
Introduction to scripts and Corel SCRIPT
A script is a computer program that executes a series of instructions with a single command. Generally, scripts
are used to automate repetitive tasks or simplify complicated actions, but they can also prompt for user input,
display messages, and interact with other applications.
Scripts can significantly increase your productivity with Corel applications by automating repetitive tasks. For
example, a script could be used to open a group of files, perform a set of editing actions, or set an application's
default properties. In their simplest form, scripts replicate a Corel application's keystrokes, and toolbar, menu,
and mouse commands. In a more complex form, scripts can include the commands and constructs of a
programming language. For example, you could create a script that only replicates an application's commands
once a series of logical requirements have been met.
A Corel script is a Windows text file that lists the Corel SCRIPT commands that will perform a particular task.
These instructions are all part of the Corel SCRIPT programming language, which is partially based on Corel
application menu commands. For example, the FileClose command corresponds to a menu command (click File,
Close) on an application's menu system.   
The rest of the Corel SCRIPT programming language is based on the BASIC programming language. If you're
already familiar with a version of BASIC, you'll find the Corel SCRIPT programming language easy to read and
understand.
Computer programming experience isn't a prerequisite for using Corel SCRIPT to create and edit scripts.
However, the more knowledge, experience, and desire you have to delve into the mechanics of your Corel
application, the more you'll be able to take advantage of the power of Corel SCRIPT.
Your Corel SCRIPT online Help file contains information, from instructions for novice script writers to reference
material for experienced script writers and programmers. The following information categories are available in
this online Help file:

Corel SCRIPT introduction and overview
Programming and running Corel SCRIPT scripts
Debugging scripts
Corel SCRIPT programming lanugage syntax reference
Using the Corel SCRIPT Editor
Using dialog boxes and the Corel SCRIPT Dialog Editor
Corel SCRIPT reference information

The amount of information you'll need to know about scripting will depend on the complexity of your scripts.
Note

Most large computer applications have a built-in programming language of some form but some call their
programs macros instead of scripts.     

Not every Corel application supports Corel SCRIPT programming and script files. Click
 for a list of Corel applications that support Corel SCRIPT.

{button ,AL(`intro_cs;corel_script_editor;corel_script_dialog_editor;;;',0,"Defaultoverview",)}
Related Topics

What is Corel SCRIPT?
A typical user can take rapid advantage of Corel SCRIPT to automate repetitive tasks with scripts written in the
Corel SCRIPT language. However, Corel SCRIPT is more than just a language that you can use to create and run
script files; it's also a powerful programming language that can be used as a stand-alone application.
The Corel SCRIPT programming language is based on the BASIC programming language. If you're already familiar
with a version of BASIC, you'll find the Corel SCRIPT programming language easy to read and understand.
The Corel SCRIPT application includes:

the Corel SCRIPT Editor
the Corel SCRIPT Dialog Editor
advanced Windows programming features for DLL functions and OLE automation capabilities.

Note
Not every Corel application supports Corel SCRIPT programming and script files. Click

 for a list of Corel applications that support Corel SCRIPT.

{button ,AL(`intro_cs;using_dynamic_link_libraries;ole_automation;;;',0,"Defaultoverview",)}
Related Topics

Corel SCRIPT programming language
The Corel SCRIPT programming language is made up of two sets of instructions: Corel SCRIPT application
commands and functions, and Corel SCRIPT intrinsic statements, commands, and functions. Partially based on
the BASIC programming language, the Corel SCRIPT programming language is easy to read and understand. In
the on-line Help, the Corel SCRIPT Reference section provides descriptions of each Corel SCRIPT statement,
command, construct, and function, along with other reference information and examples.
Corel SCRIPT application commands
Corel SCRIPT application commands instruct Corel applications that support Corel SCRIPT to perform commands.
Each Corel application that supports Corel SCRIPT has a distinct set of commands.
Generally, Corel SCRIPT application command names correspond to the command's menu name preceded by its
main menu name. For example, the EditCut command is the complement of a menu command (click Edit, Cut)
on an application's menu system. Customizing your menu structure doesn't affect Corel SCRIPT command
names.   
Unlike the EditCut command, most application commands require more than just a menu name to have the
command carried out. Many menu commands in Corel applications open dialog boxes with dialog controls that
require user input values. Since application dialog boxes are not displayed during script execution, the values
required for commands that open dialog boxes must be specified with the command in the script file. These
specified values are called parameters and usually correspond to dialog box options.
For example, if you wanted to open a file named myfile.txt in a Corel application, you might use a command
similar to the following:
.FileOpen "myfile.txt"
where "myfile.txt" is a parameter for FileOpen.
Corel SCRIPT application commands are often available in more than one application. For example, the FileNew
command is available in both CorelDRAW and Corel PHOTO-PAINT. Although the FileNew command creates a
new document in both applications, FileNew has different parameter settings in each application. For example,
if you used CorelDRAW commands in a script for Corel PHOTO-PAINT, an error would likely occur.
In Corel SCRIPT Help, application statements are in initial caps, such as FileOpen, EditCut, FilePrint.
Corel SCRIPT intrinsic statements
Corel SCRIPT intrinsic statements and functions are based on the BASIC programming language and perform
instructions or actions that are not part of a Corel application. For example, Corel SCRIPT intrinsic statements can
be used to display a user-defined dialog box, include flow control statements and constructs such as loops,
create and manipulate variables, and retrieve information about your computer setup. On their own, Corel
SCRIPT intrinsic statements form a powerful programming language. In fact, a script containing only Corel
SCRIPT intrinsic statements can be executed even if a supporting Corel application is not running.
In Help, Corel SCRIPT intrinsic statements are in uppercase, such as LEFT, IF, and MESSAGEBOX.

{button ,AL(`cs_intro;;;;;',0,"Defaultoverview",)} Related Topics

Corel SCRIPT scripts
A Corel SCRIPT script is a Windows text file (.CSC extension) that lists commands and instructions to execute.
Application commands
The most basic script file contains only Corel SCRIPT application commands that are translated by a Corel
application that supports scripts and executed. In other words, the script tells the Corel application what to do.
The following example is a Corel PHOTO-PAINT script that opens a new image, draws a line, and saves a PHOTO-
PAINT file with the name example (the script lines beginning with an apostrophe are script comments, and
aren't executed):
WITHOBJECT "CorelPhotoPaint.Automation.6"

'Creates a new file
.FileNew 360, 504, 1, 300, 300, 0, 0, 0, -1, -1, -1, -1, 255, 255, 255, 0
'next 3 lines set default settings
.SetPaintColor 5, 0, 0, 0, 0
.PenSettings 17, 10, 0, 0, 0, 0, 0
.ShapeSettings 0, 2, 10, 0, 0
'next 3 line draw a line
.StartDraw 91, 441
.ContinueDraw 213, 214
.EndDraw
'saves the file
.FileSave "C:\myfolder\example.CPT", 1792, 0

END WITHOBJECT
As you can see in the above example, the command names are always placed at the beginning of a line, and are
followed by parameter settings. Command lines cannot wrap over a line. You can have more than one command
on a line but the commands must be separated by colon (:) as in the following example:
.StartDraw 91, 441 : .ContinueDraw 213, 214 : .EndDraw
Intrinsic statements
Your script files can also include Corel SCRIPT intrinsic statements, which are based on the BASIC programming
language. Intrinsic statements perform instructions or actions that are not part of a Corel application. For
example, the following two intrinsic statements each open a dialog box:
yourName$ = INPUTBOX("Please type your name")
MESSAGE "Your name is " + yourName$
The first statement displays a dialog box that requires user-input. User-input is stored in the variable
yourName$.

The second statement displays a dialog box with a message based on the user-input to the first dialog box.

Combining application commands and intrinsic statements
The intrinsic statements shown above are a simple example of how to use Corel SCRIPT intrinsic statements on
their own. To bring out the real power and flexibility of Corel SCRIPT scripts, you can combine Corel SCRIPT
application commands with intrinsic statements. The following example is a script that combines PHOTO-PAINT
application commands with Corel SCRIPT intrinsic statements. Intrinsic statements are displayed in boldface, and
some application commands and intrinsic statements are preceded by comments:
'Create a list of file names called "files"
diskdir$ = INPUTBOX("Please enter the drive letter of your CD-ROM")

DIM files(5) as STRING
files(1) = "Boxpanel.bmp"
files(2) = "Clamtext.bmp"
files(3) = "Footprnt.bmp"
files(4) = "Fuzzy.bmp"
files(5) = "Gradient.bmp"
'begins the loop
FOR i% = 1 TO 5
WITHOBJECT "CorelPhotoPaint.Automation.6"

'creates a name for the edited bitmap
FileName$ = diskdir+":\photopnt\plgbrush\" + files(i)
'open a bitmap file
.FileOpen FileName$, -1, -1, -1, -1, 0
FileName$ = "c:\temp\brushes\brush0" + CSTR(i%) + ".bmp"
.Imageconvert 1,1,0,0,0,0,0
.SetPaintColor 5, 0, 0, 0, 0
.SetPaperColor 5, 255, 0, 0, 0
'replaces color base on the 3 commands above
.ColorReplace
'saves the file with a new name
.FileSave FileName$, 769, 0

END WITHOBJECT
NEXT i%
The above script creates a list of bitmap files, opens each file in a FOR...NEXT loop, converts black & white
images to RGB images, replaces white color to red color, and finally saves the edited bitmap file with a new
name.
If you're an inexperienced script (or macro) writer, the above script can seem somewhat overwhelming at first,
but if you break it down into its basic components (each command and statement), you may find that the script
is not as complicated as it looks. With a little practice, and use of the Corel SCRIPT reference online Help, you
could be on your way to creating script files in no time.
Corel SCRIPT also comes with sample scripts that you can use to learn more about scripts and how to use
commands and statements. The samples can even be used as templates for creating your own scripts.

{button ,AL(`cs_intro;Variable_availability;;;;',0,"Defaultoverview",)} Related Topics

When should I write a script?
You should consider writing a script any time you are repeating a series of commands in a Corel application that
supports Corel SCRIPT. Other times you may be faced with a repetitive task, such as changing a color in a group
of Corel documents, and you may say to yourself, "I wish my Corel application could do this for me." Actually,
your Corel application can do it, using a script file.
After working with a Corel application for some time, you may begin to see patterns in your work habits. For
example, you may repeat actions such as opening the same documents each time you launch your Corel
application. In this case, you could create a script to open your files for you. Additionally, if you use a script often
enough, you may want to assign a keystroke to it, add it to your menus, or turn it into a button on the toolbar. In
other cases, you may just want a script to get you through a tedious task more quickly; once the script is no
longer required you can discard it.
As you gain experience with scripts and Corel SCRIPT's powerful programming language, you'll find you can write
a script to do almost anything for you in a Corel application that supports scripts. Your only limitation is your
imagination.

{button ,AL(`cs_fund;;;;;',0,"Defaultoverview",)} Related Topics

Executing scripts
Corel SCRIPT scripts can be executed or run, under specific conditions, from any Corel application that supports
Corel SCRIPT, or from the Corel SCRIPT Editor. The Corel SCRIPT Editor is a separate application that you use to
write, edit, run, and debug script files. Additionally, there are advantages and disadvantages to running a script
with your application or with the Corel SCRIPT Editor.
Scripts containing Corel SCRIPT application commands
Any script file that contains application commands for a Corel application must include the WITHOBJECT
statement. The WITHOBJECT statement directs the executing script to the Corel application to call.
The following example shows how to run a FileNew command in Corel PHOTO-PAINT.
WITHOBJECT "CorelPhotoPaint.Automation.6"

.FileNew 360, 504, 1, 72, 72, 0, 0, 1, 0, 0, 0, 19533528, 255, 255, 255, 0
END WITHOBJECT
You can have as many commands as you want after the WITHOBJECT statement, but the block of commands
must end with an END WITHOBJECT statement. You can also have intrinsic statements within the WITHOBJECT
block of commands.
You have the option of running scripts from the Corel SCRIPT Editor or from your Corel application that supports
Corel SCRIPT. Not every Corel application supports Corel SCRIPT programming and script files. Click for a list of
Corel applications that support Corel SCRIPT.
When you create or edit a script, you should first run it from the Corel SCRIPT Editor. Executing from the Editor
lets you take advantage of the Editor's testing and debugging features that allow you to fine tune script syntax
or fix script syntax errors. However, once you are satisfied your script is running properly, you should run your
script from the Corel application that uses the application commands. Running from the application can
significantly decrease the script's execution time.
From the Editor, you can run a script that contains Corel application commands without having the application
open. The script will be executed in the computer memory, in the background. However, in most cases, your
script will have to open a file or create a new document before the rest of the application commands can be
executed.
You can also nest application commands for different Corel applications within a script. For example, you can
create a script that copies an object from PHOTO-PAINT to CorelDRAW:
WITHOBJECT "CorelPhotoPaint.Automation.6"

'Series of PHOTO-PAINT commands to copy an object
WITHOBJECT "CorelDraw.Automation.6"

'Series of DRAW commands to paste an object
END WITHOBJECT

END WITHOBJECT

Executing applications commands in the background
If you execute a script from the Corel SCRIPT Editor (or from a Corel application) containing commands for
application that is not already running, Corel SCRIPT attempts to start the application. If the application is
started, it is only open in a portion of the computer memory called the background. Applications open in the
background are not visible on the Windows desktop. (Pressing CTRL+ALT+DEL opens the Close Program dialog
box indicating active applications, both visible and invisible.) Corel SCRIPT executes commands for applications
only open in the background the same way it does for visible applications.
If you run a script with an invisible application, the application will attempt to close once the script terminates. If
the script leaves any application documents open, the application cannot close. The best way to ensure that all
invisible applications are closed after script execution is to have the script close all documents. If your script is
not closing the open documents and leaving the application to run in the background, press CTRL+ALT+DEL to
open the Close Program dialog box to close the invisible applications.
Some applications have a command to make an application opened in the background visible on the desktop, for
example, the DRAW command .SetVisible.
Note

Scripts containing only intrinsic statements can be run from any Corel application that supports Corel
SCRIPT or from the Corel SCRIPT Editor. Generally, a script that contains only intrinsic statements runs faster from
the Corel SCRIPT Editor.

Though script files are text files, and can be edited or created with almost any Windows-based text editor
or word processor, you must use the Corel SCRIPT Editor if you want to test or debug a script.

Unlike script files (or macro files) from other companies, Corel SCRIPT files are text only; there is no
compiled binary component in the scripts. Before a script is executed, it is compiled internally into a program file.

{button ,AL(`intro_cs;Script_procedures;Script_programming_errors;;;',0,"Defaultoverview",)}
Related Topics

Script procedures
A simple Corel SCRIPT script executes in a linear manner; that is, each statement is executed on a line-by-line
basis up to the last script statement. In complex scripts, script execution jumps to blocks of statements called
procedures.
In a script, you can have three types of procedures:

functions
subroutines
main

Functions and subroutines are groups of Corel SCRIPT statements that are executed when the procedure is called
by another Corel SCRIPT statement. Both types of procedures are useful in cases when a group of instructions is
to be repeated. The instructions are written once in the script, and can be called from different places within the
script or with different parameters. You can have more than one of each type of procedure in a script.
Although, subroutines and functions are both Corel SCRIPT procedures that execute instructions, functions can
also be used to return values to a script that can be either assigned to an expression or compared with other
expressions.
Any script statement that is not part of a subroutine or a function is considered part of the script's main
procedural section. Each script has only one main section.
Note

The maximum number procedures you can have in a script is 125.

{button ,AL(`const;global;call;Variable_availability;Using_functions_subroutines;Executing_script_fil
es;declare;',0,"Defaultoverview",)} Related Topics

Corel SCRIPT utilities
The Corel SCRIPT application comes with two utility programs to make it easier for anyone from an inexperienced
script writer to a professional computer programmer to create, test, and debug scripts.
Corel SCRIPT Editor
The Corel SCRIPT Editor is a separate application that you can use to create, edit, run, test, and debug a Corel
SCRIPT script file.
Though script files are text files, and can be edited or created with almost any Windows-based text editor or
word processor, you must use the Corel SCRIPT Editor if you want to test or debug a script.
Corel SCRIPT Dialog Editor
In many cases, you'll need to get information from the user before your script performs a desired action. For
simple information, you can use the Corel SCRIPT function INPUTBOX to get a string from the user returned to a
running script. If you want to provide the user with options and more complex information, such as a list of
choices, you can use a dialog box in your script.
Dialog boxes are created using the Corel SCRIPT language. The Corel SCRIPT language features a full set of
programming statements to produce dialog boxes which incorporate sophisticated Windows options and
features.
The Corel SCRIPT Dialog Editor is a tool to quickly create and edit Corel SCRIPT dialog boxes. Working with the
Dialog Editor is similar to using a drawing or painting application: dialog controls are graphic objects which can
be inserted, moved, re-sized, and aligned in a dialog box.
Using the Dialog Editor takes the place of creating and editing Corel SCRIPT statements in a script file. It involves
a visual approach to creating and editing Corel SCRIPT dialog statements, since a dialog box and the controls
within it represent Corel SCRIPT statements. From the Dialog Editor, you can transfer the dialog boxes you've
created to the Clipboard, save the dialog boxes as Corel SCRIPT script files, and insert Corel SCRIPT statements
into a script.
Note

Unlike script files (or macro files) from other companies, Corel SCRIPT files are text only; there is no
compiled binary component in the scripts. Before a script is executed, it is compiled internally into a program file.

{button ,AL(`corel_script_dialog_editor;corel_script_editor;corel_script_editor_basics;corel_script_an
d_dialog_boxes;;',0,"Defaultoverview",)} Related Topics

Using Dynamic Link Libraries
Corel SCRIPT can call functions and subroutines in Dynamic Link Libraries (DLLs) such as those supplied with
Windows, other applications' DLLs, or any custom DLL files. To find out how to use functions in DLLs, you need
specific technical reference material. For example, to use the Windows DLLs, you need the Windows Software
Development Kit.
Before you can use a DLL function or subroutine, you must declare the function using the DECLARE...LIB
statement. See the statement's reference for more information and an example.
Warning

You should save or back up essential files and programs before using functions and subroutines in DLL
files. Passing an invalid argument to a function can result in a Windows General Protection Fault or unstable system
behavior.

Note
The advanced Corel SCRIPT programming feature described above is intended for experienced Windows

programmers, and not for beginner or intermediate script writers.

{button ,AL(`declare_lib;getapphandle;getwinhandle;;;',0,"Defaultoverview",)} Related Topics

Corel SCRIPT and OLE automation
Any Corel application that supports Corel SCRIPT provides a programmable OLE automation object. The object is
used by OLE automation controllers to send Corel SCRIPT application commands to their respective Corel
application. For example, Corel SCRIPT DRAW application commands are sent to CorelDRAW.
You can use OLE automation controllers such as Microsoft Visual Basic, Microsoft Excel Visual Basic, and Microsoft
Visual C++ (with the Microsoft Foundations Classes) to send commands to applications that support OLE
automation objects such as CorelDRAW, and to develop applications using Corel application components.
The Corel application commands and functions in this online Help file provide a reference of all available
commands and functions in your Corel application. The commands and functions are a part of automation-
enabled objects. The online Help provides only overview procedural and reference information about
programming with OLE automation. For more information about OLE automation, see the following reference
sources:

Microsoft Visual Basic Programmer's Guide
Microsoft Excel Visual Basic User's Guide
Microsoft Windows Developer's Kit
Microsoft Office Developer's Kit

Corel SCRIPT Editor
The Corel SCRIPT Editor is an OLE automation controller; that is, you can use it to access objects in other
applications that have OLE automation objects. Ordinarily, the Editor is used to access objects in Corel
applications that support OLE automation. However, you can also access objects in non-Corel applications. For
example, you can call Microsoft Word 6.0 or Microsoft Excel 5.0 using the external names "Word.Basic" or
"Excel.sheet.5", respectively.
To access objects in applications that support OLE automation from the Corel SCRIPT Editor, use the WITHOBJECT
statement.
Note

For a list of Corel applications that support OLE automation, and their application object names, click
.

The advanced Corel SCRIPT programming feature described above is intended for experienced Windows
programmers, and not for beginner script writers.

{button ,AL(`ole_cs;;;;;',0,"Defaultoverview",)} Related Topics

Using Corel applications with OLE automation controllers   
To access a Corel application with an OLE automation controller, an object variable must be first defined for the
Corel application. Each Corel application that supports OLE automation has one object that can be accessed by a
controller. For a list Corel applications that support OLE automation and their respective automation object
names, click .

The following section provides an example of using Microsoft Visual Basic to access Corel PHOTO-PAINT. Other OLE
automation controllers may access OLE automation objects with different instructions.

Example
From Visual Basic, the first step is to declare an object variable type. For example,
DIM paint AS OBJECT
The next step is to assign the application object to the object variable previously declared. In this case, the
object variable is paint, and the Visual Basic CreateObject function with the PHOTO-PAINT object name is used
to assign the application object. For example,
SET paint = CREATEOBJECT ("CorelPhotoPaint.Automation.6")
Corel PHOTO-PAINT commands can now be accessed by Visual Basic.
Starting applications
Before an automation controller (for example, Visual Basic) can access a Corel application that supports OLE
automation objects, the application must be running. If it is not running, the controller attempts to start it. The
application location and path information is stored in the Windows Registry.
You can use the Visual Basic Set Nothing command to discontinue an association to a previously declared
object.
One object in Corel OLE automation applications
Corel applications that support OLE automation have one object only. (For a list Corel applications that support
OLE automation and their respective Corel application object names, click .)

{button ,AL(`ole_cs;;;;;',0,"Defaultoverview",)} Related Topics

Using Corel SCRIPT application commands: an example
Once an OLE automation controller has assigned a Corel application object to a variable and made it available, it
can use Corel SCRIPT statements, functions, and commands the same way a Corel SCRIPT script uses them.
However, the OLE automation controller can only use Corel application statements. For example, it can use the
commands EditCut from PHOTO-PAINT and FileOpen from DRAW, but it cannot use Corel SCRIPT intrinsic
statements and functions such as FOR...NEXT or MESSAGE or Corel dialog box defintion statements. See the
Corel SCRIPT programming language for more details about application commands, intrinsic statements, and
functions..
The following example, which uses Visual Basic as an automation controller and Corel PHOTO-PAINT as the OLE
automation application receiving instructions, creates a Windows bitmap called SQUARE.BMP. The commands in
bold are Visual Basic statements; the others are Corel SCRIPT application commands.
DIM paint AS OBJECT 'declare on object variable
SET paint = CREATEOBJECT ("CorelPhotoPaint.Automation.6") 'assigning the application object

.FileNew 216, 288, 4, 72, 72, 0, 0, 1, 12643084, 12, 87753640, 11203980, 255, 255, 255, 0

.SetPaintColor 5, 51, 255, 0, 0

.PenSettings 20, 20, 0, 0, 0, 0, 0

.ShapeSettings 50, 0, 20, -1, 0

.Rectangle 52, 218, 196, 65

.FileSave "C:\COREL60\PROGRAMS\square.BMP", 769, 0
SET paint = NOTHING 'discontinues the association to the declared object

{button ,AL(`ole_cs;;;;;',0,"Defaultoverview",)} Related Topics

Corel SCRIPT Editor: OLE automation controller
Not only can you use the Corel SCRIPT Editor to edit and debug Corel SCRIPT scripts, but you can use it as an
OLE automation controller. Any time you run a script from the Editor that contains Corel SCRIPT application
statements, you are using the Editor's OLE automation capabilities to access Corel application commands.
You can also use the editor to create scripts that can call non-Corel applications. For example, you can call
Microsoft Word 6.0 or Microsoft Excel 5.0 using the external names "Word.Basic" or "Excel.sheet.5" respectively,
with the WITHOBJECT statement.
The following Corel SCRIPT script example creates a new Microsoft Word 6.0 document called NAMEDATE.DOC
that contains the user's name and the current date:
WITHOBJECT "Word.Basic"

.FileNew .Template = "Normal", .NewTemplate = 0

.InsertField .Field = "USERNAME * MERGEFORMAT"

.Insert Chr$(9)

.InsertDateTime .DateTimePic = "dddd, MMMM dd, yyyy", .InsertAsField = 1

.FileSaveAs .Name = "NAMEDATE.DOC", .Format = 0, .LockAnnot = 0, .Password = "", .AddToMru
= 1, .WritePassword = "", .RecommendReadOnly = 0, .EmbedFonts = 0, .NativePictureFormat =
0, .FormsData = 0
END WITHOBJECT
The Word Basic commands, or any commands from an OLE automation application receiving instructions, must
be preceded by a period. In the above example, the Word Basic FileNew command became the .FileNew
command.
Note

You can also execute the script example shown above, or any other script that calls the automation
controller from any Corel application that supports Corel SCRIPT. See To run a Corel SCRIPT script from a Corel
application for more information.

Before the Corel SCRIPT OLE automation controller can access an OLE automation application (for
example, Microsoft Word 6.0), the application must be running. If it is not running, the Corel SCRIPT Editor controller
attempts to start it. The application location and path information is stored in the Windows Registry.

After the END WITHOBJECT command is executed, the Corel SCRIPT OLE automation controller can no
longer access the object declared in the WITHOBJECT command until another WITHOBJECT command is issued.

{button ,AL(`ole_cs;corel_script_editor;;;;',0,"Defaultoverview",)} Related Topics

Documentation syntax conventions
The Corel SCRIPT Language Reference section provides syntax and reference information for each statement,
command, and function in Corel SCRIPT.
The following typographic conventions are used in the Corel SCRIPT Language Reference :
Syntax convention example Description
LBOUND, IF, LCASE Corel SCRIPT intrinsic statements appear in boldface, all uppercase.
.FileOpen, .EditCut Corel SCRIPT application commands and functions appear in boldface, with the

initial letter of each word in uppercase. The command is preceded by a period.
Generally, Corel SCRIPT application command names correspond to the
command's menu name preceded by its main menu name. For example,
the .EditCut command is the complement of a menu command (click Edit, Cut) on
an application's menu system.

{%|&|!|#|@|$} Braces and vertical bars surrounding the variable type suffixes indicate a choice
between two or more items. The choice is mandatory if the syntax appears in
boldface. If the syntax appears in normal face, use of the suffix is optional.

{ WHILE | UNTIL } Braces and vertical bars surrounding statement keywords indicate a choice
between two or more items. The choice is mandatory if the syntax appears in
boldface. If the syntax appears in normal face, syntax use is optional.

Script code Script code appears in this font in examples.
'Comments Script example comments appear with an apostrophe ('). In some cases the REM

statement is used instead of the apostrophe.
intrinsic parameter Required parameters for Corel SCRIPT intrinsic statements appear in boldface.
intrinsic parameter Optional parameters for Corel SCRIPT intrinsic statements appear in normal face.
command parameter Required parameters for Corel SCRIPT application commands appear in an italic

boldface.
command parameter Optional parameters for Corel SCRIPT application commands appear in italics.
Note

For more details about Corel SCRIPT parameters, see Script parameters.
Corel SCRIPT application commands must be separated by commas.
Required parameters are displayed in a boldface while optional parameters are displayed in a normal face.

{button ,AL(`intro_cs;cs_case_sensitive;corel_script_editor_basics;;;',0,"Defaultoverview",)} Related
Topics

Script parameters
Parameters are variables, constants, or expressions that provide information to intrinsic statements and
application commands. Most Corel application commands use parameters to pass values to commands because
dialog boxes are not displayed during script execution. For example, if you wanted to open a file named
myfile.txt in a Corel application, you might use a command similar to the following:
.FileOpen "myfile.txt"
where "myfile.txt" is a parameter for FileOpen.
Script parameters for application commands
In the Corel SCRIPT Language Reference section, each application command's syntax is displayed with
parameter names, if available. For example, the Corel PHOTO-PAINT command SetPaperColor has the following
syntax:
.SetPaperColor .Type = long, .Color1=long, .Color2=long, .Color3=long, .Color4=long
The strings appearing before the equal signs are the parameter names and the italic strings appearing after the
equal signs indicate the variable type accepted by the parameter. (See Corel SCRIPT data type summary for
variable details.)
With Corel SCRIPT application commands, you have options on how to specify parameters. The following
example shows two examples for specifying the SetPaperColor command:
.SetPaperColor .Type = 5,.Color1 = 255,.Color2 = 0,.Color3 = 0,.Color4 = 0
.SetPaperColor 5, 255, 0, 0, 0
The first example uses the parameter names and equal signs while the second simply separates parameters with
commas. Using the parameter names makes your script more self-documenting but is not as easy to write. You
also have the option to mix the parameter specification for a command. For example:
.SetPaperColor 5, 255,.Color2 = 0,.Color3 = 0,.Color4 = 0
Once you use a parameter name in an application command, the parameters that follow must also use
parameter names.
In some cases, application parameters are optional; that is, they are not required in the script. For example, if
the second and fourth parameters in the SetPaperColor command were optional, the syntax would be
displayed as:
.SetPaperColor .Type = long, .Color1=long, .Color2=long, .Color3=long, .Color4=long
In this case, you could specify SetPaperColor without specifying the second and fourth parameters. For
example:
.SetPaperColor .Type = 5,.Color2 = 0,.Color4 = 0
.SetPaperColor 5,,0,,0
Script parameters for intrinsic statements
Intrinsic statements follow the same parameter specification rules as application commands. However, for the
most part, intrinsic statements don't use parameter names. Script parameters specify the variable type by using
the data type suffix.
Note

Parameters must appear in the order specified in the Corel SCRIPT Language Reference. Parameters must
also be separated by commas if specified in the Corel SCRIPT Language Reference.

{button ,AL(`Documentation_syntax_conventions;cs_case_sensitive;Corel_SCRIPT_Editor_Basics;Vari
able_availability;;',0,"Defaultoverview",)} Related Topics

Script programming errors and debugging
Corel SCRIPT scripts are Windows text files; they do not have a compiled binary component. Before a script is
executed, it is compiled internally into a program file, and then run. Programming errors can occur both when
the script is compiled and when it is run. As you design and run scripts, there are three types of errors that can
occur:

Compilation errors
Run-time errors
Logic errors

Compilation errors
Compilation errors prevent Corel SCRIPT from compiling a script into machine instructions. Compilation errors are
easy to find since Corel SCRIPT detects them, and notes them in the Compiler Output Window in the Corel
SCRIPT Editor.
The most common compilation errors include:

typographic errors such as misspelling variable names
missing opening or closing brackets
missing a required parameter for a statement or a function
missing a corresponding closing statement, for example, omitting the FOR statement when using the

FOR...NEXT construct
incorrect usage of a statement or function

The compiler reports a maximum of ten errors. Once the compiler finds eleven errors, it stops. You must correct
the errors, and re-compile.
Run-time errors
Run-time errors occur when a script is run. These errors are generated when scripts produce bad or illegal
values, or try to run an impossible operation. You can design your scripts with run-time errors in mind. For
example, an UNABLE TO DELETE FILE run-time error might occur when you try to remove a file. Since you may
not know the restrictions on the file you're trying to remove, you should write an error handling routine to trap
for this possibility and have your script act accordingly. See Trappable Error Codes or the ON ERROR command
for more information.   
The most common run-time errors    include:

division by 0
variable type mismatch
file access errors
variable overflow

Logic errors
Logic errors are the hardest to find; the only indication of a logic error may be a bad value or an unexpected
result. The Corel SCRIPT Editor cannot tell you when a logic error is present, so it is up to you to test for and find
these problems. To help you, the Corel SCRIPT Editor provides debugging tools to trace through scripts more
carefully, tracking the values of variables and function parameters, and following the flow of execution. For more
information about these tools, see Corel SCRIPT Editor debugging features .
Tips and troubleshooting

You should run your scripts from the Corel SCRIPT Editor until they run error free. Executing scripts from
the Editor lets you take advantage of its testing and debugging features. However, once you are satisfied a script is
running properly, you should run the script from a Corel application for significant time savings.

If Corel SCRIPT attempts to execute an application's commands and it is not already running, Corel SCRIPT
attempts to start the application in a portion of the computer memory called the background. The best way to
ensure that all applications running in the background are closed after script execution is to have the script close all
its documents. If your script is not closing the open documents and leaving the application to run in the
background, press CTRL+ALT+DEL to open the Close Program dialog box to close the invisible applications.

In some cases, you can have both a visible and an invisible instance of an application running in the
background. In this case, Corel SCRIPT executes the application commands on the application instance which
was first started. This can result in confusion if the invisible application was started first and you expect the
Corel SCRIPT application commands to be executed in the visible instance of the application. Press
CTRL+ALT+DEL to open the Close Program dialog box to close the instance of the application you want to
close.

{button ,AL(`script_errors;;;;;',0,"Defaultoverview",)} Related Topics

Script planning and designing tips
It is a good idea to plan the script before you begin writing. Keep the following criteria in the mind:

How much of any given process do you want to automate? Will the script be useful for one document and
of not much use in another? Which input boxes and dialog boxes are needed to obtain information while the script is
running?

Building error checking in your scripts prevents unexpected results. For example, you can tell a script to
terminate if the intermediate script results are not suitable. You can also keep the user from entering inappropriate
information, such as an inappropriate value in a dialog box.

Build and test your scripts in parts. You're apt to make fewer mistakes when you build your scripts in
smaller sections. Testing and debugging smaller script sections is easier than trying to trace errors through a large
complicated script.

Take some time to lay out the steps a script will perform. Use plain language to describe the problem to be
solved and the script solution in remark statements (REM) at the beginning of the script. Use remark statements at
the beginning of each section to describe what that section will do.

Tips
You can use the PHOTO-PAINT Command Recorder to record your PHOTO-PAINT actions. They can then be

saved as a script, which you can edit and customize. For example, you could add looping constructs or conditional
statements to the recorded script. Using the Command Recorder saves you the time it takes to write the PHOTO-
PAINT commands that you would use in the , script and makes syntax errors less likely.

You should run your scripts from the Corel SCRIPT Editor until they run error free. Executing scripts from
the Editor lets you take advantage of its testing and debugging features. However, once you are satisfied a script is
running properly, you should run it from a Corel application to save time.

{button ,AL(`cs_fund;;;;;',0,"Defaultoverview",)} Related Topics

Corel SCRIPT is not case sensitive
When a Corel SCRIPT script is compiled, the names of all constants, variables, functions, and subroutines are
converted to uppercase.    Therefore, you cannot have a variable called Left, for example, because when
converted to uppercase, it would conflict with the Corel SCRIPT function called LEFT. The following commands
are all interpreted the same way by Corel SCRIPT:

LOOP
loop
lOOp

Strings surrounded by double quotes are not converted when a script is compiled and executed.

{button ,AL(`documentation_syntax_conventions;;;;;',0,"Defaultoverview",)} Related Topics

Script files
A Corel SCRIPT script is a text file (.CSC extension) that can be edited or created with almost any Windows-
based text editor or word processor. However, to test or debug a script, you should use the Corel SCRIPT Editor.
Since script files are text files, you can easily share scripts with other Corel application users by copying script
files to floppy disks or shared networks.
Sample script files
Your Corel application comes with sample scripts. You can use these scripts as they are, or you can modify them
to work better for you. You can also use them as a foundation for creating your own scripts.
The sample scripts are available in the following folders (based on a typical Corel installation):
C:\corel60\scripts The scripts in this folder are not application specific; that is, they do not send

instructions to Corel applications.
C:\corel60\application The scripts in this folder are application specific; that is, they send instructions to

Corel applications to perform actions. application refers to the application's
folder. For example, CorelDRAW scripts are saved in the C:\corel60\draw folder.

You can also save your own scripts in the folders noted above.
Notes

Remark statements for each sample script are available at the top of each script
Unlike script files (or macro files) from other companies, Corel SCRIPT files are text only; they contain no

compiled binary component. Before a script is executed, it is compiled internally into a program file.
If a script's first line, second line, or both are REM statements, the comments are displayed in a Corel

application's Run Script dialog box if the script is specified. The same two REM statements are also displayed in the
status bar if the script is assigned to a tool bar button.

{button ,AL(`cs_custom;intro_cs;Variable_availability;;;',0,"Defaultoverview",)} Related Topics

Formatting a script
Scripts that are formatted are easier to follow. Formatted scripts also help you to find and fix errors. Here are
some tips to make your scripts easier to read:

Use remarks statements to document your scripts. At the beginning of the script, describe what the script
does, how to use it, and give examples of its usage. See REM for more information about using remarks.   

Give your scripts meaningful names. You are not limited to the DOS file standard of 8 characters and 3
characters. For example, instead of using sum.csc, use National Output Total.csc. It is more descriptive and, six
months after writing the macro, you will still remember what it does.

Give your variables meaningful names. You should also capitalize each word after the first or use the
underscore character to separate words. While x, y, and z may sound like good variable names, they don’t reveal
anything about what is supposed to be stored in the variable. An example of better names include userMaleName,
character_Total, numberOf Picas and typeArray.

Try to group all the commands related to a certain function in the same area, and separate it from other
areas using in blank lines. For example:

'Creates a new file
.FileNew 360, 504, 1, 300, 300, 0, 0, 0, -1, -1, -1, -1, 255, 255, 255, 0

'next 3 lines set default settings
.SetPaintColor 5, 0, 0, 0, 0
.PenSettings 17, 10, 0, 0, 0, 0, 0
.ShapeSettings 0, 2, 10, 0, 0

'next 3 line draw a line
.StartDraw 91, 441
.ContinueDraw 213, 214
.EndDraw

'saves the file
.FileSave "C:\myfolder\example.CPT", 1792, 0

When a set of statements lies within a functional area, indent the set to show that they form a subset. For
example, with a FOR...NEXT structure, indent the lines after the FOR statement.

For a% = 1 To 4
[statements]
For b% = 1 To 4

[statements]
For c% = 1 To 4

[statements]
Next c%

Next b%
Next a%

It's a generally accepted programming convention to put declaration statements at the beginning of a
procedure (main section, subroutine , or functions).

Define any frequently used numbers or strings as constants. This way, if the value of the constant
changes, you need only change it at the top of the script, rather than throughout the script, everywhere it is used.
Constants and variables should be defined at the beginning of the procedure in which they are used.

Limit the use of the GOTO statement. When you use the GOTO function, make sure that you don’t create
spaghetti code — scripts that are impossible to trace through, because they repeatedly jump from one area of the
script to another.

Your function and subroutines procedures should be self-contained. A variable required only within a
procedure should be a local or static variable. Following this advice can make your procedures more modular,
enabling you to copy them to other scripts with limited customization.

{button ,AL(`cs_fund;;;;;',0,"Defaultoverview",)} Related Topics

Using constants
In Corel SCRIPT, an expression is a combination of numbers, strings, variables, constants, functions, and
operators that return a result. Results can be a number, string, Boolean (TRUE or FALSE), or one of Corel SCRIPTs
other data types which can be assigned to a variable.
A constant is an expression that does not change for the duration of a script run. Using a constant instead of a
variable ensures you don't accidentally change a value. For example, for some mathematical equations you may
want to create the base of the natural logarithm (e) or pi. To create these two constants, the following lines
would be inserted into your script file:
CONST NATURAL_LOG# = 2.71828182845 'creates a constant for the base of the natural logarithm
GLOBAL CONST PI# = 3.14 ' creates a global constant for pi
The availability of a constant is dependent on the procedure the script is executing. Corel SCRIPT scripts are
comprised of three types of procedures:

main instruction or procedural section
functions (more than one can exist)
subroutines (more than one can exist)

The following explains the levels of constant availability in Corel SCRIPT:
Global constants are available anywhere in a running script but they and their values cease to exist

when the script stops running. Global constants are created in the main section of a script and cannot be created
within a subroutine or a function. However, they can be used in the execution of any subroutine or function.

 Local constants are available in the procedure in which they are declared. If declared in a subroutine or
function, a local constant ceases to exist after the procedure finishes execution and is re-created the next time the
subroutine or function is called.

Note
You can have constants with the same name in a script but they cannot exist in the same script procedure

(main section, functions, subroutines). For example, you can have a constant called ABC in a function and in the
main section of a script but you cannot have two ABC constants in the main section of a script.

Your function and subroutines procedures should be self-contained. A constant required only within a
procedure should be a local constant. Following this advice can make your procedures more modular, enabling you
to copy them to other scripts with limited customization.

It's a generally accepted programming convention to put constant declaration statements at the beginning
of a script's main section, subroutines, or functions.

{button ,AL(`using_variables;const;;;;',0,"Defaultoverview",)} Related Topics

Using arrays
An array is a variable type containing a group of values of the same data type in an ordered list format. For
example, the following Corel SCRIPT statements declare and assign values to the string array color:
DIM color$(5)
color$(1) = "black"
color$(2) = "red"
color$(3) = "white"
color$(4) = "blue"
color$(5) = "green"
To use an array, you must address a specific element of the array. For example, to use the fourth string in the
array mentioned above, you would use the variable color$(4).
Arrays are most useful in defining control values in Corel SCRIPT dialog list boxes and with the FOR...NEXT
statements.
In the following example, the FOR...NEXT loop is used to assign the numbers 1 through 50 to the corresponding
elements of a integer array:
DIM numberArray%(50)
FOR i% = 1 TO 50

numberArray%(i%) = i%
NEXT i%

Note
Arrays are created with the DIM (for "dimension") statement.
Arrays can only hold one data type.
You can't change the number of elements in an array once it has been declared.
See Multi-dimensional arrays to create arrays of more than one dimension.

{button ,AL(`listbox_example;FOR_NEXT;DIM;LBOUND;UBOUND;multi_dimensional_arrays;',0,"Defaul
toverview",)} Related Topics

Multi-dimensional arrays
Corel SCRIPT also features multi-dimensional arrays to create tables with more than one column.

Syntax for multi-dimensional arrays
DIM array_name{%|&|!|#|@|$} (l_bound TO u_bound, l_bound TO u_bound, ...)
DIM array_name(l_bound TO u_bound, l_bound TO u_bound, ...) AS type
Syntax Definition
array_name{%|&|!|#|@|$} Specifies the name of the array and follows the Corel SCRIPT naming convention. A

type-declaration suffix must follow the name in the case of an array.
array_name Specifies the name of the array and follows the Corel SCRIPT naming convention.
u_bound The upper bound of the array expressed as an integer. If you do not use a TO

clause to specify the number of array elements, the default (1 TO u_bound) is
used.

l_bound The lower bound of the array expressed as an integer. If you do not use a TO
clause to specify the number of array elements, the default (1 TO u_bound) is
used.

type Declares the variable's or array's type with a type declaration name.
Note

Multi-dimensioned arrays have a limit of five dimensions.

{button ,AL(`using_arrays;dim;lbound;ubound;;',0,"Defaultoverview",)} Related Topics

Example for multi-dimensional arrays
The three following examples create 6-by-6 arrays containing 36 elements:
DIM array1$(6, 6)
DIM array2!(-2 TO 3, 2 TO 7)
DIM arr%(0 TO 5, 0 TO 5)
We'll use the last example to show how you can use multi-dimensional arrays. If you were to display arr% as
table it would look like this:

The cells represent array elements and the numbers represent the array index numbers or subscripts. For
example, the cell (5, 3) represents arr%(5, 3) which represents two integer variables.
The following example creates Pascal's Triangle in a message dialog box using a multi-dimensional array and the
FOR...NEXT loop. (Pascal's Triangle is a triangle array of integers in which each number is the sum of the
numbers above it in the preceding row. The apex of the triangle is 1.)

DECLARE FUNCTION factorial%(a%) 'create an integer formula
DIM arr%(0 TO 5, 0 TO 5) 'this is a 6 by 6 array

FOR i% = 0 TO 5
FOR j% = 0 TO 5

arr(i, j) = factorial(i) / (factorial(j)*factorial(i-j))
NEXT j

NEXT i
'
FOR i% = 0 TO 5

FOR j% = 0 TO 5
IF j <= i THEN mess$ = mess$ + CHR(9) + CSTR(arr(i, j))

NEXT j
mess$ = mess$ + CHR(13)

NEXT i
MESSAGE mess$
'
FUNCTION factorial%(a%)

temp% = 1
IF a > 0 THEN

FOR lop% = 1 TO a
temp% = temp% * lop

NEXT lop
END IF
factorial = temp

END FUNCTION

{button ,AL(`example_dim;dim;ubound;lbound;;using_variables;using_arrays;',0,"Defaultoverview",)
} Related Topics

Using user-defined functions and subroutines
If you have a group of instructions that will be repeated in a script, create a user-defined function or subroutine
for those instructions. The instructions are written once in the script, and can be called from different places
within the script. If the instructions you want to repeat are changed, the changes take effect everywhere.
Although, user-defined subroutines and functions are both Corel SCRIPT procedures that execute instructions,
functions can also be used to return values to a script that can be either assigned to an expression or compared
with other expressions.
Before you can create a user-defined function or subroutine, you must declare it. To declare a function, use the
following syntax at the beginning of your script:
DECLARE FUNCTION CustomFunction%(param1$, param2%)
In the example, the first parameter is a string and the second parameter is an integer. The function returns an
integer.
To declare a subroutine, use the DECLARE SUB statement, as shown in the example below.
DECLARE SUB CustomSubroutine(param1$, param2%)
Although you do not use parentheses when you call a subroutine in the script itself, you must use them when
you declare the subroutine.
After declaring the functions and subroutines, write the main section of the script. Use the standard syntax for
functions and subroutines when you call user-defined functions and subroutines in the script. The code for the
user-defined functions and subroutines should be placed after the last line of the main section of the script.
The following example shows a simple script that uses both a user-defined function and a subroutine.
REM Description: A script that demonstrates user-defined functions

' First, the function and subroutine must be declared.
DECLARE FUNCTION CustomFunction% (Mystring$, int%)
DECLARE SUB CustomSubroutine (Mystring$, int%)

' This is the main body of the script. First, call
' CustomSubroutine to assign values to the two variables.
CustomSubroutine Mystr$, num%
' Now call CustomFunction to perform the operation on the
' two variables and return the value.
ret% = CustomFunction%(Mystr$, num%)
' This is the end of the main body of the script. Now we
' can add the code for the custom routines.

' CustomFunction - takes a string parameter and a number
' The function multiplies the ANSI value of the first character
' of the string times the number and returns the result.
FUNCTION CustomFunction% (Mystring$, int%)

' To specify the return value, use the name of the
' function as if it were a variable. By assigning
' the result of the calculation to the function
' name, the script system knows what the return value
' should be.
CustomFunction% = ASC(Mystring$) * int%

END FUNCTION
' The END FUNCTION statement tells the script system that this
' is the end of the function. The script then continues to
' run at the next statement after the function call.

' CustomSubroutine - takes a string parameter and a number.
' The subroutine assigns a literal string to the string parameter
' and a numeric value to the number variable.
SUB CustomSubroutine (Mystring$, int%)

' Assigning the string to the parameter actually
' modifies the variable that was passed to the subroutine.
Mystring$ = "Test one"
' The same is true for the numeric variable.
int% = 10

END SUB
' The END SUB statement, like END FUNCTION, tells the script
' system to return to the calling routine.

Note
Your function and subroutines procedures should be self-contained; that is, a variable only required within a

procedure should be a local or static variable. Following this advice can make your procedures more modular,
enabling you to copy them to other scripts with limited customization.

{button ,AL(`declare;function_end_function;sub_end_sub;call;;;;;',0,"Defaultoverview",)} Related
Topics

BEGIN DIALOG...END DIALOG
A user-defined dialog box must begin with the BEGIN DIALOG statement and close with the END DIALOG
statement.
The BEGIN DIALOG statement is followed by a series of statements that define a dialog. The series of statements
insert dialog controls into the dialog box. Except for remarks statements, the only statements that can appear
between BEGIN DIALOG and END DIALOG are the dialog control statements. The END DIALOG statement closes
the definition of the user-defined dialog.
A user-defined dialog can be changed by editing the statements between the BEGIN DIALOG and END DIALOG
statements. An alternative to editing the statements is to use the Corel SCRIPT Dialog Editor. The Corel SCRIPT
Dialog Editor is a tool to quickly create and edit Corel SCRIPT dialog boxes. Working with the Dialog Editor is
similar to using a drawing or painting application: dialog controls are graphic objects which can be inserted,
moved, re-sized, and aligned in a dialog box.
The BEGIN DIALOG and END DIALOG statements on their own cannot display a dialog box and hold return values
during a Corel SCRIPT script run. Use the DIALOG statement to display the dialog box.

Syntax
BEGIN DIALOG Identifier Left%, Top%, Width%, Height%, Text$

[dialog control statements]
END DIALOG

Syntax Definition
Identifier Name assigned to the dialog box sequence.
Left% Distance in dialog units from the dialog box's left border to the left side of the

monitor's display area. If both Left and Top are omitted, the dialog box is be
centered on the screen.

Top% Distance in dialog units from the dialog box's top border to the top side of the
monitor's display area. If both Left and Top are omitted, the dialog box is be
centered on the screen.

Width% Dialog box width in dialog units.
Height% Dialog box height in dialog units.
Text$ Label displayed in the dialog box's title bar.   
[dialog control statements] The combination of statements that define a dialog box. Can include any Corel

SCRIPT statement that inserts a dialog control into a dialog box.

{button ,AL(`corel_script_dialog_control;Returning_dialog_settings_and_choices;;;;',0,"Defaultovervi
ew",)} Related Topics

CANCELBUTTON
Adds a Cancel button to a dialog box. Dialog boxes only close when a push button (including the OK button and
or Cancel button) is pressed or when the Close Dialog button () is pressed. You should try to include at least
an OK button and a Cancel button in each dialog box to make the dialog easier to use.

Syntax
CANCELBUTTON Left%, Top%, Width%, Height%

Syntax Definition
Left% Distance in dialog units from the inside of the dialog box's left border to the left

side of the check box.
Top% Distance in dialog units from the bottom of the dialog box's title bar to the top of

the check box.
Width% Cancel button width in dialog units.
Height% Cancel button height in dialog units.

Returns to dialog box Condition
2 Pressing the CANCEL button to close the dialog box.
Note

Pressing the Close Dialog button () is the same as pressing the Cancel button; both return 2 to the dialog box.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

CHECKBOX
Adds a check box to a dialog box.

Syntax
CHECKBOX Left%, Top%, Width%, Height%, Text$, Value%

Syntax Definition
Left% Distance in dialog units from the inside of the dialog box's left border to the left

side of the check box.
Top% Distance in dialog units from the bottom of the dialog box's title bar to the top of

the check box.
Width% Check box width in dialog units.
Height% Check box height in dialog units.
Text$ Label displayed to the right of the check box. Placing an ampersand (&) before a

character provides a keyboard shortcut to selecting the check box.
Value% Value is the variable that holds the return value that corresponds to the state of

the check box. Optionally, you can use Value to set the default state of the check
box.

Returns and Defaults Condition
0 Check box is disabled, and empty.
1 Check box is enabled, and displays a check mark.
2 Grayed check box. Gray filling a checkbox indicates that a multiple selection

contains a mix of property values. For example, selecting text that uses different
fonts.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

COMBOBOX
Adds a combo box to a dialog box.

Syntax
COMBOBOX Left%, Top%, Width%, Height%, Array$, Value$

Syntax Definition
Left% Distance in dialog units from the inside of the dialog box's left border to the left

side of the combo box.
Top% Distance in dialog units from the bottom of the dialog box's title bar to the top of

the combo box.
Width% Combo box width in dialog units.
Height% Combo box height in dialog units.
Array$ A one-dimension array containing a string list. The array must be dimensioned

before the dialog box in the script.
Value$ Value$ is a string variable that holds the return value that corresponds to the

selected combo box entry or the user-entered text. Optionally, you can use
Value$ to set the default selection in the combo box.

Returns and Defaults Condition
a string Returns a string that corresponds to the array element selected or the user-

entered text.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

DIALOG
Displays a user-defined dialog box, using a dialog box definition established earlier in the script.

Syntax
DIALOG(Identifier)

Syntax Definition
Identifier Name assigned to the dialog box sequence.

Returns Condition
1 Pressing the OK button to close the dialog box.
2 Pressing the CANCEL button to close the dialog box. Pressing the Close Dialog

button () is the same as pressing the Cancel button; both return 2 to the dialog
box.

an integer from 3 to n The integer corresponds to the push button selected with the first push button being
equal to 3. The second push button is equal to 4, and so on. The last pushbutton is equal to (2 + n). The order of
the push buttons is determined, not by their placement within the dialog box, but by the order in which they are
listed in the script.

Note
Corel SCRIPT dialog boxes are modeless which means that the running script cannot continue until the

dialog box is closed.

{button ,AL(`corel_script_dialog_control;Returning_dialog_settings_and_choices;;;;',0,"Defaultovervi
ew",)} Related Topics

DDCOMBOBOX
Adds a drop-down combo box to a dialog box.

Syntax
DDCOMBOBOX Left%, Top%, Width%, Height%, Array$, Value$

Syntax Definition
Left% Distance in dialog units from the inside of the dialog box's left border to the left

side of the drop-down combo box.
Top% Distance in dialog units from the bottom of the dialog box's title bar to the top of

the drop-down combo box.
Width% Drop-down combo box width in dialog units.
Height% Drop-down combo box height in dialog units when opened.
Array$ A one-dimension array containing a string list. The array must be dimensioned

before the dialog box in the script.
Value$ Value$ is a string variable that holds the return value that corresponds to the

selected drop-down combo box entry or the user-entered text. Optionally, you can
use Value$ to set the default selection in the drop-down combo box.

Returns and Defaults Condition
a string Returns a string that corresponds to the array element selected or the user-

entered text.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

DDLISTBOX
Adds a drop-down list box to a dialog box.

Syntax
DDLISTBOX Left%, Top%, Width%, Height%, Array$, Value%

Syntax Definition
Left% Distance in dialog units from the inside of the dialog box's left border to the left

side of the drop-down list box.
Top% Distance in dialog units from the bottom of the dialog box's title bar to the top of

the drop-down list box.
Width% Drop-down list box width in dialog units.
Height% Drop-down list box height in dialog units when opened.
Array$ A one-dimension array containing a string list. The array must be dimensioned

before the dialog box in the script.
Value% Value is a variable that holds the return value that corresponds to the selected

drop-down list box entry. Optionally, you can use Value to set the default selection
in the drop-down list box.

Returns and Defaults Condition
an integer Returns an integer that corresponds to the array element selected.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

GROUPBOX
Adds a group box to a dialog box.

Syntax
GROUPBOX Left%, Top%, Width%, Height%, Text$

Syntax Definition
Left% Distance in dialog units from the inside of the dialog box's left border to the left

side of the group box.
Top% Distance in dialog units from the bottom of the dialog box's title bar to the top of

the group box.
Width% Group box width in dialog units.
Height% Group box height in dialog units.
Text$ Label displayed at the top of the group box.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

LISTBOX
Adds a list box to a dialog box.

Syntax
LISTBOX Left%, Top%, Width%, Height%, Array, Value%

Syntax Definition
Left% Distance in dialog units from the inside of the dialog box's left border to the left

side of the list box.
Top% Distance in dialog units from the bottom of the dialog box's title bar to the top of

the list box.
Width% List box width in dialog units.
Height% List box height in dialog units.
Array A one-dimension array containing a string list. The array must be dimensioned

before the dialog box in the script.
Value% Value is a variable that holds the return value that corresponds to the selected list

box entry. Optionally, you can use Value to set the default selection in the list box.

Returns and Defaults Condition
an integer Returns an integer that corresponds to the array element selected.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

OKBUTTON
Adds an OK button to a dialog box.
Dialog boxes only close when a push button (including the OK button and cancel button) is pressed, or when the
Close Dialog button () is pressed. You should try to include at least an OK button and a Cancel button in each
dialog box to make the dialog easier to use.

Syntax
OKBUTTON Left%, Top%, Width%, Height%

Syntax Definition
Left% Distance in dialog units from the inside of the dialog box's left border to the left

side of the check box.
Top% Distance in dialog units from the bottom of the dialog box's title bar to the top of

the check box.
Width% OK button width in dialog units.
Height% OK button height in dialog units.

Returns to dialog box Condition
1 Pressing the OK button to close the dialog box.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

OPTIONGROUP
Marks the beginning of a series of OPTIONBUTTONs in a script file. The option button statements are positioned
directly below the OPTIONGROUP statement and must be together without any intervening statements (remarks
excluded).

Syntax
OPTIONGROUP Value%

Syntax Definition
Value% Value is the name of the option group. It is also a variable that holds the return

value that corresponds to the selected option button within the group. Can also be
used to set the default enabled button.

Returns Condition
an integer from 0 to n The integer corresponds to the option button selected with the first option button

in the dialog box definition being equal to 0. The second option button is equal to
1, and so on. The last option button is equal to n. The order of the option buttons
is determined, not by their placement within the dialog box, but by the order in
which they are listed in the script.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

OPTIONBUTTON
Adds an option button to a dialog box.
Only one option button in a group can be selected. Its value (0 through n) is returned in the option group
variable. The option button statements are positioned directly below the OPTIONGROUP statement in a script.
Additionally, the option button statements for each option group must be together without any intervening
statements (remarks excluded).

Syntax
OPTIONBUTTON Left%, Top%, Width%, Height%, Text$

Syntax Definition
Left% Distance in dialog units from the inside of the dialog box's left border to the left

side of the option button.
Top% Distance in dialog units from the bottom of the dialog box's title bar to the top of

the option button.
Width% Option button width in dialog units.
Height% Option button height in dialog units.
Text$ Label displayed to the right of the option button. Placing an ampersand (&) before

a character provides a keyboard shortcut to selecting the option button.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

PUSHBUTTON
Adds a push button to a dialog box.
Dialog boxes only close when a push button (including the OK button and Cancel button) is pressed, or when the
Close Dialog button () is pressed. You should try to include at least an OK button and a Cancel button in each
dialog box to make the dialog easier to use.

Syntax
PUSHBUTTON Left%, Top%, Width%, Height%, Text$

Syntax Definition
Left% Distance in dialog units from the inside of the dialog box's left border to the left

side of the push button.
Top% Distance in dialog units from the bottom of the dialog box's title bar to the top of

the push button.
Width% Push button width in dialog units.
Height% Push button height in dialog units.
Text$ Label displayed on the push button. Placing an ampersand (&) before a character

provides a keyboard shortcut to selecting a push button.

Returns to dialog box Condition
an integer from 3 to n The integer corresponds to the push button selected with the first push button in

the dialog box definition being equal to 3. The second push button is equal to 4,
and so on. The last pushbutton is equal to (2 + n). The order of the push buttons is
determined, not by their placement within the dialog box, but by the order in
which they are listed in the script.
The value 1 is reserved for the OK button and the value 2 is reserved for the
Cancel button.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

TEXT
Adds a text to a dialog box.

Syntax
TEXT Left%, Top%, Width%, Height%, Text$

Syntax Definition
Left% Distance in dialog units from the inside of the dialog box's left border to the left

side of the text.
Top% Distance in dialog units from the bottom of the dialog box's title bar to the top of

the text.
Width% Text width in dialog units.
Height% Text height in dialog units.
Text$ Static text to display in dialog box.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

TEXTBOX
Adds text box to a dialog box.

Syntax
TEXTBOX Left%, Top%, Width%, Height%, Text$

Syntax Definition
Left% Distance in dialog units from the inside of the dialog box's left border to the left

side of the text box.
Top% Distance in dialog units from the bottom of the dialog box's title bar to the top of

the text box.
Width% Text box width in dialog units.
Height% Text box height in dialog units.
Text$ A string variable that is assigned the text the user enters into the text box. Can

also be used to set the default text in the text box.

Returns and Defaults Condition
a string Corresponds to the text the user enters into the text box or the default text.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

SPINCONTROL
Adds a spin control to a dialog box.

Syntax
SPINCONTROL Left%, Top%, Width%, Height%, Value%

Syntax Definition
Left% Distance in dialog units from the inside of the dialog box's left border to the left

side of the spin control.
Top% Distance in dialog units from the bottom of the dialog box's title bar to the top of

the spin control.
Width% Spin control width in dialog units.
Height% Spin control height in dialog units.
Value% Value is the a variable that holds the return value that corresponds to the number

in the spin control. Optionally, you can use Value to set the default value of the
spin control. Value returns an integer that ranges from -32,767 to 32,767.

Returns and Defaults Condition
a numeric variable Returns a number that corresponds to the value selected or entered into the spin

control.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

IMAGELISTBOX
Adds an image list box to a dialog box. The image list box can display Windows bitmaps (.BMP and .RLE files).

Syntax
IMAGELISTBOX Left%, Top%, Width%, Height%, Array$, Value%

Syntax Definition
Left% Distance in dialog units from the inside of the dialog box's left border to the left

side of the image list box.
Top% Distance in dialog units from the bottom of the dialog box's title bar to the top of

the image list box.
Width% Image list box width in dialog units.
Height% Image list box height in dialog units.
Array$ A one-dimension array containing a string list of graphic files (and their paths).

The array must be dimensioned before the dialog box in the script.
Value% Value is a variable that holds the return value that corresponds to the selected

image list box entry. Optionally, you can use Value to set the default selection in
the image list box.

Returns and Defaults Condition
an integer Returns an integer that corresponds to the array element selected.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

IMAGE
Adds a static image box to a dialog box. The image control can display Windows bitmaps (.BMP and .RLE files).

Syntax
IMAGE Left%, Top%, Width%, Height%, Value$

Syntax Definition
Left% Distance in dialog units from the inside of the dialog box's left border to the left

side of the image box.
Top% Distance in dialog units from the bottom of the dialog box's title bar to the top of

the image box.
Width% Image box width in dialog units. Your selected image is scaled to fit in the image

box.
Height% Image box height in dialog units. Your selected image is scaled to fit in the image

box.
Value$ A string or string variable that specifies the graphic (and it's full path) to display in

the image box.
Note

You can insert Windows bitmaps (.BMP and .RLE files) into an image control.
While editing a dialog box in the Corel SCRIPT Dialog Editor, a placeholder image is displayed in the dialog

box.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

HELPBUTTON
Adds a help button to a dialog box.

Syntax
HELPBUTTON Left%, Top%, Width%, Height%, Text$, Value%

Syntax Definition
Left% Distance in dialog units from the inside of the dialog box's left border to the left

side of the help button.
Top% Distance in dialog units from the bottom of the dialog box's title bar to the top of

the help button.
Width% Help button width in dialog units.
Height% Help button height in dialog units.
Text$ A string or string variable that specifies the help file (and it's path) that you want

to open.
Value% Specifies the default topic to display when the help file opens. You should use the

context number ID values to specify a topic.
Note

The help button control is an advanced control that should only be used by Windows programmers and
Windows help file authors. For more information about creating and compiling Windows help files and context-
sensitive help, consult the Windows SDK or the Windows Help Author's Guide.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

the following controls may later be added to Corel SCRIPT

SLIDER
Adds a slider to a dialog box.

Syntax
SLIDER Left%, Top%, Width%, Height%, Text$, Identifier

Syntax Definition
Left% Distance in dialog units from the inside of the dialog box's left border to the left

side of the slider.
Top% Distance in dialog units from the bottom of the dialog box's title bar to the top of

the slider.
Width% Slider width in dialog units.
Height% Slider height in dialog units.
Text$ Label displayed to the right of the check box. Placing an ampersand (&) before a

character provides a keyboard shortcut to selecting the check box.
Identifier Identifier is the name of the check box control. It is also a variable that holds the

return value that corresponds to the state of the check box. Optionally, you can
use Identifier to set the default state of the check box.

Returns and Defaults Condition
an integer Check box is enabled, and displays a check mark.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

HSCROLLBAR
Adds a horizontal scroll bar to a dynamic dialog box.

Syntax
HSCROLLBAR Left%, Top%, Width%, Height%, Text$, Identifier

Syntax Definition
Left% Distance in dialog units from the inside of the dialog box's left border to the left

side of the horizontal scroll bar.
Top% Distance in dialog units from the bottom of the dialog box's title bar to the top of

the horizontal scroll bar.
Width% Horizontal scroll bar width in dialog units.
Height% Horizontal scroll bar height in dialog units.
Text$ Label displayed to the right of the check box. Placing an ampersand (&) before a

character provides a keyboard shortcut to selecting the check box.
Identifier Identifier is the name of the check box control. It is also a variable that holds the

return value that corresponds to the state of the check box. Optionally, you can
use Identifier to set the default state of the check box.

Returns and Defaults Condition
an integer Check box is enabled, and displays a check mark.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

VSCROLLBAR
Adds a vertical scroll bar to a dynamic dialog box.

Syntax
VSCROLLBAR Left%, Top%, Width%, Height%, Text$, Identifier

Syntax Definition
Left% Distance in dialog units from the inside of the dialog box's left border to the left

side of the vertical scroll bar.
Top% Distance in dialog units from the bottom of the dialog box's title bar to the top of

the vertical scroll bar.
Width% Vertical scroll bar width in dialog units.
Height% Vertical scroll bar height in dialog units.
Text$ Label displayed to the right of the check box. Placing an ampersand (&) before a

character provides a keyboard shortcut to selecting the check box.
Identifier Identifier is the name of the check box control. It is also a variable that holds the

return value that corresponds to the state of the check box. Optionally, you can
use Identifier to set the default state of the check box.

Returns and Defaults Condition
an integer Check box is enabled, and displays a check mark.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

PROGRESS
Adds a progress indicator to a dynamic dialog box.

Syntax
CHECKBOX Left%, Top%, Width%, Height%, Text$, Identifier

Syntax Definition
Left% Distance in dialog units from the inside of the dialog box's left border to the left

side of the progress indicator.
Top% Distance in dialog units from the bottom of the dialog box's title bar to the top of

the progress indicator.
Width% Progress indicator width in dialog units.
Height% Progress indicator height in dialog units.
Text$ Label displayed to the right of the check box. Placing an ampersand (&) before a

character provides a keyboard shortcut to selecting the check box.
Identifier Identifier is the name of the check box control. It is also a variable that holds the

return value that corresponds to the state of the check box. Optionally, you can
use Identifier to set the default state of the check box.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

Using operating system and file commands
You can use Corel SCRIPT statements and functions to create a connection between your scripts and your
Windows operating system. These commands allow you to do things such as:

read from and write into Windows text files
set the current folder
create file lists
create and delete files and folders

Note
You can have up to ten Windows text files open at one time in your computer's memory. These files are

assigned numbers from 1 to 10 when they are opened. Any time you refer to a file after it is opened, you use the
number of the file rather than the filename.

{button ,AL(`cs_files_folders;;;;;',0,"Defaultoverview",)} Related Topics

GETAPPHANDLE
Returns the H-Instance for the application that is running the script. For example, if running the script from the
Corel SCRIPT Editor, GETAPPHANDLE returns the Editor's application H-Instance. This function is used in
conjunction with DLL calls that require the application's handle.

Syntax
hand{&} = GETAPPHANDLE()

Syntax Definition
hand{&} A long variable that is assigned the application's handle.

Example
hand = GETAPPHANDLE()

{button ,AL(`declare_lib;open_output;open_append;open_input;getwinhandle;getapphandle;',0,"Def
aultoverview",)} Related Topics

GETWINHANDLE
Returns the window handle for the window that is running the script. For example, if running the script from the
Corel SCRIPT Editor, GETWINHANDLE returns the Editor's Windows handle. This function is used in conjunction
with DLL calls that require the window's handle.

Syntax
hand{&} = GETWINHANDLE()

Syntax Definition
hand{&} A long variable that is assigned the window's handle.

Example
hand = GETWINHANDLE()

{button ,AL(`declare_lib;open_output;open_append;open_input;getwinhandle;getapphandle;',0,"Def
aultoverview",)} Related Topics

CLOSE
Closes Windows text files opened with an open statement(OPEN...APPEND or OPEN...OUTPUT).

Syntax
CLOSE #num% ,...

Syntax Definition
num% File number of the file to be closed; a constant or an integer variable with the

value 1-10, inclusive. The # sign is optional. If not specified, all open files are
closed.

Note
In your scripts, every open command should have a corresponding CLOSE statement.

Example
CLOSE
Closes all open files

CLOSE #1
Closes the file opened as 1.

CLOSE 1
Closes the file opened as 1.

CLOSE 1, 3, 5
Closes the files opened as 1, 3, and 5.

{button ,AL(`open_append;open_input;open_output;;;',0,"Defaultoverview",)} Related Topics

EOF
Returns TRUE if the file pointer is at the end of an open Windows text file in your computer's memory. Returns
FALSE if the file contains data beyond the pointer.    The statement is often used to determine whether to
continue processing a file.

Syntax
EOF (#num%)

Syntax Definition
#num% File number of the open file to be examined; a constant or an integer variable with

the value 1-10, inclusive. The # sign is optional.

Example
IF EOF(1) THEN CLOSE 1
If the pointer is at the end of the file, then close the file.

{button ,AL(`lof;seek;open_append;print;write;',0,"Defaultoverview",)} Related Topics

FILEMODE
Returns the file mode of an open Windows text file in your computer's memory.

Syntax
FILEMODE(num%)

Syntax Definition
num% File number of the file to be examined; a constant or an integer variable with the

value 1-10, inclusive.

Returns
The function returns one of the following:

1 if file num% was opened for input
2 if file num% was opened for output
8 if file num% was opened for append

Note
This the only Corel SCRIPT file function that doesn't have an optional # sign in front of the file number.

Example
i% = FILEMODE(1)
If file 1 was opened for input, then i% is set to 1. If file 1 was opened for output, then i% is set to 2. If file 1 was
opened for append, then i% is set to 8.

OPEN "C:\example.txt" FOR APPEND AS 2
i% = FILEMODE(2)
Assigns 8 to the variable i%.

{button ,AL(`OPEN_APPEND;OPEN_INPUT;OPEN_OUTPUT;;;',0,"Defaultoverview",)} Related Topics

FILEPOS
Returns the current file position of the file pointer for the specified file.

Syntax
FILEPOS (#num%)

Syntax Definition
#num% File number of the file to be examined; a constant or an integer variable with the

value 1-10, inclusive. The # sign is optional.

Note
The seek always starts from the first position in the file.

Example
OPEN "C:\HELLO.TXT" FOR INPUT AS 2
SEEK 2, 12
position% = FILEPOS(2)
Assigns 12 to the variable i%.

{button ,AL(`lof;seek;open_append;print;write;',0,"Defaultoverview",)} Related Topics

FREEFILE
Returns the lowest file number not associated with an open Windows text file in the computer's memory.

Syntax
FREEFILE

Example
OPEN "temp.out" FOR OUTPUT AS 1
OPEN "temp2.out" FOR OUTPUT AS 5
i% = FREEFILE
The lowest available file number in this example is 2 because 1 is already being used, so i% is set to 2.

{button ,AL(`OPEN_APPEND;OPEN_INPUT;OPEN_OUTPUT;;;',0,"Defaultoverview",)} Related Topics

FINDFIRSTFOLDER, FINDNEXTFOLDER
Use the FINDFIRSTFOLDER and FINDNEXTFOLDER functions to assemble or perform an operation on a list of files,
folders, or both. The FINDFIRSTFOLDER function is used to locate the first file or folder in a folder that meets a
specified search criteria. The FINDNEXTFOLDER function is used to locate the next file or folder, and so on, that
meets the specified search criteria set by the FINDFIRSTFOLDER. The FINDNEXTFOLDER function must be used in
conjunction with the FINDFIRSTFOLDER function.

Syntax
FolderFileName$ = FINDFIRSTFOLDER(searchcriteria, attributes)
FolderFileName$ = FINDNEXTFOLDER()

Syntax Definition
searchcriteria Specifies the files or folders to search for. You can include wild-card characters (*

or ?).
attributes The type of files or folders you want to use. You can use the OR operator to specify

file types (default value is all attributes):
1 = read-only files
2 = hidden files
4 = system files
16 = folder
32 = archive files
128 = normal files
256 = temporary files

Example
DIM bmpfile(100) AS STRING 'really large array (<= 100 files)
i% = 1 'counter variable
bmpfile(i) = "C:\myimages\" + FINDFIRSTFOLDER("C:\myimages*.bmp", 1 OR 2 OR 4 OR 8 OR 16 OR
32)
DO WHILE bmpfile(i) <> ""

i = i + 1 'counter increment
bmpfile(i) = "C:\myimages\" + FINDNEXTFOLDER()

LOOP

In the above example, a list of bitmap files in the C:\myimages folder is create by assigning the bitmap file
names to the bmpfile array.
CURRFOLDER = "C:\myimages"
bmpfile$ = FINDFIRSTFOLDER("*.bmp", 1 OR 2 OR 4 OR 8 OR 16 OR 32)
DO WHILE bmpfile <> ""

KILL bmpfile
bmpfile = FINDNEXTFOLDER()

LOOP

In the above example, bitmap files in the C:\myimages folder are deleted using the KILL statment.

{button ,AL(`CURRFOLDER;filemode;getfileattr;getcurrfolder;setcurrfolder;',0,"Defaultoverview",)}
Related Topics

FILEATTR
Use the FILEATTR function to return a file's attributes.

Syntax
retval{&} = FILEATTR(FileName$)

Syntax Definition
retval{&} Returns the attributes of FileName$:

0 = file doesn't exist
1 = read-only files or    folder
2 = hidden files or    folder
4 = system files or    folder used by operating system
16 = folder
32 = archive files or folder
128 = normal files (no attributes set)
256 = temporary files or folder

FileName$ Specifies the file for which the attributes are returned.

Example
retval = FILEATTR("C:\myfiles\mysetup.txt")
If mysetup.txt was a read-only, hidden, and a system file, retval equals 7.
In cases which multiple attributes are returned, you can use the AND (bitwise) to determine specific attributes.
To determine if mysetup.txt was a read-only file you could use the following syntax:
IF 1 AND retval THEN readOnly$ = "Yes" ELSE readOnly$ = "No"
1 is the read-only attribute. The variable readOnly is assigned a string based on bitwise comparison. In this case
readOnly is assigned "Yes".

{button ,AL(`CURRFOLDER;filemode;getfileattr;FINDFIRSTFOLDER_FINDNEXTFOLDER;setcurrfolder;',
0,"Defaultoverview",)} Related Topics

FILEDATE
Use the FILEDATE function to return a file's last modification date.

Syntax
retval = FILEDATE(FileName$)

Syntax Definition
retval Assigned the date of the specified file's last modification as date data type. If the

file is not found, 0 is returned.
FileName$ Specifies the file for which the date property is returned.

Example
retval = FILEDATE("C:\myfiles\mytext.txt")

{button ,AL(`CURRFOLDER;filemode;getfileattr;FINDFIRSTFOLDER_FINDNEXTFOLDER;setcurrfolder;',
0,"Defaultoverview",)} Related Topics

FILESIZE
Use the FILESIZE function to return a file's size in bytes.

Syntax
retval = FILESIZE(FileName$)

Syntax Definition
retval Assigned the size of the specified file in bytes. If the file is not found, 0 is returned.
FileName$ Specifies the file for which the date property is returned.

Example
retval = FILESIZE("C:\myfiles\mytext.txt")

{button ,AL(`CURRFOLDER;filemode;getfileattr;FINDFIRSTFOLDER_FINDNEXTFOLDER;setcurrfolder;',
0,"Defaultoverview",)} Related Topics

INPUT
Starting at the pointer, reads a number of bytes (characters) from a file.

Syntax
INPUT(bytes{%|&|!|#|@|$}, #num{%|&|!|#|@|$})

Syntax Definition
bytes{%|&|!|#|@|$} The number of bytes to be read.
#num{%|&|!|#|@|$} File number of the file to be examined with the value 1-10, inclusive. The # sign is

optional.

Example
myExtract$ = INPUT(50, #1)
Reads 50 characters from file 1 and assigns them to the variable myExtract$.

{button ,AL(`INPUT;LINE_INPUT;SEEK;FILEPOS;EOF;LOF;',0,"Defaultoverview",`main')} Related
Topics

INPUT #
Reads from a file to a list of variables. Values in the file are separated by commas. Character strings that include
commas must be enclosed in quotation marks.    The quotation marks do not appear in the variable.

Syntax
INPUT #num%, var{%|&|!|#|@|$}, var{%|&|!|#|@|$}, ...

Syntax Definition
#num% File number of the file to be examined with the value 1-10, inclusive.
var{%|&|!|#|@|$} The variables that receive the fields as they are read from the file.
Note

The number sign (#) is required in the syntax.
Numeric data with decimals can only be inputted if the period (.) is used as the decimal separator.
Dates can only be inputted if in the standard U.S. format (M/d/yy h:mm:ss TT).
Booleans can only be inputted as TRUE or FALSE.

Example
INPUT #1, title$, number%
Reads a string and a numeric variable from file 1. Assigns the values to the string variable title$ and the integer
variable number%. The contents of file 1 could be in either of two formats:

"Ottawa", 50
"Huckleberry Finn", 101
"Hamlet", 220
or
"Ottawa", 50, "Huckleberry Finn", 101, "Hamlet", 220

{button ,AL(`input_dollar;open_input;line_input;write;;',0,"Defaultoverview",)} Related Topics

KILL
Deletes a file. This statement is the same as clicking File, Delete in the Windows Explorer or in My Computer. You
can only use KILL to delete files in the current folder.

Syntax
KILL fileName$

Syntax Definition
fileName$ Name of the file to be deleted. You can use wild cards (* and ?) if you want to

delete a group of files. For example, script*.* deletes all the files in the current
folder beginning with script. Using script?.* deletes all the files in the current
folder that begin with script and are followed by only one more character.

Example
KILL "temp.out"
Deletes the file "temp.out" in the current folder.
Note

Use the CURRFOLDER to set the current folder where files will be deleted.

{button ,AL(`rmfolder;open_output;;;;',0,"Defaultoverview",)} Related Topics

LINE INPUT
Reads the next line from an open Windows text file in your computer's memory into a string.

Syntax
LINE INPUT    #num%, string$

Syntax Definition
#num% File number of the file to be examined; a constant or an integer variable with the

value 1-10, inclusive. The # sign is optional.
string$ The string variable to hold the line from the file.
Note

The number sign (#) is required in the syntax.

Example
LINE INPUT #1, MyString$
Reads the next line from file 1 and places the string in the variable MyString$.

{button ,AL(`input_dollar;input;open_input;line_input;;;',0,"Defaultoverview",)} Related Topics

LOF
LOF (Length of File) returns the number of bytes in an open Windows text file .

Syntax
LOF(#num%)

Syntax Definition
#num% File number of the file to be examined; a constant or an integer variable with the

value 1-10, inclusive. The # sign is optional.

Example
bytes% = LOF(1)
Sets bytes% to the number of bytes in file 1.

{button ,AL(`eof;seek;open_append;print;write;',0,"Defaultoverview",)} Related Topics

MKFOLDER
Creates a new folder. You can also use MKFOLDER as a function: it assigns -1 if the folder was created, 0 if not.

Syntax
MKFOLDER folderName$

Syntax Definition
folderName$ Name of the folder to be created.

Example
MKFOLDER "work"
Creates the folder work as a subfolder of the current folder.
success = MKFOLDER "work"
Creates the folder work as a subfolder of the current folder and assigns -1 to success%.

{button ,AL(`CURRFOLDER;RMFOLDER;;;;',0,"Defaultoverview",)} Related Topics

OPEN...APPEND
Opens a Windows text file for adding or appending data to the end of the file. Data is appended using the PRINT
or WRITE statement. The FOR clause is required.

Syntax
OPEN fileName$ FOR APPEND AS #num%

Syntax Definition
fileName$ Name of the file to open. If the file doesn't exist, it is created and then opened.
#num% Number (1 through 10) associated with the file; used to access the file. The # sign

is optional.

Example
OPEN "oldfile" FOR APPEND AS 3
Opens the file oldfile for the appending of sequential data.

{button ,AL(`input_dollar;open_append;open_input;open_output;ACCESS;CLOSE;EOF;FILEMODE;FILE
POS;freefile;input;line_input;lof;print;seek;write',0,"Defaultoverview",`main')} Related Topics

OPEN...INPUT
Opens a Windows text file so that data can be read from it using the INPUT or LINE INPUT statement.

Syntax
OPEN fileName$ FOR INPUT AS #num%

Syntax Definition
fileName$ Name of the file to open. An error occurs if the file doesn't exist.
#num% Number (1 through 10) associated with the file; used to access the file. The # sign

is optional.

Example
OPEN string$ FOR INPUT AS 2
Opens the file specified by string$ for input.

{button ,AL(`input_dollar;open_append;open_input;open_output;ACCESS;CLOSE;EOF;FILEMODE;FILE
POS;freefile;input;line_input;lof;print;seek;write',0,"Defaultoverview",`main')} Related Topics

OPEN...OUTPUT
Opens a Windows text file so that data can be written into it using the PRINT or WRITE statement. The FOR
clause is required.

Syntax
OPEN fileName$ FOR OUTPUT AS #num%

Syntax Definition
fileName$ Name of the file to open. If the file doesn't exist, it is created and then opened. If

the file does exist, its contents are deleted.
#num% Number (1 through 10) associated with the file; used to access the file. The # sign

is optional.

Example
OPEN "c:\temp\workfile.tmp" FOR OUTPUT AS 1
Opens the file c:\temp\workfile.tmp for output.

{button ,AL(`input_dollar;open_append;open_input;open_output;ACCESS;CLOSE;EOF;FILEMODE;FILE
POS;freefile;input;line_input;lof;print;seek;write',0,"Defaultoverview",`main')} Related Topics

PRINT
Prints expression(s) to an open Windows text file in your computer's memory. Character strings are not enclosed
in quotes when written out. Numeric expressions have either a leading space or a negative sign in addition to a
trailing blank space. Each expression follows immediately after the previous one.

Syntax

PRINT #num%, expression1, expression2 , ...
Syntax Definition
#num% File number of the file to be examined; a constant or an integer variable with the

value 1-10, inclusive. The # sign is optional.
expression1, expression2 String or numeric expressions to be written to the file.
Note

The number sign (#) is required in the syntax.
Numeric data is printed using the period (.) as decimal separator.
Dates are printed in the standard U.S. format (M/d/yy h:mm:ss TT).
Booleans are printed as TRUE or FALSE.

Example
PRINT #1, "HEADING: ", string1$, ",", int%
Outputs "HEADING: " followed by the value of string1$, a comma, and the value in int%. No spaces are added
between the four items, except for those contained in the literal string.

{button ,AL(`seek;print;write;open_append;open_output;input;;',0,"Defaultoverview",)} Related
Topics

RMFOLDER
Removes an existing folder. The folder and its contents are placed in the Windows Recycle Bin. You can also use
RMFOLDER as a function: it assigns -1 if the folder was removed, 0 if not.

Syntax
RMFOLDER folderName$

Syntax Definition
folderName$ The name of the folder to remove.

Example
RMFOLDER "C:\TEMP\WORK"
Removes the WORK folder from the \TEMP folder.
success% = RMFOLDER "C:\TEMP\WORK"
Removes the WORK folder from the \TEMP folder and assigns -1 to success%.

{button ,AL(`KILL;MKFOLDER;CURRFOLDER;;;',0,"Defaultoverview",)} Related Topics

SEEK
To prepare for subsequent input, moves the file pointer to a specific byte position in an open Windows text file in
your computer's memory. Characters, spaces, tabs, and line breaks, are counted as characters.

Syntax
SEEK #num%, position%

Syntax Definition
num% File number of the file to be examined; a constant or an integer variable with the

value 1-10, inclusive. The # sign is optional.
position% The byte position to SEEK (1 is 1st byte).

Note
The seek always starts from the first position in the file.
The seek range is limited from 1 to length of the file (LOF) + 1

Example
SEEK 1, 100
Moves the file pointer to the 100th byte in file 1.

{button ,AL(`OPEN_APPEND;OPEN_INPUT;OPEN_OUTPUT;lof;;',0,"Defaultoverview",)} Related Topics

WRITE
Writes expressions to an open Windows text file in your computer's memory. Character strings are enclosed in
quotes when written out. Each expression is separated by a comma.

Syntax
WRITE    #num%, expression1 , expression2, ...

Syntax Definition
#num% File number of the file to be examined; a constant or an integer variable with the

value 1-10, inclusive. The # sign is optional.
expression1, expression2 The expressions to write to the file.
Note

The number sign (#) is required in the syntax.
Numeric data is written using the period (.) as decimal separator.
Dates are written in the standard U.S. format (M/d/yy h:mm:ss TT).
Booleans are written as TRUE or FALSE.

Example
MyString$ = "some text"
MyInt% = 55
WRITE #1, MyString$, "Literal Text", MyInt%
Writes the following to file 1:
"some text", "Literal Text", 55

{button ,AL(`seek;print;write;open_append;open_output;input;;',0,"Defaultoverview",)} Related
Topics

CURRFOLDER
The CURRFOLDER statement is used to assign the current folder name to a variable, or to change the current
folder.

Syntax to change the current folder
CURRFOLDER = folderName$   

Syntax to assign the current folder name
folderName$ = CURRFOLDER

Syntax Definition
folderName$ The name of the folder including drive.

Example
folderName$ = CURRFOLDER
CURRFOLDER = "c:\corel60\work"
OPEN "HAPPY.TXT" FOR INPUT AS 2
CURRFOLDER = folderName$
The above example, assigns the current folder to the variable folderName$. The current folder is then set to
the work folder, and the HAPPY.TXT file in the work folder is opened for input. The last statement resets the
active folder to folderName$, the original active folder.

{button ,AL(`CURRFOLDER;;;;',0,"Defaultoverview",)} Related Topics

COPY
The COPY command copies a file.

Syntax
COPY file1$, file2$, overwrite%

Syntax Definition
file1$ Name of the file to copy. file1$ can include drive and folder.
file2$ Name of the file where file1$ is to be copied. file2$ can include drive and folder.
overwrite% If file2$ already exists, determines whether to overwrite the existing file:

0 = copy and overwrite (default if omitted)
1 = overwrite fails

Example
DIM x AS STRING
DIM y AS STRING
x = "C:\work\example1.cdr"
y = "D:\work\example1.cdr"
COPY x,y,0
The above example copies the example1.cdr file to the work folder on the D drive.

{button ,AL(`FINDFIRSTFOLDER_FINDNEXTFOLDER;rename;copy;CURRFOLDER;rmfolder;currfolder;;'
,0,"Defaultoverview",)} Related Topics

RENAME
The RENAME command changes the name of a file or moves a file.

Syntax
RENAME file1$, file2$, overwrite%

Syntax Definition
file1$ Name of the file to move. file1$ can include drive and folder.
file2$ Name of the file where file1$ is to be move. file2$ can include drive and folder.
overwrite% If file2$ already exists, determines whether to overwrite the existing file:

0 = copy and overwrite (default if omitted)
1 = overwrite fails

Example
DIM x AS STRING
DIM y AS STRING
x = "C:\work\example1.cdr"
y = "D:\work\example1.cdr"
RENAME x,y
The above example moves the example1.cdr file to the work folder on the D drive.
DIM x AS STRING
DIM y AS STRING
x = "C:\work\example1.cdr"
y = "C:\work\example2.cdr"
RENAME x,y
The above example renames the example1.cdr file to example2.cdr.

{button ,AL(`FINDFIRSTFOLDER_FINDNEXTFOLDER;rename;copy;CURRFOLDER;rmfolder;currfolder;;'
,0,"Defaultoverview",)} Related Topics

Using flow control statements
Corel SCRIPT scripts generally execute in a linear manner; that is, in the order in which they appear. Flow control
statements allow you to dictate how a script can be executed. Additionally, using flow controls can make your
scripts more flexible and efficient.
You can use flow control statements to:

Execute specific statements only if an expression meets a condition of TRUE or FALSE.
Execute different sets of statements depending on the value of a variable.
Repeat statements while or until an expression meets a condition of TRUE or FALSE.
Repeat statements a specific number of times.
Call a subroutine or function.
Go to a different line in the script.
Terminate a script's execution.
Direct script execution to a Corel application.

{button ,AL(`cs_flows;using_operators;using_variables;;;',0,"Defaultoverview",)} Related Topics

CALL
Executes a named subroutine but you must first DECLARE all subroutines before you can CALL them.
You are not required to use the CALL keyword when calling a subroutine. If arguments are included, you must
enclose them with parentheses if the word CALL is used. An empty argument list indicated by () is not allowed.

Syntax
CALL name (parameter1, parameter2, ...)
name    (parameter1, parameter2, ...)

Syntax Definition
name Name of the subroutine to call; not case-sensitive.
parameter One or more optional arguments (variables, constants, or expressions), separated

by commas, that are passed to the subroutine.

{button ,AL(`DECLARE;SUB;;;;',0,"Defaultoverview",`main')} Related Topics

DO...LOOP
Repeats statements while a condition is true or until it becomes true. Note that the first form of syntax may
never execute statements if an expression is or is not true, but that the second form always executes statements
at least once.

Syntax
DO {WHILE | UNTIL} expression

[statements]
LOOP

or
DO

[statements]
LOOP {WHILE | UNTIL} expression

Syntax Definition
expression An expression that is evaluated to determine whether to continue the loop.
[statements] Series of script instructions to execute and repeat.
Note

By placing the condition at the end of the loop, the loop will always be executed once before the condition
is tested.

You can nest DO...LOOP statements inside each other up to 20 times.   

{button ,AL(`cs_loops;;;;;',0,"Defaultoverview",)} Related Topics

Examples for DO...LOOP
i% = 5
DO WHILE i% > 0

i% = i% - 1
LOOP
The variable i% starts with a value of 5. The loop continues for as long as i% has a value greater than 0. Once i
% equals 0 and the condition (DO WHILE i% > 0) is again tested, processing continues at the next statement
after the LOOP statement. In this example, the loop executes five times. If the condition were changed to "i
% = 0", the loop would never execute because the condition would be false immediately.

i% = 5
DO UNTIL i% = 0

i% = i% - 1
LOOP
This example is functionally identical to the previous example. The loop executes five times before the condition
is true. If the condition were changed to "i% > 0", the loop would never execute.

i% = 5
DO

i% = i% - 1
LOOP UNTIL i% = 0
By placing the condition at the end of the loop, the loop will always be executed once before the condition is
tested. However, in the following example, the loop will still execute five times.

i% = 5
DO

i% = i% - 1
LOOP WHILE i% > 0
Again, the loop will execute five times before the condition is no longer true. If the condition were changed to "i
% = 0" the loop would execute only once before the condition is tested.

{button ,AL(`cs_loops;;;;;',0,"Defaultoverview",)} Related Topics

END
Ends a SELECT CASE, FUNCTION, SUB, WITHEND or DIALOG construct.

Syntax
END {SELECT | FUNCTION | SUB | WITHOBJECT | DIALOG}
You must specify the type of subgroup being ended.

Example
SELECT CASE i%

CASE 0
REM Case statements go here.

END SELECT

FUNCTION UserFunction%()
REM Function processing statements go here.

END FUNCTION

SUB Subroutine()
REM Subroutine statements go here.

END SUB

WITHOBJECT "CorelDraw.Automation.6"
REM CorelDRAW commands and functions go here.

END WITHOBJECT

BEGIN DIALOG Dialogbox1 120, 45, "Sample Dialog box"
REM Dialog box statements go here.

END DIALOG
The script compiler must match a SELECT CASE, FUNCTION, SUB, WITHOBJECT or BEGIN DIALOG statement with
a corresponding END statement, as shown in the examples above.

{button ,AL(`WITH_Corel_Application;SELECT_CASE;BEGIN_END_DIALOG;SUB_END_SUB;FUNCTION_EN
D_FUNCTION;;',0,"Defaultoverview",)} Related Topics

FOR...NEXT
Repeats a group of instructions a specified number of times. The varaible counter has an initial value of start
and is increased by 1 or by increment, if available, after the statements are executed. Once counter equals
end, the loop terminates.

Syntax
FOR counter{%|&|!|#|@} = start{%|&|!|#|@} TO end{%|&|!|#|@} STEP increment{%|&|!|#|@}

[statements]
NEXT counter{%|&|!|#|@}

Syntax Definition
counter{%|&|!|#|@} Numeric variable used as counter. Cannot be an array element.
start{%|&|!|#|@} Initial value of the counter.
TO Used to separate the start and end parameters.
end{%|&|!|#|@} Final value of the counter.
STEP Optional syntax used with the increment parameter.
increment{%|&|!|#|@} Amount the counter is incremented each time through loop. If omitted, the default

= 1. Can be a variable or a constant.
[statements] Series of script instructions to execute and repeat.
Note

If set the start or end parameter is outside the counter's data type range, an endless loop can occur. For
example, if counter is an integer and end is set to    33000, an endless loop will occur since 33000 beyond the
range of an integer. For more information about data types, see Corel SCRIPT data type summary.   

You can nest FOR...NEXT statements inside each other up to 20 times.   

{button ,AL(`cs_loops;;;;;',0,"Defaultoverview",)} Related Topics

Examples for FOR...LOOP

FOR i% = 1 TO 10 STEP 2
intArray%(i%) = i%

NEXT i%
Every other element of the array intArray% (elements 1, 3, 5, 7, and 9) are given the value of i%.
FOR i% = 1 TO UBOUND(stringArray$)

stringArray$(i%) = "string"
NEXT i%
All the elements of the array stringArray$ are assigned the value "string".
Note

If you nest FOR...LOOPs within FOR...LOOPs, you should give each a counter% a unique name as shown in
the following example:
For a% = 1 To 4

[statements]
For b% = 1 To 4

[statements]
For c% = 1 To 4

[statements]
Next c%

Next b%
Next a%

{button ,AL(`cs_loops;;;;;',0,"Defaultoverview",)} Related Topics

GOTO
Directs program execution to the line specified by linelabel.
A GOTO statement can branch only to another statement at the same procedural level in the script. For example,
you can only use a GOTO statement in the main section of the script to go to another line in the main section.
You cannot use GOTO to enter or exit a subroutine or a function.

Syntax
GOTO linelabel

Syntax Definition
linelabel Label of the line to go to (do not include the colon in the GOTO statement)
Note

In the script, the line label cannot be preceded by spaces or tabs and must be followed by a colon. It
cannot be more than 256 characters long.

Using GOTO statements can make your script difficult to read and debug. You should provide remarks
statements when using the GOTO statement. Consider using conditional or looping statements instead of the GOTO
statement.

Example
REM Statements...
IF i% = 3 THEN GOTO BreakOut
REM Statements execute here if i% is not equal to 3
BreakOut:
REM More statements execute here.
If i% is equal to 3, then the statements between the GOTO and the label are skipped, and the processing starts
with the first statement after the label. The statements after the label will execute even if i% is not equal to 3.
Note

Using the GOTO statement can easily cause an endless loop in a program. The following example creates
an endless loop:
REM Statements...
I% = 3
Breakout:
If I% = 3 then GOTO Breakout

The above example continously loops between the last two statements.

{button ,AL(`cs_loops;;;;;',0,"Defaultoverview",)} Related Topics

IF...THEN...ELSE...ENDIF
Using the IF statement allows for conditional execution of script instructions based on TRUE or FALSE conditions.
If the condition is TRUE, the program performs the THEN statement; if the condition is FALSE, the program
performs the ELSE or ELSEIF statement, if included.
If only one THEN statement is needed, and it is included on the same line as the IF condition, then no ENDIF is
required. If the THEN statement is more than one line, then ENDIF is required.

Syntax
IF condition1 THEN [statement] ELSE [statement]

or
IF condition1 THEN

[statements]
ELSEIF condition2 THEN

[statements]
ELSE

[statements]
ENDIF

Syntax Definition
condition1, condition2 A condition to evaluate. If the condition is TRUE, then the statements following the

keyword THEN are executed. If the condition is FALSE, then the processing
continues at the next ELSEIF statement, if present, or at the statement following
the ELSE keyword, if present.

[statement] Script instruction to execute.
[statements] Series of script instructions to execute.
Note

You can nest IF statements inside each other up to 20 times.   

{button ,AL(`cs_loops;select_case;;;;',0,"Defaultoverview",)} Related Topics

Examples for IF...THEN...ELSE...ENDIF

IF i% = 0 THEN MESSAGE "The variable is 0."
If the variable i% has a value of 0, a message dialog box appears.
IF i% = 0 THEN MESSAGE "The variable is 0." ELSE BEEP
If the variable i% has a value of 0, a message appears, otherwise a beep is sounded. Because the entire IF
statement is on one line, no ENDIF is needed.
IF i% = 0 THEN

MESSAGE "The variable is 0"
i% = 1

ELSEIF i% = 1 THEN
MESSAGE "The variable is less than 2"

ELSEIF i% = 2 THEN
MESSAGE "The variable is greater than 1"

ELSE
BEEP

ENDIF
You must use the multi-line IF...THEN...ENDIF when there is a second condition to test after the first IF or when
there is more than one statement to process as a result of the condition. Repeat the ELSEIF statements for as
many conditions as needed. If many conditions must be tested, you might want to use the SELECT CASE
statement. Note that in the example, even though i% is assigned a value of 1 in the i% = 0 condition, the ELSEIF
i% = 1 condition does not execute. Once a condition is TRUE, processing continues after the ENDIF statement
once the statements that meet the condition execute.
You can evaluate variables without assigning results. For example:
IF (abc<=15.3) then BEEP ELSE MESSAGE "It's greater than 15.3"

{button ,AL(`cs_loops;select_case;;;;',0,"Defaultoverview",)} Related Topics

SELECT CASE...END SELECT
Compares the value of a test expression to the values in the CASE statements and executes blocks of statements
dependent on their relationships. If none of the values in the CASE statements match the test expression, the
CASE ELSE statements are executed.

Syntax
SELECT CASE testexpression

CASE {caseexpression | caseexpression TO caseexpression | IS reloperator caseexpression} ,...
[statements]

CASE ELSE
[statements]

END SELECT

Syntax Definition
testexpression A combination of numbers, strings, variables, constants, and operators that return

a result.
caseexpression An expression that evaluates to the same type as testexpression.
reloperator A relational operator such as =, <>, >, <, >=, or <=.
[statements] Program instructions conditionally executed; any number of statements on one or

more lines.
TO Corel SCRIPT keyword used to specify a range of values. The smaller value must

precede TO.
IS Corel SCRIPT keyword used with relational operators to specify a range of values.

{button ,AL(`IF_THEN_ELSE_ENDIF;Relational_Operators;;;;',0,"Defaultoverview",`main')} Related
Topics

Example for SELECT CASE

SELECT CASE i%
CASE -10 TO -5, 5 TO 9, IS = 10

MESSAGE "Between -10 and -5 or 5 and 10"
CASE -4 TO -1, 2 TO 4

MESSAGE "Between -4 and 4 but not 0 or 1"
CASE 0, 1

MESSAGE "Zero or one"
CASE ELSE

MESSAGE "Greater than 10 or less than -10"
END SELECT
In the above example:

If i% is between -10 and -5 or 10 and 5, the message "Between -10 and -5 or 10 and 5" appears.
 If i% is between -4 and 4, but is not zero or one, the message "Between -4 and 4 but not 0 or 1" appears.
If i% is zero or 1, the message "Zero or one" appears.
 If i% is not any of those numbers, the message "Greater than 10 or less than -10" appears.

{button ,AL(`cs_loops;;;;;',0,"Defaultoverview",)} Related Topics

STOP
Stops execution of a running Corel SCRIPT script.

Syntax
STOP

Example
IF i% = 3 THEN STOP
If the value of i% is 3, then the script stops immediately. No other statements are executed.
The STOP statement is often used to stop a running script when a Cancel button is pressed in a dialog box as
shown in the following example:
BEGIN DIALOG Buttons1 55, 34, 236, 40, "BUTTON example"

OKBUTTON 21, 12, 40, 14
CANCELBUTTON 71, 12, 40, 14
PUSHBUTTON 121, 12, 40, 14, "&Push"
HELPBUTTON 171, 12, 40, 14, "C:\Help.hlp", 1044

END DIALOG
ret = DIALOG(Buttons1)
IF ret = 1 THEN MESSAGE "OK button chosen"
IF ret = 2 THEN STOP 'Cancel pressed
IF ret = 3 THEN MESSAGE "Push button chosen"

{button ,AL(`END;;;;;',0,"Defaultoverview",`main')} Related Topics

WHILE...WEND
Continuously executes statements as long as the condition is true.

Syntax
WHILE condition

[statements]
WEND

Syntax Definition
condition Any expression that can be called true or false.
[statements] Series of script instructions to execute.

Example
i% = 5
WHILE i% > 0

i% = i% - 1
WEND
The loop executes for as long as the condition i% is greater than 0 is true. The loop will execute five times.

{button ,AL(`cs_loops;;;;;',0,"Defaultoverview",)} Related Topics

EXIT
The EXIT statement is used to exit a procedure or a loop.

Syntax
EXIT DO exit from a DO loop
EXIT FOR exit from a FOR loop
EXIT FUNCTION exit from a function
EXIT SUB exit from a subroutine

Example
FOR i% = 1 TO 5

IF i = 3 THEN EXIT FOR
NEXT i
In the above exampe, the script execution exits the FOR loop when i equals 3, not 5.

{button ,AL(`CS_FLOWS;;;;;',0,"Defaultoverview",)} Related Topics

WITHOBJECT...END WITHOBJECT
Use the WITHOBJECT statement to run a script that calls commands in a Corel application. You can also use the
WITHOBJECT statement to call any application that is an OLE automation server.

Syntax
WITHOBJECT application{$}

[statements]
END WITHOBJECT

or
WITHOBJECT application{$} [statement]

Syntax Definition
application{$} A string specifying the application to call. Not every Corel application supports

Corel SCRIPT programming and script files. Click for a list of Corel applications
that support Corel SCRIPT and application strings. This string is called the
application's external name.

[statements] Series of script instructions to execute. Can be a combination of both Corel SCRIPT application
commands and Corel SCRIPT intrinsic statements.
[statement] Corel SCRIPT application command to execute.

Example
'Example 1
DIM thaApp AS STRING
theApp = "CorelDraw.Automation.6"
WITHOBJECT theApp

.InsertPages -1, 2
END WITHOBJECT

'Example 2
WITHOBJECT "CorelDraw.Automation.6"

.InsertPages -1, 2
END WITHOBJECT

'Example 3
WITHOBJECT "CorelDraw.Automation.6" .InsertPages -1, 2
The three above example all insert two pages into a CorelDRAW document.
Note

You can also use the WITHOBJECT statement to call any application that supports OLE automation with an
automation object. For example, you can call Microsoft Word or Microsoft Excel by using the external names
"Word.Basic" or "Excel.sheet.5".

The application the WITHOBJECT statement is calling does not have to be opened to be called.
You can nest WITHOBJECT...END WITHOBJECT statements inside each other up to 20 times.   
If you have more than one session of your application open, the script is executed in the application which

was opened first.
Running a script with a combination of intrinsic statements and application commands from the Editor lets

you take advantage of the Editor's testing and debugging features. However, once you are satisfied your script is
running properly, you should run your script from the Corel application that uses the application command for
significant time savings.

{button ,AL(`ole_cs;end;corel_script_programming_language;Executing_script_files;Corel_SCRIPT_ad
vanced_programming_features;;',0,"Defaultoverview",)} Related Topics

REM
A non-executed remark, or comment, in a program. You can use an apostrophe (') instead of REM.    Everything
from REM (or the apostrophe) to the end of the line is a remark. The REM statement must be placed at the
beginning of a line. The apostrophe can be placed anywhere in a line.
If a script's first line, second line, or both are REM statements, the comments are displayed in a Corel
application's Run Script dialog box if the script is specified. The same two REM statements are also displayed in
the status bar if the script is assigned to a tool bar button.

Syntax
REM This is a comment.
' This is also a comment.
Syntax Definition
comment any text to describe the script statements.

Example
REM Description: This is a description.
REM Created by: Your Name
' This first statement sets up the variables
DIM int2Array%(10) ' The rest of this line is a comment
' More processing follows here.

{button ,AL(`Using_flow_control_statements;To_add_a_button_to_a_toolbar;;;;',0,"Defaultoverview",)
} Related Topics

ON ERROR
The ON ERROR statement sets an error-handling routine. The error-handling routine is a series of instructions
that are executed when an error occurs. If you don't use an error-handling routine, a run-time error stops script
execution. For more information about run-time errors, see Script programming errors.
Note

When you set ON ERROR, you are only setting an error handling routine within the procedure where it was
set. A procedure can be the script's main section, a function, or a subroutine.

When an error occurs, an error value is passed, or trapped, to the Corel SCRIPT global variable ERRNUM.
For example, if a division by zero error occurs, ERRNUM equals 100. For more information, see Trappable Error
Codes.

Syntax
ON ERROR { GOTO linelabel | RESUME NEXT | EXIT }

Argument Definition
GOTO linelabel Script execution is directed to the linelabel line when an error occurs. The

linelabel must be in the same procedure where the error occurred. See GOTO for
more information.

RESUME NEXT Script execution continues to the line immediately following the line where the
error occurred.

EXIT Disables the ON ERROR setting in the current procedure.

Error-handling routines
An error-handling routine is not a separate procedure but a block of script instructions within the same procedure
as the ON ERROR statement.

You can use the following syntax in the error-handling routine to return execution to a procedure from an error-
handling routine:
Syntax to return executionDefinition
RESUME Placing a RESUME statement at the end of an error-handling routine re-executes

the script instruction which caused the error. If you use the RESUME statement,
you should ensure that your error-handling routine resolves the error, otherwise an
infinite loop is likely to occur.

RESUME NEXT Placing a RESUME NEXT statement at the end of an error-handling routine directs
script execution to the line immediately following the line where the error
occurred.

RESUME AT linelabel Placing a RESUME AT statement at the end of the error-handling routine directs
script execution to the specified linelabel line. The linelabel line must be in the
same procedure where the error occurred.

Note
You should place a STOP, EXIT FUNCTION, or an EXIT SUB before an error-handling routine in a script to

prevent it from being executed when no error has occurred.
If an error occurs in an error-handling routine, script execution is redirected to the instruction that caused

the error that initiated the error-handling routine.
Not all Corel SCRIPT errors are trappable.

{button ,AL(`script_errors;;;;;',0,"Defaultoverview",)} Related Topics

Example for ON ERROR and FAIL

DECLARE FUNCTION asknum$()
ON ERROR GOTO mainerrhan

num$=asknum$()
MESSAGE "You entered "+num$
STOP

' main error handling routine
mainerrhan:

SELECT CASE errnum
CASE 800

MESSAGE "Please enter a higher number"
RESUME

CASE 801
MESSAGE "Please enter a lower number"
RESUME

CASE ELSE
MESSAGE "Unexpected error"
RESUME NEXT

END SELECT
STOP

' This function will ask for a number between 10 and 20.
FUNCTION asknum$

ON ERROR GOTO asknumerror
number$=INPUTBOX("Please enter a number between 10 and 20")
somenum& = VAL(number$)
IF somenum&<10 THEN FAIL 800
IF somenum&>20 THEN FAIL 801
asknum$=number$
EXIT FUNCTION

askNumError:
' Error handling is passed to the main section

END FUNCTION
In the above example, a function is used to create an input box that takes a number. If the number input is not
between 10 and 20 inclusive, an error-handling routine is called. (The FAIL statement is used to simulate an error
number.) The error-handling routine displays a message and then returns to the input box again.

{button ,AL(`script_errors;;;;;',0,"Defaultoverview",)} Related Topics

FAIL
The FAIL statement simulates an error and sets the ERRNUM variable to the parameter value. FAIL can be used to
force a call to an error-handling routine.

Syntax
FAIL errnum{ %|& }

Syntax Definition
errnum{ %|& } Any number, numeric variable or constant, or numeric expression. User defined

error numbers are between 800 and 999, inclusive.

{button ,AL(`script_errors;;;;;',0,"Defaultoverview",)} Related Topics

ABS
Calculates the absolute value of a real number. Absolute value is the positive value of a number.

Syntax
ABS(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or numeric expression.

Examples
x% = ABS(-3)
y% = ABS(3)
Both the above examples return 3 to x% and y%.

{button ,AL(`abs;sgn;fix;int;;',0,"Defaultoverview",)} Related Topics

EXP
Raises e to a given exponent where e is the base of the natural logarithm which equals 2.718281828.

Syntax
EXP(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any positive number, numeric variable or constant, or numeric expression.

Note
 EXP is the inverse of the natural logarithm (LN).

Examples
x! = EXP(7.89)
In the above example, x equals 2670.444.

{button ,AL(`log;ln;exp;;;',0,"Defaultoverview",)} Related Topics

LOG
Calculates the base-10 logarithm of a number.

Syntax
LOG(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any positive number, numeric variable or constant, or numeric expression, which

represents the value.
Note

The LOG function assumes a base of 10. If another base is needed, use LOG(x)/LOG(b) formula where b is
the base.

Example
x = LOG(25)
y = LOG(5)
In the above example, x equals 1.397940 and y equals 0.6989700.

{button ,AL(`log;ln;exp;;;',0,"Defaultoverview",)} Related Topics

SIN
Calculates the sine of an angle measured in radians.

Syntax
SIN(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or numeric expression. Specifies the

angle measured in radians.

Note
The result of SIN is between -1 to 1, inclusive.
To convert degrees to radians, multiply degrees by 3.14159/180 (Pi is approximately equal to 3.14159) or

use the ANGLECONVERT function.

Examples
degreeMeasure% = 45
MyResult! = SIN(3.14159/180*degreeMeasure%)
The above example returns the SIN of 45 degrees. The variable MyResult! equals 0.70710678.

{button ,AL(`Math_PASTE;CS_MATH_FNS;;;;',0,"Defaultoverview",)} Related Topics

TAN
Calculates the tangent of an angle in radians.

Syntax
TAN(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or numeric expression. Specifies the

angle measured in radians.

Note
To convert degrees to radians, multiply degrees by 3.14159/180 (Pi is approximately equal to 3.14159) or

use the ANGLECONVERT function.

Example
radianMeasure! = 0.5
MyResult! = TAN(radianMeasure!)
The above example returns the TAN of 0.5 radians. The variable MyResult! equals 0.546302.

{button ,AL(`Math_PASTE;CS_MATH_FNS;;;;',0,"Defaultoverview",)} Related Topics

COS
Calculates the cosine of an angle in radians.

Syntax
COS(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or numeric expression. Specifies the

angle measured in radians.

Notes
The result of COS is between -1 and 1.
To convert degrees to radians, multiply degrees by 3.14159/180 (Pi is approximately equal to 3.14159) or

use the ANGLECONVERT function.

Examples
degreeMeasure% = 45
MyResult! = COS(3.14159/180*degreeMeasure%)
The above example returns the COS of 45 degrees as expressed in radians. The variable MyResult! equals
0.707106781.

{button ,AL(`Math_PASTE;CS_MATH_FNS;;;;',0,"Defaultoverview",)} Related Topics

ACOS
Calculates the inverse cosine (arccosine) of a number. The result is an angle measured in radians between 0 and 
(where    is approximately 3.14152).

Syntax
ACOS(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or numeric expression. Must be

from -1 to 1, inclusive. Specifies the cosine of the angle.
Note

To convert the result from radians to degrees, use the ANGLECONVERT function or multiply the result by
180/3.14152.

Examples
v! = ACOS(-0.75)
w! = ACOS(0.75)
x! = ACOS(0)
y! = ACOS(1)
In the above example, v! is equal to 2.418858406, w! is equal to 0.722734248, x! is equal to 1.570796327, and
y! is equal to 0.

{button ,AL(`Math_PASTE;ACOS;ASIN;ATAN;;',0,"Defaultoverview",)} Related Topics

ASIN
Calculates the inverse sine (arcsine) of a number. The result is an angle in radians bounded by - /2 and
/2.

Syntax
ASIN(x)

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or numeric expression. Must be from    -

1 to 1, inclusive. Specifies the sine of the angle.
Note

To convert the result from radians to degrees, use the ANGLECONVERT function or    multiply the result by
180/3.14152.

Examples
w = ASIN(-0.75)
x = ASIN(0.75)
y = ASIN(0)
z = ASIN(1)
In the above example, w! is equal to -0.8480621, x! is equal to 0.8480621, y! is equal to 0, and z! is equal to
1.570796.

{button ,AL(`Math_PASTE;ACOS;ASIN;ATAN;;',0,"Defaultoverview",)} Related Topics

ATAN
Calculates the inverse tangent (arctangent) of a number. The result is an angle bounded by -/2 (-90 degrees) and
/2 (90 degrees) measured in radians.

Syntax
ATAN(x{&|!|#|@})

Argument Definition
x{&|!|#|@} Any number, numeric variable or constant, or numeric expression that specifies

the tangent of an angle.
Note

To convert the result from radians to degrees, use the ANGLECONVERT function or multiply the result by
180/3.14152.

Examples
w = ATAN(-0.75)
x = ATAN(0.75)
y = ATAN(0)
z = ATAN(1)
In the above example, w! is equal to -0.6435011, x! is equal to 0.6435011, y! is equal to 0, and z! is equal to
0.7853982.

{button ,AL(`Math_PASTE;ACOS;ASIN;ATAN;;',0,"Defaultoverview",)} Related Topics

DEC
Returns the conversion of a hexidecimal value into decimal notation.

Syntax
DEC(x{$})

Argument Definition
x A string representing a hexadecimal number.
Note

 Decimal notation is a numerical system based on groups of ten units.
Example
x! = DEC("A27")
y! = DEC("A27.89")
In the above example, x equals 2599 and y equals 2599.535.

{button ,AL(`hex;;;;;',0,"Defaultoverview",)} Related Topics

HEX
Returns the conversion of a decimal value into hexadecimal notation.

Syntax
HEX(x{%|&|!|#|@})

Argument Definition
x{$} Any string of numbers and valid letters.
Note

 Hexadecimal notation is a numerical system based on groups of sixteen units.
Example
x$ = HEX(27)
y$ = HEX(27.25)
In the above example, x equals "1B" and y equals "1B.4".

{button ,AL(`dec;;;;;',0,"Defaultoverview",)} Related Topics

FIX
Rounds an argument to the nearest integer. Returns the integer portion of a number.

Syntax
FIX(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or numeric expression .

Note
Both CINT and FIX return the integer portion of a given number. However, CINT returns the greatest integer

less than or equal to the number, while FIX returns the integer portion given, without any decimal points
represented. As a result, -5.26 becomes -5 under the FIX function, and -6 under the INT function.

Example
v = INT(12.65)
y = INT(-47.29)
In the above example, v equals 12 and y equals -47.

{button ,AL(`abs;sgn;fix;int;;',0,"Defaultoverview",)} Related Topics

INT
Rounds an argument down to the nearest integer. The number’s decimal or fraction is dropped.

Syntax
INT(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any positive number, numeric variable or constant, or numeric expression.
Note

Both INT and FIX return the integer portion of a given number. However, INT returns the greatest integer
less than or equal to the number, while FIX returns the integer portion given, without any decimal points
represented. As a result, -5.26 becomes -5 under the FIX function, and -6 under the INT function.

Examples
v! = INT(12.65)
y! = INT(-47.29)
In the above example, v equals 12 and y equals -48.

{button ,AL(`abs;sgn;fix;int;;',0,"Defaultoverview",)} Related Topics

LN
Calculates the natural logarithm of a number.

Syntax
LN(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any positive number, numeric variable or constant, or numeric expression.
Notes

LN is the inverse of the EXP function, so LN(EXP(x)) equals x.
Natural logarithms are based on the constant e which is equal to 2.718281828.

Examples
w = LN(1.2)
x = LN(30)
y = LN(1)
z = LN(EXP(30))
In the above example, w is equal to 0.1823215568, x is equal to 3.401197382, y is equal to 0, and z is equal to
30.

{button ,AL(`log;ln;exp;;;',0,"Defaultoverview",)} Related Topics

RANDOMIZE
Sets the random number generator seed to the integer portion of the argument value.

Syntax
RANDOMIZE x{%|&|!|#|@}

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or numeric expression.
Note

Randomize uses the argument as a seed to start a new sequence of random numbers. Using RANDOMIZE
without an argument initializes the seed to the system timer. If RANDOMIZE isn’t used before calling RND, the same
sequence of numbers will result every time the random number generator is used.

Examples
RANDOMIZE
RANDOMIZE 24
In the above example, the first line initializes the random number generator seed to the system timer. The
second line uses 24 as the first seed in the random number generator’s sequence.

{button ,AL(`randomize;rnd;;;;',0,"Defaultoverview",)} Related Topics

RND
Returns a random number.

Syntax
RND(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or numeric expression.
Note

If RANDOMIZE isn’t used before calling RND, the same sequence of numbers will result every time RND is
used to create a random number.

A positive number argument determines the upper bound of the area in which a random number can
occur. The lower bound would be zero.

A negative argument number determines the lower bound, with zero as the upper bound.
If a seed is not provided, the system will generate a random number between zero and one.

Examples
w! = RND(0)
x! = RND()
y! = RND(-7)
z! = RND(24)
In the above example, w! returns the last generated number, x! returns a random number between zero and
one, y! returns a random number between -7 and zero, and z! returns a random number between 0 and 24.

{button ,AL(`randomize;rnd;;;;',0,"Defaultoverview",)} Related Topics

SGN
Determines the sign (+ or -) of a number and returns -1 if the number is negative, 1 if the number is positive,
and 0 if the number is 0.

Syntax
SGN(x{%|&|!|#|@})

Argument Definition
(x{%|&|!|#|@}) Any number, numeric variable or constant, or numeric expression.
Examples
x% = SGN(5)
y% = SGN(0)
z% = SGN(-0.021)
In the above example, x is equal to 1, y is equal to 0, and z is equal to -1.

{button ,AL(`abs;sgn;fix;int;;',0,"Defaultoverview",)} Related Topics

SQR
Calculates the positive square root of a number.

Syntax
SQR(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any non-negative number, numeric variable or constant, or numeric expression.
Examples
w = SQR(4)
x = SQR(0.175)
In this example, w is equal to 2 and x is equal to 0.4183300133.

{button ,AL(`abs;sgn;fix;int;;',0,"Defaultoverview",)} Related Topics

Using operators
In Corel SCRIPT, an expression is a combination of numbers, strings, variables, constants, and operators that
return a result. Results can be a number, string, Boolean (TRUE or FALSE), or one of Corel SCRIPT's other data
types which can be assigned to a variable. Operators are used to perform mathematical operations, concatenate
strings, and logically compare expressions.
Corel SCRIPT supports the following operators:

Arithmetic
Bitwise
Concatenation
Logical
Relational
Unary

{button ,AL(`all_operators;;;;;',0,"Defaultoverview",)} Related Topics

Operator precedence in Corel SCRIPT
In Corel SCRIPT, expressions with more than one operator are evaluated by a predetermined order of execution
known as operator precedence. Operations with a higher precedence are followed by operations with a lower
precedence. Operators with the same precedence are evaluated left to right.
Operations within parentheses are evaluated before operations outside of parentheses. Operators and
expressions nested with parentheses are evaluated from the innermost to the outermost.
The following table lists the order of precedence from highest to lowest:
Order Operator
1 parentheses ()
2 unary +, unary - , NOT
3 exponentiation (^)
4 multiplication (*), division (/)
5 integer division (\\)
6 modulus (MOD)
7 addition (+), subtraction (-)
8 concatenation + , &
9 relational operators (=, <>, >, <, =>, >=, <=, =<)
10 AND
11 OR
12 XOR

{button ,AL(`all_operators;;;;;',0,"Defaultoverview",)} Related Topics

Concatenation Operators
Concatenation operators link strings together.
Operator Definition
& Links strings or string variables together.
+ Links strings or string variables together. The + operator is also a unary and

arithmetic operator.
Note
Use the STR function to return numbers as strings.

{button ,AL(`all_operators;;;;;',0,"Defaultoverview",)} Related Topics

Examples of Concatenation Operators

& operator
firstString$ = "Corel"
secondString$ = "DRAW"
result$ = firstString$ & " " & secondString$
Assigns the value of firstString$ followed by the value of secondString$ to the variable result$ with a space
in between.    In this example, result$ = "Corel DRAW".

+ operator
firstString$ = "Corel"
secondString$ = "PHOTO-PAINT"
result$ = firstString$ & " " & secondString$
Assigns the value of firstString$ followed by the value of secondString$ to the variable result$ with a space
in between.    In this example, result$ = "Corel PHOTO-PAINT".

Using the STR function
a%=6
firstString$ = "Corel"
secondString$ = "DRAW"
result$ = firstString$ & " " & secondString$ & STR(a%)
In this example, result$ = "Corel DRAW 6".
Note
The variables in the examples above all use type-declaration suffixes (% and $). It is not necessary to use type-
declaration suffixes with these operators.

{button ,AL(`all_operators_examples;all_operators;;;;',0,"Defaultoverview",)} Related Topics

Unary Operators
Unary operators perform on one numeric operand.
Operator Definition
+ Multiplies a numeric operand by +1. The + operator is also a concatenation and

arithmetic operator.
- Multiplies a numeric operand by -1. The operator is used to indicate a numeric

operand is negative. The - operator is also an arithmetic operator.
NOT Inverts the result of a logical operation. The NOT operator is also a logical and

bitwise operator.

{button ,AL(`all_operators;;;;;',0,"Defaultoverview",)} Related Topics

Examples of Unary Operators

+
x% = 12 / +3

-
y% = 12 / -3

NOT
a% = 5
b% = NOT(a% > 3)
Since a% is greater than 3, resulting in TRUE, b% is FALSE (or 0) because NOT inverts the result of the logical
operation.
Note

The variables in the examples above all use type-declaration suffixes (% and $). It is not necessary to use
type-declaration suffixes with these operators.

{button ,AL(`all_operators_examples;all_operators;;;;',0,"Defaultoverview",)} Related Topics

Arithmetic Operators
Use arithmetic operators to perform mathematical operations on two numeric expressions. Arithmetic operators
are placed between two numeric expressions.
Operator Definition
+ (Addition) Sums two numeric expressions. The + operator is also a concatenation and unary

operator.
- (Subtraction) Subtracts one numeric expression from another. The - operator is also a unary

operator.
* (Multiplication) Multiplies two numeric expressions.
/ (Division) Divides two numeric expressions.
^ (Exponentiation) Raises a numeric expression to the power of another    numeric expression.
MOD (Modulus) Returns a whole number remainder of division between two numeric expressions.

Non-integer expressions are truncated before division.
\ (Integer division) Divides two numeric operands and returns a whole number. Non-integer

expressions are truncated before division.
Note

All arithmetic operators have a left-associativity except the exponentiation operator (^). Left-associativity
means the expression with the operator is evaluated from left to right. For example, 4 * 10 / 2 is calculated as four
times ten equal 40 divided by two equals 20. For the exponentiation operator which has a right-associativity, the
expression is calculated from right to left. For example, the expression 4^3^2 is calculated as 3 to the power of two
(which equals 9), and then 4 to the power of 9, which equals 262,144.

You can perform arithmetic operations on numeric expressions of different types. The return value takes on
the highest precision level of the two operands. For example, if you multiply a long by an integer, the result is a
long. For more information, see Explicitly declaring and assigning values to a variable.

{button ,AL(`all_operators;;;;;',0,"Defaultoverview",)} Related Topics

Examples of Arithmetic Operators

+ (Addition)
i = a + b
Assigns the sum of the values of variables a and b to the variable i.
- (Subtraction)
j = j - 2
Decreases the variable j by 2.
* (Multiplication)
k = (c + d) * 5
Adds the values of variables c and d together, multiplies the sum by 5, and assigns the result to the variable k.
Note that the parentheses force the calculation of the addition before the multiplication.
* (Division)
m = e / f
Assigns the result of the value of variable e divided by the value of f to the variable m.
^ (Exponentiation)
n = g ^ 2
Assigns the result of the value of g raised to the second power to the variable n. The expression g ^ 2 is the
same as g * g.
MOD (Modulus)
n = 14 MOD 3
n = 14.9 MOD 3.6
Both of the examples assign the value of 2 to n. In the second example, the operands are truncated to 14 and 3.
\ (Integer division)
n = 15 \ 4
n = 15.88 \ 4
n = 15 \ 4.123
n = 15.88 \ 4.123
All four examples assign the value of 3 to n. In the second, third, and fourth examples, the operands are
truncated to 15 and 4.

{button ,AL(`all_operators_examples;all_operators;;;;',0,"Defaultoverview",)} Related Topics

Relational Operators
The relational operators are used to compare two operands, numeric or string expressions of the same type, and
return a TRUE (-1) or FALSE (0) value. Relational operators are most often used inside of Corel SCRIPT flow
control structures such as DO...LOOP, IF...THEN...ELSE...ENDIF, and WHILE...WEND.
Operator Definition
= Equal to
<> Not equal to
> Greater than
< Less than
>= (or =>) Greater than or equal to
<= (or =<) Less than or equal to
Note

Because the equal sign (=) is used for both assignment and comparison, Corel SCRIPT will recognize the
comparison operator only when it is within an IF, DO...LOOP, or WHILE...WEND statement.

You can compare numeric expressions of different type (BOOL, INTEGER, SINGLE, LONG, DOUBLE). See the
Corel SCRIPT data type summary for more information.

Strings are always compared in their entirety, and case is significant. When comparing strings, the ANSI
value of the characters in the strings are compared. See the Corel SCRIPT Character Map for more information.

{button ,AL(`all_operators;;;;;',0,"Defaultoverview",)} Related Topics

Examples of Relational Operators

= (Equal to)
IF a% = b% THEN BEEP
The computer beeps if both a% and b% hold the same value. Because the equal sign (=) is used for both
assignment and comparison, Corel SCRIPT will recognize the comparison operator only when it is within an IF,
DO...LOOP, or WHILE...WEND statement.
<> (Not equal to)
IF str1$ <> str2$ THEN BEEP
The computer beeps if the values of the two string variables are not equal. Strings are always compared in their
entirety, and case is significant. So if str1$ is "Cat" and str2$ is "cat", a beep will sound, because the strings
are different.
> (Greater than)
IF a% > b% THEN BEEP
The computer beeps if the value of a% is greater than the value of b%.

IF str1$ > str2$ THEN BEEP
The computer beeps if the value of str1$ is greater than the value of str2$. When comparing strings, the ANSI
value of the characters in the strings are compared. So if str1$ is "dog" and str2$ is "cat", a beep will sound,
because "c" comes before "d" in the ANSI character set.
< (Less than)
IF a% < b% THEN BEEP
The computer beeps if the value of a% is less than the value of b%.

IF str1$ < str2$ THEN BEEP
The computer beeps if the value of str1$ is less than the value of str2$. When comparing strings, the ANSI
value of the characters in the strings are compared. So if str1$ is "cat" and str2$ is "dog", a beep will sound,
because "c" comes before "d" in the ANSI character set.
>= or => (Greater than or equal to)
IF a% >= b% THEN BEEP
The computer beeps if a% is greater than or equal to b%.
<= or =< (Less than or equal to)
IF a$ <= b$ THEN BEEP
The computer beeps if a$ is less than or equal to b$.
Note
The variables in the examples above all use type-declaration suffixes (% and $). It is not necessary to use type-
declaration suffixes with these operators.

{button ,AL(`all_operators_examples;all_operators;;;;',0,"Defaultoverview",)} Related Topics

Logical Operators
Logical operators are used in conjunction with relational operators to determine a logical relationship between
expressions. Together with the relational operators, which are most often used inside of Corel SCRIPT flow control
structures such as DO...LOOP, IF...THEN...ELSE...ENDIF, and WHILE...WEND, logical operators return a TRUE (-1) or
FALSE (0) value.
Operator Definition
NOT Evaluates the expression to the right of the operator. If the expression evaluates to

FALSE, TRUE is returned. The NOT operator is also a bitwise and unary operator.
AND Logically compares the value of the expression to the left of the operator with the

value of the expression to the right of the operator. If both expressions evaluate to
TRUE, TRUE is returned. The AND operator is also a bitwise operator.

OR Logically compares the value of the expression to the left of the operator with the
value of the expression to the right of the operator. If either of the expressions
evaluate to TRUE, TRUE is returned. The OR operator is also a bitwise operator.

XOR Logically compares the value of the expression to the left of the operator with the
value of the expression to the right of the operator. If only one of the expressions
evaluates to TRUE, TRUE is returned. The XOR operator is called the exclusive
operator and is also a bitwise operator.

Note
The operators are listed in their order of precedence.

Return Values for NOT if... Returns
Expression1 is TRUE  FALSE
Expression1 is FALSE  TRUE

Return Values for AND if... Returns
Expression1 is TRUE and Expression2 is TRUE TRUE
Expression1 is TRUE and Expression2 is FALSE FALSE
Expression1 is FALSE and Expression2 is TRUE FALSE
Expression1 is FALSE and Expression2 is FALSE FALSE

Return Values for OR if... Returns
Expression1 is TRUE or Expression2 is TRUE TRUE
Expression1 is TRUE or Expression2 is FALSE TRUE
Expression1 is FALSE or Expression2 is TRUE TRUE
Expression1 is FALSE or    Expression2 is FALSE FALSE

Return Values for XOR if ... Returns
Expression1 is TRUE and Expression2 is TRUE FALSE
Expression1 is TRUE and Expression2 is FALSE TRUE
Expression1 is FALSE and Expression2 is TRUE TRUE
Expression1 is FALSE and Expression2 is FALSE FALSE
Note

The operators are listed in their order of precedence.
Though bitwise and logical operators are listed separately, they are the same operators but function

differently depending on the operand.

{button ,AL(`all_operators;;;;;',0,"Defaultoverview",)} Related Topics

Examples of Logical Operators

NOT
IF NOT(a% = 0) THEN BEEP
If the value of a% is not equal to 0, a beep sounds. The paratheses indicate that NOT operates on a% = 0 and
not a% alone.

AND
IF (a% = 0) AND (b% = 0) THEN BEEP
If the value of a% is equal to 0 and the value of b% is equal to 0, a beep sounds. Both expressions must be true
for the beep to sound.

IF a$ = "Corel" AND b$ = "Corel" THEN BEEP
If the value of a$ is equal to "Corel" and the value of b$ is equal to "Corel", a beep sounds. Both expressions
must be true for the beep to sound.

OR
IF (a% = 0) OR (b% = 0) THEN BEEP
If either the value of a% is equal to 0 or the value of b% is equal to 0, a beep sounds. Only one of the
expressions must be true for the beep to sound.

IF (a$ = "Corel") OR (b$ = "Corel") THEN BEEP
If either the value of a$ is equal to "Corel" or the value of b$ is equal to "Corel", a beep sounds. Only one of the
expressions must be true for the beep to sound.

XOR
IF (a% = 0) XOR (b% = 0) THEN BEEP
If the value of a% is equal to 0 and the value of b% is not equal to 0, or vice versa, a beep sounds. One
expression must be true and the other false for the beep to sound.
Note

The variables in the examples above all use type-declaration suffixes (% and $). It is not necessary to use
type-declaration suffixes with these operators.

In the above examples for AND, OR, and XOR, parentheses are placed around the relational expressions
but are not required because the = operator takes precendence over the OR operator. However, it is still good
practice to put parentheses around your expressions because it makes your scripts easier to read.

{button ,AL(`all_operators_examples;all_operators;;;;',0,"Defaultoverview",)} Related Topics

Bitwise Operators
Use bitwise operators to compare identically positioned bits in expressions holding integers. Non-integer
expressions are truncated.
Operator Definition
NOT Unlike the three other bitwise operators, NOT is unary, meaning that it only

operates on one operand (see Unary Operators for more information). NOT returns
the opposite of the corresponding bits of the operand, which is sometimes called
"two's-complement." The NOT operator is also a logical operator.

AND Compares the individual bits in the expression to the left of the operator with the
individual bits in the expression to the right of the operator. If the identically
positioned bits are both 1, 1 is returned. If not, 0 is returned. The AND operator is
also a logical operator.

OR Compares the individual bits in the expression to the left of the operator with the
individual bits in the expression to the right of the operator. If either of the
identically positioned bits are 1, 1 is returned. If not, 0 is returned. The OR
operator is also a logical operator.

XOR Compares the individual bits in the expression to the left of the operator with the
individual bits in the expression to the right of the operator. If the identically
positioned bits are both 1 or both 0, 0 is returned. If not, 1 is returned. The XOR
operator is also a logical operator.

Note
The operators are listed in their order of precedence.
Though bitwise and logical operators are listed separately, they are in fact the same operators but function

differently depending on the operand.

{button ,AL(`all_operators;;;;;',0,"Defaultoverview",)} Related Topics

Examples of Bitwise Operators
The following examples use only eight bits to demonstrate the bit operation, but Corel SCRIPT integers are 16-
bits long. Bit positions are counted right-to-left and the first position is called the 0 position.

NOT
n% = NOT(a%)
Toggles the bit values in a% to set n%. By toggling, bits equal to 1 are set to 0 and bits equal to 0 are set to 1.
For example, if a% = 9, n% = -10 as follows:
0 0 0 0 1 0 0 1 = 9
1 1 1 1 0 1 1 0 = -10

AND
n% = a% AND b%
Compares the bits of the variables a% and b% and sets the corresponding bits of n% to 1 if the same bit is 1 in
both a% and b%. For example, if a% = 9 and b% = 12, then n% = 8 as follows:
0 0 0 0 1 0 0 1 = 9
0 0 0 0 1 1 0 0 = 12
0 0 0 0 1 0 0 0 = 8
Because only the 3rd bit (bits are always counted from right to left, starting with 0) is 1 in both operands, only
the resulting number has the 3rd bit set to 1.

OR
n% = a% OR b%
Compares the bits of the variables a% and b%, and sets the corresponding bits of n% to 1 if the same bit is 1 in
either a% or b%. For example, if a% = 9 and b% = 12, then n% = 13 as follows:
0 0 0 0 1 0 0 1 = 9
0 0 0 0 1 1 0 0 = 12
0 0 0 0 1 1 0 1 = 13
The 3rd, 2nd, and 0 bits (bits are always counted from right to left, starting with 0), are set to 1 because those
bits have a value of 1 in either of the two operands.

XOR
n% = a% XOR b%
Compares the bits of the variables a% and b% and sets the corresponding bits of n% to 1 if the same bit is
different in a% and b%. For example, if a% = 9 and b% = 12, then n% = 5 as follows:
0 0 0 0 1 0 0 1 = 9
0 0 0 0 1 1 0 0 = 12
0 0 0 0 0 1 0 1 = 5
Because the 3rd bit (bits are always counted from right to left, starting with 0) is 1 in both operands, the 3rd bit
in the result is set to 0. The 2nd and 0 bits are different in the two operands, so those bits are set to 1 in the
result.
Note
The variables in the examples above all use type-declaration suffixes (% and $). It is not necessary to use type-
declaration suffixes with these operators.

{button ,AL(`all_operators_examples;all_operators;;;;',0,"Defaultoverview",)} Related Topics

Integer
Integers include all positive whole numbers, their negatives, and zero, e.g., -3, 0, 5.

Using strings and string functions
In Corel SCRIPT, an expression is a combination of numbers, strings, variables, constants, and operators that
return a result. Results can be a number, string, Boolean (TRUE or FALSE), or one of Corel SCRIPT's other data
types which can be assigned to a variable.
A string is a series of characters that is treated as a unit of information. This unit is used with certain Corel
SCRIPT statements and functions to perform instructions such as saving files, accepting user input, and setting
options.
Strings are a non-numeric Corel SCRIPT data type and are explicitly declared using the $ suffix or the data type
name STRING. They must be enclosed in double quotation marks, and can hold up to 32,765 characters
including lower and uppercase letters, numbers, punctuation marks. The following example declares the string
variable stringVar$:
stringVar$ = "This is a sample string."
Special Characters
Punctuation and certain character codes for items such as tabs and hard returns cannot be directly entered
within a string's double quotation marks. The CHR function is often used to add these special characters. For
example, to add double quote marks to a string variable, you use character 34:
s$ = CHR(34) + "This will be in double quotes." + CHR(34)
MESSAGE s$
You can also use the function to add a return and a line feed    within a string, with character 13 and 10,
respectively:
s$ = "String 1" + CHR(13) + CHR(10) + "String 2"
MESSAGE s$
The result will be the two strings on separate lines, as displayed in the message box.

See the Corel SCRIPT character map or CHR for more information about using special characters in strings.

{button ,AL(`cs_strings_fns;using_variables;corel_script_data_type_summary;;;',0,"Defaultoverview",
)} Related Topics

LEFT
Returns the specified number of characters starting at the beginning of a string.

Syntax
LEFT (source$, number%)

Syntax Definition
source$ Any string, string variable, string constant, or expression returning a string.
number% Number of characters to be returned. Must be a non-negative number and

numbers other than integers are truncated.
Note

Subtract 1 from the result of INSTR if you do not want to include the character you are searching for.
This function can be used to truncate user input from a dialog box.

Example
abc$ = LEFT("I want to dance with you", 15)
MESSAGE abc$
Displays "I want to dance" in a message dialog box.

Combine LEFT$ with INSTR to extract the portion of a string either up to or including a specified substring.
city$ = "San Francisco, California"
Mystr$ = LEFT(city$, INSTR(city$, ",")-1)
Extracts the characters in city$ up to, but not including, the comma and places the result in the variable
Mystr$. The variable Mystr$ now has the value "San Francisco".

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics

RIGHT
Returns the specified number of characters from the end of a string.

Syntax
RIGHT (source$, number%)

Syntax Definition
source$ Any string, string variable, string constant, or expression returning a string.
number% Number of characters to be returned. Must be a non-negative number and

numbers other than integers are trurcated.

Example
abc$ = RIGHT("I don't want to dance", 13)
MESSAGE abc$
Displays "want to dance" in a message dialog box.

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics

LEN
Returns the length or number of characters in a string.

Syntax
LEN(source$)

Syntax Definition
source$ A string variable, constant, literal, or expression.

Example
num% = LEN("This is a test")
Assigns the length of the string, 14, to the variable num%.

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics

LTRIM
Removes any leading spaces from a string. You can use LTRIM$ to remove leading spaces from user dialog
inputs.

Syntax
LTRIM(source$)

Syntax Definition
source$ Any string, string variable, string constant, or expression returning a string.

Example
MyString$ = " Test"
MyString$ = LTRIM$(MyString$)
Assigns "Test" to the variable Mysting$. All leading spaces that were previously in the variable are removed.

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics

RTRIM
Removes any trailing spaces from a string. You can use RTRIM to remove trailing spaces from user dialog inputs.

Syntax
RTRIM$(source$)

Syntax Definition
source$ Any string, string variable, string constant, or expression returning a string.

Example
MyString$ = "Test "
MyString$ = RTRIM$(MyString$)
Assigns "Test" to the variable MyString$. All trailing spaces that were previously in the variable are removed.

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics

MID
If used as a function, MID returns a specified number of characters, starting at a specified position in a string.

Syntax
MID(source$, index%, count%)

If used as a statement, MID replaces a portion of a string with another string, beginning at a specified character.

Syntax
MID(source$, index% , count%) = modify$

Syntax Definition
source$ Any string, string variable, string constant, or expression returning a string. Hold

the string to be modified.
index% Position of the first character to be modified.
count% Number of characters to be modified. If not specified, the rest of source$ is

returned or overwritten.
modify$ Any string, string variable, string constant, or expression returning a string.

Replaces a portion of source$.

Example
s$ = MID("I want to dance with you",11,5)
The function extracts five characters from the string, beginning with the eleventh character. The variable s$ then
becomes "dance".

str1$ = "I want to dance with you"
MID(str1$, 22, 3) = "him"
The statement changes three characters, starting with the 22nd character, to the new string. The str1$ variable
now contains "I want to dance with him".

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics

SPACE
Returns a string consisting of a specified number of spaces (ANSI character number 32).

Syntax
SPACE (num%)

Syntax Definition
num% Number of spaces to be returned.
Note

See the Corel SCRIPT Character Map for more ANSI details and Windows characters.

Example
Mystr$ = SPACE$(4) + "Test" + SPACE$(4)
Makes the string variable Mystr$ equal to "        Test          ". (The string Mystr$ now consists of 4 spaces, the word
TEST and another 4 spaces).
x1 = "Corel"
x2 = "SCRIPT"
x3 = x1 + SPACE(1) + x2
Mystr$ = SPACE$(4) + "Test" + SPACE$(4)
Makes the string variable x3$ equal to "Corel SCRIPT".

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics

LCASE
Converts a string to lowercase.

Syntax
LCASE(source$)

Syntax Definition
source Any string, string variable, string constant, or expression returning a string.

Example
x$="HI"
firststring$ = LCASE$(x)
secondstring$ = LCASE$("THerE")
MESSAGE firststring + " " + secondstring
Displays the converted strings "hi there" in a message dialog box.

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics

UCASE
Converts a string to uppercase.

Syntax
UCASE(source$)

Syntax Definition
source$ Any string, string variable, string constant, or expression returning a string.

Example
x$="hI"
firststring$ = UCASE$(x)
secondstring$ = UCASE$("THerE")
MESSAGE firststring + " " + secondstring
Displays the converted strings "HI THERE" in a message dialog box.

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics

Transformation commands

VAL
Converts a string to a number. The number's variable type is double. This function is the opposite of the STR
statement.

Syntax
VAL (chars$)

Syntax Definition
chars$ The string to be converted. If the string does not begin with a number, VAL returns

0.
Note

You can only use the period as a decimal separator with the VAL function. If you're not using a period (.) as
a decimal separator, the CDBL or CSNG function can be used to convert a string to a number. Your Windows decimal
settings are set in the Control Panel's Regional Settings.

Example
g = VAL("72")
h = VAL("72.700113")
All three statmements assign 72 to the variables g and h. Because text box controls in dialog boxes can only
obtain strings, you can use this function to convert strings entered in dialog boxes to numbers.

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics

ASC
Returns the numerical ANSI character value of the first character specified in a string literal, string constant, or
string variable. ASC is the opposite of the CHR function, which returns a character when the ANSI value is
specified.

Syntax
ASC(source$)

Syntax Definition
source$ The string to be examined.
Note

See the Corel SCRIPT Character Map for more ANSI details and Windows characters.

Example
i% = ASC("string")
This expression will assign the value 115, which is the ANSI value of the letter "s."

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics

CHR
Returns the ANSI character that occupies the specified position in the ANSI character set. CHR is the opposite of
ASC, which returns the ANSI code value when the character is entered. See the Corel SCRIPT Character Map for
more ANSI details and Windows characters.

Syntax
CHR (value%)

Syntax Definition
value% ANSI code value to be examined.

Example
s$ = CHR(65)
Assigns the letter "A" to the variable s$. (Character 65 of the ANSI character set is A.)
Special Characters
The CHR function is often used to add special characters to string variables that cannot be entered directly
within double quotes. For example, to add double quote marks to a string variable, you use character 34:
s$ = CHR(34) + "This will be in double quotes." + CHR(34)
MESSAGE s$
You can also use the function to add a return and a line feed    within a string, with character 13 and 10,
respectively:
s$ = "String 1" + CHR(13) + CHR(10) + "String 2"
MESSAGE s$
The result will be the two strings on separate lines, as displayed in the message box.

The following table notes some of the special characters you can use with the CHR function.
Character Number Special Character Returned
8 Backspace
9 Tab
10 Linefeed
11 Newline character (SHIFT+ENTER, soft return)
13 Return
30 Nonbreaking hyphen
31 Optional hyphen
32 Space
34 Quotation mark
160 Non-breaking space

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics

STR
Returns a string representation of number of any data type. The STR function is useful when you want to
manipulate a number as a string.

Syntax
STR(num)

Syntax Definition
num Any number, numeric variable, constant, or expression.
Note

You can only use the period as a decimal separator with the STR function. If you're not using a period (.) as
a decimal separator, the CSTR function can be used to convert a number to a string. Your Windows decimal settings
are set in the Control Panel's Regional Settings.

If you're converting dates, they must be in the standard U.S. format (M/d/yy h:mm:ss TT).
If a positive number is converted, the STR function inserts a leading space before the first character. If a

negative number is converted, the STR function inserts a negative sign before the first character.

Example
aInteger$ = STR(72)
aNonInteger$ = STR(.140166)
The first example assigns "72" to the variable aInteger$. The second example assigns "0.140166" to
aNonInteger$.

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics

INSTR
Returns the starting position of the first occurrence of a string within another string. If the specified string is not
found, the function returns 0.

Syntax
INSTR (string1$, string2$, start%)

Syntax Definition
string1$ String within which the search is made.
string2$ String searched for.
start% Specifies the position where the search begins within string1$. If unspecified, the

search starts at the beginning of string1$ (same as start% = 1). Must be a non-
negative number and numbers other than integers are truncated.

Example
pos% = INSTR("Los Angeles", "Ang")
Sets pos% to the value 5 because "Ang" occurs at the fifth character in the string "Los Angeles".

pos% = INSTR("Los Angeles: City of Angels", "Ang", 8)
Sets pos% to the value 22.

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics

Using user-interface statements and commands
You can use user interface statements to define and display several kinds of interactive dialog boxes without
having to design and create a user-defined dialog box.
Many times you need to get information from the user before your script performs a desired action. For simple
information, you can use the Corel SCRIPT function INPUTBOX to get a string from the user returned to a running
script. If you want to provide the user with options and more complex information,    such as a list of choices, you
can include a user-defined dialog box in your script.
Note

The dialog boxes created using the statements INPUTBOX, MESSAGEBOX, GETFILEBOX, and any user-
defined dialog boxes that include a Cancel button involve a system variable called CANCEL. When the script starts,
this variable is set to zero. If the Cancel button is chosen, the variable is set to TRUE. The value of the CANCEL
variable remains unchanged between statement calls, unless the script changes it. A typical use of this variable is:
IF CANCEL THEN STOP

{button ,AL(`cs_ui_statements;corel_script_and_dialog_boxes;;;;',0,"Defaultoverview",)} Related
Topics

BEEP
Sounds a tone.

Syntax
BEEP

Note
The sound your computer makes depends on your computer's hardware (i.e., sound cards, PC speaker, ect)

and the Default sound in your Windows sound settings (see your Windows Control Panel for more details).

Example
IF (abc<=15.3) then BEEP ELSE MESSAGE "It's greater than 15.3"
If the variable abc is less than or equal to 15.3, the computer sounds a tone.

{button ,AL(`cs_ui_statements;;;;;',0,"Defaultoverview",)} Related Topics

GETFILEBOX
Displays a standard Windows File Open dialog box that allows a user to choose a file from the file system.
GETFILEBOX returns the selected filename and its full path or an empty string if the user chooses Cancel. The
GETFILEBOX statement cannot be used to open a file; it only returns a string.

Syntax
GETFILEBOX (filespec$, title$)

Syntax Definition
filespec$ Specifies the files to display in the box. This can include a default folder and wild-

card characters. You can separate multiple extensions with a semicolon (;).
title$ The title to display in the dialog box.

Example
CURRFOLDER = "c:\COREL60\DRAW\samples" 'set the current folder
filename$ = GETFILEBOX("*.cdr", "Choose your favorite Corel DRAW file")

Displays the following dialog box:

If you had chosen Eye from the dialog box, filename$ would be assigned "C:\COREL50\DRAW\SAMPLES\Eye.cdr"

{button ,AL(`cs_ui_statements;chfolder;;;;',0,"Defaultoverview",)} Related Topics

INPUTBOX
Displays a simple dialog box where you can enter a string. The dialog box has OK and Cancel buttons. If the
Cancel button is chosen, an empty string is returned.

Syntax
INPUTBOX(prompt$)

Syntax Definition
prompt$ String, string variable, constant, or expression that appears in the dialog box

above the edit box.

Example
MyString$ = INPUTBOX("Please type in a string")

User input is returned to the variable MyString$.

{button ,AL(`cs_ui_statements;textbox;text;;;',0,"Defaultoverview",)} Related Topics

MESSAGE
Displays a box containing a specified message and an OK button.

Syntax
Message anyVariable

Syntax Definition
anyVariable Any constant, string, string variable, number, numeric variable or expression to

display in the message box. Numbers, numeric variables, dates, and expressions
are displayed as their string representations.

Example
x$="Hello." + CHR(13) + CHR(10) 'CHR(13) is a return character
MESSAGE x$ + "What a nice day."

Note
See the Corel SCRIPT character map for a list of character codes.

{button ,AL(`cs_ui_statements;textbox;text;chr;;',0,"Defaultoverview",)} Related Topics

MESSAGEBOX
Displays a message box with a specified message and user-specified buttons and icons.

Syntax
MESSAGEBOX(prompt$, title$, option%)

Syntax Definition
prompt$ The string to display in the box.
title$ The string to display in the message box caption.
option% A number representing the type of buttons to include in the box and an icon (if

any) to appear beside the message. The option% value is set using the OR (or +)
operator for multiple buttons (see example):

Button Type
0 OK only
1 OK/Cancel
2 Abort/Retry/Ignore
3 Yes/No/Cancel
4 Yes/No
5 Retry/Cancel

Icon Type
0 No icon
16 Stop
32 Question
48 Exclamation
64 Information (lowercase i)

Returns
The number associated with the button pressed by the user:
1 OK
2 Cancel
3 Abort
4 Retry
5 Ignore
6 Yes
7 No

Example
retval% = MESSAGEBOX("This dialog displays three buttons", "MESSAGEBOX Example", 3 OR 48)

{button ,AL(`cs_ui_statements;textbox;text;;;',0,"Defaultoverview",)} Related Topics

CONST
Declares symbolic constants for use in place of Corel SCRIPT data values. Constants can be useful in
mathematical functions, and for values that may be used several times in a script.

Syntax
GLOBAL CONST constant{%|&|!|#|@|$} = expression , constant{%|&|!|#|@|$} = expression, ...
Syntax Definition
GLOBAL An optional parameter used to declare global constants. Global constants    are

available to all procedures in a script (main section, subroutines, or functions). If
not used, the constant is only available to the procedure in which it was declared.

constant{%|&|!|#|@|$} Specifies the name of the constant and follows the Corel SCRIPT naming
convention. Optionally, a type-declaration suffix can follow the name.

expression The expression is a combination of numbers, strings, variables, constants, and
operators that return a result.

Note
Constants can be used to declare the size of an array.
Changing the value of a constant normally only requires editing one script statement.

Example
REM creates a global constant for the base of the natural logarithm
GLOBAL CONST NATURAL_LOG# = 2.71828182845

REM creates a local constant for pi
CONST PI = 3.14

{button ,AL(`script_procedures;global;dim;using_variables;Using_constants;corel_script_data_type_s
ummary;;;',0,"Defaultoverview",)} Related Topics

DECLARE
Before a script can call a user-defined function or subroutine, it must be declared with the DECLARE statement.
This specifies the name of the user-defined procedure and the number and type of arguments passed to it.
DECLARE is required for all user-defined functions and subroutines. The DECLARE statement must be placed at
the beginning of a script; that is, it can only be preceded by remark statements or other DECLARE statements.

Syntax
DECLARE FUNCTION name{%|&|!|#|@|$} (PASS parameter{%|&|!|#|@|$}, PASS parameter{%|&|!|#|@|
$}, ...)
DECLARE FUNCTION name (PASS parameter AS type, PASS parameter AS type, ...) AS returnType
DECLARE SUB name (PASS parameter{%|&|!|#|@|$}, PASS parameter{%|&|!|#|@|$}, ...)
DECLARE SUB name (PASS parameter AS type, PASS parameter AS type, ...)

Syntax Definition
FUNCTION Used to declare a function.
SUB Used to declare a subroutine.
name{%|&|!|#|@|$} Name of the function and follows the Corel SCRIPT naming convention. A type-

declaration suffix must follow the name to set the function's data type. The name
must correspond to the name of the procedure in the same script file.

name Name of the function or subroutine and follows the Corel SCRIPT naming
convention. The name must correspond to the name of the procedure in the same
script file.

AS type Declares the function or parameter type with a type declaration name.
parameter{%|&|!|#|@|$} Name of the function parameter(s) and follows the Corel SCRIPT naming

convention. A type-declaration suffix must follow the name to set the data type
returned to the function.

parameter Name of the function parameter(s) and follows the Corel SCRIPT naming
convention.

PASS PASS determines how the variable it precedes in the script is passed to the
procedure. PASS can be set to BYVAL or BYREF. When set to BYVAL, the value of
the variable it precedes is passed by value. That is, the procedure accesses a copy
of the variable and its value can't be changed by the procedure to which it was
passed. When set to BYREF, the value of the variable it precedes is passed by
reference and its value can be changed by the procedure. PASS is optional, and if
omitted, Corel SCRIPT uses BYREF.

AS returnType Declares the data type of the value returned by the function with a type
declaration name.

Note
Subroutines and user-defined functions must be declared in the main section of a script file.
Use the DECLARE...LIB statement to call functions and subroutines in Windows Dynamic Link Libraries (DLL

files).

{button ,AL(`using_functions_subroutines;call;function_end_function;sub_end_sub;;',0,"Defaultoverv
iew",)} Related Topics

Example for DECLARE and FUNCTION statements

REM main section of script file
DECLARE FUNCTION cube_function%(a%) 'function declaration
DECLARE FUNCTION rank_function(a as INTEGER, b as STRING) as STRING
'
'
MESSAGE CSTR(cube_function(3))
MESSAGE rank_function(1, "Corel Script")
'
'
REM function section of script file
FUNCTION cube_function%(a%) 'function definition

cube_function = a^3
END FUNCTION
'
FUNCTION rank_function(a as INTEGER, b as STRING) as STRING

rank_function = b + " is #"+ CSTR(a)
END FUNCTION

In the above example, two functions are declared and defined. The first function cubes an integer and the
second function creates a string. The result of each function is displayed in a message dialog box.

{button ,AL(`example_vars;function_end_function;sub_end_sub;declare;;',0,"Defaultoverview",)}
Related Topics

Example for DECLARE, SUB, and CALL statements

REM main section of script file
DECLARE SUB cube_sub(a%) 'sub declaration
DECLARE SUB rank_sub(a as INTEGER, b as STRING)
'
'
call cube_sub(3)
rank_sub(1, "Corel Script") 'calling without call statement
'
'
REM subroutine section of script file
SUB cube_sub(a%) 'sub definition

MESSAGE CSTR(a^3)
END SUB
'
SUB rank_sub(a as INTEGER, b as STRING)

MESSAGE b + " is #"+ CSTR(a)
END SUB

In the above example, two subroutines are declared and defined. The first subroutine, cube_sub, displays the
result of cubing the subroutine's parameter in a message dialog box. The second subroutine, rank_sub, displays
the result of concatenating strings in a message dialog box.
The cube_sub is called with the CALL statement while rank_sub is not.

{button ,AL(`example_vars;function_end_function;sub_end_sub;declare;call;',0,"Defaultoverview",)}
Related Topics

DECLARE...LIB
Corel SCRIPT scripts can be used to call functions and subroutines in Windows Dynamic Link Libraries (DLL files).
To call an external procedure, it must first be declared with the DECLARE...LIB statement. The statement
specifies the name of a procedure and the DLL that contains the procedure, and it defines the number and type
of arguments passed to it. The DECLARE...LIB statement must be placed at the beginning of a script; that is, it
can only be preceded by remark statements or other DECLARE statements.
Consult the DLL's technical reference before you call any of its functions. For example, to use the Windows DLLs,
you need the Windows Software Development Kit.
Warning

You should save or back up essential files and programs before using functions and subroutines in DLL
files. Passing invalid arguments to a function can result in a Windows General Protection Fault or unstable system
behavior.

Syntax for declaring functions
DECLARE FUNCTION procName LIB "file" (PASS argument AS type, PASS argument AS type, ...) ALIAS
"aliasName" AS returnType

Syntax for declaring subroutines
DECLARE SUB procName LIB "file" (PASS argument AS type, PASS argument AS type, ...) ALIAS "aliasName"

Syntax Definition
FUNCTION Use for procedures that return as value that can be assigned to an expression.
SUB Use for procedures that do not return a value.
procName String specifying the name of the called procedure; must correspond to the

procedure name in the DLL module where it resides; name matching is case-
sensitive.
You have the option of using another name for the procedure if you specify the
procedure's name using the ALIAS syntax part of the statement.

"file" String specifying the DLL file to access. You should specify the DLL extension and
path; if not specified, Corel SCRIPT searches for the file in the Windows folder with
a DLL extension. Quotation marks must be used.

argument Variables that pass values to the procedure when it is called. You can use more
than one argument but each argument's data type must be declared. Some
procedures don't pass arguments but the brackets () must still be used.

AS type Declares an argument's type with a type declaration name. If the procedure uses
an argument, a type declaration name must be used.

ALIAS "aliasName" String specifying the name of the called procedure; must correspond to the
procedure name in the DLL module where it resides; name matching is case-
sensitive. This option must be used if the DLL procName is not in uppercase
characters. You should also use an alias if the actual name of the procedure is a
reserved Corel SCRIPT keyword. Quotation marks must be used.

PASS PASS determines how the variable it precedes in the script is passed to the
procedure. PASS can be set to BYVAL or BYREF. When set to BYVAL, the value of
the variable it precedes is passed by value. That is, the procedure accesses a copy
of the variable and its value can't be changed by the procedure to which it was
passed. When set to BYREF, the value of the variable it precedes is passed by
reference and its value can be changed by the procedure. PASS is optional, and if
omitted, Corel SCRIPT uses BYREF.

AS returnType Declares the data type of the value returned by the function with a type
declaration name.

Note
You can declare an arguments data type using a Corel SCRIPT type declaration suffix. For example:

X$ instead of X AS STRING     
If a DLL function or subroutine uses an unsupported variable type, you might not be able to use it in a

script. See Corel SCRIPT data type summary for a list of supported data types. Declare unsupported data types as a
Corel SCRIPT data types if the unsupported data type uses the same number of bytes as a Corel SCRIPT data type.

The DECLARE statement can be placed anywhere in a script before the first subroutine or function call.

{button ,AL(`Using_Dynamic_Link_Libraries;getapphandle;getwinhandle;declare;function_end_functi
on;sub_end_sub;call;Corel_SCRIPT_advanced_programming_features;',0,"Defaultoverview",)}
Related Topics

Examples of DECLARE...LIB statement
DECLARE FUNCTION GetActiveWindow LIB "C:\WINDOWS\user.exe" () AS INTEGER
DECLARE SUB CloseWindow LIB "C:\WINDOWS\user.exe" (win AS INTEGER)
The first statement defines a procedure named GetActiveWindow (a Windows function that does not require a
type-declaration character). The executable code for this procedure is stored in "user.exe" which is actually a
Dynamic Link Library without a DLL extension. The () indicate an empty parameter list, and the clause AS
INTEGER describes the type of value the function returns.
The second statement is similar, except that a SUB procedure does not return a value. The parameter's data
type is declared with an AS clause, as shown by (win AS INTEGER).
The following are some examples of the DECLARE...LIB statement using Windows DLL files:
DECLARE FUNCTION FindWindow LIB "user32" (BYVAL classname AS LONG,BYVAL title AS STRING) AS
INTEGER ALIAS "FindWindowA"
Looks for a given window title and class. Returns the handle of that window
DECLARE FUNCTION SetFocus LIB "user32" (BYVAL hwnd AS INTEGER) AS INTEGER ALIAS "SetFocus"
Gives focus to a specified window
DECLARE FUNCTION WinExec LIB "kernel32" (BYVAL path AS STRING,BYVAL shw AS INTEGER) AS INTEGER
ALIAS "WinExec"
Executes the specified exe.
DECLARE FUNCTION GetActiveWindow LIB "user32" () AS INTEGER ALIAS "GetActiveWindow"
Returns the handle of the active window
DECLARE SUB CloseWindow LIB "user32" (BYVAL win AS INTEGER) ALIAS "CloseWindow"
Closes the specified window.

{button ,AL(`declare;function_end_function;sub_end_sub;call;Corel_SCRIPT_advanced_programming_
features;',0,"Defaultoverview",)} Related Topics

DIM
Use DIM to explicitly declare and assign values to local variables or to specify the number and type of elements
in an array.

Syntax for variables
DIM variable{%|&|!|#|@|$}, variable{%|&|!|#|@|$} ,...
DIM variable AS type, variable AS type,...

Syntax for arrays
DIM array_name{%|&|!|#|@|$} (upperbound)
DIM array_name(upperbound) AS type
DIM array_name{%|&|!|#|@|$} (lowerbound TO upperbound)
DIM array_name(lowerbound TO upperbound) AS type

Syntax Definition
variable{%|&|!|#|@|$} Specifies the name of the variable and follows the Corel SCRIPT naming

convention. A type-declaration suffix must follow the name.
variable Name of the variable and follows the Corel SCRIPT naming convention.
array_name{%|&|!|#|@|$} Specifies the name of the array and follows the Corel SCRIPT naming convention. A

type-declaration suffix must follow the name in the case of an array.
array_name Specifies the name of the array and follows the Corel SCRIPT naming convention.
upperbound The upper bound of the array expressed as an integer. If you do not use a TO

clause to specify the number of array elements, the default (1 TO upperbound) is
used.

lowerbound The lower bound of the array expressed as an integer. If you do not use a TO
clause to specify the number of array elements, the default (1 TO upperbound) is
used.

type Declares the variable's or array's type with a type declaration name.
Note

Variables declared in the main section of a script are only available in the main section. Global variables
are available to all procedures in a script (main section, subroutines, or functions). See GLOBAL for more
information.

Declaring a variable in a subroutine or a function makes it available only in the procedure it was declared.
It's a generally accepted programming convention to put declaration statements at the beginning of a

procedure (main section, subroutines, or functions).
The DIM statement can be placed anywhere in a script before the variable(s) it declares is called.
Arrays can only hold one data type. The number of elements arrays can hold is limited to your computer

memory.
You can't change the number of elements in an array once it has been declared.
See Multi-dimensional arrays to create arrays of more than one dimension.

{button ,AL(`dim;global;using_arrays;using_variables;lbound;ubound;multi_dimensional_arrays;',0,"
Defaultoverview",)} Related Topics

GLOBAL
Use GLOBAL to explicitly declare and assign values to variables or to specify the number and type of elements in
an array. Global variables and arrays are available to all procedures in a script (main section, subroutines, or
functions). See the DIM statement about declaring local variables.

Syntax for variables
GLOBAL variable{%|&|!|#|@|$}, variable{%|&|!|#|@|$} ,...
GLOBAL variable AS type, variable AS type,...

Syntax for arrays
GLOBAL array_name{%|&|!|#|@|$} (upperbound)
GLOBAL array_name(upperbound) AS type
GLOBAL array_name{%|&|!|#|@|$} (lowerbound TO upperbound)
GLOBAL array_name(lowerbound TO upperbound) AS type

Syntax Definition
variable{%|&|!|#|@|$} Specifies the name of the variable and follows the Corel SCRIPT naming

convention. A type-declaration suffix must follow the name.
variable Name of the variable and follows the Corel SCRIPT naming convention.
array_name{%|&|!|#|@|$} Specifies the name of the array and follows the Corel SCRIPT naming convention. A

type-declaration suffix must follow the name in the case of an array.
array_name Specifies the name of the array and follows the Corel SCRIPT naming convention.
upperbound The upper bound of the array expressed as an integer. If you do not use a TO

clause to specify the number of array elements, the default (1 TO upperbound) is
used.

lowerbound The lower bound of the array expressed as an integer.
type Declares the variable's or array's type with a type declaration name.
Note

Global variables cannot be declared in a subroutine or a function. Additionally, globals cannot    be declared
in a flow construct such as FOR...NEXT or DO...LOOP.

It's a generally accepted programming convention to put declaration statements at the beginning of the
script.

Arrays can only hold one data type. The number of elements arrays can hold is limited to your computer
memory.

You can also declare global constants. See CONST for more information.
See Multi-dimensional arrays to create arrays of more than one dimension.

{button ,AL(`const;dim;global;using_arrays;using_variables;lbound;ubound;multi_dimensional_array
s;',0,"Defaultoverview",)} Related Topics

Examples for DIM statement

Variables
DIM my_color$
DIM my_color AS STRING
The above examples show different methods of declaring variables. The above DIM statements all declare
strings.
DIM a AS INTEGER, b AS BOOLEAN, c AS SINGLE
You can also mix the type of variables you declare with a DIM statement.
Arrays
DIM color$(5)
color$(1) = "black"
color$(2) = "red"
color$(3) = "white"
color$(4) = "blue"
color$(5) = "green"
Creates a string array named color$ that consists of 5 elements.

DIM salespeople(-2 TO +3) AS INTEGER
salespeople(-2) = 1
salespeople(-1) = 3
salespeople(0) = 5
salespeople(1) = 7
salespeople(2) = 9
salespeople(3) = 11
Creates an integer array named salespeople that consists of 6 elements.
Note

See Multi-dimensional arrays to create arrays of more than one dimension.

{button ,AL(`example_multi_array;dim;global;using_variables;using_arrays;',0,"Defaultoverview",)}
Related Topics

Examples for GLOBAL statement

Variables
GLOBAL my_color$
GLOBAL my_color AS STRING
The above examples show different methods of declaring global variables. The above GLOBAL statements all
declare strings.
GLOBAL a AS INTEGER, b AS BOOLEAN, c AS SINGLE
You can also mix the type of variables you declare with a GLOBAL statement.
Arrays
GLOBAL color$(5)
color$(1) = "black"
color$(2) = "red"
color$(3) = "white"
color$(4) = "blue"
color$(5) = "green"
Creates a global string array named color$ that consists of 5 elements.

GLOBAL salespeople(-2 TO +3) AS INTEGER
salespeople(-2) = 1
salespeople(-1) = 3
salespeople(0) = 5
salespeople(1) = 7
salespeople(2) = 9
salespeople(3) = 11
Creates an global integer array named salespeople that consists of 6 elements.
Note

See Multi-dimensional arrays to create arrays of more than one dimension.

{button ,AL(`example_multi_array;dim;global;using_variables;using_arrays;',0,"Defaultoverview",)}
Related Topics

FUNCTION and END FUNCTION
FUNCTION is used in the first line of a user-defined function and END FUNCTION is the last line. You have the
option of using type-declaration characters and names in the FUNCTION statement. However, if you do use type-
declaration characters and names, the syntax must replicate the syntax used with the function's DECLARE
statement. Parentheses are required.

Syntax
FUNCTION name{%|&|!|#|@|$} (parameter{%|&|!|#|@|$}, parameter{%|&|!|#|@|$}, ...)

[statements]
END FUNCTION

or
FUNCTION name (parameter AS type, parameter AS type, ...) AS type

[statements]
END FUNCTION

Syntax Definition
name{%|&|!|#|@|$} Name assigned to the function and follows the Corel SCRIPT naming convention.

The name must correspond to the name used in the DECLARE statement. A type-
declaration suffix must follow the name and be of the same type used in the
DECLARE statement, if applicable.

name Name assigned to the function and follows the Corel SCRIPT naming convention.
The name must correspond to the name used in the DECLARE statement.

[statements] Script instructions that are executed when the function is called.
parameter{%|&|!|#|@|$} Variable(s) to store the value(s) passed to the function. The variables follow the

Corel SCRIPT naming convention. A type-declaration suffix can be used to set the
data type passed to the function.

parameter Variable(s) to store the value(s) passed to the function. The variables follow the
Corel SCRIPT naming convention.

AS type Declares the function or parameter type with a type declaration name .
Note

Subroutines and user-defined functions are both Corel SCRIPT procedures that execute instructions such as
creating and modifying variables. Additionally, functions can also be used to return values.

The parameters must be listed in the FUNCTION statement in the same order as in the function's DECLARE
statement.

It's a generally accepted programming convention to indent function statements.
Use the DECLARE...LIB statement to declare functions and subroutines in Windows Dynamic Link Libraries

(DLL files).

{button ,AL(`using_functions_subroutines;declare;call;;;',0,"Defaultoverview",)} Related Topics

LBOUND
Returns the lower bound for the indicated dimension of an array. If the dimension is omitted, the lower bound of
the first dimension is returned.

Syntax
LBOUND(array{%|&|!|#|@|$},dimension)

Syntax Definition
array{%|&|!|#|@|$} The name of the array being checked.
dimension An integer variable or numeric constant ranging from 1 to the number of

dimensions in the array. Indicates which dimension's lower bound is returned; if
omitted, the limit of the first dimension is returned.

Example
DIM a%(-5 TO 7, 10)
x% = LBOUND(a%,1)
y% = LBOUND(a%,2)
Sets x% and y% to -5 and 1, respectively.

{button ,AL(`LBOUND;UBOUND;DIM;USING_ARRAYS;multi_dimensional_arrays;',0,"Defaultoverview",
)} Related Topics

LET
Assigns the value of an expression to a variable. The LET keyword is optional.

Syntax
LET variable{%|&|!|#|@|$} = expression
LET variable = expression AS type
variable{%|&|!|#|@|$} = expression
variable = expression AS type

Syntax Definition
variable{%|&|!|#|@|$} Name of variable and is assigned expression's value. The variable name follows

the Corel SCRIPT naming convention.
variable Name of variable and is assigned expression's value. The variable name follows

the Corel SCRIPT naming convention.
expression The expression is a combination of numbers, strings, variables, constants, and

operators that return a result.
type Declares the variable's type with a type declaration name.

Note
There isn't an advantage in using the LET statement to assign an expression to a variable, but in some

cases it can make your script easier to read and modify.
Example
LET stringVar$ = "This is a string."
Assigns the string "This is a string." to the variable stringVar$.

stringVar$ = "This is a string."
Assigns the string "This is a string." to the variable stringVar$.    The LET keyword is omitted.

result% = (a% + b%) / c%
Assigns the result of the sum of the values of variables a% and b%, divided by the value of c%, to the variable
result%. The LET keyword is omitted.

{button ,AL(`variable_availability;using_variables;Dim;;;',0,"Defaultoverview",)} Related Topics

STATIC
Used to declare variables in a subroutine or a user-defined function. Static variables retain their values after a
subroutine or a function terminates, and the retained value can be used by the script the next time the
subroutine or function is called.

Syntax
STATIC variable{%|&|!|#|@|$}
STATIC variable AS type

Syntax Definition
variable{%|&|!|#|@|$} A variable name following the Corel SCRIPT naming convention.
variable A variable name following the Corel SCRIPT naming convention.
type Declares the constant's type with a type declaration name.
Note

It's a generally accepted programming convention to put static declaration statements at the beginning of
subroutines or functions with DIM declarations.

Static are always initialized to 0.

{button ,AL(`variable_availability;using_variables;Dim;;;',0,"Defaultoverview",)} Related Topics

Example for STATIC statement

REM main section of script file
DECLARE FUNCTION staticFunc% (a%)
FOR i% = 1 to 5

j% = staticFunc%(i%)
NEXT I%
'
REM (Static Function Example)
FUNCTION staticFunc%(a%)
STATIC staticVar%
' Because staticVar% is STATIC, it retains its previous value
' each time the function is called
staticVar% = staticVar% + a%
' The function returns the current value of staticVar%
staticFunc% = staticVar%
END SUB
The variable staticVar% in the function is created as a STATIC variable, so that its value remains unchanged
each time the function is called. In the main program, a FOR loop calls the function five times. The result of each
function call follows:
1 The first time the script runs, staticVar% has a value of 0 because it is created for the first time. The passed

parameter, i%, has a value of 1, and the variable also has a value of 1.
2 In the second call, staticVar% has a value of 1 and the passed parameter has a value of 2. So the calculation

causes staticVar% to be 3.
3 In the third call, staticVar% is equal to 3 and i% is equal to 3, so staticVar% has a new value of 6.
4 In the fourth call, staticVar% is 6 and i% is 4, giving staticVar% a new value of 10.
5 In the last call, staticVar% is 10 and i% is 5, giving staticVar% a value of 15.

{button ,AL(`example_vars;;;;;',0,"Defaultoverview",)} Related Topics

SUB...END SUB
SUB is used in the first line of a subroutine definition and END SUB is the last line. Use parentheses if arguments
are present.

Syntax
SUB name (parameter{%|&|!|#|@|$}, parameter{%|&|!|#|@|$}, ...)

[statements]
END SUB

or
SUB name (parameter AS type, parameter AS type, ...)

[statements]
END SUB

Syntax Definition
name Name assigned to the subroutine and follows the Corel SCRIPT naming convention.

The name must correspond to the name used in the DECLARE statement.
[statements] Script instructions that are executed when the subroutine is called.
parameter{%|&|!|#|@|$} Variable(s) to store the value(s) passed to the subroutine procedure. The variables

follow the Corel SCRIPT naming convention. A type-declaration suffix must follow
the name to set the data type passed to the subroutine.

parameter Variable(s) to store the value(s) passed to the subroutine procedure. The variables
follow the Corel SCRIPT naming convention.

type Declares the parameter type with a type declaration name and must be used if a
parameter is not using a type-declaration suffix.

Note
Subroutines and user-defined functions are both Corel SCRIPT procedures that execute instructions such as

creating and modifying variables. Additionally, functions can also be used to return values.
The parameters must be listed in the SUB statement in the same order as in the subroutine's DECLARE

statement.
It's a generally accepted programming convention to indent subroutine statements.
Use the DECLARE...LIB statement to declare functions and subroutines in Windows Dynamic Link Libraries

(DLL files).

{button ,AL(`using_functions_subroutines;declare;call;;;',0,"Defaultoverview",)} Related Topics

UBOUND
Returns the upper bound for the indicated dimension of an array.    If dimension is omitted, the upper bound of
the first dimension is returned.

Syntax
UBOUND(array{%|&|!|#|@|$},dimension)

Syntax Definition
array{%|&|!|#|@|$} The name of the array being checked.
dimension An integer variable or numeric constant ranging from 1 to the number of

dimensions in the array; indicates which dimension's lower bound is returned. If
omitted, the limit of the first dimension is returned.

Example
DIM a%(-5 TO 7, 10)
x% = UBOUND(a%,1)
y% = UBOUND(a%,2)
Sets x% and y% to 7 and 10, respectively.

{button ,AL(`LBOUND;UBOUND;DIM;USING_ARRAYS;multi_dimensional_arrays;',0,"Defaultoverview",
)} Related Topics

Using Variables
In Corel SCRIPT, an expression is a combination of numbers, strings, variables, constants, and operators that
return a result. Results can be a number, string, Boolean (TRUE or FALSE), or one of Corel SCRIPTs other data
types which can be assigned to a variable.
A variable is a value place holder whose name points to an address in the computer's memory where that value
is stored. Variable addresses can only hold one value at a time, but the value can change when a script is run by
sending the variable a script instruction. Once a script terminates, a variable and the value it's holding is lost.
Variable names
Variable names can be made up of any letters in the alphabet, both lowercase and uppercase, the numbers 0
through 9, and the underscore character (_). Other rules for variable names follow:

Variable names are not case sensitive. For example, the variable ABC is the same as abc, Abc, aBC, and
so on.

The initial character must be a letter or the underscore character and can be followed by any combination
of letters, numbers, and the underscore character. Variable names cannot include spaces. The following are all valid
variable names:

x, X123, Corel_6, TheVariable, a1B2, This_is_a_variable, ThisIsAVariable
The maximum length of a variable's name is 256 characters.
It cannot have the same name as a Corel SCRIPT statement, function, or operator. See Reserved Words for

a complete listing of words that can't be used as a variable name.
All variable names must be unique in a script procedure.

Variable Types
Corel SCRIPT supports eight different variable types: seven numeric types (including a Boolean type and date
type) and a string type. A variable's type sets the type of data a variable can hold. For more information about
data types, see Corel SCRIPT data type summary.

{button ,AL(`all_vars;dim;using_constants;;;',0,"Defaultoverview",)} Related Topics

Variable availability
Corel SCRIPT scripts are comprised of three types of procedures:

main instruction or procedural section
functions (more than one can exist)
subroutines (more than one can exist)

The availability of a variable is dependent on the procedure the script is executing. The following explains the
levels of variable availability in Corel SCRIPT:

Global variables are available anywhere in a running script but they and their values cease to exist when
the script stops running. Global variables are created in the main section of a script and cannot be created within a
subroutine or a function. However, they can be used in the execution of any subroutine or function. Use the GLOBAL
statement to create global variables.

 Local variables are available in the procedure in which they are declared. If declared in a subroutine or
function, a local variable ceases to exist after the procedure finishes execution and is re-created the next time the
subroutine or function is called.

Static variables are declared and assigned values inside a subroutine or a user-defined function and are
only available while the script executes that subroutine or user-defined function. In contrast to local variables, static
variables retain their values after a subroutine or a function terminates. The retained value can be used by the
script the next time the subroutine or function is called.

Note
You can have variables with the same name in a script but they cannot exist in the same script procedure

(main section, functions, subroutines). For example, you can have a variable called ABC in a function and in the
main section of a script but you cannot have two ABC variables in the main section of a script.

Your function and subroutines procedures should be self-contained. A variable required only within a
procedure should be a local or static variable. Following this advice can make your procedures more modular,
enabling you to copy them to other scripts with limited customization. You should avoid using global variables.

It's a generally accepted programming convention to put variable declaration statements at the beginning
of a script's main section, subroutines, or functions.

{button ,AL(`all_vars;static;dim;global;Script_procedures;',0,"Defaultoverview",)} Related Topics

Explicitly declaring and assigning values to a variable
You can use the Corel SCRIPT DIM statement to explicitly declare a variable. By declaring a variable, you are
setting its type and allocating storage space for it in the computer's memory. The following lines declare four
variables (A, B, C, and D):
DIM A% 'declares A as an integer
DIM B$ 'declares B as a string
DIM C AS INTEGER 'declares C as an integer
DIM D AS STRING 'declares D as a string

Though C and D are not declared with suffixes (type-declaration characters), you can still refer to them as C%
and D$ in a script. Suffixes are optional but using them is good practice because it makes your scripts easier to
read and debug. The variables A% and B$ can also be referred to as A and B, respectively.
You can also explicitly declare a variable and assign a value at the same time. In the following example, B is
assigned A's value by using the equal operator (=).
DIM A% 'declares A as an integer
A = 3 'assigns the value of A to 3
B& = A 'sets B to a long with A's value

In the following example, B is explicitly declared as an integer and holds the integer value 10 although A times C
equals 10.8. The variable B takes the value 10 because it is declared as an integer and the precision in the
expression A * C is removed after the expression is calculated.
DIM A% 'declares A as an integer
DIM C! 'declares C as a single
A = 3 'assigns the value of 3 to A
C = 3.6 'assigns the value of 3.6 to C
B% = A * C 'B is declared as an integer

In the above example, if the last statement read B = A * C (missing the %), B would equal 10.8 and is implicitly
declared as a single. Corel SCRIPT assigns the highest precision in cases of operations of mixed numeric data
types.
Note

It's a generally accepted programming convention to put declaration statements at the beginning of a
procedure (main section, subroutine , or functions).

Once a variable has been created, its type cannot change. However, you can convert a variable to another
type by creating another variable. See the following statements for more information: CBOL, CCUR, CDAT, CDBL,
CINT, CLNG, CSNG, and CSTR.

Formally declaring variables can make your scripts, especially long and complicated scripts, easier to read
and modify.

Explicitly declared variables that aren't assigned a value hold initial values. See Corel SCRIPT data type
summary for each data type's initial value.

During a script run, the availability of a variable to a script changes.    See Variable availability for more
details.

You can assign values to variables without using the LET statement. The two following lines both assign 5
to abc%:
LET abc% = 5
abc% = 5

{button ,AL(`all_vars;dim;;;;;',0,"Defaultoverview",)} Related Topics

Implicitly declaring and assigning values to a variable
You can implicitly declare a variable and assign a value to it by using the equal sign (=) operator. The variable
name is placed on the left side of the equal sign and an expression is placed on the right and Corel SCRIPT
determines the most appropriate data type and sets it.
The following examples implicitly declare variables:
abc = -400444 ' creates a long
abc = -999999999.1234567890 'creates a double
abc = "This is a string" 'creates a string
abc = (E% <= 100) 'creates a Boolean
If you're assigning a number to a variable Corel SCRIPT sets the data type to either a long for whole numbers or
a double for non-whole numbers (e.g., 1.5, 0.33333). Corel SCRIPT doesn't set variables to integer or single data
types unless the expression on the right side of the equal sign operator uses an integer or a single, respectively.
For example:
DIM A% 'declares A as an integer
DIM C! 'declares C as a single
A = 3 'assigns the value of 3 to A
C = 3.6 'assigns the value of 3.5 to C
B = A 'assigns A's current value to B
D = C 'assigns C's current value to D
E = A * C
In the above example:

The statement B = A assigns A's current value to B and sets B as an integer.
The statement D = C assigns C's current value to D and sets D as a single.
The statement E = A * C assigns 10.8 to E and sets E as a single. Corel SCRIPT assigns the highest

precision in cases of operations of mixed numeric data types.
Note

Once a variable has been created, its type cannot change. However, you can convert a variable to another
type by creating another variable. See the following statements for more information: CBOL, CCUR, CDAT, CDBL,
CINT, CLNG, CSNG, and CSTR.

Explicitly declaring variables can make your scripts, especially long and complicated scripts, easier to read
and modify.

During a script run, the availability of a variable to a script changes.    See Variable availability for more
details.

You can assign values to variables without using the LET statement. The two following lines both assign 5
to abc%:
LET abc% = 5
abc% = 5

A variable can be assigned a valued based on its previous value. In the following example, C is set to its
previous value plus 1:
C = C + 1

{button ,AL(`all_vars;dim;;;;;',0,"Defaultoverview",)} Related Topics

Corel SCRIPT data type summary
A variable's data type determines the data it can hold.

Data Type Suffix Byte
Storage

Bits Range Initial Value

Numeric Data
Boolean 1 8 TRUE (-1) or FALSE (0) FALSE
Integer % 2 16 -32,768 to 32,767

(whole numbers)
0

Long & 4 32 -2,147,483,648 to
2,147,483,647
(whole numbers)

0

Single ! 4 32 Negative Values:
-3.402823E38 to -1.401298E-
45
Positive Values:
1.401298E-45 to 3.402823E38

0

Double # 8 64 Negative Values:
-1.79763913486232E308 to
-4.94065645841247E-324
Positive Values:
4.94065645841247E-324 to
1.79763913486232E308

0

Date 8 64 1 to 2958465 (as a serial
number)
31/12/1899 00:00:00.0000 to
31/12/9999 23:59:59.9999 (as
a date value)
(dd/mm/yyyy hh:mm:ss.ssss)

1 (as a serial number)
31/12/1899 00:00:00.0000 (as
a date)

Currency @ 8 64 -922,337,203,685,477.5808 to
922,337,203,685,477.5807

0.0000

Other Data
String $ 1 (per

character)
bytes
times 8

0 to 32,765 characters
(approximate)

 ""

Note
The numeric data types are listed in order of precision from lowest to highest.
Boolean and Date data types don't use suffixes but can still be explicitly declared using the DIM statement:
DIM x AS BOOLEAN
DIM y AS DATE

{button ,AL(`all_vars;dim;vars_convert;;;;',0,"Defaultoverview",)} Related Topics

Boolean variable data type
Boolean variables are explicitly declared using the BOOLEAN keyword and do not use a suffix. Booleans, which
are numeric variables, can only equal TRUE (-1) or FALSE (0). If you set a Boolean variable to anything but -1 or
0, the Boolean variable interprets the value as TRUE and resets to -1. Booleans are used to test conditional
expressions such as those used with IF...THEN...ELSE...ENDIF. Of the seven numeric variables in Corel SCRIPT,
Booleans are of the lowest precision.

Integer variable data type
Integer variables are explicitly declared using the % suffix or the INTEGER keyword. Integers, which are numeric
variables, range in value from -32,768 to 32,767 and are whole numbers only. Of the seven numeric variables in
Corel SCRIPT, integers are of the second-lowest precision.

Long variable data type
Long variables are explicitly declared using the & suffix or the LONG keyword. Longs, which are numeric
variables, range in value from -2,147,483,648 to 2,147,483,647 and are whole numbers only. Of the seven
numeric variables in Corel SCRIPT, longs are of the third-lowest precision.

Single variable data type
Single variables are explicitly declared using the ! suffix or the SINGLE keyword. Singles, which are numeric
variables, range in value from -3.402823E38 to -1.401298E-45 for negative numbers and 1.401298E-45 to
3.402823E38 for positive numbers. Of the seven numeric variables in Corel SCRIPT, singles are of the fourth-
highest precision.

Double variable data type
Double variables are explicitly declared using the # suffix or the DOUBLE keyword. Doubles, which are numeric
variables, range in value from -1.79763913486232E308 to -4.94065645841247E-324 for negative numbers and
4.94065645841247E-324 to 1.79763913486232E308 for positive numbers. Of the seven numeric variables in
Corel SCRIPT, doubles are of the third-highest precision.
When a double variable type is used with a relational operator, it is temporaily recast as a single variable type.

Currency variable data type
Currency variables are explicitly declared using the @ suffix or the CURRENCY keyword. Currency variables
range in value from -922,337,203,685,477.5808 to 922,337,203,685,477.5807. Of the seven numeric variables
in Corel SCRIPT, currency variables are of the second-highest precision. In cases where exactness is important,
such as calculations involving finance, money, and fixed-points, you should use currency variables.

Date variable data type
Date variables are explicitly declared using the DATE keyword and do not use a suffix. Date variables hold date
and time values that range from 1 to 2958465 (as a serial number) or 31/12/1899 00:00:00.0000 to 31/12/9999
23:59:59.9999 (as a date value). You can use dates outside this range but they are not supported by Corel
SCRIPT and may lead to errors.A serial value of 1 is equal to 1 day or a 24-hour period.
You can use the CURRDATE function to return your system's date and time.

String variable data type
String variables are explicitly declared using the $ suffix or the STRING keyword. Strings can hold 0 to 32,765
characters. Characters include letters, numbers, punctuation, and spaces. Strings can use any of the 256 ANSI
characters for Windows applications (code 0 to 255).
See the Corel SCRIPT Character Map for more information.

Corel SCRIPT type declarations
Data Type Name Suffix
INTEGER %
LONG &
SINGLE !
DOUBLE #
CURRENCY @
STRING $
BOOLEAN None
DATE None

Corel SCRIPT naming convention
The following rules should be kept in mind when naming variables, constants, functions, subroutines,
parameters, and arrays:

Names can be made up any letters in the alphabet, both lowercase and uppercase, the numbers 0 through
9, and the underscore character (_). The initial character must be a letter or the underscore character and can be
followed by any combination of letters, numbers, and the underscore character. The following are all valid names:

x, X123, Corel_6, TheFunction, a1B2, This_is_a_SUB, ThisIsAConstant, My_2_ARRAY
Names are not case sensitive. For example, the name ABC is the same as abc, Abc, aBC, and so on.
The maximum length of a name is 256 characters.
All names must be unique in a script file. See Reserved Words for a complete listing of words that can't be

used as a name.
 Variable names cannot include spaces.

CBOL
Converts a numeric value to a Boolean value.

Syntax
CBOL(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or a numeric expression.
Note

A numeric argument equal to 0 will be converted to FALSE. All others will convert to TRUE (-1).
A Boolean value of 0, when cast as a string, will return "FALSE". All other values will return "TRUE".

Example
x = 354.43
y = CBOL(x)
This example would evaluate y to TRUE (-1).

{button ,AL(`Corel_SCRIPT_data_type_summary;vars_convert;;;;',0,"Defaultoverview",)} Related
Topics

CINT
Converts a numeric value to an integer.

Syntax
CINT(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or a numeric expression.
Note

The result is an integer, capable of a range of -32,768 to 32,767
In converting the value to an integer, Corel SCRIPT rounds off the value, rather than truncating it.

Example
x = 354.63
y = CINT(x)
This example would evaluate y to 355.

{button ,AL(`Corel_SCRIPT_data_type_summary;vars_convert;;;;',0,"Defaultoverview",)} Related
Topics

CLNG
Converts a numeric value to a long integer.

Syntax
CLNG(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or a numeric expression.
Note

The result will be a long integer capable of accepting vales in the range
-2,147,483,648 to 2,147,483,647.

In converting the value to a long integer, Corel SCRIPT rounds off the value, rather than truncating it.

Example
x = 98765578.43
y = CLNG(x)
This example would evaluate y to 98765578.

{button ,AL(`Corel_SCRIPT_data_type_summary;vars_convert;;;;',0,"Defaultoverview",)} Related
Topics

CSNG
Converts a numeric value to a single.

Syntax
CSNG(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or a numeric expression.
Note

The result is a floating-point decimal number, capable of accepting the following values:
Negative Values: -3.402823E38 to -1.401298E-45
Positive Values: 1.401298E-45 to 3.402823E38.

In converting the value to a single, Corel SCRIPT rounds off the value, rather than truncating it.
Example
x = 354.987678
y = CSNG(x)
This example would evaluate y to 354.9877.

{button ,AL(`Corel_SCRIPT_data_type_summary;vars_convert;;;;',0,"Defaultoverview",)} Related
Topics

CDBL
Converts a numeric value to a double.

Syntax
CDBL(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or a numeric expression.
Note

The result will be a double integer, capable of accepting the following values:
Negative Values: -1.79763913486232E308 to -4.94065645841247E-324
Positive Values: 4.94065645841247E-324 to 1.79763913486232E308

In converting the value to a double, Corel SCRIPT rounds off
the value, rather than truncating it.

Example
x = 35489097326.43
y = CDBL(x)
This example would evaluate y to 35489097326.

{button ,AL(`Corel_SCRIPT_data_type_summary;vars_convert;;;;',0,"Defaultoverview",)} Related
Topics

CCUR
Converts a numeric value to the currency data type.

Syntax
CCUR(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or a numeric expression.
Note

This function is capable of accepting the following values:
-922,337,203,685,477.5808 to 922,337,203,685,477.5807

In converting the value to the currency data type, Corel SCRIPT rounds off the value, rather than truncating
it.

Example
x = 354.432675434
y = CCUR(x)
This example would evaluate y to 354.4327.

{button ,AL(`Corel_SCRIPT_data_type_summary;vars_convert;;;;',0,"Defaultoverview",)} Related
Topics

CDAT
Converts a numeric value to a date.

Syntax
CDAT(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or a numeric expression.
Note

This function denotes a base date of December 31, 1899 at 12:00:00 A.M. as 1.
Each additional whole number is 1 additional day.
Each additional fraction is a portion of a day.
In converting the value to a date, Corel SCRIPT rounds off the value, rather than truncating it.

Example
x = 25.25
y = CDAT(x)
This example would evaluate y toJanuary 24th, 1900 at 6:00:00 A.M.

{button ,AL(`Corel_SCRIPT_data_type_summary;vars_convert;;;;',0,"Defaultoverview",)} Related
Topics

CSTR
Converts a value to a string of characters.

Syntax
CSTR(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@|$} Any data type.
Example
x = 354.43
y = CSTR(x)
This example would evaluate y to "354.43".

{button ,AL(`Corel_SCRIPT_data_type_summary;vars_convert;STR;;;',0,"Defaultoverview",)} Related
Topics

Corel SCRIPT Editor
The Corel Script Editor is a tool you use to create and edit Corel SCRIPT script files. Since script files are Windows
text files, the Corel Script Editor works like a standard text editor, but also includes features to test, debug, and
run script files.
Note

Unlike script files (or macro files) from other companies, Corel SCRIPT files are text only; there is no
compiled binary component in the scripts. Before a script is executed, it is compiled internally into a program file.

Script files are saved with the extension .CSC (for Corel SCRIPT) in the SCRIPTS folder, by default.

{button ,AL(`Editor_ole;cse_reference;;;;;',0,"Defaultoverview",)} Related Topics

Corel SCRIPT Editor basics
Like most other Windows text editors, you can use the Corel SCRIPT Editor to insert and delete text. The editor
also has cut, copy, and paste features. You can have more than one script file open in the Corel SCRIPT Editor at
a time. Each script appears in a separate window. Use the commands on the Window menu in the Editor to
arrange the script windows or to switch to a different window.
When you create or edit a script using the Corel SCRIPT Editor, you should keep the following in mind:

Each line can hold up to 255 characters, including spaces.
As you reach the right edge of the script window with text, the window scrolls to the right as needed. Text

does not ever wrap to the next line.
Each line in a Corel SCRIPT script file can contain more than one statement or command. Multiple

statements on a line are seperated with a colon (:). Statements cannot be continued over a line.
Each line in a Corel SCRIPT script must be followed by a hard return. A hard return is inserted when you

press the ENTER key.
Use tabs, blank lines, and multiple spaces to format your script to make it easier to read. Tabs, blank lines,

and multiple spaces are ignored during script playback.
Use the arrow keys or the mouse to move the insertion point in the script window. Press the CTRL key with

the left and right arrow keys to move from word to word.
An indicator at the bottom of the script window shows the current line number. This can help you find and

fix errors.

{button ,AL(`cse_reference;;;;;',0,"Defaultoverview",)} Related Topics

Corel SCRIPT Editor debugging features
When you run a script, it may not always perform the way you expect. A script (or program) that does not work
correctly is said to have a "bug" in it. The act of finding and correcting these problems is what is traditionally
called "debugging." While some mistakes and typographic errors are often easily spotted by looking carefully at
a script, some bugs are harder to find. In order to help you in your search, the Corel SCRIPT Editor includes a full
set of debugging tools. You can use the following debugging tools in the Corel SCRIPT Editor:
Running a script
An easy way to see if your script has any errors is to run it. If the script does not contain any errors, it executes
to the last line. When you run a script that contains programming errors, playback is aborted at the first instance
of an error. The error is noted in the Compiler Output window of the Corel SCRIPT Editor. You can also set an
option to check for variables that have not been initialized when you run the script.
Checking script syntax
You can check the syntax of each line in a script without running the script. Common syntax errors include
misspelling commands, missing operators, and missing punctuation. If errors are found, error messages appear
in the Compiler Output window.
Logic errors are the hardest to find and the only indication of a logic error may be a bad value or an unexpected
result. The Corel SCRIPT Editor cannot tell you when a logic error is present so it is up to you to test for and find
these problems. To help you with this job, the Corel SCRIPT Editor provides the following tools to help you step
through a script more carefully, tracking the values of variables, and following the flow of execution:
Executing individual lines in a script
You can run individual script lines using one of the four commands: Run to Cursor, Step Into, Step Over, and Step
Out.
Run to Cursor: Executes the script in the active script window to the position of the insertion point. Since the
insertion point acts as a breakpoint, using the Run to Cursor command is similar to using a breakpoint.
Step Into: Executes a script line by line. The Step Into command also steps into functions and subroutines to
execute line by line.
Step Over: Executes a script line by line. The Step Over command executes an entire procedure (a function or    a
subroutine) before stopping.
Step Out: Executes the remaining lines in a function or subroutine and returns and stops at the line after the
procedure call.
Using a watch
Stepping throught a script to watch the flow of execution can tell you a lot about how a script is performing. It is,
however, often just as important to be able to look at the contents of variables as a script runs to see what
values they contain. You can monitor a variable's value during script execution with a Quickwatch or the Watch
window.
Using Breakpoints
When debugging long or complex scripts, it may be difficult to work with the step commands. To work with a long
script, it's better to mark one or more specific lines in the script where execution should stop to let you check
how things are going. This is done by setting breakpoints.
Help
If you're having trouble understanding a Corel SCRIPT statement's syntax, you can get reference information
from the help file.

{button ,AL(`cse_reference;debugging_scripts;common_programming_errors;;script_errors;;',0,"Def
aultoverview",)} Related Topics

Corel SCRIPT Editor windows
The Corel SCRIPT Editor is comprised of the following windows:
Corel SCRIPT Editor window
The Corel SCRIPT Editor window is the application's main window and holds all the windows noted below. You can
set this window to always stay on top of your Windows display. Keeping it on top is useful during debugging
sessions.
Script windows
In the Corel SCRIPT Editor, more than one script file can be open. Each script file is opened in a separate script
window and its file name is noted in the window border. The script windows can be arranged in a variety of
layouts. Each script window contains a compiler output window and a watch window.
Compiler Output window
A script's syntax errors are displayed in the Compiler Output window after it has been run or checked for syntax
errors. Double-clicking on an error message's line number in the Compiler Output window sends the insertion
point to the line containing the error. The line with the error has the symbol in its left margin after double-
clicking.

The Compiler Output window is displayed below the script window and can be hidden or resized, if you choose.
Watch window
The Watch window is used to monitor the value of variables in the script during a debugging session. Each
variable being watched displays its current value and the procedure (Main, a function, or a subroutine) where it
is found.
The Watch window is displayed below the script window and can be hidden or resized, if you choose.

{button ,AL(`Trappable_error_codes;Script_programming_errors;cse_reference;ht_add_watch_cse;ht_
delete_watch_cse;;;',0,"Defaultoverview",)} Related Topics

Starting the editor

To start Corel SCRIPT Editor by using the Run command
1. On the Windows desktop, click Start, Run.
2. In the Open edit box, type the Editor's folder location and SCEDIT.

For example, C:\COREL60\PROGRAMS\SCEDIT
Corel applications normally reside in the COREL60\PROGRAMS folder.

Note
If you forget the location of the Corel SCRIPT Editor, click Browse.
After the program is started, the Corel SCRIPT Editor button is displayed in the Windows taskbar.

{button ,AL(`a_start_de;;;;;',0,"Defaultoverview",)} Related Topics

To start the Corel SCRIPT Editor from a Corel application
From your Corel application:

Click Tools, Scripts, Corel SCRIPT Editor.
Note

Not every Corel application supports Corel SCRIPT programming and script files. Click
 for a list of Corel applications that support Corel SCRIPT.

{button ,AL(`a_start_de;;;;;',0,"Defaultoverview",)} Related Topics

To start the Corel SCRIPT Editor from Windows
1. On the Windows desktop, click Start, Programs.
2. Point to the folder that contains the Corel SCRIPT Editor if it does not appear on the main Program menu.

Corel applications normally reside in the COREL folder.
3. Click Corel SCRIPT Editor (scedit.exe).
Note

After the program is started, the Corel SCRIPT Editor button is displayed in the Windows taskbar.
To start Corel SCRIPT Editor from Windows NT, open the group window with the Corel SCRIPT Editor icon

and double-click the Editor icon.

{button ,AL(`a_start_de;;;;;',0,"Defaultoverview",)} Related Topics

File Menu

To create a new script with the Corel SCRIPT Editor
Click File, New. An untitled document window opens.

Note
You can have multiple document windows opened in the Corel SCRIPT Editor.

{button ,AL(`ht_file_menu_cse;;;;;',0,"Defaultoverview",)} Related Topics

To open a Corel SCRIPT script
1. Click File, Open.
2. If the Corel SCRIPT script is not in the default folder, chose the drive and folder where the Corel SCRIPT script

is stored.
3. Double-click the Corel SCRIPT script you want to open.
Note

You can use wild cards (* and ?) if you're not sure of the name of the file you want to open. For example,
typing script*.csc in the File Name box and clicking OK lists all CSC files in the selected folder beginning with
script. Typing sc?.csc in the File Name box and clicking OK lists all CSC files in the selected folder that begin with
sc and are followed by only one more character.

{button ,AL(`ht_file_menu_cse;;;;;',0,"Defaultoverview",)} Related Topics

To close a Corel SCRIPT script
Click File, Close.

Note
If your changes have not been saved, a confirmation message appears.

{button ,AL(`ht_file_menu_cse;;;;;',0,"Defaultoverview",)} Related Topics

To save a Corel SCRIPT script
Click File, Save.

Note
If you're saving a new Corel SCRIPT script, type a name in the File Name box.
To save a Corel SCRIPT script with a new name, click File, Save As and type a new name in the File Name

box.

{button ,AL(`ht_file_menu_cse;script_files;;;;',0,"Defaultoverview",)} Related Topics

To print a Corel SCRIPT script
Click File, Print.

Note
Click the Setup button from Printer dialog or click File, Print Setup to set the paper size and orientation as

specified by the active printer.
Tip

If your script has lines longer than 80 characters, click File, Print Setup to change page orientation to
landscape. The Corel SCRIPT Editor does not automatically wrap long lines when printing.

{button ,AL(`ht_file_menu_cse;;;;;',0,"Defaultoverview",)} Related Topics

To show how a Corel SCRIPT script will look when printed
Click File, Print Preview.

Note
Click File, Print Setup to set the paper size and orientation as specified by the active printer.

{button ,AL(`ht_file_menu_cse;;;;;',0,"Defaultoverview",)} Related Topics

To close the Corel SCRIPT Editor
Click File, Exit.

Note
You are prompted to save any unsaved changes in any open documents.

{button ,AL(`ht_file_menu_cse;;;;;',0,"Defaultoverview",)} Related Topics

Edit menu

To undo editng operations
Click Edit, Undo.

Note
You can't undo editing operations after the script has been saved.

{button ,AL(`ht_edit_cse;;;;;',0,"Defaultoverview",)} Related Topics

To restore changes reversed by the Undo command
Click Edit, Redo.

{button ,AL(`ht_edit_cse;;;;;',0,"Defaultoverview",)} Related Topics

To copy text to another location
1. Select the text.
2. Click Edit, Copy.
3. Place the insertion point in the document window where you want paste the text.
4. Click Edit, Paste.
Note

The selected text remains on the Clipboard until you cut or copy another selection to it from any Windows
application.

{button ,AL(`ht_edit_cse;;;;;',0,"Defaultoverview",)} Related Topics

To cut text to move to another location
1. Select the text.
2. Click Edit, Cut.
3. Place the insertion point in the document window where you want paste the text.
4. Click Edit, Paste.
Note

The selected text remains on the Clipboard until you cut or copy another selection to it from any Windows
application.

{button ,AL(`ht_edit_cse;;;;;',0,"Defaultoverview",)} Related Topics

To delete text
1. Select the text you want to delete.
2. Click Edit, Delete.

The selected text is not transferred to the Clipboard.
Note

You can also delete text without selecting it by pressing the BACKSPACE and DELETE key. The BACKSPACE
key deletes text to the left of the insertion point and the DELETE key deletes text to the right of the insertion point.

Instead of using Edit, Delete, you can delete text by clicking Edit, Cut which transfers controls from the
script to the Clipboard.

{button ,AL(`ht_edit_cse;;;;;',0,"Defaultoverview",)} Related Topics

To find text
1. Click in the document where you want to begin searching.
2. Click Search, Find.
3. Enter the text you want to find in the Find What box.
4. Click Find Next.
Tip

To find and replace text, click Edit, Replace instead of Edit, Find.

{button ,AL(`ht_find_replace_cse;;;;;',0,"Defaultoverview",)} Related Topics

To find and replace text
1. Click in the document where you want to begin searching.
2. Click Search, Replace.
3. In the Find What box, enter the text you want to find.
4. In the Replace With box, enter the replacement text.
5. Click Replace All to replace all occurrences of the text to find.
Note

To replace individual text occurrences, click Find Next, Replace instead of clicking Replace All.

{button ,AL(`ht_find_text_cse;;;;;',0,"Defaultoverview",)} Related Topics

To place REM statements at the beginning of script lines
1. Place the insertion point in the line where you want to place a REM statement. If you want to place REM

statements in a contiguous block of statements, select the statements.
2. Click Edit, Comment.
Note

Script lines that begin with REM statements are ignored during script execution. This feature can be useful
during debugging sessions.

Use the UnComment command to remove REM statements from selected lines in a script.

{button ,AL(`rem;ht_uncomment;ht_comment;;;',0,"Defaultoverview",)} Related Topics

To remove REM statements from the beginning of script lines
1. Place the insertion point in the line where you want to remove a REM statement. If you want to remove REM

statements in a contiguous block of statements, select the statements.
2. Click Edit, UnComment.
Note

Script lines that begin with REM statements are ignored during script execution. This feature can be useful
during debugging sessions.

{button ,AL(`rem;ht_uncomment;ht_comment;;;',0,"Defaultoverview",)} Related Topics

To go to a line in the Corel SCRIPT Editor
1. Click Search, Go to Line.
2. In the Line number box, enter a line number.

{button ,AL(`next_prev;;;;;',0,"Defaultoverview",)} Related Topics

To go to the next error in a script
Click Search, Next Error.

Note
Before running this command, the Compiler Output window must display at least one error message and

the insertion point must be in the script window.
The line where the insertion point is sent has the

 symbol displayed in its left margin.

{button ,AL(`ht_debug;next_prev;;;;',0,"Defaultoverview",)} Related Topics

To go to the previous error in a script
Click Search, Previous Error.

Note
Before running this command, the Compiler Output window must display at least one error message and

the insertion point must be in the script window.
The line where the insertion point is sent has the

 symbol displayed in its left margin.

{button ,AL(`ht_debug;next_prev;;;;',0,"Defaultoverview",)} Related Topics

To change display colors in the Corel SCRIPT Editor
1. Click Settings, Colors.
2. Click the the text color you want in the Text Foreground list box.
3. Click the the background color you want in the Text Background list box.

{button ,AL(`cse_settings;;;;;',0,"Defaultoverview",)} Related Topics

To change display and print fonts in the Corel SCRIPT Editor
1. Click Settings, Fonts.
2. Click the font you want in the Font list box.
3. Click the style you want in the Font style list box.
4. Click the size you want in the Size list box.
Note

You can only use monospaced fonts in the Corel SCRIPT Editor. Monospaced fonts have an equal amount of
horizontal space allotted for each character, regardless of its width (an i is given as much space as a w).

{button ,AL(`cse_settings;;;;;',0,"Defaultoverview",)} Related Topics

To change tab width in the Corel SCRIPT Editor
1. Click Settings, Editor.
2. Enter a number in the Tab Width number box. Tab width is expressed in characters.

{button ,AL(`cse_settings;;;;;',0,"Defaultoverview",)} Related Topics

To set autosave in the Corel SCRIPT Editor
1. Click Settings, Editor.
2. Click the AutoSave checkbox. A checkmark in the checkbox indicates autosave is enabled.

Click AutoSave again to disable auto save.

{button ,AL(`cse_settings;;;;;',0,"Defaultoverview",)} Related Topics

Debug menu

To run a Corel SCRIPT script from the Corel SCRIPT Editor
Click Debug, Run.

Note
If the script your running contains Corel application commands, the script must use the   

WITHOBJECT...END WITHOBJECT statements.
You can also use the procedure above to restart a paused script at the current line.
To check for unitialized variables, click Option, Uninitialized Variables before Debug, Run. A checkmark

indicates the option Uninitialized Variables is enabled.
You can terminate a script's execution by pressing ESC. In some cases, you may have to press ESC several

times to terminate execution.

{button ,AL(`ht_open_file_cse;ht_close_file_cse;ht_debug;;;',0,"Defaultoverview",)} Related Topics

To stop the execution of a script
Click Debug, Reset.

Note
You can only use this command when you've paused script execution by stepping, using breakpoints, or

when script execution has finished.

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics

To interrupt an executing script
Click ESC.

Note
After interrupting a script, you can step through it.

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics

To restart a script while debugging
Click Debug, Restart.

Note
You can only use this command when you've paused script execution by stepping, using breakpoints,

pressing ESC, or when script execution has finished.

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics

To execute a script one line at a time (Step Into)
To start stepping from the beginning of a script:

Click Debug, Step Into. Repeat the action for each line you want to execute.
To start stepping from an intermediary position in the script.
1. Click Debug, Toggle Breakpoint where you want to begin stepping.
2. Click Run.

Script execution is paused at the breakpoint.
3. Click Debug, Step Into. Repeat the action for each line you want to execute.
Note

The line with the
 symbol in its left margin is the next line to execute.

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics

To execute a script one line at a time stepping over procedures (Step Over)
To start stepping from the beginning of a script:

Click Debug, Step Over. Repeat the action for each line you want to execute.
When a procedure is encountered, it is executed in its entirety. Execution is then paused after the procedure
call.

To start stepping from an intermediary position in the script.
1. Click Debug, Toggle Breakpoint where you want to begin stepping.
2. Click Run.

Script execution is paused at the breakpoint.
3. Click Debug, Step Over. Repeat the action for each line you want to execute.

When a procedure is encountered, it is executed. Execution is then paused after the procedure call.
Note

The line with the
 symbol in its left margin is the next line to execute.

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics

To execute a script to the first line after the current procedure call (Step Out)
To start stepping from the beginning of a script:

Click Debug, Step Out.
The debugger runs to the first line following the current procedure call and pauses.

To start stepping from an intermediary position in the script.
1. Click Debug, Toggle Breakpoint where you want to begin stepping.
2. Click Run.

Script execution is paused at the breakpoint.
3. Click Debug, Step Out.

The debugger runs to the first line following a procedure call and pauses.
Note

The line with the
 symbol in its left margin is the next line to execute.

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics

To add a variable to the Watch window
1. Place the insertion point on a variable in your script.
2. Click Debug, QuickWatch.
3. Click Add Watch
Note

You can also add a variable to the Watch window by entering it in the Watch window text box.
Watches are not part of a script. Additionally, they cannot be saved and are lost when you close the script

window.

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics

To delete a variable from the Watch window
1. Select a watch in the watch window.

2. Click in the Watch window.

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics

To display a variable's value using the QuickWatch
1. Place the insertion point on a variable in your script.
2. Click Debug, QuickWatch.
Note

You can use this command only when you've paused the script's execution by stepping or using
breakpoints.

Click Cancel to close the QuickWatch window.
You can type in any variable in the QuickWatch window to return its value.

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics

To add or remove a breakpoint
1. Place the insertion point on a line to which you want to add or remove a breakpoint.
2. Click Debug, Toggle Breakpoint.
Note

Breakpoints cannot be saved and are lost when you close the script window.
A line with a breakpoint has the

 symbol in its left margin.

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics

To run a script to the cursor
1. Place the insertion point on the line where you want the script execution to stop.
2. Click Debug, Run To Cursor.
Note

Since the insertion point acts as a breakpoint, using the Run to Cursor command is similar to using a
breakpoint.

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics

To clear all breakpoints
Click Debug, Clear All Breakpoints.

Note
Breakpoints cannot be saved and are lost when you close the script window.
A line with a breakpoint has the

 symbol in its left margin.

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics

To check a Corel SCRIPT script for syntax errors
Click Debug, Check Syntax.

Note
If errors are found, error messages appear in the Compiler Output window. Double-click an error message's

line number in the Compiler Output window to send the insertion point to the line containing the error. The line with
the error has the
 symbol in its left margin after double-clicking.

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics

Window menu

To view all script windows
Click Window, Arrange All.

Note
Minimized script windows are arranged at the bottom of the Corel SCRIPT Editor window.

{button ,AL(`ht_windows_cse;ht_open_file_cse;ht_close_file_cse;;;',0,"Defaultoverview",)} Related
Topics

To cascade script windows in the Corel SCRIPT Editor
Click Window, Cascade.

Note
Minimized script windows are arranged at the bottom of the Corel SCRIPT Editor window.

{button ,AL(`ht_windows_cse;ht_open_file_cse;ht_close_file_cse;;;',0,"Defaultoverview",)} Related
Topics

To close all script windows in the Corel SCRIPT Editor
Click Window, Close All.

Note
You are prompted to save any unsaved changes in any open documents.

{button ,AL(`ht_windows_cse;ht_open_file_cse;ht_close_file_cse;;;',0,"Defaultoverview",)} Related
Topics

To arrange minimized script windows
Click Window, Arrange Icons

Note
Minimized dialog editor windows are arranged from the bottom-left corner of the Corel SCRIPT Editor to the

bottom-right corner.

{button ,AL(`ht_windows_cse;ht_open_file_cse;ht_close_file_cse;;;',0,"Defaultoverview",)} Related
Topics

To keep the Corel SCRIPT Editor window visible
Click Window, Always on Top. Choose the command again to turn off the setting.

Tip
Keeping the Corel SCRIPT Editor window visible, even when another application is active, is helpful when

you're debugging a script.

{button ,AL(`ht_windows_cse;ht_open_file_cse;ht_close_file_cse;debugging_scripts;;',0,"Defaultoverv
iew",)} Related Topics

To view an open script window in the Corel SCRIPT Editor
Click Window and click the window you want to view. The open windows are noted at the bottom of the

Window menu.

{button ,AL(`ht_windows_cse;ht_open_file_cse;ht_close_file_cse;;;',0,"Defaultoverview",)} Related
Topics

To start Help from Corel SCRIPT Editor
Click Help, Help Topics.

{button ,AL(`cse_help;;;;;',0,"Defaultoverview",)} Related Topics

To open Corel SCRIPT online Help to a keyword's syntax reference
1. Place the insertion point in the keyword you want help for.
2. Press F1.
Note

If the selected keyword is not found or the insertion point is not placed in a word, Corel SCRIPT online Help
displays the Help Topics dialog box.

{button ,AL(`cse_help;;;;;',0,"Defaultoverview",)} Related Topics

To view or hide status bar (Corel SCRIPT Editor)
Click View, Status Bar.

A checkmark beside the Status Bar menu command indicates the status bar is displayed.

{button ,AL(`ht_watch;ht_compiler;;;;',0,"Defaultoverview",)} Related Topics

To view or hide Watch window
Click View, Watch Window.

A checkmark beside the Watch Window menu command indicates the Watch window is displayed.
Note

The Watch window can be resized by clicking on a border and dragging.

{button ,AL(`ht_statusbar;ht_watch;ht_compiler;Corel_SCRIPT_Editor_windows;;',0,"Defaultoverview
",)} Related Topics

To view or hide Compiler Output window
Click View, Compiler Output Window.

A checkmark beside the Compiler Output Window menu command indicates the Compiler Output window is
displayed.

Note
The Compiler Output window can be resized by clicking on a border and dragging.

{button ,AL(`ht_statusbar;ht_watch;ht_compiler;Corel_SCRIPT_Editor_windows;;',0,"Defaultoverview
",)} Related Topics

Corel SCRIPT Editor menu shortcut keys
Press To
File Menu
CTRL+N New
CTRL+O Open
CTRL+S Save
CTRL+P Print
Edit Menu
CTRL+Z Undo
ALT+A Redo
CTRL+X Cut
CTRL+C Copy
CTRL+V Paste
DEL Delete
CTRL+K Comment
CTRL+U UnComment
CTRL+A Select All
CTRL+D Dialog
Search Menu
CTRL+F Find
CTRL+R Replace
CTRL+G Go To Line
F4 Next Error
SHIFT+F4 Previous Error
View Menu
ALT+1 Watch Window
ALT+2 Compiler Output Window
Debug Menu
F5 Run
SHIFT+F5 Restart
ALT+F5 Reset
F8 Step Into
F10 Step Over
SHIFT+F7 Step Out
CTRL+W Quick Watch
F9 Toggle Breakpoint
CTRL+F5 Check Syntax
Help Menu
F1 Help Topics

F1 help for the menus

File menu

New (File menu, Corel SCRIPT Editor)
Opens an untitled script window.

{button ,AL(`sce_file;ht_new_file_cse;;;;',0,"Defaultoverview",)} Related Topics

Open (File menu, Corel SCRIPT Editor)
Opens the Open dialog box. Click a saved script file to open. The default folder and drive are shown but you can
open a script file in any drive or folder.

{button ,AL(`sce_file;ht_open_file_cse;;;;',0,"Defaultoverview",)} Related Topics

Close (File menu, Corel SCRIPT Editor)
Closes the active script window. If your changes have not been saved, a confirmation message appears.

{button ,AL(`ht_close_file_cse;sce_file;;;;',0,"Defaultoverview",)} Related Topics

Save (File menu, Corel SCRIPT Editor)
Saves the script in the active window. If the script window is untitled, the Save As dialog box appears.

{button ,AL(`ht_save_file_cse;sce_file;;;;',0,"Defaultoverview",)} Related Topics

Save As (File menu, Corel SCRIPT Editor)
Saves the script in the active window for the first time or saves the script in the active window with a new name.

{button ,AL(`ht_save_file_cse;sce_file;;;;',0,"Defaultoverview",)} Related Topics

Print (File menu, Corel SCRIPT Editor)
Prints the script in the active window. If the lines in your script are long, use the Print Setup command to set your
printer to landscape orientation before printing a script.

{button ,AL(`sce_file;ht_print_file_cse;ht_print_preview_cse;;;',0,"Defaultoverview",)} Related Topics

Print Setup (File menu, Corel SCRIPT Editor)
Displays the Print Setup dialog box, which allows you to choose the printer and printer options.

{button ,AL(`sce_file;ht_print_file_cse;ht_print_preview_cse;;;',0,"Defaultoverview",)} Related Topics

Print Preview (File menu, Corel SCRIPT Editor)
Displays how the script in the active winodw will look when you print it. You can also print and zoom in print
preview mode. If the lines in your script are long, use the Print Setup command on the file menu to set your
printer to landscape orientation before printing a script.

{button ,AL(`sce_file;ht_print_file_cse;ht_print_preview_cse;;;',0,"Defaultoverview",)} Related Topics

Exit (File menu, Corel SCRIPT Editor)
Closes all open script windows and the Corel SCRIPT Editor. If you have not saved your scripts, you are prompted
to save before exiting.

{button ,AL(`ht_exit_cse;sce_file;;;;',0,"Defaultoverview",)} Related Topics

Edit menu

Undo (Edit menu, Corel SCRIPT Editor)
Reverses actions performed during the current session. Use Undo after making a change you do not want
implemented. Immediately after choosing Undo, the Redo command becomes available, allowing you to restore
what you just undid.

{button ,AL(`sce_edit;ht_cse_undo;;;;',0,"Defaultoverview",)} Related Topics

Redo (Edit menu, Corel SCRIPT Editor)
Restores changes reversed by the Undo command. Redo becomes available immediately after you choose the
Undo command.

{button ,AL(`sce_edit;ht_cse_redo;;;;',0,"Defaultoverview",)} Related Topics

Cut (Edit menu, Corel SCRIPT Editor)
Cuts selected text from a script and places it on the Clipboard.

{button ,AL(`ht_cut_cse;sce_edit;;;;',0,"Defaultoverview",)} Related Topics

Copy (Edit menu, Corel SCRIPT Editor)
Copies selected text from a script and places it on the Clipboard.

{button ,AL(`ht_copy_cse;sce_edit;;;;',0,"Defaultoverview",)} Related Topics

Paste (Edit menu, Corel SCRIPT Editor)
Pastes text from the Clipboard at the insertion point. If you've selected text in a script, it is overwritten with the
Clipboard contents.

{button ,AL(`ht_copy_cse;sce_edit;;;;',0,"Defaultoverview",)} Related Topics

Delete (Edit menu, Corel SCRIPT Editor)
Deletes selected text from a script. If no further action has been performed, you can restore deleted text using
the Undo command.
Note

Instead of deleting text, you can cut it. Cutting text transfers it to the Clipboard.

{button ,AL(`sce_edit;ht_delete_text_cse;;;;',0,"Defaultoverview",)} Related Topics

Select All (Edit menu, Corel SCRIPT Editor)
Selects all the text in active script window.

{button ,AL(`sce_edit;;;;;',0,"Defaultoverview",)} Related Topics

Find (Search menu, Corel SCRIPT Editor)
Searches for specified text from the insertion point. You can set the search direction, match the case, and match
entire words.

{button ,AL(`ht_find_text_cse;sce_edit;;;;',0,"Defaultoverview",)} Related Topics

Replace (Search menu, Corel SCRIPT Editor)
Searches for and replaces specified text from the insertion point. You can set the search direction, match the
case, and match entire words.

{button ,AL(`ht_find_replace_cse;sce_edit;;;;',0,"Defaultoverview",)} Related Topics

Go To Line (Search menu, Corel SCRIPT Editor)
Opens a dialog box that lets you to choose the line to go to in a script. The status bar displays line where the
insertion point rests.

{button ,AL(`ht_goto_line_cse;sce_debug;next_prev;;',0,"Defaultoverview",)} Related Topics

Next Error (Search menu, Corel SCRIPT Editor)
Sends the insertion point to the next line in a script containing an error. The line where the insertion point is sent
has the symbol displayed in its left margin.

Before running this command, the Compiler Output window must display at least one error message and the
insertion point must be in the script window.

{button ,AL(`ht_goto_line_cse;sce_debug;next_prev;;',0,"Defaultoverview",)} Related Topics

Previous Error (Search menu, Corel SCRIPT Editor)
Sends the insertion point to the previous line in a script containing an error. The line where the insertion point is
sent has the symbol displayed in its left margin.

Before running this command, the Compiler Output window must display at least one error message and the
insertion point must be in the script window.

{button ,AL(`ht_goto_line_cse;sce_edit;sce_debug;next_prev;;',0,"Defaultoverview",)} Related Topics

Dialog (Edit menu, Corel SCRIPT Editor)
Opens the Corel SCRIPT Dialog Editor. The Dialog Editor is a tool used to create dialog boxes for scripts.
If the insertion point is in a dialog box definition, the definition is copied to the Corel SCRIPT Dialog Editor and is
pasted as a dialog box in a Dialog Editor window. If the insertion point is not in a dialog box definition, a new
dialog box is created in the Dialog Editor.

{button ,AL(`htde_move_de_cse;htde_move_cse_cse;sce_edit;htde_move_cse_de;;',0,"Defaultovervie
w",)} Related Topics

View menu

Watch Window (View menu, Corel SCRIPT Editor)
Opens and closes the Watch window. The Watch window monitors the value of specified variable in a script
during a debugging session.
The Watch window can be resized by clicking on a border and dragging.

{button ,AL(`Corel_SCRIPT_Editor_windows;sce_view;ht_add_watch_cse;ht_delete_watch_cse;;',0,"De
faultoverview",)} Related Topics

Compiler Output Window (View menu, Corel SCRIPT Editor)
Opens and closes the compiler output window. Before a script is run, it is compiled into an exectuable program. If
errors during compilation occur, they are displayed in the Compiler Output window. The window updates each
time a script is played or checked for syntax errors.
The Compiler Output window can be resized by clicking on a border and dragging.

{button ,AL(`Corel_SCRIPT_Editor_windows;sce_view;ht_add_watch_cse;ht_delete_watch_cse;;',0,"De
faultoverview",)} Related Topics

ToolBars (View menu, Corel SCRIPT Editor)
Opens a dialog box to display and hide toolbars. You can also use the dialog box to resize buttons.

{button ,AL(`stoolbars_proc;;;;;',0,"Defaultoverview",)} Related Topics

Debug menu

Run (Debug menu, Corel SCRIPT Editor)
Runs the script in the active script window.

{button ,AL(`ht_play_script_cse;sce_debug;;;;',0,"Defaultoverview",)} Related Topics

Restart (Debug menu, Corel SCRIPT Editor)   
Stops and restarts script execution from the beginning. Variables are reset to their initial values. You can only use
this command when you've paused script execution by stepping or using breakpoints.

{button ,AL(`sce_debug;ht_reset_cse;ht_restart_cse;;;',0,"Defaultoverview",)} Related Topics

Reset (Debug menu, Corel SCRIPT Editor)   
Ends script execution and resets variables to their intial values. You can only use this command when you've
paused script execution by stepping or using breakpoints.

{button ,AL(`sce_debug;ht_reset_cse;ht_restart_cse;;;',0,"Defaultoverview",)} Related Topics

Step Into (Debug menu, Corel SCRIPT Editor)
Executes a script line by line. The Step Into command also steps into functions and subroutines to execute line
by line.
Note

The line with the
 symbol in its left margin is the next line to execute.

{button ,AL(`sce_debug;ht_step_cse;ht_trace_cse;ht_stepout_cse;;',0,"Defaultoverview",)} Related
Topics

Step Over (Debug menu, Corel SCRIPT Editor)   
Executes a script line by line. The Step Over command executes an entire procedure (a function or a subroutine)
without stepping into the procedure's code.
Note

The line with the
 symbol in its left margin is the next line to execute.

{button ,AL(`sce_debug;ht_step_cse;ht_trace_cse;ht_stepout_cse;;',0,"Defaultoverview",)} Related
Topics

Step Out (Debug menu, Corel SCRIPT Editor)
Executes the remaining lines in a function or subroutine and returns and stops at the line after the procedure
call.
Note

The line with the
 symbol in its left margin is the next line to execute.

{button ,AL(`sce_debug;ht_step_cse;ht_trace_cse;ht_stepout_cse;;',0,"Defaultoverview",)} Related
Topics

Run to Cursor (Debug menu, Corel SCRIPT Editor)
Runs the script in the active script window to the position of the insertion point. Since the insertion point acts as
a breakpoint, using the Run to Cursor command is similar to using a breakpoint.

{button ,AL(`ht_cursor_cse;sce_debug;;;;',0,"Defaultoverview",)} Related Topics

QuickWatch (Debug menu, Corel SCRIPT Editor)   
Opens the QuickWatch dialog box to monitor the value of a variable in the script. You can also use the
QuickWatch window to add watches in the Watch Window.

{button ,AL(`sce_debug;ht_display_variable_cse;;;;',0,"Defaultoverview",)} Related Topics

Toggle Breakpoint (Debug menu, Corel SCRIPT Editor)   
Sets a breakpoint on the line the insertion point is placed on. Choose the command again to clear the
breakpoint. Script execution stops at a breakpoint, and you can have more than one breakpoint in a script.
Note

A line with a breakpoint has the
 symbol in its left margin.

{button ,AL(`sce_debug;ht_breakpoint_clear_cse;ht_breakpoint_cse;;;',0,"Defaultoverview",)}
Related Topics

Clear All Breakpoints (Debug menu, Corel SCRIPT Editor)   
Clears all breakpoints in a script. Script execution stops at a breakpoint, and you can have more than one
breakpoint in a script.
Note

A line with a breakpoint has the
 symbol in its left margin.

{button ,AL(`sce_debug;ht_breakpoint_clear_cse;ht_breakpoint_cse;;;',0,"Defaultoverview",)}
Related Topics

Check Syntax (Debug menu, Corel SCRIPT Editor)   
Checks for syntax errors in a script. Common syntax errors include misspelling commands, missing operators,
and missing punctuation. If errors are found, error messages appear in the Compiler Output window.
Double-click an error message's line number in the Compiler Output window to send the insertion point to the
line containing the error. The line with the error has the symbol in its left margin after double-clicking.

{button ,AL(`ht_syntax_cse;sce_debug;;;;',0,"Defaultoverview",)} Related Topics

Uninitialized Variables (Debug menu, Corel SCRIPT Editor)   
An option that you can enable or disable used in conjunction with the Run command. When the Unitialized
Variables option is enabled (indicated by a checkmark), the Run command checks for variables that have not
been initialized to a value before they are used.

{button ,AL(`ht_syntax_cse;sce_debug;;;;',0,"Defaultoverview",)} Related Topics

Settings menu

Editor (Settings menu, Corel SCRIPT Editor)   
Opens a dialog box to set the tab width in characters. You can also set an option to save your script before it's
executed by enabling the AutoSave checkbox.

{button ,AL(`cse_settings;sce_settings;;;;',0,"Defaultoverview",)} Related Topics

Fonts (Settings menu, Corel SCRIPT Editor)   
Opens a dialog box to set the font used in the Corel SCRIPT Editor.
Note

You can only use monospaced fonts in the Corel SCRIPT Editor. Monospaced fonts allot an equal amount of
horizontal space for each character, regardless of its width (an i is given as much space as a w).

{button ,AL(`cse_settings;sce_settings;;;;',0,"Defaultoverview",)} Related Topics

Colors (Settings menu, Corel SCRIPT Editor)   
Opens a dialog box to set text and background colors in the Corel SCRIPT Editor.

{button ,AL(`cse_settings;sce_settings;;;;',0,"Defaultoverview",)} Related Topics

Window menu

Cascade (Window menu, Corel SCRIPT Editor)
Layers script windows so each title bar is visible. To activate a script window, click the title bar. Minimized
windows are arranged at the bottom of the Corel SCRIPT Editor window.

{button ,AL(`sce_window;ht_windows_cse;;;;',0,"Defaultoverview",)} Related Topics

Tile (Window menu, Corel SCRIPT Editor)
Arranges the script windows in equal sizes to fit in the Corel SCRIPT Editor. Minimized windows are arranged at
the bottom of the Corel SCRIPT Editor window.

{button ,AL(`sce_window;ht_windows_cse;;;;',0,"Defaultoverview",)} Related Topics

Always on Top (Window menu, Corel SCRIPT Editor)
Keeps the Corel SCRIPT Editor window visible even when another application is active. This is useful when you
are debugging a script. Choose the command again to disable the setting.

{button ,AL(`sce_window;ht_windows_cse;;;;',0,"Defaultoverview",)} Related Topics

Help Menu

Help Topics (Help menu, Corel SCRIPT Editor)
Opens the Corel SCRIPT Editor Help Contents screen. From this screen, you can choose the type of Help you
want. When you are in Help, clicking on the Contents button takes you back to the opening screen.

{button ,AL(`sce_help;cse_help;;;;',0,"Defaultoverview",)} Related Topics

What's This? command (Help menu)
Changes the cursor to the What's This cursor. When you click a component of the application, a help topic about
the object you clicked is displayed.

{button ,AL(`hid_help_content;sce_help;cse_help;;;',0,"Defaultoverview",)} Related Topics

About Corel SCRIPT Editor (Help menu, Corel SCRIPT Editor)   
Displays a dialog box with information about the version of Corel SCRIPT Editor you're running. Clicking the
System Info button opens the System Info dialog box, which displays information about your system settings.

{button ,AL(`sce_help;cse_help;;;;',0,"Defaultoverview",)} Related Topics

Right-Mouse

Comment (Edit menu, Corel SCRIPT Editor)   
Places a REM statement at the beginning of a selected line in a script. Script lines beginning with REM
statements are ignored during script execution.
Note

You can use this feature during debugging sessions to convert script syntax into remarks so they will be
ignored during script execution.

Use the UnComment command to remove REM statements from selected lines in a script.

{button ,AL(`ht_comment;;;;;',0,"Defaultoverview",)} Related Topics

UnComment (Edit menu, Corel SCRIPT Editor)   
Removes REM statements from selected lines in a script.

{button ,AL(`ht_uncomment;;;;;',0,"Defaultoverview",)} Related Topics

Hide (Right-mouse menu, Corel SCRIPT Editor)   
Hides the Output Compiler window.

{button ,AL(`sce_view;;;;;',0,"Defaultoverview",)} Related Topics

Hide (Right-mouse menu, Corel SCRIPT Editor)   
Hides the Watch window.

{button ,AL(`sce_view;;;;;',0,"Defaultoverview",)} Related Topics

What's This? command (Right-mouse menu, Corel SCRIPT Editor)
Opens a What's This? pop-up window containing an explanation of the area you clicked on.

{button ,AL(`hid_help_content;sce_help;cse_help;;;',0,"Defaultoverview",)} Related Topics

Go To Error (Right-mouse menu, Corel SCRIPT Editor)
Sends the insertion point to the line containing the error. The insertion point must first be placed in an error line
in the Compiler Output window.

{button ,AL(`Corel_SCRIPT_Editor_windows;;;;;',0,"Defaultoverview",)} Related Topics

Remove Watch (Right-mouse menu, Corel SCRIPT Editor)
Removes the selected variable(s) from the Watch window.

{button ,AL(`ht_delete_watch_cse;;;;;',0,"Defaultoverview",)} Related Topics

Dialog boxes

Go to dialog box

Specifies the line to move the insertion point to in the active script window.

Go To dialog box
Specifies the line to move the insertion point to in the active script window. Input

{button ,AL(`ht_goto_line_cse;;;;;',0,"Defaultoverview",)} Related Topics

Quick Watch dialog box

QuickWatch dialog box
The QuickWatch dialog box monitors the value of a variable in the script. You can also use the the QuickWatch
dialog box to add variables to the Watch window.
Procedure
Displays which procedure in the script the specified variable or expression is located in.
Variable
Displays the variable or expression to watch.
Value
Displays the current value of the specified variable or expression.
Add Watch
Adds the specified variable or expression to the Watch window. Also opens the Watch window, if it is closed.

{button ,AL(`sce_debug;;;;;',0,"Defaultoverview",)} Related Topics

Displays which procedure in the script the specified variable or expression is located in.

Displays the variable or expression to watch.

Displays the current value of the specified variable or expression.

Adds the specified variable or expression to the Watch window. Also opens the Watch window, if it is closed.

Editor dialog box

Specifies the tab spacing to use in scripts. Tabs can help you to format a script so it is easier to read and debug.

Specifies whether scripts should be saved before they are run.

Editor settings dialog box
The Editor    settings dialog box sets :

the default tab width in the Corel SCRIPT Editor
the option to save your scripts before they are executed.

{button ,AL(`hidd_colours;;;;;',0,"Defaultoverview",)} Related Topics

Colors dialog box

List the available text colors.

List the available background colors.

Color settings dialog box
The Color settings dialog box sets the text and background colors in the Corel SCRIPT Editor.

{button ,AL(`hidd_editor;;;;;',0,"Defaultoverview",)} Related Topics

OK, Cancel, Help

Opens detailed online Help for this dialog box.

Opens detailed online Help for this dialog box.

Closes this dialog box without saving any changes you have made.

Closes this dialog box and saves any changes you have made.

About dialog box

System Info
Opens the System Info dialog box. Use it to get    information about your system, display, network, printing, Corel
EXEs & DLLs and system DLLs.

Choose a
Specifies the type of system information you want.

Save
Saves the selected category's details to sysinfo.txt. Once it's saved, a message box appears informing you where
the file was saved to.

Screen whats this

HID_BUBBLE_MACEDTYPE_SRVR_IP

HID_BUBBLE_MACEDTYPE_SRVR_EMB

This window displays a Corel SCRIPT script. The window is called the Script window.
Each script line is limited to 255 characters.

HIDC_OUTPUT_EDIT   

HIDC_WATCH_PROMPT

Provides a space for to type the name of a variable to add to the Watch Window. Press Enter to add the variable
to the Watch Window.

Adds the variable in the Watch box to the Watch window.

Removes the selected variable(s) from the Watch window.

This window displays the current value for each monitored variable and the procedure where the variable is
found. The window is called the Watch window.

This window displays errors after a script has been run or checked for syntax errors. The window is called the
Compiler Output window.

ToolBars
You can display and hide toolbars in the Corel SCRIPT Editor and the Corel SCRIPT Dialog Editor. You can also
resize toolbar buttons.

F1 help for the menus

File Menu

New (File menu, Dialog Editor)
Opens an untitled dialog editor window containing an empty dialog box.

{button ,AL(`a_start;c_file_menu;;;;',0,"Defaultoverview",)} Related Topics

Open (File menu, Dialog Editor)
Opens the Open dialog box. Click a saved script file to open. The default folder and drive are shown, but you can
open a script file in any drive or folder. If the script contains statements other than dialog box definition
statements, it cannot be opened in the Corel SCRIPT Dialog Editor.

{button ,AL(`a_start;c_file_menu;;;;',0,"Defaultoverview",)} Related Topics

Close (File menu, Dialog Editor)
Closes the active dialog editor window. If your changes have not been saved, a confirmation message appears.

{button ,AL(`a_start;c_file_menu;;;;',0,"Defaultoverview",)} Related Topics

Save (File menu, Dialog Editor)
Saves the dialog box in the active dialog editor window as a Corel SCRIPT script. If the dialog editor window is
untitled , the Save As dialog box appears.

{button ,AL(`a_start;c_file_menu;;;;',0,"Defaultoverview",)} Related Topics

Save As (File menu, Dialog Editor)
Saves the dialog box in the active dialog editor window as a Corel SCRIPT script for the first time. It also saves
the script file with a new name.

{button ,AL(`a_start;c_file_menu;sce_file;;;',0,"Defaultoverview",)} Related Topics

Open Recently Opened Files (File menu)

Corel SCRIPT Editor
Opens a recently opened Corel SCRIPT script file.
Corel SCRIPT Dialog Editor
Opens a recently opened Corel SCRIPT script file holding a dialog box definition.

{button ,AL(`a_start;c_file_menu;ht_open_file_cse;;;',0,"Defaultoverview",)} Related Topics

Exit (File menu, Dialog Editor)
Closes all open dialog editor windows and the Corel SCRIPT Dialog Editor. If you have not saved, you are
prompted to save before exiting.

{button ,AL(`a_start;c_file_menu;;;;',0,"Defaultoverview",)} Related Topics

Edit Menu

Undo (Edit menu, Dialog Editor)
Reverses actions performed during the current session. Use Undo after making a change you do not want
implemented. Immediately after choosing Undo, the Redo command becomes available, allowing you to restore
what you just undid.
rt: a_edit

Redo (Edit menu, Dialog Editor)
Restores changes reversed by the Undo command. Redo becomes available immediately after you choose the
Undo command.

Cut (Edit menu, Dialog Editor)
Cuts the selected dialog box, controls, or both from a dialog editor window and places them on the Clipboard as
Corel SCRIPT statements.

{button ,AL(`a_edit;;;;;',0,"Defaultoverview",)} Related Topics

Copy (Edit menu, Dialog Editor)
Copies the selected dialog box, controls, or both from a dialog editor window and places them on the Clipboard
as Corel SCRIPT statements.

{button ,AL(`a_edit;;;;;',0,"Defaultoverview",)} Related Topics

Paste (Edit menu, Dialog Editor)
Pastes Corel SCRIPT dialog control statements into the dialog box in the active dialog editor window from the
Clipboard. A pasted control retains the original's label, identifier, size, and position attributes.
Note

If you paste a control into the same dialog editor window it was copied from, the pasted control is placed
on top of the original control with the same name and identifier. You'll have to change the identifier in one of the
controls because identifiers must be unique in a dialog definition.

If you try to paste controls from different-sized dialog boxes into a position that doesn't exist in the second
dialog box, the controls are placed in the closest valid position.

If the controls are too big to fit into the second dialog box, they are resized to fit.
If you paste Clipboard contents that contain the BEGIN DIALOG and END DIALOG statements, a new dialog

box is opened in another dialog editor window.

{button ,AL(`a_edit;;;;;',0,"Defaultoverview",)} Related Topics

Delete (Edit menu, Dialog Editor)
Deletes selected controls. If no further action has been performed, you can restore a deleted object using the
Undo command.
Note

Instead of deleting a control, you can cut it. Cutting a control transfers it to the clipboard as a Corel SCRIPT
statement.

{button ,AL(`a_edit;;;;;',0,"Defaultoverview",)} Related Topics

Duplicate (Edit menu, Dialog Editor)
Adds a copy of selected control(s) to the active dialog box. By default, the copy is placed on top of theoriginal
and offset down and to the right by 2 dialog units.
Note

The copied control(s) takes on the default control label and identifier. If you copied the control, the
original's label and identifier are also copied.

{button ,AL(`a_edit;;;;;',0,"Defaultoverview",)} Related Topics

Select All (Edit menu, Dialog Editor)
Selects the dialog box in the active dialog editor window and every control in the dialog.
Note

The Select All command is often used to transfer a dialog box from the Dialog Editor to the Corel SCRIPT
Editor.

The last control you select has a dotted line border.

{button ,AL(`a_select;;;;;',0,"Defaultoverview",)} Related Topics

Attributes (Edit menu, Dialog Editor)
Opens the Attributes dialog box for the selected dialog box, controls, or both.    You can edit labels, identifiers,
dialog and control size, and position attributes from the Attributes dialog box.

{button ,AL(`htde_dialog_attributes;htde_edit_controls_attributes;;;;',0,"Defaultoverview",)}
Related Topics

View Menu

ToolBars (View menu, Dialog Editor)
Opens a dialog box to display and hide toolbars. You can also use the dialog box to resize buttons.

{button ,AL(`stoolbars_proc;;;;;',0,"Defaultoverview",)} Related Topics

Status Bar (View menu)

Corel SCRIPT Dialog Editor
Toggles to display or the status bar found at the bottom of the Corel SCRIPT Editor. The status bar displays:

menu messages
the coordinates of the mouse pointer in a dialog box
the height and width of a selected control or dialog box
the coordinate position of a selected control or dialog box
status of NUM lock and CAPS lock

Corel SCRIPT Editor
Toggles to display or hide the status bar found at the bottom of the Corel SCRIPT Editor. The status bar displays:

menu messages
status of NUM lock and CAPS lock
the location of the insertion point in a script window in terms of lines and columns

{button ,AL(`ht_statusbar_de;ht_statusbar;;;;',0,"Defaultoverview",)} Related Topics

Test Dialog (View menu, Dialog Editor)
Sets the dialog box in the active dialog editor window to test mode. In test mode, you can confirm whether a
dialog box meets your requirements and functions properly. It is easier to test a dialog within the Dialog Editor
than to make it part of a script and test it by running a script. You cannot edit a dialog box in test mode.
In test mode, you can confirm the following dialog box features:

tab order within the dialog box
operation of shortcut keys
option button grouping
drop-down list or combo box opening

Note
Press ESC to exit test mode. Pressing any push button or the Close Dialog button (

) also exits test mode.
The following controls are filled with place holders in test mode:

list boxes
drop-down list boxes
combo boxes
drop-down combo boxes

The place holders give you a better idea of what the dialog box will look like when it is run.

{button ,AL(`htde_test_dialog;testing_dialogs;;;;',0,"Defaultoverview",)} Related Topics

Grid Settings (View menu, Dialog Editor)
Opens the Grid Settings dialog box, where you can set the following options for all dialog editor windows:

Snap to Grid
grid spacing
grid display

Note
Grid measurements are expressed in dialog units.
To show the grid, enable Show Grid in the same dialog box.
Grid spacing settings are set for all dialog editor windows.

{button ,AL(`a_snap;;;;;',0,"Defaultoverview",)} Related Topics

Control Menu

Selector (Control menu, Dialog Editor)

Sets the mouse pointer to the Selector state. In the Selector state, the mouse pointer appears as and is used
to select, re-size, and drag and drop dialog controls. You can also select, move, and resize dialog boxes when in
the Selector state. By default, the mouse pointer is in the Selector state. When it's not, it can be reset by clicking
 from the tool bar or clicking Control, Selector from the menu system.

In the Control state, the mouse pointer appears as and is used to create dialog controls. As soon as you create a
tool, the mouse pointer resets to the Selector state. You can only set the mouse pointer to a Control state by
clicking any of the dialog controls in the Control tool bar or any control in the Control menu.

Note
The mouse pointer can only appear in a Control state when it is positioned over an active dialog box in a dialog
editor window.

{button ,AL(`a_insert;c_controls;;;;',0,"Defaultoverview",)} Related Topics

Text (Control menu, Dialog Editor)
Sets the mouse pointer to the Control state so you can insert a Text control. In the Control state, the mouse
pointer appears as . You can insert a control by clicking or clicking and dragging in a dialog box.
Note

To insert a control a multiple number of times, hold down CTRL while you select the control. Press ESC to
return the mouse back to the Selector state (
).

{button ,AL(`a_insert;c_controls;control_text;text;;',0,"Defaultoverview",)} Related Topics

Text Box (Control menu, Dialog Editor)
Sets the mouse pointer to the Control state so you can insert a Text Box control. In the Control state, the mouse
pointer appears as . You can insert a control by clicking or clicking and dragging in a dialog box.
Note

To insert a control a multiple number of times, hold down CTRL while you select the control. Press ESC to
return the mouse back to the Selector state (
).

{button ,AL(`a_insert;c_controls;control_text_box;textbox;;',0,"Defaultoverview",)} Related Topics

OK Button (Control menu, Dialog Editor)
Sets the mouse pointer to the Control state to insert an OK Button control. In the Control state, the mouse
pointer appears as . You can insert a control by clicking or clicking and dragging in a dialog box.
Note

To insert a control a multiple number of times, hold down CTRL while you select the control. Press ESC to
return the mouse back to the Selector state (
).

{button ,AL(`a_insert;c_controls;control_okbutton;okbutton;;',0,"Defaultoverview",)} Related Topics

Cancel Button (Control menu, Dialog Editor)
Sets the mouse pointer to the Control state so you can insert a Cancel Button control. In the Control state, the
mouse pointer appears as . You can insert a control by clicking or clicking and dragging in a dialog box.
Note

To insert a control a multiple number of times, hold down CTRL while you select the control. Press ESC to
return the mouse back to the Selector state (
).

{button ,AL(`a_insert;c_controls;control_cancel;cancelbutton;;',0,"Defaultoverview",)} Related
Topics

Push Button (Control menu, Dialog Editor)
Sets the mouse pointer to the Control state so you can insert a Push Button control. In the Control state the
mouse pointer appears as . You can insert a control by clicking or clicking and dragging in a dialog box.
Note

To insert a control a multiple number of times, hold down CTRL while you select the control. Press ESC to
return the mouse back to the Selector state (
).

{button ,AL(`a_insert;c_controls;pushbutton;control_pushbutton;;',0,"Defaultoverview",)} Related
Topics

Option Button (Control menu, Dialog Editor)
Sets the mouse pointer to the Control state to insert an Option Button control. In the Control state, the mouse
pointer appears as . You can insert a control by clicking or clicking and dragging in a dialog box.
Note

To insert a control a multiple number of times, hold down CTRL while you select the control. Press ESC to
return the mouse back to the Selector state (
).

{button ,AL(`a_insert;c_controls;control_option_button;optionbutton;;',0,"Defaultoverview",)}
Related Topics

Check Box (Control menu, Dialog Editor)
Sets the mouse pointer to the Control state so you can insert a Check Box control. In the Control state, the
mouse pointer appears as . You can insert a control by clicking or clicking and dragging in a dialog box.
Note

To insert a control a multiple number of times, hold down CTRL while you select the control. Press ESC to
return the mouse back to the Selector state (
).

{button ,AL(`a_insert;c_controls;checkbox;control_checkbox;;',0,"Defaultoverview",)} Related Topics

List Box (Control menu, Dialog Editor)
Sets the mouse pointer to the Control state so you can insert a List Box control. In the Control state, the mouse
pointer appears as . You can insert a control by clicking or clicking and dragging in a dialog box.
Note

To insert a control a multiple number of times, hold down CTRL while you select the control. Press ESC to
return the mouse back to the Selector state (
).

{button ,AL(`listbox;control_listbox;a_insert;c_controls;;',0,"Defaultoverview",)} Related Topics

Drop-down List Box (Control menu, Dialog Editor)
Sets the mouse pointer to the Control state so you can insert a Drop-down List Box control. In the Control state,
the mouse pointer appears as . You can insert a control by clicking or clicking and dragging in a dialog box.
Note

To insert a control a multiple number of times, hold down CTRL while you select the control. Press ESC to
return the mouse back to the Selector state (
).

{button ,AL(`a_insert;c_controls;ddlistbox;control_dropdown_listbox;;',0,"Defaultoverview",)}
Related Topics

Combo Box (Control menu, Dialog Editor)
Sets the mouse pointer to the Control state so you can insert a Combo Box control. In the Control state, the
mouse pointer appears as . You can insert a control by clicking or clicking and dragging in a dialog box.
Note

To insert a control a multiple number of times, hold down CTRL while you select the control. Press ESC to
return the mouse back to the Selector state (
).

{button ,AL(`a_insert;c_controls;combobox;control_combo_box;;',0,"Defaultoverview",)} Related
Topics

Drop-down Combo Box (Control menu, Dialog Editor)
Sets the mouse pointer to the Control state so you can insert a Drop-down Combo Box control. In the Control
state, the mouse pointer appears as . You can insert a control by clicking or clicking and dragging in a dialog
box.
Note

To insert a control a multiple number of times, hold down CTRL while you select the control. Press ESC to
return the mouse back to the Selector state (
).

{button ,AL(`a_insert;c_controls;control_dropdown_combobox;ddcombobox;;',0,"Defaultoverview",)}
Related Topics

Group Box (Control menu, Dialog Editor)
Sets the mouse pointer to the Control state so you can insert a Group Box control. In the Control state, the
mouse pointer appears as . You can insert a control by clicking or clicking and dragging in a dialog box.
Note

To insert a control a multiple number of times, hold down CTRL while you select the control. Press ESC to
return the mouse back to the Selector state (
).

{button ,AL(`groupbox;control_group_box;a_insert;c_controls;;',0,"Defaultoverview",)} Related
Topics

Spin Control (Control menu, Dialog Editor)
Sets the mouse pointer to the Control state so you can insert a Spin control. In the Control state, the mouse
pointer appears as . You can insert a control by clicking or clicking and dragging in a dialog box.
Note

To insert a control a multiple number of times, hold down CTRL while you select the control. Press ESC to
return the mouse back to the Selector state (
).

{button ,AL(`control_spin_control;spincontrol;a_insert;c_controls;;',0,"Defaultoverview",)} Related
Topics

Slider (Control menu, Dialog Editor)
Sets the mouse pointer to the Control state so you can insert a Slider control. In the Control state, the mouse
pointer appears as . You can insert a control by clicking or clicking and dragging in a dialog box.
Note

To insert a control a multiple number of times, hold down CTRL while you select the control. Press ESC to
return the mouse back to the Selector state (
).

Horizontal Scroll Bar (Control menu, Dialog Editor)
Sets the mouse pointer to the Control state so you can insert a Horizontal Scroll Bar control. In the Control state,
the mouse pointer appears as . You can insert a control by clicking or clicking and dragging in a dialog box.
Note

To insert a control a multiple number of times, hold down CTRL while you select the control. Press ESC to
return the mouse back to the Selector state (
).

Vertical Scroll Bar (Control menu, Dialog Editor)
Sets the mouse pointer to the Control state so you can insert a Vertical Scroll Bar control. In the Control state,
the mouse pointer appears as . You can insert a control by clicking or clicking and dragging in a dialog box.
Note

To insert a control a multiple number of times, hold down CTRL while you select the control. Press ESC to
return the mouse back to the Selector state (
).

Progress Indicator (Control menu, Dialog Editor)
Sets the mouse pointer to the Control state so you can insert a Progress Indicator control. In the Control state,
the mouse pointer appears as . You can insert a control by clicking or clicking and dragging in a dialog box.
Note

To insert a control a multiple number of times, hold down CTRL while you select the control. Press ESC to
return the mouse back to the Selector state (
).

Image List Box (Control menu, Dialog Editor)
Sets the mouse pointer to the Control state to insert a Image List Box control. In the Control state the mouse
pointer appears as . You can insert a control by clicking or clicking and dragging in a dialog box.
Note

To insert a control a multiple number of times, hold down CTRL while you select the control. Press ESC to
return the mouse back to the Selector state (
).

{button ,AL(`imagelist;control_image;a_insert;c_controls;;',0,"Defaultoverview",)} Related Topics

Image (Control menu, Dialog Editor)
Sets the mouse pointer to the Control state to insert a Image control. In the Control state the mouse pointer
appears as . You can insert a control by clicking or clicking and dragging in a dialog box.
Note

To insert a control a multiple number of times, hold down CTRL while you select the control. Press ESC to
return the mouse back to the Selector state (
).

{button ,AL(`image;control_image;a_insert;c_controls;;',0,"Defaultoverview",)} Related Topics

Help Button (Control menu, Dialog Editor)
Sets the mouse pointer to the Control state to insert a Help button control. In the Control state the mouse pointer
appears as . You can insert a control by clicking or clicking and dragging in a dialog box.
Note

To insert a control a multiple number of times, hold down CTRL while you select the control. Press ESC to
return the mouse back to the Selector state (
).

{button ,AL(`helpbutton;control_helpbutton;a_insert;c_controls;;',0,"Defaultoverview",)} Related
Topics

Arrange Menu

Align Control (Arrange menu, Dialog Editor)
The align commands are used to a arrange selected controls. The controls can be aligned along their left, right,
top or bottom edge.
Note

The last control you select maintains its position; all other selected controls move to align with this control.

{button ,AL(`aligning_and_distributing_dialog_controls;c_align;a_align;;;',0,"Defaultoverview",)}
Related Topics

Align Control, Left (Arrange menu, Dialog Editor)
Aligns selected controls along their left edge. More than one control must be selected to make this command
active.
Note

The last control you select maintains its position; all other selected controls move to align with this control.

{button ,AL(`aligning_and_distributing_dialog_controls;c_align;a_align;;;',0,"Defaultoverview",)}
Related Topics

Align Control, Right (Arrange menu, Dialog Editor)
Aligns selected controls along their right edge. More than one control must be selected to make this command
active.
Note

The last control you select maintains its position; all other selected controls move to align with this control.

{button ,AL(`aligning_and_distributing_dialog_controls;c_align;a_align;;;',0,"Defaultoverview",)}
Related Topics

Align Control, Top (Arrange menu, Dialog Editor)
Aligns selected controls along their top edge. More than one control must be selected to make this command
active.
Note

The last control you select maintains its position; all other selected controls move to align with this control.

{button ,AL(`aligning_and_distributing_dialog_controls;c_align;a_align;;;',0,"Defaultoverview",)}
Related Topics

Align Control, Bottom (Arrange menu, Dialog Editor)
Aligns selected controls along their bottom edge. More than one control must be selected to make this command
active.
Note

The last control you select maintains its position; all other selected controls move to align with this control.

{button ,AL(`aligning_and_distributing_dialog_controls;c_align;a_align;;;',0,"Defaultoverview",)}
Related Topics

Distribute (Arrange menu, Dialog Editor)
The Distribute commands are used to evenly space selected controls across and down a dialog box.
Note

More than two controls must be selected for this command to be active.

{button ,AL(`aligning_and_distributing_dialog_controls;c_align;a_align;;;',0,"Defaultoverview",)}
Related Topics

Distribute, Horizontal (Arrange menu, Dialog Editor)
Spaces selected controls evenly across a dialog box. The selected controls are spaced evenly between the
leftmost and rightmost borders of the selected controls.
Note

More than two controls must be selected for this command to be active.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics

Distribute, Vertical (Arrange menu, Dialog Editor)
Spaces selected controls evenly down a dialog box. The selected controls are spaced evenly between the
topmost and bottommost borders of the selected controls.
Note

More than two controls must be selected for this command to be active.

{button ,AL(`aligning_and_distributing_dialog_controls;c_align;a_align;;;',0,"Defaultoverview",)}
Related Topics

Center in Dialog (Arrange menu, Dialog Editor)
The Center commands are used to center one or more selected controls in a dialog box, horizontally or vertically.

{button ,AL(`aligning_and_distributing_dialog_controls;c_align;a_align;;;',0,"Defaultoverview",)}
Related Topics

Center in Dialog, Horizontal (Arrange menu, Dialog Editor)
Centers selected control(s) horizontally in a dialog box. The controls are centered horizontally based on the
leftmost and rightmost borders of the selected controls.

{button ,AL(`aligning_and_distributing_dialog_controls;c_align;a_align;;;',0,"Defaultoverview",)}
Related Topics

Center in Dialog, Vertical (Arrange menu, Dialog Editor)
Centers selected control(s) vertically in a dialog box. The controls are centered vertically based on the topmost
and bottommost borders of the selected controls.

{button ,AL(`aligning_and_distributing_dialog_controls;c_align;a_align;;;',0,"Defaultoverview",)}
Related Topics

Make Same Size (Arrange menu, Dialog Editor)
The Make Same Size commands are used to make selected controls the same width, height, or both.

{button ,AL(`aligning_and_distributing_dialog_controls;c_align;a_align;;;',0,"Defaultoverview",)}
Related Topics

Make Same Size, Width (Arrange menu, Dialog Editor)
Resizes selected controls to make them the same width. The last control you select maintains its width; all other
selected controls resize to this control.

{button ,AL(`aligning_and_distributing_dialog_controls;c_align;a_align;;;',0,"Defaultoverview",)}
Related Topics

Make Same Size, Height (Arrange menu, Dialog Editor)
Resizes selected controls to make them the same height. The last control you select maintains its height; all
other selected controls resize to this control.

{button ,AL(`aligning_and_distributing_dialog_controls;c_align;a_align;;;',0,"Defaultoverview",)}
Related Topics

Make Same Size, Both (Arrange menu, Dialog Editor)
Resizes selected controls to make them the same width and height. The last control you select maintains its
width and height; all other selected controls resize to this control.

{button ,AL(`aligning_and_distributing_dialog_controls;c_align;a_align;;;',0,"Defaultoverview",)}
Related Topics

Size to Content (Arrange menu, Dialog Editor)

Resizes a control(s) to fit its label.
Note

You can use this command on option buttons, check boxes, push buttons, and text.

{button ,AL(`aligning_and_distributing_dialog_controls;c_align;a_align;;;',0,"Defaultoverview",)}
Related Topics

Snap to Grid (Arrange menu, Dialog Editor)
Toggles to enable or disable Snap to Grid in all the dialog editor windows. If you're moving and resizing controls
in a dialog box using the mouse, enabling Snap to Grid can help to accurately align and position objects along a
grid. It also allows you to draw precisely-sized objects.
Note

Snap to Grid can be enabled without showing the grid.

{button ,AL(`a_snap;;;;;',0,"Defaultoverview",)} Related Topics

Window Menu

Split (Window menu, Dialog Editor)
The Split command is used to resize the Script window in a dialog editor window. The Script window displays the
statements that correspond to the dialog and controls in the dialog editor window.
Though it has no editing functions, the Script window can provide you with a significant amount of information
about a dialog box.

{button ,AL(`a_focus;;;;;',0,"Defaultoverview",)} Related Topics

Cascade (Window menu, Dialog Editor)
Layers dialog editor windows so each title bar is visible. To activate a dialog editor window, click the script's title
bar. Minimized windows are arranged at the bottom of the Corel SCRIPT Dialog Editor window.

{button ,AL(`c_window;a_window;;;;',0,"Defaultoverview",)} Related Topics

Tile (Window menu, Dialog Editor)
Arranges the dialog editor windows in equal sizes to fit in the Corel SCRIPT Dialog Editor. Minimized windows are
arranged at the bottom of the Corel SCRIPT Dialog Editor window.

{button ,AL(`c_window;a_window;;;;',0,"Defaultoverview",)} Related Topics

Arrange Icons (Window menu)

Corel SCRIPT Editor
Arranges minimized script windows in the bottom-left corner of the Corel SCRIPT Editor window.
Corel SCRIPT Dialog Editor
Arranges minimized dialog editor windows in the bottom-left corner of the Corel SCRIPT Dialog Editor window.

{button ,AL(`c_window;a_window;sce_window;;;',0,"Defaultoverview",)} Related Topics

Close All (Window menu, Dialog Editor)
Closes all dialog editor windows. If your changes have not been saved, a confirmation message appears.

{button ,AL(`c_window;a_window;htde_close;;;',0,"Defaultoverview",)} Related Topics

Open document windows (Window menu)

Corel SCRIPT Editor
Opens and activates a script editor window. The windows are listed in the order in which they were opened.
Corel SCRIPT Dialog Editor
Opens and activates a dialog editor window. The windows are listed in the order in which they were opened.

{button ,AL(`c_window;a_window;sce_window;;;',0,"Defaultoverview",)} Related Topics

Help Menu

Help Topics (Help menu, Dialog Editor)
Opens the Corel SCRIPT Editor Help Contents screen. From this screen, you can choose the type of Help you
want. When you are in Help, clicking on the Contents button takes you back to the opening screen.

{button ,AL(`a_help;;;;;',0,"Defaultoverview",)} Related Topics

About Corel SCRIPT Dialog Editor (Help menu, Dialog Editor)
Displays a dialog box with information about the version of Corel SCRIPT Dialog Editor you're running. Clicking
the System Info button opens the System Info dialog box, which displays information about your system settings.

{button ,AL(`a_help;;;;;',0,"Defaultoverview",)} Related Topics

Dialogs

Attributes dialog box

Provides a space for you to enter the width of the selected dialog box or control(s) in dialog units.

Provides a space for you to enter the height of the selected dialog box or control(s) in dialog units.

Provides a space for you to enter the distance in dialog units from the inside of the dialog box's left border to the
left side of the selected control(s).
For dialog boxes, provides a space for you to enter the distance in dialog units from the dialog box's left border
to the left side of the monitor's display area.

Provides a space for you to enter the distance in dialog units from the bottom of the dialog box's title bar to the
top of the selected control(s).
For dialog boxes, provides a space for you to enter the distance in dialog units from the dialog box's top border
to the top side of the monitor's display area.

Centers the dialog box on the monitor during a script run. Ignores the entries in the X and Y boxes when enabled.

Provides a space for you to enter the text for the selected dialog box's title or a control's label.

Provides a space for you to enter a remark for a selected dialog box or control(s).
When the dialog box or control is saved as a Corel SCRIPT statement, the remark is added to the end of the
BEGIN DIALOG statement or the control's statement.

Provides a space for you to enter the text for an option group's name. Only active when option buttons are
selected.
The option group identifier holds the return value that corresponds to the selected option button within a group.

Provides a space for you to enter the text for a selected dialog box or control's identifier. Identifiers are used to
return a value to a running script.

Dialog and Control Attributes dialog box
The following attributes for dialog boxes and controls can be edited in this dialog box:

Width (in dialog units)
Height (in dialog units)
X (left border position)
Y (top border position)
Center Dialog option
Value
Text
Comment (a remark is added to the BEGIN DIALOG statement)

The attributes become parameters when the dialog and the controls are saved as Corel SCRIPT statements.
Note

If the Center Dialog option is enabled when a dialog box is selected, the X and Y number boxes are grayed
and cannot be edited. By default, a new dialog has the Center Dialog check box enabled.

You can select more than one control and open the Attributes dialog box. In this case, the title bar of the
Attributes box displays "Multiple Selection Attributes", and allows you to edit all the selected controls at once.

For example, if you selected a check box and option button, you could set them both to have the same
height and width. In some multiple selection cases, attribute options may be grayed and not available to edit.

{button ,AL(`Editing_dialogs_and_controls;;;;;',0,"Defaultoverview",)} Related Topics

Grid Setting dialog box
The Grid Setting dialog box sets options to help you to accurately align, size, and position controls.
Show Grid
Displays a series of dotted horizontal and vertical lines. Working with the grid on makes it easier to accurately
align and position controls.
The dots appear where the lines intersect. The Horizontal and Vertical number boxes set the line spacing.
Snap to Grid
Enabling Snap to Grid forces the mouse pointer to stay on the underlying grid when you insert, move, and resize
controls.
Snap to Grid can be enabled without showing the grid.

{button ,AL(`Editing_dialogs_and_controls;;;;;',0,"Defaultoverview",)} Related Topics

Displays a series of dotted horizontal and vertical lines. Working with the grid on makes it easier to accurately
align and position controls. The setting is applied to all dialog editor windows.
The dots appear where the lines    intersect. The Horizontal and Vertical number boxes set the line spacing.

Enabling Snap to Grid forces the mouse pointer to stay on the underlying grid when you insert, move, and resize
controls. The setting is applied to all dialog editor windows.
You can enable Snap to Grid without showing the grid.

Provides a space for you to enter the grid's horizontal line spacing in dialog units.

Provides a space for you to enter the grid's vertical line spacing in dialog units.

status bar whats this

Displays mouse pointer coordinates in dialog units when positioned over a dialog box in a dialog editor window.
Displays status bar messages when the mouse pointer is not positioned over a dialog box.

Displays the coordinates of the selected control's top-left corner in dialog units. When more than one control is
selected, the coordinates of the last selected control is displayed.

Displays the size of the selected control in dialog units. When more than one control is selected, the size of the
last selected control is displayed.

dialog editor windows whats this

This is the dialog editor window. The dialog box displayed in the dialog editor window is a graphical
representation of Corel SCRIPT statements. Working in this window is similar to using a drawing or painting
application: dialog controls are graphic objects which can be inserted, moved, resized, and aligned in a dialog
box.

This is the Script window. It displays the Corel SCRIPT statements that correspond to the dialog box and controls
in the dialog editor window. The order in which controls are entered into a dialog box determines the order of the
dialog box script statements.
You can copy dialog box definition statements from the Script window to the clipboard. However, you cannot
perform any editing function in the Script window.

Check box example

' Check box example
BEGIN DIALOG Dialogbox1 122, 55, "CHECKBOX example"

CHECKBOX 5, 7, 60, 10, "&Bold", bold%
CHECKBOX 5, 20, 60, 10, "&Italic", ital%
OKBUTTON 72, 5, 40, 14
CANCELBUTTON 72, 23, 40, 14

END DIALOG
ret = DIALOG(Dialogbox1)

' If ret is 2, then Cancel button was chosen
IF ret = 2 THEN STOP

REM Displays a MESSAGE based on selections
IF bold=1 and ital=1 then

MESSAGE "Bold on; Italic on"
ELSEIF bold=1 and ital=0 then

MESSAGE "Bold on; Italic off"
ELSEIF bold=0 and ital=1 then

MESSAGE "Bold off; Italic on"
ELSE

MESSAGE "Bold off; Italic off"
ENDIF

Displays the following dialog box until a OK or CANCEL selected.

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics

List box example

' List box example
REM Create an array called arr
DIM arr$(5)
arr(1) = "black"
arr(2) = "red"
arr(3) = "white"
arr(4) = "blue"
arr(5) = "green"
index = 4
BEGIN DIALOG listboxdlg 144, 68, "LISTBOX example"

TEXT 4, 4, 90, 8, "&List:"
LISTBOX 4, 14, 90, 50, arr, index
OKBUTTON 100, 4, 40, 14
CANCELBUTTON 100, 20, 40, 14

END DIALOG
ret = DIALOG(listboxdlg)
' If Cancel is selected, stop the script
IF ret = 2 THEN STOP
MESSAGE "You chose " + arr(index)

Displays the following dialog box shown and waits for the user to select an element in the list box and then
choose OK.

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics

Drop-down list box example

' Drop-down list box example
REM Create an array called arr
DIM arr$(5)
arr(1) = "black"
arr(2) = "red"
arr(3) = "white"
arr(4) = "blue"
arr(5) = "green"
index% = 4'"green"
BEGIN DIALOG DDlistboxdlg 144, 68, "DDLISTBOX example"

TEXT 4, 4, 90, 8, "&List:"
DDLISTBOX 4, 14, 90, 50, arr, index
OKBUTTON 100, 4, 40, 14
CANCELBUTTON 100, 20, 40, 14

END DIALOG
ret = DIALOG(DDlistboxdlg)
' If Cancel is selected, stop the script
IF ret = 2 THEN STOP
MESSAGE "You chose " + arr(index)

Displays the following dialog box shown and waits for the user to select an element in the drop-down list box and
then choose OK.

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics

Drop-down combo box example

' Drop-down combo box example
REM Create an array called arr
DIM arr$(5)
arr(1) = "black"
arr(2) = "red"
arr(3) = "white"
arr(4) = "blue"
arr(5) = "green"
combo = arr(2) 'initializes a choice in the combobox
BEGIN DIALOG ddcombodlg 144, 40, "DDCOMBOBOX example"

TEXT 4, 4, 90, 8, "&Combobox:"
DDCOMBOBOX 4, 14, 90, 62, arr, combo
OKBUTTON 100, 4, 40, 14
CANCELBUTTON 100, 20, 40, 14

END DIALOG
ret = DIALOG(ddcombodlg)
' If Cancel is selected, stop the script
IF ret = 2 THEN STOP

FOR i% = 1 TO 5

' If we are within the bounds of the array and
' find a match, then display a message.
IF combo = arr(i) THEN

MESSAGE "You chose " + combo
GOTO ENDFOR

ENDIF
NEXT i
REM If a match is found, this line will be skipped.
MESSAGE "You chose your own color: " + combo
ENDFOR:

Displays the dialog box until the user selects an item from the list or enters text into the text box and selects OK.
The selected item or text is returned in the variable combo.

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics

Combo box example

' Combo box example
REM Create an array called arr
DIM arr$(5)
arr(1) = "black"
arr(2) = "red"
arr(3) = "white"
arr(4) = "blue"
arr(5) = "green"
combo = arr(2) 'initializes a choice in the combobox
BEGIN DIALOG combodlg 144, 80, "COMBOBOX example"

TEXT 4, 4, 90, 8, "&Combobox:"
COMBOBOX 4, 14, 90, 62, arr, combo
OKBUTTON 100, 4, 40, 14
CANCELBUTTON 100, 20, 40, 14

END DIALOG
ret = DIALOG(combodlg)
' If Cancel is selected, stop the script
IF ret = 2 THEN STOP

FOR i% = 1 TO 5

' If we are within the bounds of the array and
' find a match, then display a message.
IF combo = arr(i) THEN

MESSAGE "You chose " + combo
STOP

ENDIF
NEXT i
REM If a match is found, this line will be skipped.
MESSAGE "You chose your own color: " + combo

Displays the dialog box until the user selects an item from the list or enters text into the text box and selects OK.
The selected item or text is returned in the variable combo.

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics

Text and text box example

' Text and text box example
text1 = "Corel Script Dept."+CHR(13)+CHR(10)+"1600 Carling Ave."+CHR(13)+CHR(10)+"Ottawa,
Ontario"+CHR(13)+CHR(10)+"Canada K1Z 8R7"
label1 = "&Please enter your address:" + CHR(13) + "(CTRL+ENTER for line break)"
' Initialize dialog box variables
'index = 2
BEGIN DIALOG textdlg 153, 87, "TEXT and TEXTBOX example"

TEXT 4, 5, 100, 16, label1
TEXTBOX 4, 25, 90, 48, text1
OKBUTTON 100, 4, 40, 14
CANCELBUTTON 100, 20, 40, 14

END DIALOG
ret = DIALOG(textdlg)
' If Cancel is selected, stop the script
IF ret = 2 THEN STOP
MESSAGE "Your Address is: " + CHR(13) + text1

Displays the dialog box shown below. In the text box, use CTRL+ENTER for line breaks. The dialog box returns a
message dialog box displaying the user entered address.

Note
If you want to insert a line break into the default text for a text box, use ANSI characters 10 and 13. See

CHR for more information.

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics

Option button, option group, and group box example

' Option button, option group, and group box example
ogroup%=1
BEGIN DIALOG OptionDialog 154, 68, "Option buttons and groups example"

GROUPBOX 4, 4, 80, 60, "Group Box:"
OPTIONGROUP ogroup%

OPTIONBUTTON 20, 20, 30, 10, "&Zero"
OPTIONBUTTON 20, 30, 30, 10, "&One"
OPTIONBUTTON 20, 40, 30, 10, "&Two"

OKBUTTON 100, 4, 40, 14
CANCELBUTTON 100, 20, 40, 14

END DIALOG
return = DIALOG(Optiondialog)
' If return is 2, then Cancel button was chosen
IF return = 2 THEN STOP
SELECT CASE ogroup

CASE 0
' The Zero option button was selected
MESSAGE "You chose Zero"

CASE 1
' The One option button was selected
MESSAGE "You chose One"

CASE 2
' The Two option button was selected
MESSAGE "You chose Two"

END SELECT

Displays the dialog box shown below until the user selects one of the options buttons and OK. The response
value is then returned in the variable ogroup%.

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics

OK, Cancel, Help, and Push button example

' Push button, OK button, Cancel button, and Help button example
BEGIN DIALOG Buttons1 55, 34, 236, 40, "BUTTON example"

OKBUTTON 21, 12, 40, 14
CANCELBUTTON 71, 12, 40, 14
PUSHBUTTON 121, 12, 40, 14, "&Push"
HELPBUTTON 171, 12, 40, 14, "C:\yourhelp\help.hlp", 104

END DIALOG
ret = DIALOG(Buttons1)
' If ret is 1, then OK button was chosen
IF ret = 1 THEN MESSAGE "OK button chosen"
' If ret is 2, then Cancel button was chosen
IF ret = 2 THEN

MESSAGE "CANCEL button was chosen"
STOP

END IF
' If ret is 3, then Push button was chosen
IF ret = 3 THEN MESSAGE "Push button chosen"

Displays the dialog box shown below until the user selects either the OK button, Cancel Button, or the Push
button. The help button opens a help file to a specified topic and does not assign a value to the ret variable

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics

Example of all dialog controls

' Example showing every dialog control used in Corel SCRIPT
DIM bmparray$(5)
DIM color(8) as string
bmpname = "C:\corel60\photopnt\plgbrush\footprnt.bmp"
bmparray(1) = "C:\corel60\photopnt\plgbrush\fuzzy.bmp"
bmparray(2) = "C:\corel60\photopnt\plgbrush\boxpanel.bmp"
bmparray(3) = "C:\corel60\photopnt\plgbrush\textart.bmp"
bmparray(4) = "C:\corel60\photopnt\plgbrush\treebare.bmp"
bmparray(5) = "C:\corel60\photopnt\plgbrush\saturn.bmp"
color(1) = "Red"
color(2) = "Blue"
color(3) = "Yellow"
color(4) = "Green"
color(5) = "Purple"
color(6) = "Brown"
color(7) = "White"
color(8) = "Black"
'***********************************Dialog declaration
text1 = "This is text"
help = "HELP!"
push1 = "Push button"
BEGIN DIALOG d1 300, 210, "ALL CONTROLS example"

OKBUTTON 250, 10, 45, 15
CANCELBUTTON 250, 31, 45, 15
HELPBUTTON 250, 53, 45, 15, help, HelpID%
PUSHBUTTON 250, 74, 45, 15, push1
TEXT 10, 10, 80, 15, text1
TEXTBOX 10, 20, 75, 15, textbox1$
GROUPBOX 10, 40, 78, 49, "Group Box"

OPTIONGROUP group1%
OPTIONBUTTON 15, 50, 66, 15, "Option Button #1"
OPTIONBUTTON 15, 65, 66, 15, "Option Button #2"

GROUPBOX 95, 40, 75, 49, "Group Box"
CHECKBOX 100, 50, 65, 15, "Check Button #1", binary1%
CHECKBOX 100, 65, 65, 15, "Check Button #2", binary2%

TEXT 10, 92, 70, 15, "Listbox"
LISTBOX 10, 102, 78, 70, Color, listbox1%
TEXT 95, 92, 70, 15, "Combobox"
COMBOBOX 95, 102, 75, 70, Color, combobox1$
TEXT 10, 175, 70, 15, "Drop Down Listbox"
DDLISTBOX 10, 185, 70, 70, Color, ddlistbox1%
TEXT 95, 175, 75, 15, "Drop Down Combobox"
DDCOMBOBOX 95, 185, 70, 70, Color, ddcombobox1$
TEXT 95, 10, 80, 15, "Spin Control: "
SPINCONTROL 95, 20, 40, 15, spin1%
IMAGE 190, 102, 100, 95, Bmpname
GROUPBOX 175, 6, 70, 83, "Picture List"

IMAGELISTBOX 180, 16, 60, 100, bmparray, imglst%
END DIALOG
'***************************Set defaults
textbox1 = "This is a textbox"
group1 = 1
binary1 = -1
binary2 = 1
binary3 = 0
Listbox1 = 2
Combobox1 = color(3)
DDListBox1 = 1
DDCombobox1 = color(5)
spin1 = 9
imglst = 2
TRYAGAIN:
ret = DIALOG(d1)
if ret = 2 then stop
IF ret = 3 then

MESSAGE "You pressed a push button"
GOTO TRYAGAIN

END IF
mess$ = "You entered " + CHR(34) + textbox1 + CHR(34) + " in the textbox"

mess = mess + CHR(13) + "You picked " + CSTR(spin1) + " in the spin box"
mess$ = mess + CHR(13) + "You selected Option Button #" + CSTR(group1 + 1)
mess = mess + CHR(13) + "You selected:"
if binary1<>0 then mess = mess + " Check Button #1"
if binary2<>0 then mess = mess + " Check Button #2"
mess = mess + CHR(13) + "You picked " + color(Listbox1) + " in the ListBox"
mess = mess + CHR(13) + "You entered " + Combobox1 + " in the ComboBox"
mess = mess + CHR(13) + "You entered " + DDCombobox1 + " in the DDComboBox"
mess = mess + CHR(13) + "You picked " + color(DDListbox1) + " in the DDListBox"
mess = mess + CHR(13) + "You picked " + bmparray(imglst) + " as your image"
MESSAGE mess

Displays the following dialog box which holds every dialog control available in Corel SCRIPT.

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics

Spin control example

' Spin control example
REM set default values
spin1% = 12
spin2% = 50
spin3% = 1

BEGIN DIALOG spindlg 170, 85, "SPINCONTROL example"
TEXT 10, 13, 55, 15, "&Font Size: "

SPINCONTROL 70, 10, 40, 15, spin1%
TEXT 10, 38, 55, 15, "Font &Spacing (%): "

SPINCONTROL 70, 35, 40, 15, spin2%
TEXT 10, 63, 55, 15, "&Para Spacing: "

SPINCONTROL 70, 60, 40, 15, spin3%
OKBUTTON 120, 10, 40, 15
CANCELBUTTON 120, 30, 40, 15

END DIALOG

return = DIALOG(spindlg)
IF return = 2 THEN STOP

MESSAGE "You chose a font size of: " + CSTR(spin1)
MESSAGE "You chose a font spacing of: " + CSTR(spin2) + "%"
MESSAGE "You chose a para spacing of: " + CSTR(spin3)

Displays the following dialog box and until you press the OK or Cancel button.

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics

Image list box and Image example

' Image list box and Image example
DIM bmparray$(5)
bmpname = "C:\corel60\photopnt\plgbrush\pony.bmp"
bmparray(1) = "C:\corel60\photopnt\plgbrush\building.bmp"
bmparray(2) = "C:\corel60\photopnt\plgbrush\banana.bmp"
bmparray(3) = "C:\corel60\photopnt\plgbrush\textart.bmp"
bmparray(4) = "C:\corel60\photopnt\plgbrush\treebare.bmp"
bmparray(5) = "C:\corel60\photopnt\plgbrush\saturn.bmp"
BEGIN DIALOG D1 210, 120, "IMAGES"

OKBUTTON 150, 10, 50, 15
GROUPBOX 10, 10, 100, 100, "Image"
IMAGE 20, 20, 80, 80, Bmpname
GROUPBOX 120, 25, 80, 85, "Image List"

IMAGELISTBOX 130, 35, 60, 100, bmparray, imglst%
END DIALOG
ret% = DIALOG(D1)
Displays the following dialog box and until you press the OK button.

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics

To start Corel SCRIPT Dialog Editor from the Windows desktop
1. On the Windows desktop, click Start, Programs.
2. Point to the folder that contains the Corel SCRIPT Dialog Editor if it does not appear on the main Program

menu.
Corel applications normally reside in the COREL folder.

3. Click Corel SCRIPT Dialog Editor (dlged.exe).
Note

After the program is started, the Corel SCRIPT Dialog Editor button is displayed in the Windows taskbar.
To start Corel SCRIPT Dialog Editor from Windows NT, open the group window with the Corel SCRIPT Dialog

Editor icon and double-click the Dialog Editor icon.

{button ,AL(`a_start;;;;;',0,"Defaultoverview",)} Related Topics

To start Corel SCRIPT Dialog Editor by using the Run command
1. On the Windows desktop, click Start, Run.
2. In the Open edit box, type the Dialog Editor's folder location and DLGED.

For example, C:\COREL60\PROGRAMS\DLGED
Corel applications normally reside in the COREL60\PROGRAMS folder.

Note
If you forget the location of the Corel SCRIPT Dialog Editor, click Browse.
After the program is started, the Corel SCRIPT Dialog Editor button is displayed in the Windows taskbar.

{button ,AL(`a_start;;;;;',0,"Defaultoverview",)} Related Topics

To start the Corel SCRIPT Dialog Editor from the Corel SCRIPT Editor
From the Corel SCRIPT Editor:

Click Edit, Dialog.
If the insertion point is placed in a dialog box definition in the Corel SCRIPT Editor, the dialog box is loaded

into a dialog editor window. A dialog box definition consists of the BEGIN DIALOG and END DIALOG statements with
dialog control statements in between. The Corel SCRIPT Dialog Editor ignores statements that are not part of the
dialog box definition.

If the insertion point is not placed in a dialog box definition in the Corel SCRIPT Editor, an empty dialog box
is opened in the Dialog Editor.

Note
After the program is started, the Corel SCRIPT Dialog Editor button is displayed in the Windows taskbar.

{button ,AL(`a_start;;;;;',0,"Defaultoverview",)} Related Topics

To create a new dialog box
Click File, New.

A dialog editor window opens with an empty dialog box in it.
Note

Only one dialog box can exist in a dialog editor window but you can have multiple dialog editor windows
opened in the Corel SCRIPT Dialog Editor.

By default, a new dialog has the Center Dialog checkbox enabled in its dialog attributes box.

{button ,AL(`a_start;htde_default_sizes;;;;',0,"Defaultoverview",)} Related Topics

To open a Corel SCRIPT script that contains a dialog box definition
1. Click File, Open.
2. If the Corel SCRIPT script is not in the default folder, choose the drive and folder where it is stored.
3. Double-click the Corel SCRIPT script you want to open.
Note

If the script contains statements other than dialog box definition statements, it cannot be opened in the
Corel SCRIPT Dialog Editor.

The Dialog Editor can read REM statements but they are ignored and lost when the dialog box is saved.
You can use wild cards (* and ?) if you're not sure of the name of the file you want to open. For example,

typing script*.csc in the File Name box and clicking OK lists all CSC files in the selected folder beginning with
script. Typing script?.csc in the File Name box and clicking OK lists all CSC files in the selected folder that begin
with script and are followed by only one more character.

{button ,AL(`a_start;;;;;',0,"Defaultoverview",)} Related Topics

To close a Corel SCRIPT Dialog Editor window
Click File, Close.

Note
If your changes have not been saved, a confirmation message appears.

{button ,AL(`a_start;;;;;',0,"Defaultoverview",)} Related Topics

To save a Corel SCRIPT dialog box
Click File, Save.

Note
Dialog boxes are saved as Corel SCRIPT statements. The statements form a dialog box definition which

starts with the BEGIN DIALOG statement, ends with the END DIALOG statement, and has dialog control statements
in between.

If you're saving a new Corel SCRIPT dialog box, type a name in the File Name box.
To save a Corel SCRIPT dialog box script with a new name, click File, Save As and type a new name in the

File Name box.

{button ,AL(`a_start;script_files;;;;',0,"Defaultoverview",)} Related Topics

To close the Corel SCRIPT Dialog Editor
Click File, Exit.

Note
You are prompted to save any unsaved changes in any open dialog editor windows.

{button ,AL(`a_start;;;;;',0,"Defaultoverview",)} Related Topics

To move or copy a dialog box definition from the Dialog Editor to the Corel SCRIPT Editor
From the Corel SCRIPT Dialog Editor:
1. Click Edit, Select All.
2. Click Edit, Cut to move or Edit, Copy to copy.

The dialog box definition is transferred to the clipboard as Corel SCRIPT statements consisting of the BEGIN
DIALOG and END DIALOG statements with the control statements in between.

3. In the Corel SCRIPT Editor, place the insertion point where you want to insert the dialog box definition.
4. Click Edit, Paste. Selected text in the Editor is overwritten with the clipboard contents.
Note

You can also transfer control statements from the Dialog Editor to the Editor. Cut or copy the selected
controls to the clipboard and then paste them in the Editor.

If you had brought a dialog box into the Dialog Editor through the Corel SCRIPT Editor by clicking Edit,
Dialog, you are prompted to transfer the dialog box definition to the Clipboard when you close the Dialog Editor. You
can then paste the transferred dialog box definition to the Editor by clicking Yes in SCEDIT system dialog box that
was opened when the Dialog editor was started. The original dialog box definition is then overwritten. An example
of the dialog box is displayed below:

{button ,AL(`a_trans;a_insert;a_start;ht_start_cse_app;ht_start_cse_win;;',0,"Defaultoverview",)}
Related Topics

To move or copy a dialog box definition from the Corel SCRIPT Editor to the Dialog Editor
From the Corel SCRIPT Editor:
1. Place the insertion point in a dialog box definition.
2. Click Edit, Dialog.

If the insertion point is not placed in a dialog box definition in the Corel SCRIPT Editor, an empty dialog box is
opened in the Dialog Editor.

Note
When you close the Corel SCRIPT Dialog Editor, you are prompted to transfer the dialog box definition to

the Clipboard. You can paste the transferred dialog box definition to the Editor by clicking Yes in SCEDIT system
dialog box that was opened when the Dialog editor was started. The original dialog box definition is then
overwritten. An example of the dialog box is displayed below:

{button ,AL(`a_trans;a_insert;a_start;ht_start_cse_app;ht_start_cse_win;;',0,"Defaultoverview",)}
Related Topics

To edit a dialog box's attributes
1. Select the dialog box.
2. Click Edit, Attributes.
3. Type a new values into any of the following attribute boxes:

Width (in dialog units)
Height (in dialog units)
X (left border position)
Y (top border position)
Center Dialog option
Value
Text
Comment (a remark is added to the BEGIN DIALOG statement).

Note
If the Center Dialog option is enabled, the X and Y number boxes are grayed and cannot be edited. By

default, a new dialog has the Center Dialog checkbox enabled.
A thick border around a dialog box indicates it has been selected. Dialog boxes don't use sizing handles.

{button ,AL(`a_edit;htde_select_dialog_box;;;;',0,"Defaultoverview",)} Related Topics

To resize a dialog box using the mouse
1. Place the mouse pointer on a dialog border.
2. Drag the side, top or bottom border to resize the window in one direction or drag a border corner to resize the

window horizontally and vertically.
3. Release the mouse button when the window is the desired size.
Note

Pressing ESC while resizing resets the dialog box to its original size.

{button ,AL(`a_edit;;;;;',0,"Defaultoverview",)} Related Topics

To move a dialog box using the mouse
1. Position the mouse pointer on the dialog box title bar.
2. Hold the mouse button down and drag the dialog box to a new position.
Note

The dialog editor window is a representation of your computer screen. When you move the dialog box
within the dialog editor    window you are actually changing the dialog box's screen placement when it is run in a
script. For example, if you move the dialog box to the bottom-right corner of its dialog editor window, it will appear
on the bottom-right corner of the computer screen when run in a script file.     

If the Center Dialog checkbox in the dialog attributes box is enabled, the dialog box position in the dialog
editor window is ignored and the dialog box is centered during script running. A dialog box can also be set to be
centered on the screen by omitting the position attributes parameters in the BEGIN DIALOG statement.

By default, a new dialog has the Center Dialog checkbox enabled.

{button ,AL(`a_edit;;;;;',0,"Defaultoverview",)} Related Topics

To insert a control into a dialog box using the click method
1. Click Control and then click the control you want to insert.
2. Position the mouse pointer in the dialog box.

The mouse appears in the Control state () when positioned in a dialog editor window.
3. Click in the dialog box where you want to place the control's top-left corner.

The control is inserted with its default size settings.
Note

To insert a control a multiple number of times, hold down CTRL while you make your selection. Press ESC to
return the mouse back to the Selector state (
).

{button ,AL(`a_edit;htde_default_sizes;a_select;;;',0,"Defaultoverview",)} Related Topics

To insert a control into a dialog box using the click & drag method
1. Click Control and then click the control you want to insert.
2. Position the mouse pointer in the dialog box.

The mouse appears in the Control state () when positioned in a dialog editor window.
3. Position the mouse pointer where you want one corner of the control to appear
4. Hold the mouse button down and drag up or down on a diagonal.
5. When the control is the size and shape you want, release the mouse button.

Note
To insert a control a multiple number of times, hold down CTRL while you make your selection. Press ESC to

return the mouse back to the Selector state (
).

The control is inserted with a default label and identifier which you can change.

{button ,AL(`a_edit;a_select;;;;',0,"Defaultoverview",)} Related Topics

To undo operations
Click Edit, Undo.

Note
The following actions cannot be reversed using undo:

any change of view (activating windows, scrolling etc.)
any file operation (open, saving, importing etc.)
any object selection operations
any operation with the Grid

rt: a_edit

To restores change reversed by the Undo command
Click Edit, Redo.

rt: a_edit

To delete controls
1. Select the controls you want to delete.
2. Click Edit, Delete.

The selected controls are not transferred from the dialog box to the clipboard.
Note

Instead of using Edit, Delete, you can delete controls by clicking Edit, Cut which transfers controls from the
dialog box to the clipboard as Corel SCRIPT statements.

{button ,AL(`a_edit;a_select;;;;',0,"Defaultoverview",)} Related Topics

To cut controls to the clipboard
1. Select the controls you want to cut.
2. Click Edit, Cut.

The selected controls are transferred from the dialog box to the clipboard as Corel SCRIPT statements.
Note

Instead of using Edit, Cut, you can delete controls by clicking Edit, Delete. This does not transfer controls
from the dialog box to the clipboard.

{button ,AL(`a_edit;a_select;;;;',0,"Defaultoverview",)} Related Topics

To copy controls to the clipboard
1. Select the controls you want to copy.
2. Click Edit, Copy.

The selected controls are copied from the dialog box to the clipboard as Corel SCRIPT statements.

{button ,AL(`a_edit;a_select;;;;',0,"Defaultoverview",)} Related Topics

To paste a copy of a control in a dialog box
1. Select the control(s) you want to copy.
2. Click Edit, Copy.

The selected control(s) is copied from the dialog box to the clipboard as Corel SCRIPT statements.
3. Click in the dialog editor window you want to paste the control(s) into.
4. Click Edit, Paste.
Note

A pasted control retains the original's label, identifier, size, and position attributes.
If you paste a control into the same dialog editor window it was copied from, the pasted control is placed

on top of the original control with the same name and identifier. You'll have to change the identifier in one of the
controls because identifiers must be unique in a dialog definition.

If you try to paste controls from a different sized dialog box into a position that doesn't exist in the second
dialog box, the controls are placed in the closest valid position.

If the controls are too big to fit into the second dialog box, the controls are resized to fit.
If you paste Clipboard contents that contain the BEGIN DIALOG and END DIALOG statements, a new dialog

box is opened in another dialog editor window.

{button ,AL(`a_edit;a_select;;;;',0,"Defaultoverview",)} Related Topics

To move a control in a dialog box using the mouse
1. Select the control(s) you want to move.
2. Press and hold the mouse button.
3. Drag the control(s) to a new location.
4. Release the mouse button.
Note

As you are moving the controls, the Status Line shows the control coordinates of the last control you
selected. The last control you select has a dotted line border.

If Snap to Grid is enabled, the control moves along the dialog box grid.
If Snap to Grid is enabled and more than one control is selected, the last control you selected moves along

the dialog box grid.
Pressing ESC while moving the control(s) resets the control(s) to its original position.

{button ,AL(`a_edit;a_select;;;;',0,"Defaultoverview",)} Related Topics

To move a control in a dialog box using the attributes box
1. Select the control(s) you want to move.
2. Click Edit, Attributes.
3. Type a number in the X number box for the distance from the inside of the dialog box's left border to the

control's left border. The number is based in dialog units.
4. Type a number in the Y number box for the distance from the bottom of the dialog box's title bar to the

control's top border. The number is based in dialog units.
Note

If more than one control is selected, the X and Y number boxes are cleared because they cannot show a
mixed-value. Though cleared, the number boxes accept entries. Entering values in the X and Y number boxes
positions the top-left corners of the selected controls on the on the same X-Y coordinate in the dialog box.

{button ,AL(`a_edit;a_select;;;;',0,"Defaultoverview",)} Related Topics

To move a control from one dialog box to another
1. Select the control(s) you want to move.
2. Click Edit, Cut.
3. By clicking in it, activate the dialog editor window that you want to move the control(s) into.
4. Click Edit, Paste.

The control(s) are placed in the same position as in the first dialog box.
Note

If you try to move controls from a different sized dialog box into a position that doesn't exist in the second
dialog box, the controls are placed in the closest valid position.

If the controls are too big to fit into the second dialog box, the controls are resized to fit.

{button ,AL(`a_edit;a_select;;;;',0,"Defaultoverview",)} Related Topics

To resize a control in a dialog box using the mouse
1. Select the control(s) you want to resize.
2. Press and hold the mouse button on a sizing handle.

The sizing handles on the corners change both the width and height. The other sizing handles change either
the width or height.

3. Drag the handle until the control is the size you want.
4. Release the mouse button.
Note

As you are resizing a control, the Status Line shows the control's new size and coordinates. If more than
one control is selected, the Status Line shows the size of the last control you selected.

If Snap to Grid is enabled, the control is resized along the dialog box grid.
If Snap to Grid is enabled and more than one control is selected, the last control you selected is resized

along the dialog box grid.
Pressing ESC while resizing resets the control(s) to its original size.

{button ,AL(`a_edit;htde_control_size_label;a_select;;;',0,"Defaultoverview",)} Related Topics

To resize a control in a dialog box using the attributes box
1. Select the control(s) you want to resize.
2. Click Edit, Attributes.
3. Type a new value in the Width number box to change the width. The value is expressed in dialog units.
4. Type a new value in the Height number box to change the height. The value is expressed in dialog units.
Note

Steps 3 and 4 are both optional. You can do one or both.
If more than one control is selected, they are resized to the same width and height as specified in the

Multiple Selection Attributes dialog box.

{button ,AL(`a_edit;a_select;;;;',0,"Defaultoverview",)} Related Topics

To edit a control's attributes using the attributes box
1. Select the control(s) you want to edit.
2. Click Edit, Attributes.
3. Type a new values into any of the following attribute boxes (if applicable):

Width
Height
X (left border position)
Y (top border position)
Text
Value
Option Group
Comment (a remark is added to the Corel SCRIPT statement for the control).

Note
If more than one control is selected, the selected controls take on the attributes specified in the Multiple

Selection Attributes dialog box.

{button ,AL(`a_edit;a_select;;;;',0,"Defaultoverview",)} Related Topics

To duplicate a control
1. Select the control(s) you want to duplicate.
2. Click Edit, Duplicate.
Note

The duplicated control(s) is offset from the original by 3 dialog units, both down and to the right.
The duplicated control(s) takes on the default identifier and the orignal control's label. If you copied the

control, the original's label and identifier would also be copied.

{button ,AL(`a_edit;a_select;;;;',0,"Defaultoverview",)} Related Topics

To test a dialog box
Click View, Test Dialog.

In test mode you can confirm the following dialog box features:
tab order within the dialog box
shortcut keys are operational
drop-down boxes openings

Note
Press ESC to exit test mode. Pressing any push button or the Close Dialog button (

) also exits test mode.
You cannot edit a dialog box in test mode.

The following controls are filled with place holders in test mode:
list boxes
drop-down list boxes
combo boxes
drop-down combo boxes

The place holders give you a better idea of what the dialog box will actually look like when it is run rather than
does an empty control.

{button ,AL(`a_focus;;;;;',0,"Defaultoverview",)} Related Topics

To select a control
1. Click the Control, Selector. By default, the mouse is in Selector mode and appears as .
2. In the dialog document window, click anywhere on a control.
Note

A selected control has a 8 sizing handles.

{button ,AL(`a_select;;;;;',0,"Defaultoverview",)} Related Topics

To select a dialog box
Click anywhere in a dialog box until a thick border is displayed around it.

Note
A thick border around a dialog box indicates it has been selected. Dialog boxes don't use sizing handles.

{button ,AL(`a_select;htde_dialog_attributes;;;;',0,"Defaultoverview",)} Related Topics

To select multiple controls
1. Click the Control, Selector. By default, the mouse is in Selector mode and appears as .
2. In the dialog document window, while holding down the SHIFT key, click the controls you want to select.
Note

Selecting more than one control lets you apply the same attributes to each of them.
A selected control has a 8 sizing handles.
You can also select multiple controls using a marquee select.
The last control you select has a dotted line border.

{button ,AL(`a_select;;;;;',0,"Defaultoverview",)} Related Topics

To marquee select controls
1. Click the Control, Selector. By default, the mouse is in Selector mode and appears as .
2. Hold down the mouse button and drag the marquee box until it completely encloses the controls you want

selected.
3. Release the mouse button.
Note

When you hold down ALT while you drag, any control that intersects with the marquee box is selected. If
you do not release the mouse button before releasing ALT, only those controls enclosed by the marquee box will be
selected.

A selected control has a 8 sizing handles.
The last control you select has a dotted line border.

{button ,AL(`a_select;;;;;',0,"Defaultoverview",)} Related Topics

To add or remove controls to a group of selected controls
1. Click the Control, Selector. By default, the mouse is in Selector mode and appears as .
2. In the dialog document window, while holding down the SHIFT key, click the controls you want to select or de-

select.
Note

A selected control has a 8 sizing handles.
The last control you select has a dotted line border.

{button ,AL(`a_select;;;;;',0,"Defaultoverview",)} Related Topics

To deselect all controls
Click any open space outside the dialog box in the dialog editor window.

{button ,AL(`a_select;;;;;',0,"Defaultoverview",)} Related Topics

To select all controls in a dialog
Click Edit, Select All.

Tip
Selecting the dialog box selects all the controls in the dialog as well.
Selecting all the controls in a dialog also selects the dialog box.
The last control you select has a dotted line border.

{button ,AL(`a_select;;;;;',0,"Defaultoverview",)} Related Topics

To invert a selection of controls
1. Click Control, Selector. By default, the mouse is in Selector mode and appears as .
2. Hold down SHIFT.
3. Hold down the mouse button and drag the marquee box until it completely encloses both the controls you

want to select and those you want to de-select (invert select).
4. Release SHIFT.
5. Release the mouse button.

The controls which were originally not selected are now selected and the controls which were selected are now
not selected.

Note
A selected control has a 8 sizing handles.

RT: a_select

To align controls along their left edge
1. Select the controls you want to align.

The last control you select maintains its position; all other selected controls move to align with this control.
2. Click Arrange, Align Control, Left.
Note

The last control you select has a dotted line border.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics

To align controls along their right edge
1. Select the controls you want to align.

The last control you select maintains its position; all other selected controls move to align with this control.
2. Click Arrange, Align Control, Right.
Note

The last control you select has a dotted line border.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics

To align controls along their top edge
1. Select the controls you want to align.

The last control you select maintains its position; all other selected controls move to align with this control.
2. Click Arrange, Align Control, Top.
Note

The last control you select has a dotted line border.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics

To align controls along their bottom edge
1. Select the controls you want to align.

The last control you select maintains its position; all other selected controls move to align with this control.
2. Click Arrange, Align Control, Bottom.
Note

The last control you select has a dotted line border.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics

To make controls the same width
1. Select the controls you want to resize.

The last control you select maintains its width; all other selected controls resize to this control.
2. Click Arrange, Make Same Size, Width.
Note

The last control you select has a dotted line border.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics

To make controls the same height
1. Select the controls you want to resize.

The last control you select maintains its height; all other selected controls resize to this control.
2. Click Arrange, Make Same Size, Height.
Note

The last control you select has a dotted line border.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics

To make controls the same width and height
1. Select the controls you want to resize.

The last control you select maintains its size; all other selected controls resize to this control.
2. Click Arrange, Make Same Size, Both.
Note

The last control you select has a dotted line border.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics

To size a control to fit its label
1. Select the control(s) you want to resize.
2. Click Arrange, Size to Content.
Note

You can use this command on option buttons, check boxes, push buttons, and text.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics

To center controls vertically in a dialog box
1. Select the controls you want to center.
2. Click Arrange, Center in Dialog, Vertical.

The selected controls are centered vertically based on the topmost and bottommost borders of the selected
controls.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics

To center controls horizontally in a dialog box
1. Select the controls you want to center.
2. Click Arrange, Center in Dialog, Horizontal.

The selected controls are centered horizontally based on the leftmost and rightmost borders of the selected
controls.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics

To even the spacing between controls horizontally within a dialog box
1. Select the controls you want to arrange.
2. Click Arrange, Distribute, Horizontal.

The selected controls are spaced evenly between the leftmost and rightmost borders of the selected controls.
Note

More than two controls must be selected for this option to be enabled.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics

To even the spacing between controls vertically within a dialog box
1. Select the controls you want to arrange.
2. Click Arrange, Distribute, Vertical.

The selected controls are spaced evenly between the topmost and bottommost borders of the selected
controls.

Note
More than two controls must be selected for this option to be enabled.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics

To turn on or turn off Snap to Grid
Click Arrange, Snap to Grid.

Note
Repeat the above procedure to turn off Snap to Grid
When Snap to Grid is enabled, a control can only be moved along the dialog box grid. Snap to Grid can be

enabled without showing the grid.
Snap to Grid is set for all dialog editor windows.

{button ,AL(`a_edit;a_snap;a_insert;a_align;;',0,"Defaultoverview",)} Related Topics

To view or hide the grid
1. Click View, Grid Settings.
2. Enable Show Grid

Show Grid is enabled when a check mark appears beside Show Grid.
Note

Click Show Grid again to hide the grid. Show Grid is disabled when no check mark appears beside Show
Grid.

When Snap to Grid is enabled, a control can only be moved along the dialog box grid. Snap to Grid can be
enabled without showing the grid.

Show Grid is set for all dialog editor windows.

{button ,AL(`a_edit;a_snap;a_insert;a_align;;',0,"Defaultoverview",)} Related Topics

To set grid spacing
1. Click View, Grid Settings.
2. Type a new value in the Horizontal number box to set the horizontal spacing.
3. Type a new value in the Vertical number box to set the vertical spacing.
Note

Grid measurements are expressed in dialog units.
To show the grid, enable Show Grid in the same dialog box.
Grid spacing settings are set for all dialog editor windows.

{button ,AL(`a_edit;a_snap;a_insert;a_align;;',0,"Defaultoverview",)} Related Topics

To resize the Script window
Within a dialog editor window, the Script window is attached below the dialog box window. By default the Script
window is minimized when the Corel SCRIPT Dialog Editor is launched.
1. Click Window, Split.

The mouse pointer changes to a two-headed arrow ().
2. Horizontally drag the top border of the Script window to the desired position.
Note

The order of the statements in the Script window is determined by the order in which the controls were
added to the dialog box.

You cannot edit in the Script window but you can copy text to the clipboard..
The following shows a dialog editor window displaying a Script window:

{button ,AL(`a_window;a_focus;;;;',0,"Defaultoverview",)} Related Topics

To view all dialog editor windows
Click Window, Tile.

Note
Minimized dialog editor windows are arranged at the bottom of the Corel SCRIPT Dialog Editor window.

{button ,AL(`a_window;;;;;',0,"Defaultoverview",)} Related Topics

To cascade dialog editor windows
Click Window, Cascade.

Note
Minimized script windows are arranged at the bottom of the Corel SCRIPT Dialog Editor window.

{button ,AL(`a_window;;;;;',0,"Defaultoverview",)} Related Topics

To arrange minimized dialog editor windows
Click Window, Arrange Icons

Note
Minimized dialog editor windows are arranged from the bottom-left corner of the Corel SCRIPT Dialog Editor

to the bottom-right corner.

{button ,AL(`a_window;;;;;',0,"Defaultoverview",)} Related Topics

To view an open script window in the Corel SCRIPT Dialog Editor
Click Window and click on the window you want to view.

The open windows are listed at the bottom of the Window menu.

{button ,AL(`a_window;;;;;',0,"Defaultoverview",)} Related Topics

To add a shortcut key to a control that has a label
1. Select a control that has a label (option buttons, push buttons, check boxes).
2. Click Edit, Attributes.
3. In the Label text box place an ampersand (&) in front of the letter you want to use as a shortcut key.
Note

A shortcut key is an alternative to using TAB to move within a dialog and change focus. To use a shortcut,
press ALT+! where ! is the defined shortcut key.

Shortcut keys in a dialog box should be unique.

{button ,AL(`a_focus;;;;;',0,"Defaultoverview",)} Related Topics

To add a shortcut key to a control that doesn't have a label
The text control that precedes a control without a label (for example, list boxes and text boxes) can be used to
hold the shortcut for the control. The text control statement must immediately precede the control's statement
in the dialog box definition. Before you insert a control without a label into a dialog box, you should insert a text
control if you want to create an association between the unlabelled control and the text control. To add a
shortcut key to a control that doesn't have a label:
1. Select the text control that immediately precedes the unlabelled control.

Physical location in the dialog box is not important; it is the location of the Corel SCRIPT statement in the script
that is important.

2. Click Edit, Attributes.
3. In the Label text box place an ampersand (&) in front of the letter you want to use as a shortcut key.
Note

You can see if a text control precedes an unlabelled control by opening the Script window or copying the
dialog box to the Corel SCRIPT Editor.

A shortcut key is an alternative to using TAB to move within a dialog and change focus. To use a shortcut,
press ALT+! where ! is the defined shortcut key.

Shortcut keys in a dialog box should be unique.

{button ,AL(`a_focus;;;;;',0,"Defaultoverview",)} Related Topics

To change dialog tab order
Tab order in a dialog box is based on the order in which the controls are listed in the Corel SCRIPT script. The
underlying Corel SCRIPT statements for controls are stored in the order in which they were inserted into a dialog
box.

To change the order of the controls in the script file, transfer the dialog box to the Corel SCRIPT Editor and
reorder the dialog box definition statements.

Note
You view a dialog box's underlying Corel SCRIPT statements by opening the Script window.

{button ,AL(`a_focus;;;;;',0,"Defaultoverview",)} Related Topics

To start Help from Corel SCRIPT Dialog Editor
Click Help, Help Topics.

{button ,AL(`a_help;a_start;;;;',0,"Defaultoverview",)} Related Topics

To open on-line Help to a selected control's syntax reference
1. Click Help, What's This
2. Click a control.

{button ,AL(`a_help;a_start;;;;',0,"Defaultoverview",)} Related Topics

To view or hide status bar (Corel SCRIPT Dialog Editor)
Click View, Status Bar.

A checkmark beside the Status Bar menu command indicates the status bar is displayed.

{button ,AL(`htde_view_grid;;;;;',0,"Defaultoverview",)} Related Topics

Corel SCRIPT and dialog boxes
Many times you need to get information from the user before your script performs a desired action. For simple
information, you can use the Corel SCRIPT function INPUTBOX to get a string from the user returned to a running
script. If you want to provide the user with options and more complex information,    such as a list of choices, you
can use a dialog box in your script.
Dialog boxes are created using the Corel SCRIPT language. The Corel SCRIPT language features a full set of
programming statements to produce dialog boxes which incorporate sophisticated Windows options and
features. For example, the Corel SCRIPT statements below create the following dialog box:
BEGIN DIALOG Dialog1 55, 10, 180, 53, "A Corel SCRIPT dialog box example"

OKBUTTON 130, 27, 40, 14
CANCELBUTTON 130, 7, 40, 14
OPTIONGROUP ogroup%
OPTIONBUTTON 10, 9, 90, 10, "Corel &DRAW!"
OPTIONBUTTON 10, 21, 90, 10, "Corel &PHOTO-PAINT"
OPTIONBUTTON 10, 33, 90, 10, "&Corel PRESENTS"

END DIALOG

The first and last statement initialize and end a dialog box's definition. Each indented statement specifies a
dialog option, and the parameters specify the option's dialog box location, size, and other attributes

You have two options to create the Corel SCRIPT statements used to produce a dialog box. Your first option is to
use the Corel SCRIPT Editor and type in the dialog statements. This can prove to be a time-consuming option
because each statement's parameters are particular and it is difficult to visualize the dialog based on coordinate
positions.
Your second option to create Corel SCRIPT statements used to produce a dialog box is to use the Corel SCRIPT
Dialog Editor. With the Dialog Editor, you draw what you want your dialog box to look like. The dialog box, and
the items within it, are graphical representations of Corel SCRIPT statements. The dialog box can be transferred
to the Clipboard as Corel SCRIPT statements or saved as a Corel SCRIPT script file. With the Corel SCRIPT Dialog
Editor you can quickly create or edit a dialog box in a few steps.
Note

The Corel SCRIPT Dialog Editor is a stand-alone program included with Corel applications. If you didn't
install the Dialog Editor when you installed the Corel applications, you can run the Corel setup program again to
install it. The Dialog Editor can be started from the Corel SCRIPT Editor or from the Windows desktop.

{button ,AL(`Corel_SCRIPT_dialog_controls;Dialog_controls_summary;Returning_dialog_settings_and
_choices;Corel_SCRIPT_Dialog_Editor;Corel_SCRIPT_Editor;',0,"Defaultoverview",)} Related Topics

Corel SCRIPT dialog controls
A Corel SCRIPT dialog box is comprised of a border that encloses graphic elements called dialog controls. By
using the mouse and keyboard, you can interact with the controls by selecting options, entering text, and
pressing dialog buttons. The following example is comprised of four types of dialog controls: an OK button, a
Cancel button, three option buttons, and a group box.

Each control has its own set of underlying attributes. Each of the four types of controls above, and almost every
other dialog control, have a height, width, horizontal location, vertical location, and text attribute. Additionally, most
controls also have an value attribute. The value is a variable which that is assigned string and number values that
reflect the state of the dialog box when it closes. These variables can then be used in a script to initiate actions
dependent on their values.

In some cases controls don't return a value to a script because their only function is to organize the dialog box
controls or to provide the user with information. In the above example, the group box is the only control that
doesn't return a value back to a running script but provides a logical grouping for the option buttons.
The following dialog box provides an example of every dialog control available in Corel SCRIPT. See Dialog
controls summary for more information.

{button ,AL(`Dialog_controls_summary;Returning_dialog_settings_and_choices;Corel_SCRIPT_Dialog_
Editor;Sizing_and_placing_dialogs_and_controls;Default_control_sizes_and_labels;',0,"Defaultovervie
w",)} Related Topics

Dialog controls summary
The following table lists all the dialog controls available in Corel SCRIPT. The last three entries note the other
Corel SCRIPT statements that must be used to create and display a dialog box.

Control
(explanation)

Syntax
(syntax reference) Return Value

Example
(click pop-up)

Dialog Editor
Control Button

Cancel button CANCELBUTTON 2 and closes the
dialog

Check box CHECKBOX 0 if disabled
1 if enabled
2 if mixed state

Combo box COMBOBOX string value

Drop-down combo box DDCOMBOBOX string value

Drop-down list box DDLISTBOX integer value
corresponding to an
array

Group box GROUPBOX doesn't return a value

Help button HELPBUTTON Opens a help file at a
specified topic (does
not close dialog box)

Image List Box IMAGELISTBOX string value

Image IMAGE doesn't return a value

List box LISTBOX integer value
corresponding to an
array

OK button OKBUTTON 1 and closes the
dialog

Option button OPTIONBUTTON value returns to
OPTIONGROUP not
the dialog

Option group OPTIONGROUP integer value
corresponding to the
option button
selected

Push button PUSHBUTTON ID value (cannot
equal 1 or 2) and
closes the dialog

Spin control SPINCONTROL numeric value

Text box TEXTBOX string value

Text TEXT doesn't return a value

BEGIN DIALOG doesn't return a value
but begins dialog box
definition

END DIALOG doesn't return a value
but ends dialog box
definition

DIALOG doesn't return a value
but displays dialog
box

{button ,AL(`Corel_SCRIPT_dialog_controls;Returning_dialog_settings_and_choices;Working_with_dia
log_controls;Default_control_sizes_and_labels;Corel_SCRIPT_Dialog_Editor;',0,"Defaultoverview",)}
Related Topics

Returning dialog settings and choices to a script
Dialog boxes are used in scripts so users can choose options and provide information back to the script. Once a
dialog box closes, values are returned back to the script based on the user's interaction with the dialog box. User
interaction includes selecting options, entering text, and pressing buttons. Each control that can accept an action
stores a string or number value in its identifier variable. The identifier variables are then used in the script to
initiate action dependent upon their values.
Example
The following example shows how a dialog box can return a value back to a script.
' The dialog definition begins
BEGIN DIALOG Dialog1 19, 5, 112, 84, "Return a value"

PUSHBUTTON 19, 11, 70, 14, "Option &1"
PUSHBUTTON 19, 34, 70, 14, "Option &2"
PUSHBUTTON 19, 58, 70, 14, "&Option &3"

END DIALOG
' the dialog definition ends
'
' the next line defines the dialog return variable called "returns"
x = DIALOG(Dialog1)
'
' If x is 3, then Option 1 was chosen
IF x = 3 THEN MESSAGE "Option 1 chosen"
' If x is 4, then Option 2 was chosen
IF x = 4 THEN MESSAGE "Option 2 chosen"
' If x is 5, then Option 3 was chosen
IF x = 5 THEN MESSAGE "Option 3 chosen"

The above code creates the following dialog box:

The above code also returns a message box dependent on the button pressed. The following message box is
displayed if the "Option 2" was selected:

The variable "x" holds the dialog return value and is used in conditional statements to initiate further actions.
Note

Each Corel SCRIPT dialog control that returns a value, does so in its own manner. For more information on
how a dialog control returns a value, see its syntax reference and its respective example. See Dialog controls
summary for a complete listing of Corel SCRIPT dialog controls.

Corel SCRIPT dialog boxes are modeless; that is, the running script cannot continue until the dialog box is
closed.

Neither the BEGIN DIALOG nor the END DIALOG statement on its can display a dialog box; the DIALOG
function displays a dialog box after it has been defined with the BEGIN DIALOG and END DIALOG statements.

{button ,AL(`Corel_SCRIPT_dialog_controls;Dialog_controls_summary;Transferring_and_saving_Corel_
SCRIPT_statements;Viewing_a_dialog_boxs_Corel_SCRIPT_statements;Working_with_dialog_controls;'
,0,"Defaultoverview",)} Related Topics

Corel SCRIPT Dialog Editor
The Corel SCRIPT Dialog Editor is a tool to quickly create and edit Corel SCRIPT dialog boxes. Working with the
Dialog Editor is similar to using a drawing or painting application: dialog controls are graphic objects which can
be inserted, moved, re-sized, and aligned in a dialog box.
Using the Dialog Editor takes the place of creating and editing Corel SCRIPT statements in a script file. It involves
a visual approach to creating and editing Corel SCRIPT dialog statements, since a dialog box and the controls
within it, represent Corel SCRIPT statements. From the Dialog Editor, you can transfer the dialog boxes you've
created to the Clipboard, save the dialog boxes as Corel SCRIPT script files, and insert Corel SCRIPT statements
into a script.
Using the Corel SCRIPT Dialog Editor
To create and edit dialog boxes, a dialog editor window must be open in the Dialog Editor. You can have more
than one dialog editor window open, but each window can only hold one dialog box. Having more than one
window open enables you to copy dialog boxes and controls between windows.
Each time you create new dialog, a dialog editor window opens containing a template of a dialog box. The
template is a dialog box without any controls placed in it. From the dialog editor window you can re-size the
dialog box, add and edit controls, and move the dialog box. When you move the dialog box within the dialog
editor window, you are actually changing the dialog box's screen placement when it is run in a script. Its
placement changes because a dialog editor window represents your computer screen, and moving the dialog box
changes its horizontal and vertical position attribute. For example, if the dialog box is placed in the bottom-right
corner of its dialog editor window it will appear on the bottom-right of a computer screen when it is run in a
script file.     
Existing script statements which create dialog boxes can be transferred to the clipboard and pasted into the
Dialog Editor as a dialog box. Alternatively, you can open a Corel SCRIPT script file as a dialog box if it contains
only    dialog box definition statements.
Other features
You can use the Corel SCRIPT Dialog Editor to create, edit, and test dialog boxes. Dialog boxes, however, are just
boxes without any controls in them. The Dialog Editor provides features for performing many activities
associated with dialog box controls, including:

inserting and deleting controls
moving and resizing controls
cutting, copying and pasting controls
arranging and distributing controls
setting control attributes and identifiers
testing controls

Note
The Corel SCRIPT Dialog Editor is a stand-alone program included with Corel applications. If you didn't

install the Dialog Editor when you installed the Corel applications, you can run the Corel setup program again to
install it. The Dialog Editor can be started from the Corel SCRIPT Editor or from the Windows desktop.

{button ,AL(`csde;Corel_SCRIPT_Dialog_Tips;;;;',0,"Defaultoverview",)} Related Topics

Working with the Dialog Editor
The easiest way to work in the Corel SCRIPT Dialog Editor is to use the mouse instead of the keyboard to create
and edit dialog controls. The mouse pointer in the Dialog Editor has two states: the Selector state (default status)
and the Control state.
In the Selector state the mouse pointer appears as and is used to select, re-size and drag-and-drop dialog
controls. You can also select, move and resize dialog boxes when in the Selector state. By default, the mouse
pointer is in the Selector state, and when not in the Selector state can be reset by clicking

 from the tool bar or clicking Control, Selector from the menu system.
In the Control state the mouse pointer appears as and is used to create dialog controls. The mouse pointer can
only be set to a Control state by clicking any of the dialog controls in the Control ribbon bar or any control under
the Control menu.
Note
The mouse pointer can only appear in a Control state when it is positioned over an active dialog box in a dialog
editor window.

{button ,AL(`csde;;;;;',0,"Defaultoverview",)} Related Topics

Inserting and deleting dialog controls
Inserting
To insert dialog controls into a dialog box, the mouse pointer must be in the Control state. To activate the Control
state, select a control from the Control menu or from the Control ribbon bar. Once in the Control state, the
selected control can be added to the dialog box by a clicking in the dialog box where you want the top-left corner
of the selected control to appear. Each control has a default size setting. You can also use the click & drag
method to insert controls into a dialog box.
After the control has been inserted, the mouse pointer reverts back to the Selector state. You can insert multiple
controls of the same type by holding down the CTRL key as you select a control from the Control menu or from
the Control ribbon bar. The mouse pointer remains in the Control state until you press ESC or select the Selector
Tool from the menu or ribbon.
Along with a default size setting, most controls have default text and value attributes when inserted into a dialog
box. The text labels and values update for each instance of the control inserted into a dialog box. For example,
the first push button inserted takes the text PushButton1. The second push button takes on the text
PushButton2, and so on.
Deleting
Controls are not permanent fixtures in a dialog box and can be deleted if not required.

{button ,AL(`csde;Dialog_controls_summary;Corel_SCRIPT_Dialog_Tips;Dialog_box_conventions;;',0,"
Defaultoverview",)} Related Topics

Editing dialogs and controls
Dialogs and their controls can be moved, copied, deleted, resized, and their attributes edited through a variety of
methods.
Moving and Resizing
By selecting a dialog box or control, you can move it or resize it using the mouse. Alternatively, opening a dialog
box's or control's attribute box enables you to set position and size attributes.
Cut, Copy, Paste and Duplicate
The standard Cut, Copy and Paste Windows commands also function in the dialog editor with respect to dialogs
and their controls. Additionally, the Duplicate command can help speed up your dialog box editing.
Label and identifier editing
You can change a dialog box's or control's label and identifier setting by opening its attributes dialog box and
editing the settings.
Snap to Grid
If you're moving and resizing controls in a dialog box using the mouse, turning on Snap to Grid can help to
accurately align and position controls. It also allows you to draw precisely-sized controls. The grid is not
displayed during a script run.
Note

When a dialog box or a control is selected, the Dialog Editor displays its attributes in the status bar. The
status bar also displays the mouse pointer position when positioned over a dialog box.

By selecting a control and pressing F1, you can receive help on the selected control's syntax.

{button ,AL(`csde;Dialog_controls_summary;Dialog_box_conventions;;;',0,"Defaultoverview",)}
Related Topics

Aligning and distributing dialog controls
Dialog boxes that are arranged symetrically, centered, and have controls aligned are easier to read and
understand. The Corel SCRIPT Dialog Editor provides a complete set of tools to help you refine your dialog boxes.
Using the tools you can:

Align controls along an edge.
Distribute controls evenly .
Center controls in a dialog box.
Make controls the same size.
Size a control to its label.

Snap to Grid
If you're moving and resizing controls in a dialog box using the mouse, turning on Snap to Grid can help to
accurately align and position controls. It also allows you to draw precisely-sized controls. The grid is not
displayed during a script run.
Note

When a dialog box or a control is selected, information about its attributes is displayed in the status bar.
When the mouse pointer isover a dialog box, the status bar also displays information about the pointer's position.

{button ,AL(`csde;Dialog_controls_summary;Corel_SCRIPT_Dialog_Tips;Dialog_box_conventions;;',0,"
Defaultoverview",)} Related Topics

Using dialog units to size and position dialogs and controls
Sizing dialogs and controls
Every dialog box and dialog box control has a width and height attribute, expressed in dialog units. For width, a
dialog unit is 1/4 the average width of the Corel system font. For height, a dialog unit is 1/8 the average height of
the Corel system font. In other words, a dialog unit for width and height are practically equal because, on
average, the height of the Corel system font is twice its width (1/8 x 2=1/4). So if you create a dialog box that is
500 units (width) by 500 units (height), you should end up with a dialog box that is a square or very close to a
square.
Positioning dialogs and controls
Dialog controls also have attributes which hold position measurements in a dialog box. A control's vertical
position is measured in width dialog units from the inside of the dialog box's left border to the left side of the
control. A control's horizontal position is measured in height dialog units from the bottom of the dialog box's title
bar to the top of the control.
A dialog box's position during a script run is also set with attributes which hold dialog unit measurements. The
position of the left border with respect to the left side of the monitor's display area is measured in width dialog
units, and the position of the top border with respect to the top of the monitor's display area is measured in
height dialog units.
A dialog box can also be set to be centered on the screen by either omitting the position attribute parameters in
the BEGIN DIALOG statement or by enabling the Center Dialog check box in the attributes dialog box in the
Dialog Editor.
When you create a new dialog box in the Dialog Editor, by default the dialog is placed in the top-left corner of the
dialog editor window with the Center Dialog attribute enabled. If the Center Dialog attribute was disabled, the
dialog box would be displayed in the monitor's top-left corner when run in a script, because the dialog editor
window is a representation of your monitor. When you move the dialog box within the dialog editor window, you
are actually changing the dialog box's screen placement when it is run in a script. If you move the dialog box to
the bottom-right corner of its dialog editor window, it will appear on the bottom-right of a monitor when run in a
script file.     
Note

The Corel system font cannot be changed.
In some cases, changing the screen resolution will change a dialog box's appearance. If your dialog boxes

will be used on a variety of screens at different resolution settings, you should test the dialogs at each setting to
ensure they will be properly displayed.

{button ,AL(`csde;Dialog_controls_summary;Corel_SCRIPT_Dialog_Tips;Dialog_box_conventions;;',0,"
Defaultoverview",)} Related Topics

Default control sizes and labels

The following table list's each control's default width and height settings in dialog units:
Control Width Height Label
Text 50 8 TextN
Text box 50 13 N/A
OK button 40 14 OK
Cancel button 40 14 Cancel
Push button 46 14 PushButtonN
Help button 40 14 Help
Option button 58 10 OptionButtonN
Check box 50 10 CheckBoxN
List box 50 42 N/A
Drop-down list box 50 42 N/A
Combo box 50 42 N/A
Drop-down combo box 50 42 N/A
Group box 50 40 N/A
Spin control 50 12 N/A
Image List Box 50 42 N/A
Image 40 40 N/A

Note
N is the Nth occurrence of the control in the dialog box.

{button ,AL(`csde;Dialog_controls_summary;Dialog_box_conventions;Corel_SCRIPT_dialog_controls;;'
,0,"Defaultoverview",)} Related Topics

Viewing a dialog box's Corel SCRIPT statements
Dialog boxes displayed in the Corel SCRIPT dialog editor are graphical representations of Corel SCRIPT
statements. If you wanted to see the statements underlying the dialog box you could transfer a dialog to the
Clipboard, then insert the Clipboard contents into a script file as Corel SCRIPT statements, or save the dialog as a
script file.
An easier option exists to view the Corel SCRIPT statements underlying a dialog box in a non-editing mode. Each
dialog editor window in the Dialog Editor has a sub-window which displays the statements that correspond to the
dialog and controls in the dialog editor window. The sub-window is called the Script window and its contents can
only be viewed; it has no editing function.
Though it has no editing functions, the Script window can provide you with a significant amount of information
about a dialog box. If you are an inexperienced dialog user, you can view the results of your dialog box editing
operations in terms of the Corel SCRIPT statements. If you are a more experienced user, the Script window can
help you determine the grouping of your option buttons . You can also view the tabbing order of the dialog box,
and text control associations with non-labeled controls. See TEXT for more information about text control
associations.
The following shows a dialog editor window displaying a Script window:

Note
You can copy dialog box definition statements from the Script window to the clipboard. However, you

cannot perform any editing function in the Script window.
The order in which controls are entered into a dialog box determines the order of the dialog box script

statements.

{button ,AL(`csde;Returning_dialog_settings_and_choices;;;;',0,"Defaultoverview",)} Related Topics

Changing focus in dialog boxes
Within a dialog box, only one control can have focus. Focus means that the control is active and can accept user
input such as text or option selections. A dialog box's initial focus goes to the first control defined after the BEGIN
DIALOG statement in a dialog box definition.
To move around in a dialog box from control-to-control, you can use the TAB key. As you move around, the
dialog's focus changes. A dialog convention is to have the focus move from left-to-right and top-to-bottom as you
TAB through a dialog. The TAB order is based on the order in which the controls are defined in the dialog box
definition statements. You should try to place your control statements between the BEGIN DIALOG and END
DIALOG statements in the order in which you want to TAB through a dialog.
Shortcut keys
An alternative to using TAB to move around a dialog and change focus is to use shortcut keys. By placing an
ampersand (&) before a character in a dialog control's label you can create a shortcut key. For example, in the
following dialog box, pressing ALT+D changes the dialog focus to the first push button.

Dialog controls that don't have labels, such as text boxes or list boxes, can also take on shortcut keys if you create
an association with a text control. To associate a text control with a dialog control, the text control statement in the
Corel SCRIPT script must precede the unlabelled control statement. Association is not based on a control's dialog
location.

The following example shows two text boxes with defined shortcut keys:

BEGIN DIALOG Dialog1 55, 10, 97, 89, "Shortcut key example"
TEXT 5, 4, 80, 8, "&Enter text here:"
TEXTBOX 5, 13, 80, 12, text1$
TEXT 5, 31, 80, 8, "&Here too:"
TEXTBOX 5, 40, 80, 12, text2$
OKBUTTON 5, 64, 80, 14

END DIALOG

Note
The initial focus of a dialog box should be a text box control, so that a user can immediately start typing

once the dialog opens.
 Pressing ENTER is a shortcut for the OK button, and pressing ESC or the Close Dialog button (

) is a shortcut for the CANCEL button.

{button ,AL(`csde;;;;;',0,"Defaultoverview",)} Related Topics

Testing dialogs
In the Dialog Editor, you can test the dialog boxes you create to confirm they meet your requirements and
function properly. It is easier to test a dialog within the Dialog Editor than by making it part of a script and
running the script.
To test a dialog box, set the dialog editor window to test mode. In test mode you can confirm the following dialog
box features:

tab order within the dialog box
shortcut keys are operational
drop-down box openings

Note
You cannot edit a dialog box in test mode.
The following controls are filled with place holders in test mode:

list boxes
drop-down list boxes
combo boxes
drop-down combo boxes
static image boxes are always filled with a placeholder

The place holders give you a better idea than an empty control of what the dialog box will actually look like
when it is run.

{button ,AL(`csde;Corel_SCRIPT_Dialog_Tips;Dialog_box_conventions;;;',0,"Defaultoverview",)}
Related Topics

Transferring and saving Corel SCRIPT dialog defintions
Working with the Dialog Editor involves a visual approach to creating and editing Corel SCRIPT dialog
statements, since a dialog box and the controls within it represent Corel SCRIPT statements. Because dialogs and
controls in the Dialog Editor represent Corel SCRIPT statements, they can be transferred to the Corel SCRIPT
Editor and back.
Transferring statements from the Corel SCRIPT Editor to the Dialog Editor
It is often easier to edit a dialog box in the Dialog Editor instead of the Corel SCRIPT Editor. You can transfer
dialog statements into the Dialog Editor from the Clipboard via the Editor. You cannot transfer statements that
are not used in a dialog box definition. You can also transfer a dialog box definition by selecting it and opening
the Corel SCRIPT Dialog Editor.
Transferring statements from the Dialog Editor to the Corel SCRIPT Editor
You can transfer dialog box and control statements from a dialog box to the Clipboard, then insert them into the
Corel SCRIPT Editor.
Saving and opening dialog script statements
The Corel SCRIPT Dialog Editor saves a dialog box as a Corel SCRIPT script file containing Corel SCRIPT
statements. The statements form a dialog box definition that can be inserted into another script file or used as
the basis for building a script file.
You should save dialog box scripts in your application's Script folder. For example, C:\COREL60\SCRIPTS\DRAW for
CorelDRAW scripts.
Opening scripts in the Dialog Editor
The Corel SCRIPT Dialog Editor can only open previously saved scripts that only contain a Corel SCRIPT dialog
box definition.

{button ,AL(`csde;Corel_SCRIPT_Editor;Returning_dialog_settings_and_choices;;;',0,"Defaultovervie
w",)} Related Topics

Corel SCRIPT Dialog Tips
In some cases, changing the screen resolution will change a dialog box's appearance. If your dialog boxes

will be used on a variety of screens at different resolution settings, you should test the dialogs at each setting to
ensure they will be properly displayed.

Consider using the INPUTBOX, GETFILEBOX, MESSAGEBOX, or MESSAGE instead of a user-defined dialog
box.

Neither the BEGIN DIALOG nor the END DIALOG statement on its can display a dialog box; the DIALOG
function displays a dialog box after it has been defined with the BEGIN DIALOG and END DIALOG statements.

You can insert multiple controls of the same type by holding down the CTRL key as you select a control
from the Control menu or from the Control ribbon bar.

The dialog Grid and the Snap to Grid options can help you align and distribute your dialog controls.
List boxes and drop-down list boxes do not return strings but integers that correspond to a selection from

the array displayed in the control. The first array item returns 0, the second returns 1 and so on.
Pressing the Close Dialog button (

) is the same as pressing the Cancel button; both return 2 to the dialog box.
Use push buttons to open other dialog boxes. For example, within a script consider using a CASE statement

to open another dialog box after a user has pressed a push button.
Pressing ENTER is a shortcut for clicking the OK button, and pressing ESC or the Close Dialog button (

) is a shortcut for clicking the CANCEL button.
You can select more than one dialog control by holding down the SHIFT key while selecting, or by clicking

the mouse and dragging across the dialog box in the dialog editor window.
Corel SCRIPT dialog boxes are modal; that is, the running script cannot continue until the dialog box is

closed.

{button ,AL(`Dialog_box_conventions;Corel_SCRIPT_and_dialog_boxes;Corel_SCRIPT_Dialog_Editor;;;'
,0,"Defaultoverview",)} Related Topics

Dialog box conventions
To make dialog boxes easier to understand at a quick glance, consider the following conventions when creating
them:

Dialog boxes are read left-to-right and top-to-bottom. The dialog controls should be arranged in a way that
allows a user to easily read the dialog controls. The tab order should also follow the left-to-right and top-to-bottom
convention.

The initial focus of a dialog box should be a text box control so that a user can immediately start typing
once the dialog opens.

Use sentence formatting for dialog text titles; that is, the initial character of the sentence should be in
uppercase. The sentence should end with a colon, not a period. For example, Choose a file:

Push button text should only have the initial character of each word in uppercase characters. For example,
Close File not CLOSE FILE. If a push button option opens another dialog, the push button text should be followed
by an ellipsis (...). For example, Printer Options... .

Group and position option buttons and check boxes vertically. Both option buttons and check boxes should
be grouped in a logical manner. Avoid grouping option buttons and check boxes together.

Consider using a list box of some type when you are providing    more than 6 choices.
Provide a shortcut key for every dialog control. For controls that don't use labels, such as text boxes and

list boxes, create a shortcut key association with a text control.
Static text should be aligned to the control it is identifying.
Each dialog box should include both an OK and a Cancel button. The two buttons should be aligned

horizontally in the bottom-right of the dialog box, or aligned vertically in the top-right of a dialog box.   

Sizing, aligning and distributing dialog controls
Dialog controls of the same type should be the same size, especially in the case of push buttons, check

boxes, option buttons, and list boxes.
Use a margin of 4 dialog units from the inside of the dialog box borders.
Separate groups of controls by 6 units both horizontally and vertically. Controls within a group can be

separated by 2 units, except for option buttons and check boxes which do not need any separation.
Use the alignment and distribution tools to create a symmetrical look for dialog controls.

{button ,AL(`Corel_SCRIPT_Dialog_Tips;Corel_SCRIPT_and_dialog_boxes;Corel_SCRIPT_Dialog_Editor;
Sizing_and_placing_dialogs_and_controls;Default_control_sizes_and_labels;',0,"Defaultoverview",)}
Related Topics

Dialog box definition statements
A dialog box definition consists of the
BEGIN DIALOG and END DIALOG statements
with control statements in between. The
following list contains valid dialog box
definition statements:

BEGIN DIALOG
BITMAP
CANCELBUTTON
CHECKBOX
COMBOBOX
DDCOMBOBOX
DDLISTBOX
END DIALOG
GROUPBOX
HELPBUTTON
IMAGE
IMAGELISTBOX
LISTBOX
OKBUTTON
OPTIONBUTTON
OPTIONGROUP
PUSHBUTTON
SPINCONTROL
TEXT
TEXTBOX

No related topics were found.

No procedure topics were found.

Corel SCRIPT Dialog Editor menu shortcut keys
Press To
File Menu
CTRL+N New
CTRL+O Open
CTRL+V Paste Dialog
CTRL+S Save
Edit Menu
CTRL+X Cut
CTRL+C Copy
CTRL+V Paste
DEL Delete
CTRL+D Duplicate
CTRL+A Select All
ALT+ENTER Attributes
View Menu
CTRL+T Test Dialog
CTRL+G Grid Settings
Arrange Menu
F7 Size To Content
CTRL+Y Snap To Grid
Help Menu
F1 Help Topics

Text control
Text controls in dialog boxes are used as labels and to provide user instructions. As labels, text controls cannot
be changed by a user and do not return any value back to a running script.
Use sentence formatting for dialog text titles; that is, the initial character of the sentence in uppercase. The
sentence should end with a colon, not a period. For example, Choose a file: You should provide text labels for
any dialog control that doesn't have a label component.
Controls that use labels such as push buttons and option buttons can have shortcut keys assigned to them by
placing an ampersand (&) before a label character. When the script displays the dialog box, you can use a
keyboard shortcut to select a control by pressing ALT and the underlined shortcut key (the character that follows
the ampersand). You can also use the text control to provide shortcut keys for controls that don't use labels.
A text control must be associated with an unlabelled dialog control (available controls noted below) to provide a
keyboard shortcut. To associate a text control with a dialog control, the text control statement in the Corel
SCRIPT script must precede the unlabelled control statement. Association is not based on a control's dialog
location.
The following controls can be associated with a text control:

text box
list box
drop-down list box
combo box
drop-down combo box
spin control
image list box

{button ,AL(`all_controls_define;;;;;',0,"Defaultoverview",)} Related Topics

Text box control
The text box control receives user-inputted text which is returned to the script as a string. If you want a number
returned to a script from a text box, you'll need to use the VAL function to convert the text because a text box
can only return strings. You can input up to 255 characters in a text box and use standard window shortcut keys
such as CTRL+X to cut text, CTRL+C to copy text, and CTRL+V to paste text. Arrow keys can also be used in a
text box to move the cursor.
Because a text box doesn't have a label component, a text control should be used to identify the text box
control. The text control label can be used to provide a shortcut to the text box.
If the text box is a single line, you can scroll through the text horizontally using the arrow keys. If the text box is
multi-line, you can scroll through the text horizontally and vertically using the arrow keys.
Pressing CTRL+ENTER in a text box inserts a line return character. Pressing ENTER or SHIFT+ENTER in the text
box control is the same as pressing a push button, and closes the dialog box .

{button ,AL(`all_controls_define;;;;;',0,"Defaultoverview",)} Related Topics

OK button control
Pressing an OK button, a Cancel button, or a Push button closes a dialog box. Pressing an OK button closes a
dialog box, assigns value settings to specified variables, and assigns 1 as the dialog box return value.   
The OK button can't be assigned a shortcut key but pressing ENTER is the same as pressing the OK button
(unless a push button or the Cancel button has focus). Only one OK button in a dialog box is suggested.

{button ,AL(`all_controls_define;;;;;',0,"Defaultoverview",)} Related Topics

Cancel button control
Pressing an OK button, a Cancel button, or a Push button closes a dialog box. Pressing a Cancel button closes a
dialog box and discards the settings within it, and assigns 2 as the dialog box return value
The Cancel button can't be assigned a shortcut key but pressing the Close Dialog button () is the same as
pressing the Cancel button. Only one Cancel button in a dialog box is suggested.

{button ,AL(`all_controls_define;;;;;',0,"Defaultoverview",)} Related Topics

Push button control
Pressing an OK button, a Cancel button, or a Push button closes a dialog box. Push buttons are often used used
in cases in which another dialog box opens when a push button is pressed.
You can give a push button any string label to display. If the button is pressed, its assigned identifier number is
returned by the DIALOG function. The Dialog Editor assigns an identifier number to each push button you create,
beginning with 3 (1 and 2 are reserved for the OK and Cancel buttons). A push button's identfier number does
not depend on it's physical location within a dialog box but to the order in which it was inserted into the dialog.
Pushbuttons can be assigned keyboard shortcuts using the ampersand (&) character.

{button ,AL(`all_controls_define;;;;;',0,"Defaultoverview",)} Related Topics

Option button control
Option buttons are used to present two or more mutually exclusive choices. Only one option button in a group
can be selected and each selection de-selects a previously selected button. One button from a group is always
selected.
Option buttons should be used to choose a property, or to set a value or an option. Consider using some type of
list box when you have more than 6 choices. To make a dialog box easier to read, put a group box around option
buttons and a label indicating the purpose of the option buttons. Each option button has a label component and
a shortcut key can be assigned to it.
In a script, option buttons are grouped using the OPTIONGROUP statement. An option button group exists only
when the option button statements are grouped together without interventing statements (remarks excluded).
The first option button statement must be preceded by an OPTIONGROUP statement.
The Dialog Editor groups option buttons as you create them. As you insert option buttons, they will automatically
be included in the same group until you enter another type of control. Once you enter another type of control
and then insert more option buttons, the options buttons will form another goup with an OPTIONGROUP
statement preceding the first option button.

{button ,AL(`all_controls_define;;;;;',0,"Defaultoverview",)} Related Topics

Option group control
An option group is not displayed in a dialog box. It is a Corel SCRIPT statement that marks the beginning of a
series of option buttons. An option button group exists only when the option button statements are grouped
together without interventing statements (remarks excluded) and the first option button statement is preceded
by an OPTIONGROUP statement.
The Dialog Editor groups option buttons as you create them. As you insert option buttons, they will automatically
be included in the same group until you enter another type of control. Once you enter another type of control
and then insert more option buttons, the options buttons will form another goup with an OPTIONGROUP
statement preceding the first option button.
You can select only one option button in a group. The option group identifier returns an integer (0 through n) that
corresponds to the option button selected, with the first option button being equal to 0. The second option
button is equal to 1and so on. The order of the option buttons is determined, not by their placement within the
dialog box, but by their listing in the script.

{button ,AL(`all_controls_define;;;;;',0,"Defaultoverview",)} Related Topics

Check box control
Unlike option buttons, check boxes offer non-exclusive choices for users. Check boxes have three states:

disabled status (empty)
enabled status (filled with a check mark)
mixed status (gray-filled)

Users can cycle through the check box states by clicking the check box itself, or by clicking its label. A shortcut
key can be associated with the check box. You can also set the default state of a check box. To make a dialog box
easier to read, put a group box around related check boxes and a label on the group box to give the user more
information.

{button ,AL(`all_controls_define;;;;;',0,"Defaultoverview",)} Related Topics

List box control
A list box provides a user with a single choice from a restricted set of items. A list box should be used instead of
option buttons when there are more than six option items.
Each item in a list box comes from a previously defined one-dimension array. The items should be listed in a
logical order such as alphabetical, ascending sort for number values, or some other logical sort that is
appropriate for the items in the list.
If the items can't vertically fit into the list box, the list box automatically takes on vertical scroll bar. The scroll
bar is placed on the right-side of the list box to the immediate left of the right border. Having the scroll bar
placed within the list box cuts into the item display area so you should ensure that each list box entry can at
least be recognized.
Because a list box doesn't have a label component, a text control should be used to identify the list box . The
text control label can also be used to provide a shortcut to the list box. A default selection can be provided in a
list box and an integer associated with a selection is always returned to the script.

{button ,AL(`all_controls_define;;;;;',0,"Defaultoverview",)} Related Topics

Drop-down list box control
A drop-down list box is like a list box except that you can only display the list box items on demand. That is, to
display the items and to make a choice, you must open the drop-down list box. Once a selection is made the
drop-down portion of the control closes.
The advantage of using a drop-down list box over a list box is that the control uses less space. In some cases this
might make the dialog easier to read. The drawback is that it adds another level of user interaction to a dialog
box.
Like the list box, the drop-down list box provides a user with single choice from a restricted set of items. Each
item in a drop-down list box comes from a previously defined one-dimension array. The items should be listed in
a logical order such as alphabetical, ascending sort for number values, or some other logical sort that is
appropriate for the items in the list.
If the items can't vertically fit into the list box, the drop-down list box automatically takes on vertical scroll bar.
The scroll bar is placed on the right-side of the list box to the immediate left of the right border. Having the scroll
bar placed within the list box cuts into the item display area so you should ensure that each list box entry can at
least be recognized.
Because a drop-down list box doesn't have a label component, a text control should be used to identify the drop-
down list box . The text control label can also be used to provide a shortcut to the drop-down list box. A default
selection can be provided in a drop-down list box and an integer associated with a selection is always returned to
the script.

{button ,AL(`all_controls_define;;;;;',0,"Defaultoverview",)} Related Topics

Combo box control
As its name indicates, the combo box is a combination of boxes; in this case a combination of a text box and a
list box. From a combo box you can make a selection from a restricted set of items or enter your own    selection
in the text window. The advantage of a combo box over a list box is that you don't restrict a user to predefined
items. A default selection can be provided in a combo box and a string associated with a selection is returned to
the script.
If you type text in the text box, the list box scrolls to the closest matching item in the list box portion of the
combo box. Choosing a list item from the list box replaces the text box contents with the list box selection.
Because a combo box doesn't have a label component, a text control should be used to identify the combo box .
The text control label can also be used to provide a shortcut to the combo box.

{button ,AL(`all_controls_define;;;;;',0,"Defaultoverview",)} Related Topics

Drop-down combo box control
A drop-down combo box is a combination drop-down list box and text box.
The advantage of using a drop-down combo box over a regular combo box is the control uses less space. In some
cases this might make the dialog easier to read. The drawback is that it adds another level of user interaction to
a dialog box.
If you type text in the text box, the list box scrolls to the closest matching item in the list box portion of the drop-
down combo box. Choosing a list item from the list box replaces the text box contents with the list box selection.
Because a drop-down combo box doesn't have a label component, a text control should be used to identify the
dialog control. The text control label can also be used to provide a shortcut to the drop-down combo box. A
default selection can be provided in a drop-down combo box.

{button ,AL(`all_controls_define;;;;;',0,"Defaultoverview",)} Related Topics

Group box control
The group box is a dialog control that doesn't return anything to a script but is used to help arrange dialog
controls to make the dialog box easier to understand. The group box is most useful in physically grouping related
check boxes and option buttons. The label component of the group box gives a user more information about a
dialog.

{button ,AL(`all_controls_define;;;;;',0,"Defaultoverview",)} Related Topics

Spin control
The spin control is used to change values in numeric entry text boxes by using the mouse or keyboard. The top
arrow increases the value displayed, the bottom arrow decreases it. You can either click the arrow to change the
value by a single increment or hold the mouse button down on an arrow to cause it to change continously. You
also have the option of typing directly into the text window portion.

{button ,AL(`all_controls_define;;;;;',0,"Defaultoverview",)} Related Topics

Image list box control
The image list box is a dialog control used to preview and select Windows graphic files. The image list box can
display Windows bitmaps (.BMP and .RLE files). You select an image by clicking it.
Like the list box, the image list box provides a user with a single choice from a restricted set of items. Each item
in an image list box comes from a previously defined one-dimension array. Images displayed in an image list box
are resized to fit horizontally.

{button ,AL(`all_controls_define;;;;;',0,"Defaultoverview",)} Related Topics

Help button control
Use the help button control to open a Windows help file to a specified help topic. The help button control is an
advanced control that should only be used by Windows programmers and Windows help file authors. To use the
Help button control, you must know the context number ID values used with help topics.
The help button is not a push button and does not close a dialog box.
Note

For more information about creating and compiling Windows help files and context-sensitive help, consult
the Windows SDK or the Windows Help Author's Guide.

{button ,AL(`all_controls_define;;;;;',0,"Defaultoverview",)} Related Topics

Image control
The static image control displays a specified Windows graphics in a box in a dialog box. The graphic is
automatically sized to fit the height and width specifiactions of the box.
As a dialog control, an image control doesn't return a value to a script. The image control should be used to
provide visual information to a user.
Note

You can insert Windows bitmaps (.BMP and .RLE files) into an image control.

{button ,AL(`all_controls_define;;;;;',0,"Defaultoverview",)} Related Topics

Save these for future use

Horizontal scroll bar control
Scroll bars should be used in cases where a window's contents cannot fit into its display area. A scroll bar
enables you to pan a window so you can view different portions of it's contents. To pan a window, the scroll bar's
scroll box should be moved. The scroll box is proportional, meaning that it varies in size based on how much of
the window's contents can be viewed in the window.
Use the horizontal scroll bar in cases where a window's contents overflow to the left or right of a window.

Vertical scroll bar control
Scroll bars should be used in cases where a window's contents cannot fit into its display area. A scroll bar
enables you to pan a window so you can view different portions of it's contents. To pan a window, the scroll bar's
scroll box should be moved. The scroll box is proportional, meaning that it varies in size based on how much of
the window's contents can be viewed in the window.
Use the vertical scroll bar in cases where a window's contents overflow to the top or bottom of a window.

Slider control
The slider is used for setting and adjusting continuous numeric values. Some examples of appropriate uses for
the slider include using it to adjust size, volume, or color intensity.
The slider indicator is used to adjust the control's return value. You can change the slide indicator position by
dragging it horizontally. You can also move the slider indicator by clicking along the bar or using the arrow key on
the keyboard when the slider control has focus.
Because a slider doesn't have a label component, a text control should be used to identify the slider. The text
control label can be used to provide a shortcut to the slider.

Progress indicator control
For operations that can take a significant amount of time, you may want to use the progress indicator. The
progress indicator visually displays an operation's percentage of completion.
As a control, the progress indicator doesn't return a value to a script and is used to provide information to a user.
Because a slider doesn't have a label component, a text control should be used to identify it.

Using date and time
Corel SCRIPT provides commands and functions to manipulate dates and time. Dates are one of Corel SCRIPT's
variable types. They are explicitly declared using the DATE keyword and do not use a suffix. Date variables hold
date and time values that range from 1 to 2958465 (as a serial number) or 31/12/1899 00:00:00.0000 to
31/12/9999 23:59:59.9999 (as a date value). You can use dates outside this range but they are not supported by
Corel SCRIPT and may lead to errors.
Serial numbers represent both date and time values. Numbers to the left of the decimal represent days, and
numbers to the right of the decimal represent time. If you omit decimal numbers, time is set to 12:00:00 A.M.
 The following table shows examples of serial numbers using whole and decimal numbers to represent dates and
time:
Serial number Date and time represented
1 December 31, 1899, 12:00:00 A.M.
2 January 1, 1900, 12:00:00 A.M.
2.25 January 1, 1900, 6:00:00 A.M.
16229.2292 June 6, 1944, 5:30:00 A.M.
2337.4375 November 22, 1963, 10:30 A.M.
25882.6701 November 10, 1970,    4:04:57 P.M.
35064.9999 December 31, 1995    11:59:59 P.M.
35065 January 1, 1996, 12:00:00 A.M.
35065.5 January 1, 1996, 12:00:00 P.M.

The following table shows the decimal value for hours of the day
Decimal serial number Hour of the day represented
.0 12 A.M.
.125 3 A.M.
.25 6 A.M.
.375 9 A.M.
.5 12 P.M.
.625 3 P.M.
.75 6 P.M.
0.875 9 P.M.
Each hour is approximately equal to .041666

{button ,AL(`cs_date_time;;;;;',0,"Defaultoverview",)} Related Topics

Assigning values to date variables
You have two options to assign a date and a time to a date variable. One option is to use the serial number. For
example:
DIM myDateVar AS DATE
myDateVar = 35065.75
MESSAGE myDateVar
In the above example, myDateVar is set to January 1, 1996 6:00 P.M. as shown in the following message box:

You can also use a string to assign a date and a time to a date variable. The following examples all set myDateVar
to January 1, 1996 6:00 P.M.:
myDateVar = "01/01/96 18:00"
myDateVar = "January 1 1996 6:00 PM"
myDateVar = "1 January 96 6:00 PM"
myDateVar = "01-01-96 18:00"
The Corel SCRIPT date variable uses pre-defined logic to determine how to convert strings into dates. In
ambigious cases, for example, when a portion of string could be a day, month, or year, Corel SCRIPT refers to the
system's date settings to determine how to convert the string.
Note

Date and time formatting is set in your Windows Regional Setting. The Corel SCRIPT date format style is
based on the Windows Short date style, and the time style is based on the Windows time style. To change your
Windows settings, click Start, Settings, Control Panel. Double-click Regional Settings and choose the folders you
want to change.

{button ,AL(`cs_date_time;;;;;',0,"Defaultoverview",)} Related Topics

CURRDATE
The CURRDATE statement is used to assign the current system date and time to a variable, or to change the
current system date.

Syntax to change the system date and time
CURRDATE = theDate

Syntax to assign the system date and time to a variable
theDate = CURRDATE

Syntax Definition
theDate The name of the date variable.
Note

Date and time formatting is set in your Windows Regional Setting. The Corel SCRIPT date style is based on
the Windows Short date style and the time style is based the Windows time style. To change your settings, click
Start, Settings, Control Panel. Double-click Regional Settings and choose the folders you want to change.

You can't set your operating system date beyond December 31, 2099.

{button ,AL(`cs_date_time;;;;;',0,"Defaultoverview",)} Related Topics

Examples for CURRDATE

To display the system date
The following example displays the system date in a message box.
MESSAGE CURRDATE
To change the system date and time:
The following example sets the system date to August 25, 1995 and the time to 12:00 A.M. A message box is
used to display the date value of dateOnly.
DIM dateOnly AS DATE
dateOnly = 34936
CURRDATE = dateOnly
MESSAGE dateOnly

The following example sets the system date to August 25, 1995 and the sytem time to 12:05.46 P.M. A message box
is used to display the date value of dateAndTime.
DIM dateAndTime AS DATE
dateAndTime = 34936.504
CURRDATE = dateAndTime
MESSAGE dateAndTime

To assign the system date and time to a variable:
The following example sets variable dateNow to your system's current date and time. A message box is used to
display the date value of dateNow.
dim dateNow as date
dateNow = CURRDATE
MESSAGE dateNow

You can also extract portions of the date and convert them to strings and numbers. The following continues the
above example:
myDateString$ = dateNow ' create a string
myDay% = VAL(LEFT(myDateString$, 2)) ' extract the day as an integer
In the above example, the VAL and LEFT functions are used to extract an integer from the myDateString string
variable. The method to extract portions from a date string    differ depending on your Windows date settings.
Using CURRDATE for file date stamping:
The following example assigns the system date to the variable xDate. The third line sets the system date to
February 26, 1994, and is then followed by the opening of a text file which will be stamped with the new system
date. The last line resets the system date to its orignal value.
DIM xDate AS DATE
xDate = CURRDATE
CURRDATE = "02/26/1994" 'sets the system

OPEN "c:\log.txt" FOR OUTPUT AS 2
CURRDATE = xDate
Note

Date and time formatting is set in your Windows Regional Setting. The Corel SCRIPT date format style is
based on the Windows Short date style, and the time style is based on the Windows time style. To change your
Windows settings, click Start, Settings, Control Panel. Double-click Regional Settings and choose the folders you
want to change.

{button ,AL(`mid;left;val;cs_date_time;;',0,"Defaultoverview",)} Related Topics

WAIT FOR
Pauses script execution for a specified number of seconds.

Syntax
WAIT FOR(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Specifies the number of seconds to pause script execution. The parameter x can

be a number, numeric variable or constant, or a numeric expression, but must be
positive.

Example
WAIT FOR 3
The above example pauses script execution for three seconds.

{button ,AL(`cs_date_time;;;;;',0,"Defaultoverview",)} Related Topics

WAIT UNTIL
Pauses script execution until the system timer matches a specified date serial number.
You should consider using the WAIT UNTIL statement for running scripts in off-peak times. For example, if you
had a large print job to execute, you could use a script to run it during an off-peak period such as during the
night.

Syntax
WAIT UNTIL(x)

Argument Definition
x Specifies the date serial number, which indicates when to resume execution. The

parameter x can be a number, numeric variable or constant, or a numeric
expression, but must be positive and greater than the system's current date.

Example
The following example pauses script execution until the system time matches 34936.25 (August 25, 1996, 6:00
A.M.).
DIM offPeak AS DATE
offPeak = 34936.25
WAIT UNTIL offPeak
The following example pauses script execution until 3:00 A.M. regardless of the date:
DIM today, tonite AS DATE
DIM daypart AS LONG
today = CURRDATE
daypart = INT(today) 'daypart is set to 12:00 AM today
tonite = datepart + 1.125 'sets the date and time to 3 AM the next day
WAIT UNTIL tonite
By adding a day and 3 hours (1.125) to datepart, tonite is set to 3 AM tomorrow morning.

{button ,AL(`cs_date_time;;;;;',0,"Defaultoverview",)} Related Topics

Currently the following Corel applications support Corel SCRIPT:

Application WITHOBJECT string WITHOBJECT
constant*

CorelDRAW "CorelDraw.automation.6" DRAW
Corel PHOTO-PAINT "CorelPhotoPaint.automation.6

"
PAINT

* When using the WITHOBJECT command, you have the option of using the string
 or a constant to specify the application. For example:
WITHOBJECT "CorelDraw.automation.6" or WITHOBJECT Draw

Currently the following Corel applications support OLE automation:

Application OLE automation object name
CorelDRAW CorelDraw.automation.6
Corel PHOTO-PAINT CorelPhotoPaint.automation.6

Corel SCRIPT character map
Corel SCRIPT uses the American National Standards Institute (ANSI) character mapping. At 256 characters, the
ANSI character set offers twice as many characters as ASCII text, including special characters such as the
copyright symbol, accents, and mathematical and currency symbols.
The first 128 characters (numbers 0-127) in the ANSI set correspond to characters on a standard U.S. keyboard,
and include many non-printing characters. The second 128 characters (numbers 128-255) return different
characters, depending on the font used.
Because some character symbols in Corel SCRIPT are reserved for use in syntax, such as quotation marks for
defining strings, the CHR function and ANSI character codes should be used to include special symbols in a
script. For example, to add double quotation marks to a string variable, you use ANSI character 34:
s$ = CHR(34) + "This will be in double quotes." + CHR(34)
MESSAGE s$
You can also use the function to add a return and a line feed    within a string, with character 13 and 10,
respectively:
s$ = "String 1" + CHR(13) + CHR(10) + "String 2"
MESSAGE s$
The result will be the two strings on separate lines, as displayed in the message box.

Character Set (ANSI 0 - 127)
Character Set (ANSI 128 - 255)

{button ,AL(`using_strings;chr;cs_character_map;;;',0,"Defaultoverview",)} Related Topics

Character Set (ANSI 0 - 127)
0 32 [SPACE] 64 @ 96 `
1 33 ! 65 A 97 a
2 34 " 66 B 98 b
3 35 # 67 C 99 c
4 36 $ 68 D 100 d
5 37 % 69 E 101 e
6 38 & 70 F 102 f
7 39 ' 71 G 103 g
8 [BACKSPACE] 40 (72 H 104 h
9 [TAB] 41) 73 I 105 i

10 [LINEFEED] 42 * 74 J 106 j
11 43 + 75 K 107 k
12 44 , 76 L 108 l
13 [RETURN] 45 - 77 M 109 m
14 46 . 78 N 110 n
15 47 / 79 O 111 o
16 48 0 80 P 112 p
17 49 1 81 Q 113 q
18 50 2 82 R 114 r
19 51 3 83 S 115 s
20 52 4 84 T 116 t
21 53 5 85 U 117 u
22 54 6 86 V 118 v
23 55 7 87 W 119 w
24 56 8 88 X 120 x
25 57 9 89 Y 121 y
26 58 : 90 Z 122 z
27 59 ; 91 [123 {
28 60 < 92 \ 124 |
29 61 = 93] 125 }
30 62 > 94 ^ 126 ~
31 63 ? 95 _ 127

Note
Characters displayed with a

 do not have a graphical representation in ANSI.

Character Set (ANSI 128 - 255)

{button ,AL(`using_strings;chr;cs_character_map;;;',0,"Defaultoverview",)} Related Topics

Character Set (ANSI 128 - 255)
128 160 [SPACE] 192 À 224 à
129 161 ¡ 193 Á 225 á
130 162 ¢ 194 Â 226 â
131 163 £ 195 Ã 227 ã
132 164 ¤ 196 Ä 228 ä
133 165 ¥ 197 Å 229 å
134 166 ¦ 198 Æ 230 æ
135 167 § 199 Ç 231 ç
136 168 ¨ 200 È 232 è
137 169 © 201 É 233 é
138 170 ª 202 Ê 234 ê
139 171 « 203 Ë 235 ë
140 172 ¬ 204 Ì 236 ì
141 173 205 Í 237 í
142 174 ® 206 Î 238 î
143 175 207 Ï 239 ï
144 176 ° 208 Ð 240 ð
145 177 ± 209 Ñ 241 ñ
146 178 ² 210 Ò 242 ò
147 179 ³ 211 Ó 243 ó
148 180 ´ 212 Ô 244 ô
149 181 µ 213 Õ 245 õ
150 182 ¶ 214 Ö 246 ö
151 183 · 215 × 247 ÷
152 184 ¸ 216 Ø 248 ø
153 185 ¹ 217 Ù 249 ù
154 186 º 218 Ú 250 ú
155 187 » 219 Û 251 û
156 188 ¼ 220 Ü 252 ü
157 189 ½ 221 Ý 253 ý
158 190 ¾ 222 Þ 254 þ
159 191 ¿ 223 ß 255 ÿ

Note
Characters displayed with a

 do not have a graphical representation in ANSI.

Character Set (ANSI 0 - 127)

{button ,AL(`using_strings;chr;cs_character_map;;;',0,"Defaultoverview",)} Related Topics

ANGLECONVERT
Converts a number from one angle measurement to another.

Syntax
CONVERT(x{!|#}, y{#|!}, z{%|&|!|#|@})

Argument Definition
x{#|!} Any constant from 1 to 5, which indicates the unit of measurement from which to

convert.
1 = degrees
2 = radians
3 = gradients
4 = PAINT degrees (tenths of a degree)
5 = DRAW degrees (millionths of a degree)

y{#|!} Any constant from 1 to 5, which indicates the unit of measurement from which to
convert.
1 = degrees
2 = radians
3 = gradients
4 = PAINT degrees (tenths of a degree)
5 = DRAW degrees (millionths of a degree)

z{%|&|!|#|@} Any number, numeric variable or constant, or    numeric expression.
Example
x = ANGLECONVERT(1, 2, 90)
The above example converts 90 degress to radians and x equals 1.57142857142932.

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics

LENGTHCONVERT
Converts a number from one length measurement to another.

Syntax
CONVERT(x{#|!}, y{#|!}, z{%|&|!|#|@})

Argument Definition
x{#|!} Any constant from 1 to 7, which indicates the unit of measurement from which to

convert.
1 = inches
2 = centimeters
3 = points
4 = ciceros
5 = didots
6 = picas
7 = DRAW units (tenths of a micron)

y{#|!} Any constant from 1 to 7, which indicates the unit of measurement to which to
convert.
1 = inches
2 = centimeters
3 = points
4 = ciceros
5 = didots
6 = picas
7 = DRAW units (tenths of a micron)

z{%|&|!|#|@} Any number, numeric variable or constant, or    numeric expression.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW.
Example
x = LENGTHCONVERT(1, 7, 1)
The above example converts one inch to tenths of a micron and x equals 254,000.

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics

FROMINCHES
Converts the argument from inches to tenths of a micron.

Syntax
FROMINCHES(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or a numeric expression; specifies the

argument to convert.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW.
Example
.CreateRectangle FROMINCHES(-2), FROMINCHES(3), FROMINCHES(1), FROMINCHES(0), FROMINCHES(0.25)
This CorelDRAW command would create a rectangle 4 by 3 inches. The rectangle's top left coordinate
is 1, 3 inches relative to the origin, and the corners are 0.25 inches in diameter.

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics

FROMDIDOTS
Converts the argument from didots to tenths of a micron.

Syntax
FROMDIDOTS(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or a numeric expression; specifies the

argument to convert.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW.
Example
.CreateRectangle FROMDIDOTS(-70), FROMDIDOTS(50), FROMDIDOTS(30), FROMDIDOTS(0), FROMDIDOTS(20)
This CorelDRAW command would create a rectangle 100 by 50 didots. The rectangle’s top left coordinate
is -30, 50 didots relative to the center of the page, and the corners are 20 didots in diameter.

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics

FROMPICAS
Converts the argument from picas to tenths of a micron.

Syntax
FROMPICAS(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or a numeric expression; specifies the

argument to convert.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW.
Example
.CreateRectangle FROMPICAS(-12), FROMPICAS(18), FROMPICAS(6), FROMPICAS(6), FROMPICAS(2)
This CorelDRAW command would create a rectangle 18 by 12 picas. The rectangle’s top left coordinate
 is 6, 18 picas relative to the center of the page, and the corners are 2 picas in diameter.

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics

FROMCICEROS
Converts the argument from ciceros to tenths of a micron.

Syntax
FROMCICEROS(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or a numeric expression; specifies the

argument to convert.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW.
Example
.CreateRectangle FROMCICEROS(-12), FROMCICEROS(18), FROMCICEROS(6), FROMCICEROS(6),
FROMCICEROS(1.5)
This CorelDRAW command would create a rectangle 18 by 12 ciceros. The rectangle’s top left corner coordinate
is -6, 18 ciceros relative to the center of the page, and the corners are 1.5 ciceros in diameter.

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics

FROMPOINTS
Converts the argument from points to tenths of a micron.

Syntax
FROMPOINTS(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or a numeric expression; specifies the

argument to convert.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW.
Example
.CreateRectangle FROMPOINTS(-140), FROMPOINTS(210), FROMPOINTS(70), FROMPOINTS(70),
FROMPOINTS(1.75)
This CorelDRAW command would create a rectangle 210 by 140 points. The rectangle’s top left corner coordinate
is 70, 70 points relative to the center of the page, and the corners are 1.75 points in diameter.

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics

FROMCENTIMETERS
Converts the argument from centimeters to tenths of a micron.

Syntax
FROMCENTIMETERS(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or a numeric expression; specifies the

argument to convert.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW.
Example
.CreateRectangle FROMCENTIMETERS(-5), FROMCENTIMETERS(8), FROMCENTIMETERS(2.5),
FROMCENTIMETERS(0), FROMCENTIMETERS(0.75)
This CorelDRAW command would create a rectangle 7.5 by 8 centimeters. The rectangle’s top left corner
coordinate is 2.5, 0 centimeters relative to the center of the page, and the corners are 0.75 centimeters in
diameter.

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics

TOINCHES
Converts the argument from tenths of a micron to inches.

Syntax
TOINCHES(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or a numeric expression; specifies the

argument to convert.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW.
Example
.GetPosition (x,y)
xInch = TOINCHES (x)
yInch = TOINCHES (y)
In this CorelDRAW example, xInch and yInch are set to the X and Y coordinates of the selected object in inches.

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics

TODIDOTS
Converts the argument from tenths of a micron to didots.

Syntax
TODIDOTS(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or a numeric expression; specifies the

argument to convert.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW.
Example
.GetPosition (x,y)
xDidots = TODIDOTS (x)
yDidots = TODIDOTS (y)
In this CorelDRAW example, xDidots and yDidots are set to the X and Y coordinates of the selected object in
didots.

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics

TOPICAS
Converts the argument from tenths of a micron to picas.

Syntax
TOPICAS(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or a numeric expression; specifies the

argument to convert.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW.
Example
.GetPosition (x,y)
xPica = TOPICAS (x)
yPica = TOPICAS (y)
In this CorelDRAW example, xPica and yPica are set to the X and Y coordinates of the selected object in picas.

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics

TOCICEROS
Converts the argument from tenths of a micron to ciceros.

Syntax
TOCICEROS(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or a numeric expression; specifies the

argument to convert.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW.
Example
.GetPosition (x,y)
xCiceros = TOCICEROS (x)
yCiceros = TOCICEROS (y)
In this CorelDRAW example, xCiceros and yCiceros are set to the X and Y coordinates of the selected object in
ciceros.

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics

TOPOINTS
Converts the argument from tenths of a micron to points.

Syntax
TOPOINTS(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or a numeric expression; specifies the

argument to convert.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW.
Example
.GetPosition (x,y)
xPoint = TOPOINTS (x)
yPoint = TOPOINTS (y)
In this CorelDRAW example, xPoint and yPoint are set to the X and Y coordinates of the selected object in
points.

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics

TOCENTIMETERS
Converts the argument from tenths of a micron to centimeters.

Syntax
TOCENTIMETERS(x{%|&|!|#|@})

Argument Definition
x{%|&|!|#|@} Any number, numeric variable or constant, or a numeric expression; specifies the

argument to convert.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW.
Example
.GetPosition (x,y)
xCM = TOCENTIMETERS (x)
yCM = TOCENTIMETERS (y)
In this CorelDRAW example, xCM and yCM are set to the X and Y coordinates of the selected object in
centimeters.

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics

To move a toolbar
1. Click the border of the toolbar.
2. Drag it to its new location.

Right-click to cancel the movement.
Tip

Double-click a toolbar’s title or border to automatically dock and undock it.

{button ,AL(`stoolbars_proc;;;;;',0,"Defaultoverview",)} Related Topics

To resize a toolbar
1. Move the cursor to the edge of a floating toolbar.
2. Drag the edge until the toolbar is the correct size.

Right-click to cancel the movement.

{button ,AL(`stoolbars_proc;;;;;',0,"Defaultoverview",)} Related Topics

To display and hide an existing toolbar
1. Click View, Toolbars.
2. Click the checkbox next to the toolbar you want to display or hide.

{button ,AL(`stoolbars_proc;;;;;',0,"Defaultoverview",)} Related Topics

To assign a Corel SCRIPT script to an accelerator (shortcut) key
From your Corel application:
1. Click Tools, Customize.
2. Click Keyboard.
3. In the Commands box, double-click the Application Scripts folder or the General Scripts folder.

The Application Scripts folder contains scripts that send instructions to the Corel application you are
customizing. The General Scripts folder contains scripts that are not application specific. Based on a typical
Corel installation, application scripts reside in the C:\corel60\application folder, where application refers to
the application's folder. For example, CorelDRAW scripts are saved in the C:\corel60\draw folder. General
Scripts normally reside in the C:\corel60\scripts folder.

4. Click the script.
5. Click the Press new shortcut key box.
6. Press the keyboard combination you want to assign to the command. To make a correction, press the

Backspace key.
You can have up to four layers of keystrokes. For example, the key combination CTRL+ALT+1,2,3,4 is
accomplished by holding down the CTRL and ALT keys, then pressing the 1,2,3, and 4 keys in succession.

Note
To have accelerator conflicts resolved automatically, enable Go to conflict on assign.

{button ,AL(`cs_custom;;;;;',0,"Defaultoverview",)} Related Topics

To assign a Corel SCRIPT script to a menu
From your Corel application:
1. Click Tools, Customize.
2. Click Menu.
3. In the Commands box, double-click the Application Scripts folder or the General Scripts folder.

The Application Scripts folder contains scripts that send instructions to the Corel application you are
customizing. The General Scripts folder contains scripts that are not application specific. Based on a typical
Corel installation, application scripts reside in the C:\corel60\application folder, where application refers to
the application's folder. For example, CorelDRAW scripts are saved in the C:\corel60\draw folder. General
Scripts normally reside in the C:\corel60\scripts folder.

4. Click the script.
5. In the Menu box, click the menu or sub-menu where you want to add the command.
6. Click Add.
Tip

Use the Separator button to add organizational lines to your menus.

{button ,AL(`cs_custom;;;;;',0,"Defaultoverview",)} Related Topics

To assign a Corel SCRIPT script to a toolbar button
From your Corel application:
1. Activate the toolbar you want to edit.
2. Click Tools, Customize.
3. In the Commands box, double-click the Application Scripts folder or the General Scripts folder.

The Application Scripts folder contains scripts that send instructions to the Corel application you are
customizing. The General Scripts folder contains scripts that are not application specific. Based on a typical
Corel installation, application scripts reside in the C:\corel60\application folder, where application refers to
the application's folder. For example, CorelDRAW scripts are saved in the C:\corel60\draw folder. General
Scripts normally reside in the C:\corel60\scripts folder.

4. Click the script.
5. Drag the appropriate command button to the toolbar. Right-click to cancel the movement.
Tip

If a script's first line, second line, or both are REM statements, they are displayed in the Description text
box.

{button ,AL(`cs_custom;;;;;',0,"Defaultoverview",)} Related Topics

To run a Corel SCRIPT script from a Corel application
1. Click Tools, Scripts, Run.
2. If the Corel SCRIPT script is not in the default folder, chose the drive and folder where it is stored.
3. Double-click the Corel SCRIPT script you want to run.
Notes

You can use wild cards (* and ?) if you're not sure of the name of the file you want to run. For example,
typing script*.csc in the File Name box and clicking OK lists all CSC files in the selected folder beginning with
script. Typing sc?.csc in the File Name box and clicking OK lists all CSC files in the selected folder that begin with
sc and are followed by only one more character.

To run a script from your Corel application, the script must contain the WITHOBJECT construct.
You can't undo executed script commands. If you're not sure whether a script is running to your

specifications, then before the script is executed, save the documents in the Corel application that will receive
thescript instructions .

You can terminate a script's execution by pressing ESC. In some cases, you may have to press ESC several
times to terminate execution.

{button ,AL(`app_Corel_SCRIPT;script_files;ht_play_script_cse;;;',0,"Defaultoverview",)} Related
Topics

Reserved keywords
The following keywords are reserved by CorelSCRIPT and cannot be used as variable, constant, procedure,
function, subroutine, parameter, or array names:

ABS
ACOS
ALIAS
AND
ANGLECONVERT
APPEND
AS
ASC
ASIN
AT
ATAN

BEEP
BEGIN
BOOLEAN
BYREF
BYVAL

CALL
CANCELBUTTON
CASE
CBOL

CCUR
CDAT
CDBL
CHECKBOX
CHR
CINT
CLNG
CLOSE
COMBOBOX
CONST
COPY
COS
CSGN
CSTR
CURRDATE
CURRENCY
CURRFOLDER

DATA
DATE
DDCOMBOBOX
DDLISTBOX
DEC
DECLARE
DIALOG
DIM
DO
DOUBLE
DRAW

ELSE
ELSEIF
END
ENDIF
EOF
EQV
ERROR
EXIT
EXP

FAIL
FIELD
FILEATTR
FILEDATE
FILEMODE
FILEPOS
FILESIZE
FINDFIRSTFOLDER
FINDNEXTFOLDER

FIX
FOR
FREEFILE
FROMCENTIMETERS
FROMCICEROS
FROMDIDOTS
FROMINCHES
FROMPICAS
FROMPOINTS
FUNCTION

GET
GETAPPHANDLE
GETFILEBOX
GETWINHANDLE
GLOBAL
GOSUB
GOTO
GROUPBOX

HELPBUTTON
HEX

IF
IMAGE
IMAGELISTBOX
IMP
INPUT
INPUTBOX
INSTR
INT
INTEGER
IS

KILL

LBOUND
LCASE
LEFT
LEN
LENGTHCONVERT
LET
LIB
LINE
LISTBOX
LN
LOCK
LOF
LOG

LONG
LOOP
LSET
LTRIM

MESSAGE
MESSAGEBOX
MID
MKFOLDER
MOD

NEXT
NOT

OBJECT
OKBUTTON
ON
OPEN
OPTIONBUTTON
OPTIONGROUP
OR
OUTPUT

PAINT
PRINT
PUSHBUTTON
PUT

RANDOMIZE
READ
REDIM
REM
RENAME
RESET
RESTORE
RESUME
RIGHT
RMFOLDER
RND
RTRIM

SEEK
SELECT
SET
SGN
SIN
SINGLE
SPACE
SPINCONTROL

SQR
STATIC
STEP
STOP
STRING
STR
STR
SUB
SWAP

TAN
TEXT
TEXTBOX
THEN
TIMER
TO
TOCENTIMETERS
TOCICEROS
TODIDOTS
TOINCHES
TOPICAS
TOPOINTS
TYPE

UBOUND
UCASE
UNLOCK
UNTIL

VAL
VARIANT

WAIT
WEND
WHILE
WITH
WITHOBJECT
WRITE

XOR

This word is reserved for future use.

Trappable error codes
If errors occur when you execute a script, an error message is displayed in the Compiler Output window. If you're
using an error-handling routine, the Corel SCRIPT global variable ERRNUM is assigned a value based on the error.
For more information about ERRNUM, see the ONERROR statement.

ERRNUM
Value

Error Message

1 Internal Error
2 Unknown error
3 Variable is not initialized

50 Division by 0
51 Type mismatch
52 Out of memory
53 Overflow
54 Invalid array index
55 Invalid specification of array dimensions
56 Resume without error

200 Invalid file number
201 Unable to open file
202 File handle out of range
203 Error writing to file
204 Error reading file
205 Invalid file position

250 Unable to change folder
251 Unable to make folder
252 Unable to remove folder
253 Unable to delete folder

300 Incorrect parameter count
301 Unable to get DLL entry point
302 Unable to execute function
303 Object not initialized through WITHOBJECT
304 Invalid parameter

350 Unable to initialize dialog
351 Invalid dialog

600 OLE Automation Error
601 Invalid number of parameters
602 Bad variable type
603 Object does not support this function
604 Object does not support named arguments
605 Value out of range
606 Invalid Parameter name
607 Argument Type mismatch

608 Unknown Interface
609 Unknown language
610 Unspecified parameter is not optional

800 to
999

User defined errors numbers.

1000 + Corel application errors

Note
Not all Corel SCRIPT errors are trappable.

{button ,AL(`script_errors;;;;;',0,"Defaultoverview",)} Related Topics

Trappable Error: 1
ERRNUM 1 indicates an internal error.
Possible causes:

Your system resources may be low.
You may be low on hard disk space.

Possible solutions:
Free up system resources and hard disk space.

Trappable Error: 2
ERRNUM 2 indicates an unknown error.
Possible causes:

Your system resources may be low.
You may be low on hard disk space.

Possible solutions:
Free up system resources and hard disk space.

Trappable Error: 3
ERRNUM 3 indicates an uninitialized variable.
Possible causes:

You may have misspelled a variable name.
You may not have initialized the variable.

Possible solutions:
Confirm the spelling of the variables in your script.
Confirm that all variables are initialized.

Trappable Error: 50
ERRNUM 50 indicates an attempt to divide by zero.
Possible causes:

You may not have initialized the variable.
You may have misspelled a variable being used as a denominator.

Possible solutions:
Ensure that all variables are initialized and spelled correctly.

Trappable Error: 51
ERRNUM 51 indicates a type mismatch.
Possible causes:

You may be mis-assigning a value to a variable.
You may have misspelled the variable name.

Possible solutions:
Confirm that all variables are spelled correctly.
Confirm that you are assigning values to the correct variables.

Trappable Error: 52
ERRNUM 52 indicates that the system is out of memory.
Possible causes:

You may have an infinite loop in your script.
You may have an over-sized array.

Possible solutions:
Check the logic in your script, ensuring that infinite loops are removed.
Ensure that all arrays are assigned a reasonable size.

Trappable Error: 54
ERRNUM 54 indicates an invalid array index.
Possible causes:

You may not have correctly initialized your index or your array.
Your logic might be incorrectly adding to your index.

Possible solutions:
Ensure that your array and index are initialized.
Check the logic in your script, confirming all modifications to the array index.

Trappable Error: 53
ERRNUM 53 indicates an overflow.
Possible causes:

You may have assigned an inappropriate value to a variable type, such as assigning a number greater than
32 767 to an integer.

Possible solutions:
Go through your script’s logic, ensuring that all values are appropriate.
Confirm your variable declarations to ensure than each variable is of the correct data type.

Trappable Error: 55
ERRNUM 55 indicates an invalid specification of array dimensions.
Possible causes:

The number of dimensions doesn't match the definition in the DIM statement.
Invalid specification of an array dimension such as 7 to -3.
Invalid specification of the dimension in the LBOUND or UBOUND statement.

Possible solutions:
Correct the DIM, LBOUND, or UBOUND statement.

Trappable Error: 56
ERRNUM 56 indicates a resume without error error.
Possible causes:

Your script may have executed a RESUME statement outside of an active error-handling routine.
Possible solutions:

You should place a STOP, EXIT FUNCTION, or an EXIT SUB before an error-handling routine in a script to
prevent it from being executed when no error has occurred.

Trappable Error: 200
ERRNUM 200 indicates an invalid file number.
Possible causes:

You may be assigning a file number outside the range of one to ten.
Possible solutions:

Confirm that your file numbers do not exceed ten.

Trappable Error: 201
ERRNUM 201 indicates an inability to open a file.
Possible causes:

You may not be allowed access to that file.
The file may not be present.
The file may be corrupted.
The file may not be of the correct file-type.
The file may already be in use.

Possible solutions:
Confirm that you are allowed to access the file.
Confirm that the file is both present and of the correct file-type.
Confirm that the file is not corrupted.
Confirm that the file is not already in use.

Trappable Error: 202
ERRNUM 202 indicates an out-of-range file handle.
Possible causes:

You may be assigning a file number outside the range of one to ten.
Possible solutions:

Confirm that your file number is between one and ten. FREEFILE can help you find an unused file handle.

Trappable Error: 203
ERRNUM 203 indicates an error writing to a file.
Possible causes:

You may not be allowed access to that file.
The file may not be present.
The file may be corrupted.
The file may not be of the correct file-type.
The file may already be in use.

Possible solutions:
Confirm that you are allowed to access the file.
Confirm that the file is both present and of the correct file-type.
Confirm that the file is not corrupted, and is not already in use.

Trappable Error: 204
ERRNUM 204 indicates an error reading a file.
Possible causes:

You may not be allowed access to that file.
The file may not be present.
The file may be corrupted.
The file may not be of the correct file-type.
The file may already be in use.

Possible solutions:
Confirm that you are allowed to access the file.
Confirm that the file is both present and of the correct file-type.
Confirm that the file is not corrupted.
Confirm that the file is not already in use.

Trappable Error: 205
ERRNUM 205 indicates an invalid file position.
Possible causes:

You are trying to access an area outside the file.
Possible solutions:

Use the LOF function to determine the file length, and access a position within that area.

Trappable Error: 250
ERRNUM 250 indicates an error in changing files.
Possible causes:

You may not be allowed access to that file.
The file may not be present.
The file may be corrupted.
The file may not be of the correct file-type.
The file may already be in use.

Possible solutions:
Confirm that you are allowed to access the file.
Confirm that the file is both present and of the correct file-type.
Confirm that the file is not corrupted, and is not already in use.

Trappable Error: 251
ERRNUM 251 indicates an error in creating a folder.
Possible causes:

You may not have file-creation privileges.
The filename may already be present.

Possible solutions:
Confirm that you are allowed to create files.
Confirm that the file is not already in use.

Trappable Error: 252
ERRNUM 252 indicates an error in removing a folder.
Possible causes:

You may not be allowed to remove that file.
The file may not be present.
The file may already be in use.

Possible solutions:
Confirm that you are allowed to access the file.
Confirm that the file is present.
Confirm that the file is not already in use.

Trappable Error: 253
ERRNUM 253 indicates an error in deleting a folder.
Possible causes:

You may not be allowed access to that file.
The file may not be present.
The file may already be in use.

Possible solutions:
Confirm that you are allowed to access the file.
Confirm that the file is present.
Confirm that the file is not already in use.

Trappable Error: 300
ERRNUM 300 indicates an incorrect parameter count.
Possible causes:

You may have omitted a parameter, or provided an unnecessary argument.
Possible solutions:

Confirm that your parameter count is correct throughout the script.

Trappable Error: 301
ERRNUM 301 indicates a problem in getting a Dynamic Linked Library entry point.
Possible causes:

The DLL does not exist.
The function does not exist in the DLL.
You may have misspelled the function name, or the case may not match.

Possible solutions:
Check that the DLL exists, and that the function is applicable to that DLL.
Confirm the spelling and case of the function name.

Trappable Error: 302
ERRNUM 302 indicates an error in executing a function.
Possible causes:

Your system resources may be low.
You may be low on hard disk space.

Possible solutions:
Free up system resources and hard disk space.

Trappable Error: 303
ERRNUM 303 indicates an object which hasn’t been initialized through WITHOBJECT.
Possible causes:

The WITHOBJECT statement may have been by-passed by flow-control statements, such as GOTO.
Possible solutions:

Step through the flow of the script, to confirm execution of the WITHOBJECT statement.

Trappable Error: 304
ERRNUM 304 indicates an invalid parameter.
Possible causes:

You may have used parameter that is out of range.
Possible solutions:

Confirm that the value of the parameters is in the acceptable range.
Confirm data type of the parameters.

Trappable Error: 350
ERRNUM 350 indicates an error in initializing a dialog.
Possible causes:

Your system resources may be low.
You may be low on hard disk space.

Possible solutions:
Free up system resources and hard disk space.

Trappable Error: 351
ERRNUM 351 indicates an invalid dialog.
Possible causes:

Your dialog may contain invalid controls, such as an incorrectly placed button.
Possible solutions:

Confirm that the dialog controls are positioned within reasonable bounds.

Trappable Error: 600
ERRNUM 600 indicates an error in OLE automation.
Possible causes:

The application may have problems opening.
The object name may be incorrect.

Possible solutions:
Check the OLE automation errors.

Trappable Error: 601
ERRNUM 601 indicates an invalid number of parameters.
Possible causes:

The application is expecting a different number of parameters.
Possible solutions:

Check that all parameters are required, and that all required parameters are there.

Trappable Error: 602
ERRNUM 602 indicates a bad variable type.
Possible causes:

You have passed the function a parameter of an unknown variable type.
Possible solutions:

Confirm the variable’s data type.

Trappable Error: 603
ERRNUM 603 indicates that the object doesn’t support this function.
Possible causes:

The object doesn’t support this function.
Possible solutions:

Confirm that this function is supported by the object.

Trappable Error: 604
ERRNUM 604 indicates that the object doesn’t support the named arguments.
Possible causes:

Some applications do not support named arguments.
Possible solutions:

Confirm that the arguments are suitable for the application.

Trappable Error: 605
ERRNUM 605 indicates a value out of the acceptable range.
Possible causes:

You may have passed a large value to an application which expected a smaller value.
Possible solutions:

Confirm that the value you are trying to pass to the application is within an acceptable range, and is of a
suitable data type.

Trappable Error: 606
ERRNUM 606 indicates an invalid parameter name.
Possible causes:

You may have passed an incorrectly spelled named argument.
Possible solutions:

Confirm that all named arguments are recognized.

Trappable Error: 607
ERRNUM 607 indicates an argument type mismatch.
Possible causes:

You may have passed a variable which is not of the appropriate data type.
Possible solutions:

Confirm that the data type is appropriate.

Trappable Error: 608
ERRNUM 608 indicates an unknown interface.
Possible causes:

The object does not support OLE automation.
Possible solutions:

Change the object, if necessary.

Trappable Error: 609
ERRNUM 609 indicates an unknown language..
Possible causes:

The application is unable to recognize the international language of the functions.
Possible solutions:

Confirm that the language is compatible.

Trappable Error: 610
ERRNUM 610 indicates that a required parameter is missing.
Possible causes:

A required parameter is missing.
Possible solutions:

Confirm that all required parameters are present.

Mathematical functions
You can use to the following formulas to create mathematical functions in Corel SCRIPT scripts. The formulas are
based on Corel SCRIPT functions.

Function To use this... ...paste this formula into your
script

Secant SEC(X) = 1 / COS(X)
Cosecant COSEC(X) = 1 / SIN(X)
Cotangent COTAN(X) = 1 / TAN(X)
Arc secant ARCSEC(X) = ACOS (1 / X)
Arc cosecant ARCCOSEC(X) = ASIN (1 / X)
Arc cotangent ARCCOTAN(X) = ATAN (1 / X)
Hyperbolic sine HSIN(X) = (EXP(X)- EXP (-X))/ 2
Hyperbolic cosine HCOS(X) = (EXP(X)+ EXP (-X))/ 2
Hyperbolic tangent HTAN(X) = (EXP(X)- EXP (-X)) / (EXP(X)+ EXP (-X))
Hyperbolic secant HSEC(X) = 2 / (EXP(X)+ EXP (-X))
Hyperbolic cosecant HCOSEC(X) = 2 / (EXP(X)- EXP (-X))
Hyperbolic cotangent HCOTAN(X) = (EXP(X)+ EXP (-X)) / (EXP(X)- EXP (-X))
Inverse hyperbolic sine HARCSIN(X) = LOG (X + SQR (X * X + 1))
Inverse hyperbolic cosine HARCCOS(X) = LOG (X + SQR (X * X -1))
Inverse hyperbolic tangent HARCTAN(X) = LOG ((1 + X)/(1 - X)) / 2
Inverse hyperbolic secant HARCSEC(X) = LOG ((SQR (-X * X + 1) + 1) / X
Inverse hyperbolic cosecant HARCCOSEC(X) LOG ((SQR (X) * SQR (X * X + 1) +1) /

X)
Inverse hyperbolic cotangent HARCCOTAN(X) LOG ((X + 1)/(X - 1)) / 2

Note
You can copy a formula into a script by selecting it, clicking right-mouse button, Copy. The formula is

placed on the clipboard ready to be pasted.

{button ,AL(`all_math_fns;;;;;',0,"Defaultoverview",)} Related Topics

This button is not available in this application.

Resets a selected toolbar.

Displays the available toolbars. Enable the checkbox next to a toolbar to activate it.

This button is not available in this application.

Enables large toolbar buttons.

Enables medium toolbar buttons.

Enables small toolbar buttons.

Opens detailed online Help for this dialog box.

Customizing toolbars
You can use the toolbars dialog box to customize your applications toolbar settings. You can display and hide
toolbars, and resize buttons.

{button ,AL(`stoolbars_proc;;;;;',0,"Defaultoverview",)} Related Topics

Displays the available command categories. Click a category to display its command buttons.

Displays the command buttons for the current command category. Click a button to see its description, or drag it
to add it to any toolbar on the screen.

A command button. Click it to see its description, or drag it to add it to any toolbar on the screen.

Gives a short description of any toolbar button you click.

Resets the toolbar assignments to their original configuration.

Displays the system information for the chosen category.

Saves the selected category's details as SYSINFO.TXT. Once it's saved, a message box will appear informing you
where the file was saved to.

Opens the System Info dialog box where you can get information about your system, display,    printing, Corel
EXEs & DLLs and system DLLs.

Displays the disk space available on the drive where the program is installed.

Displays the name of the registered user and the serial number.

Displays copyright information.

Displays the version of the product currently installed.

Displays the name of the product.

Double-click to open the credits window. To exit the credits and return to your program, click the ESC button.

Provides a list of system information categories. Click one of the following:
System Displays information about your computer For example, Windows version or

processor.
Display Displays information about your monitor. For example, driver,or driver

version.
Printing Displays information about installed printers.
Corel EXEs and
DLLs

Displays information all of the Corel EXEs and DLLs.

System DLLs: Displays all of the system DLLs.

Displays the system information for the chosen category.

Saves all system information as SYSINFO.TXT. Once it's saved, a message box appears informing you of the
location of the saved file.

Double-click to open the credits window. To exit the credits and return to your program, click the ESC button.

Displays information about the contents of the file.

