean, standard error gap in predictions between 45\% and 55\% (Figure 2) suggests students unwilling to predict low 2.2 or high 3 marks
actual marks show spread through fifties (Fig 1) so there is a discrepancy between the self-assessment predictions and actual marks

Figure 1 Marks awarded in conventional assessment ($\mathrm{n}=85$) using School of Biological Sciences criteria (Table 1)

Figure 2 Predicted marks from self-assessment exercise undertaken by students ($n=66$)

The discrepancy

Figure 3 shows difference between selfassessment predictions and actual marks by reference to the mark awarded
students with mark under 60\% predict a higher mark
discrepancy increased as mark awarded fell
students with mark over 60\% almost always predict a lower mark

Interpretation of data

Data interpreted in two ways
stronger students reluctant to accept their work as good, so assess it harshly
better students recognise good work and realise shortcomings in own
less capable peers overly generous with assessment i.e. do not understand criteria for good work, so over value their efforts

Students who get low marks do so because they have not understood what makes a good piece of work and have not put in effort to learn

A second explanation relates to peer pressure
students "play safe", follow friends or avoid appearing confident in front of others predict a "safe" mark around 60\% if awarded higher actual marks are pleased if fall short of prediction not embarrassed
this concept applies adequately for stronger students, with actual marks over 60\%
but for those who score under 60\% it is not a good tactic as they will over predict their mark

Both explanations may apply

those students who perform well most likely to realise that they have done well because they understand what contributes to a good piece of work. However, they assess their work lower than this out of selfcriticism
those students who do not perform well have not grasped what is required to produce good work, and therefore cannot predict their mark accurately, or are too lazy to bother learning

In conclusion - Self-Assessment

probably of maximum value to weaker students forces them to look at their work using criteria by which the actual mark will be awarded
helps them to understand why work is deficient self-assessment quantifies recognition of level of achievement for all students
for academic staff gives some modest saving of time in marking
major gain seen as enhancement of quality of written work and learning
student satisfaction when submitting competent laboratory record books

