
The Maze - Help Index

· How to play - Instructions
· Implementation of the game
· About the author





How to play - Instructions

The object of this game is to find your way through the maze from the upper right corner to the 
lower left corner. Move through the maze using the arrow-keys of your keyboard. Use the 
CTRL-button in combination with the arrow-keys to jump to the next crossroad.

Definition of keys that can be used with this game:

CTRL-N Start/generate a new maze
CTRL-O Open a previously saved maze
CTRL-S Save the current maze to a bitmap
CTRL-B Save screenshot into a bitmap (BMP) file (ca. 1.1 MB)
CTRL-R Restart the Game
CTRL-L Solve the maze
ESC Solve the maze
CTRL-X Exit the program
CTRL-T Use a tail for walking through the maze
F1 This Helpfile

These commands can also be reached through the menu system of the game.

By clicking on the up/down-buttons the width, height and linesize of the maze can be altered. By
clicking on the width or height label, their respective values can be increased by one.    By 
clicking on the size label, the linesize can be increased by five. After you have done this, you 
must press CTRL-N to generate a maze of the specified size. When the specified maze is too 
large to fit on the form, the linesize is automatically adjusted, so that the maze fits to the form.

Go back to the Help Index





Implementation of the game

· Source code
· Generating the maze
· Solving the maze

Go back to the Help Index





Source code

The initial purpose of this program for me was to help me learn Borland Delphi 2.0 and many of 
its aspects. Also, as I am a mathematician, finding an algorithm for generating and solving a 
maze is fun! For those interested in the Delphi source code of this program, please send a 
postcard from the city you come from to the following address:

E.W. Hans
Witbreuksweg 393-305
7522 ZA Enschede
The Netherlands

Don't forget to mention your email-address, and your comment to this game. The complete 
source code of the program will be sent to you by email as quickly as possible.

In case you have any suggestions to this game (e.g. add-ons, bugs, etc.) please email your 
comment to: e.w.hans@wb.utwente.nl 
This email-address cannot be used to obtain the Delphi source code of this program!

This game may be copied freely and may not be sold. This game is shareware.

Go back to the Help Index





Generating the maze - the algorithm

The maze can be created using Prims algorithm and the so called snake crawler (two different 
types). Also a unicursal maze can be created. Version one is derived (the algorithm is explained 
below) from a Prim-maze and version two from the snake crawler.

Prims algorithm:
At the start, the maze is completely filled with a grid. The maze is generated by creating two 
random trees (i.e. trees in graph theory) in the maze. These two trees start at two random points 
in the maze. In each iteration each tree is expanded with one node by removing a random line 
from the maze. Of course only the lines that will expand the trees, and dont make circuits are to 
be removed. After the maze is completely filled with the trees (note: the trees may not connect!), 
one final random line is removed to connect the trees. By connecting the trees in this way, the 
maze is completely filled with a new (larger) tree. 

An important characteristic of a tree, is that there always is only one route from point A to B. 
Consequently, there is only one way between each two points in the maze.

The question may arise why I have created one large tree by connecting two smaller trees, and 
not just created one large maze from the start. Fact is that generally with my strategy, the maze 
becomes more difficult to solve. A recent idea of mine is to connect f.e. 4 trees in the following 
way:
Suppose the trees (t1, t2, .., t4) fill the maze in such a way, that the following trees are adjacent:
t1 & t2
t1 & t4
t1 & t3
t2 & t3
t3 & t4
Suppose the entrance of the maze lies in t2, and the exit in t4. When each tree is represented by a 
node in a graph, a longest path algorithm can be used to determine the longest path from t2 to t4 
(e.g. t2 -> t1 -> t3 -> t4). At this stage, random lines between t2 & t1, t1 & t3, t3 &t4 can be 
removed to create a maze with the longest path! Got the idea? What do you think about this 
method? How many trees must be used to make the maze as difficult as possible? Please mail 
your comments / suggestions to:
e.w.hans@wb.utwente.nl

Snake crawler algorithm:
With this simple algorithm ten random starting points are chosen, from where a snake will grow. 
Each step the snake will grow until finally the maze is filled. When a snake cant grow (the head 
of the snake is caught within the snakes body), a random continuing point is chosen somewhere 
on the side of the snake (the snake will thus branch). By finally connecting the snakes, a maze is 
generated with very few dead ends. A unicursal maze can be created, with only one snake.



Unicursal mazes:
A unicursal maze is a maze with very few (or no) dead ends. A unicursal maze can easily be 
derived from another maze by bisecting each passage in the maze (i.e. each passage in the maze 
is to be split by a line that does not touch a wall of the original maze). This way a unicursal maze
can be derived of exactly twice the size of the original maze.

Go back to the Help Index





Solving the maze - the algorithm

The maze is solved using a recursive depth first search method. My experience with this method 
is that it is very effective. When solving the maze a so called gauge is displayed, that displays the
progress of solving. In fact updating this gauge takes about half of the time of solving the maze!

Go back to the Help Index





About the author

This program was made by E.W. Hans in the Netherlands. For all people that enjoyed playing 
this game, or that are interested in the source code of the game (Delphi), please send a postcard 
from the city you come from to the following address:

E.W. Hans
Witbreuksweg 393-305
7522 ZA Enschede
The Netherlands

Don't forget to mention your email-address (in case you want to recieve the Delphi source code), 
and your comment to this game. Comment can also be sent to my email-address:
e.w.hans@wb.utwente.nl

Go back to the Help Index




