
Appendix C: Background Information 1

#1 $2 +3Windows Sockets
An Open Interface for

Network Programming under
Microsoftâ Windowsä

Version 1.1
20 January 1993

Authors and Copyright
Acknowledgements
Introduction
Programming with Sockets
Socket Library Overview
Socket Library Reference
Appendices

Error Codes and Header Files
Error Codes
Header Files

Notes for Windows Sockets Suppliers
For Further Reference
Background Information

Origins of Windows Sockets
Legal Status of Windows Sockets
The Story Behind the Windows Socket Icon

Windows Sockets in Windows Help

1# WinSock_Index
2$ Windows Sockets Index
3+ WinSock:0005

#4 This Windows Help version of the Windows Socket 1.1
Specification is provided by InfoMagic, Inc.    It may be freely
redistributed, either as provided or in modified form.    Winsock
providers may integrate it into their product documentation
without incurring any obligation to InfoMagic, Inc.    The
source .rtf file is available from microdyne.com via anonymous
FTP along with the other WIndows Sockets material.

4# WinSock_WinHelp

Appendix C: Background Information 3

#5Martin Hall
Mark Towfiq
Geoff Arnold

David Treadwell
Henry Sanders

Copyright Ó 1992 by Martin Hall, Mark Towfiq
Geoff Arnold, David Treadwell and Henry Sanders

All rights reserved.

This document may be freely redistributed in any form, electronic
or otherwise, provided that it is distributed in its entirety and that
the copyright and this notice are included.    Comments or
questions may be submitted via electronic mail to
winsock@microdyne.com.    Requests to be added to the
Windows Sockets mailing list should be addressed to winsock-
request@microdyne.com.    This specification, archives of the
mailing list, and other information on Windows Sockets are
available via anonymous FTP from the host microdyne.com,
directory /pub/winsock.    Questions about products conforming to
this specification should be addressed to the vendors of the
products.

5# WinSock_Authors

#6 $7 +8 K9 Windows Sockets

Acknowledgments

The authors would like to thank their companies for allowing them the time and resources to
make this specification possible:    JSB Corporation, Microdyne Corporation, FTP Software, Sun
Microsystems, and Microsoft Corporation.

Special thanks should also be extended to the other efforts contributing to the success of
Windows Sockets. The original draft was heavily influenced by existing specifications offered and
detailed by JSB Corporation and Net Manage, Inc. The "version 1.0 debate" hosted by Microsoft
in Seattle allowed many of the members of the working group to hash out final details for 1.0 vis-
a-vis.

Sun Microsystems was kind enough to allow first time implementors to "plug and play" beta
software during the first Windows Sock-A-Thon of    Windows Sockets applications and
implementations at Interop Fall '92.    Microsoft has shared WSAT (the Windows Sockets API
Tester) with other Windows Sockets implementors as a standard Windows Sockets test suite to
aid in testing their implementations. Finally, Sun Microsystems and FTP Software plan to host the
Windows Sock-A-Thon II in Boston February '93.

Without the contributions of the individuals and corporations involved in the working group,
Windows Sockets would never have been as thoroughly reviewed and completed as quickly. In
just one year, several competitors in the networking business developed a useful specification
with something to show for it! Many thanks to all which participated, either in person or on e-mail
to the Windows Sockets effort. The authors would like to thank everyone who participated in any
way, and apologize in advance for anyone we have omitted.

List of contributors:

Martin Hall (Chairman) JSB Corporation martinh@jsbus.com
Mark Towfiq (Coordinator) Microdyne Corporation towfiq@microdyne.com
Geoff Arnold (Editor 1.0) Sun Microsystems geoff@east.sun.com
David Treadwell (Editor 1.1) Microsoft Corporation davidtr@microsoft.com
Henry Sanders Microsoft Corporation henrysa@microsoft.com

J. Allard Microsoft Corporation jallard@microsoft.com
Chris Arap-Bologna Distinct chris@distinct.com
Larry Backman FTP Software backman@ftp.com
Alistair Banks Microsoft Corporation alistair@microsoft.com
Rob Barrow JSB Corporation robb@jsb.co.uk
Carl Beame Beame & Whiteside beame@mcmaster,ca
Dave Beaver Microsoft Corporation dbeaver@microsoft.com
Amatzia BenArtzi NetManage, Inc. amatzia@netmanage.com
Mark Beyer Ungermann-Bass mbeyer@ub.com
Nelson Bolyard Silicon Graphics, Inc. nelson@sgi.com
Pat Bonner Hewlett-Packard p_bonner@cnd.hp.com

6# WinSock_Acknowledgements
7$ Acknowledgements
8+ WinSock:0007
9K Acknowledgements

Appendix C: Background Information 5

Derek Brown FTP Software db@wco.ftp.com
Malcolm Butler ICL mcab@oasis.icl.co.uk
Mike Calbaum Fronteir Technologies mike@frontiertech.com
Isaac Chan Microsoft Corporation isaacc@microsoft.com
Khoji Darbani Informix khoji@informix.com
Nestor Fesas Hughes LAN Systems nestor@hls.com
Karanja Gakio FTP Software karanja@ftp.com
Vikas Garg Distinct vikas@distinct.com
Gary Gere Gupta ggere@gupta.com
Jim Gilroy Microsoft Corporation jamesg@microsoft.com
Bill Hayes Hewlett-Packard billh@hpchdpc.cnd.hp.com
Paul Hill MIT pbh@athena.mit.edu
Tmima Koren Net Manage, Inc. tmima@netmanage.com
Hoek Law Citicorp law@dcc.tti.com
Graeme Le Roux Moresdawn P/L -
Kevin Lewis Novell kevinl@novell.com
Roger Lin 3Com roger_lin@3mail.3com.com
Terry Lister Hewlett-Packard tel@cnd.hp.com
Jeng Long Jiang Wollongong long@twg.com
Lee Murach Network Research lee@nrc.com
Pete Ostenson Microsoft Corporation peteo@microsoft.com
David Pool Spry, Inc. dave@spry.com
Bob Quinn FTP Software rcq@ftp.com
Glenn Reitsma Hughes LAN Systems glennr@hls.com
Brad Rice Age rice@age.com
Allen Rochkind 3Com -
Jonathan Rosen IBM jrosen@vnet.ibm.com
Steve Stokes Novell stoke@novell.com
Joseph Tsai 3Com joe_tsai@3mail.3com.com
James Van Bokkelen FTP Software jbvb@ftp.com
Miles Wu Wollongong wu@twg.com
Boris Yanovsky NetManage, Inc. boris@netmanage.com

#10 $11 +12 K13 Windows Sockets

Introduction

What is Windows Sockets
Berkeley Sockets
Microsoft Windows and Windows-specific extensions
The Status of this Specification
Revision History

10# WinSock_Intro
11$ Introduction
12+ WinSock:0010
13K Introduction

Appendix C: Background Information 7

#14 $15 +16 Introduction

What is Windows Sockets

The Windows Sockets specification defines a network programming interface for Microsoft
Windows which is based on the "socket" paradigm popularized in the Berkeley Software
Distribution (BSD) from the University of California at Berkeley.    It encompasses both familiar
Berkeley socket style routines and a set of Windows-specific extensions designed to allow the
programmer to take advantage of the message-driven nature of Windows.

The Windows Sockets Specification is intended to provide a single API to which application
developers can program and multiple network software vendors can conform.    Furthermore, in
the context of a particular version of Microsoft Windows, it defines a binary interface (ABI) such
that an application written to the Windows Sockets API can work with a conformant protocol
implementation from any network software vendor.    This specification thus defines the library
calls and associated semantics to which an application developer can program and which a
network software vendor can implement.

Network software which conforms to this Windows Sockets specification will be considered
"Windows Sockets Compliant".    Suppliers of interfaces which are "Windows Sockets Compliant"
shall be referred to as "Windows Sockets Suppliers".    To be Windows Sockets Compliant, a
vendor must implement 100% of this Windows Sockets specification.

Applications which are capable of operating with any "Windows Sockets Compliant" protocol
implementation will be considered as having a "Windows Sockets Interface" and will be referred
to as "Windows Sockets Applications".

This version of the Windows Sockets specification defines and documents the use of the API in
conjunction with the Internet Protocol Suite (IPS, generally referred to as TCP/IP).    Specifically,
all Windows Sockets implementations support both stream (TCP) and datagram (UDP) sockets.

While the use of this API with alternative protocol stacks is not precluded (and is expected to be
the subject of future revisions of the specification), such usage is beyond the scope of this version
of the specification.

14# WinSock_WhatIs
15$ What is Windows Socket
16+ WinSockIntro:0010

#17 $18 +19 K20 Introduction

Berkeley Sockets

The Windows Sockets Specification has been built upon the Berkeley Sockets programming
model which is the de facto standard for TCP/IP networking.    It is intended to provide a high
degree of familiarity for programmers who are used to programming with sockets in UNIX and
other environments, and to simplify the task of porting existing sockets-based source code.    The
Windows Sockets API is consistent with release 4.3 of the Berkeley Software Distribution
(4.3BSD).

Portions of the Windows Sockets specification are derived from material which is Copyright (c)
1982-1986 by the Regents of the University of California.    All rights are reserved.    The Berkeley
Software License Agreement specifies the terms and conditions for redistribution.

17# WinSock_Berkeley
18$ Berkeley Socket
19+ WinSockIntro:0020
20K Berkeley Sockets

Appendix C: Background Information 9

#21 $22 +23 Introduction

Microsoft Windows and Windows-specific extensions

This API is intended to be usable within all implementations and versions of Microsoft Windows
from Microsoft Windows Version 3.0 onwards.    It thus provides for Windows Sockets
implementations and Windows Sockets applications in both 16 and 32 bit operating
environments.   

Windows Sockets makes provisions for multithreaded Windows processes.    A process contains
one or more threads of execution.    In the Windows 3.1 non-multithreaded world, a task
corresponds to a process with a single thread.    All references to threads in this document refer to
actual "threads" in multithreaded Windows environments.    In non multithreaded environments
(such as Windows 3.0), use of the term thread refers to a Windows process.

The Microsoft Windows extensions included in Windows Sockets are provided to allow
application developers to create software which conforms to the Windows programming model.   
It is expected that this will facilitate the creation of robust and high-performance applications, and
will improve the cooperative multitasking of applications within non-preemptive versions of
Windows.    With the exception of WSAStartup() and WSACleanup() their use is not mandatory.

21# WinSock_Windows
22$ Microsoft Windows and Windows-specific extension
23+ WinSockIntro:0030

#24 $25 +26 K27 Introduction

The Status of this Specification

Windows Sockets is an independent specification which was created and exists for the benefit of
application developers and network vendors and, indirectly, computer users. Each published
(non-draft) version of this specification    represents a fully workable API for implementation by
network vendors and programming use by application developers. Discussion of this specification
and    suggested improvements continue and are welcomed. Such discussion occurs mainly via
the Internet electronic mail forum winsock@microdyne.com. Meetings of    interested parties occur
on an irregular basis. Details of these meetings are publicized to the electronic mail forum.

24# WinSock_Status
25$ The Status of this Specification
26+ WinSockIntro:0040
27K Status of the Spec

Appendix C: Background Information 11

#28 $29 +30 K31 Introduction

Revision History

Windows Sockets Version 1.0
Windows Sockets Version 1.0 represented the results of considerable work within    the vendor
and user community as discussed in "Origins of Windows Sockets". This version of    the
specification was released in order that network software suppliers and    application developers
could begin to construct implementations and applications    which conformed to the Windows
Sockets standard.

Windows Sockets Version 1.1
Windows Sockets Version 1.1 follows the guidelines and structure laid out by version 1.0, making
changes only where absolutely necessary as indicated by the experiences of a number of
companies that created Windows Sockets implementations based on the version 1.0
specification.    Version 1.1 contains several clarifications and minor fixes to version 1.0.   
Additionally, the following more significant changes were incorporated into version 1.1:

· Inclusion of the gethostname() routine to simplify retrieval of the host's
name and address.

· Definition of DLL ordinal values below 1000 as reserved for Windows
Sockets and ordinals above 1000 as unrestricted.    This allows
Windows Sockets vendors to include private interfaces to their DLLs
without risking that the ordinals choosen will conflict with a future
version of Windows Sockets.

· Addition of a reference count to WSAStartup() and WSACleanup(),
requiring correspondences between the calls.    This allows
applications and third-party DLLs to make use of a Windows Sockets
implementation without being concerned about the calls to these APIs
made by the other.

· Change of return type of inet_addr() from struct in_addr to unsigned
long.    This was required due to different handling of four-byte
structure returns between the Microsoft and Borland C compilers.

· Change of WSAAsyncSelect() semantics from "edge-triggerred" to
"level-triggerred".    The level-triggerred semantics significantly simplify
an application's use of this routine.

28# WinSock_Revision
29$ Revision History
30+ WinSockIntro:0050
31K Revision History

· Change the ioctlsocket() FIONBIO semantics to fail if a
WSAAsyncSelect() call is outstanding on the socket.

· Addition of the TCP_NODELAY socket option for RFC 1122
conformance.

Appendix C: Background Information 13

#32 $33 +34 Windows Sockets

Programming with Sockets

Windows Sockets Stack Installation Checking
Sockets
Byte Ordering
Socket Options
Database Files
Deviation from Berkeley Sockets
Windows Sockets in Multithreaded Versions of Windows

32# WinSock_ProgrammingWithSockets
33$ Programming with Sockets
34+ WinSock:0020

#35 $36 +37 K38 Programming with Sockets

Windows Sockets Stack Installation Checking

To detect the presence of one (or many) Windows Sockets implementations on a system, an
application which has been linked with the Windows Sockets Import Library may simply call the
WSAStartup() routine.    If an application wishes to be a little more sophisticated it can examine
the $PATH environment variable and search for instances of Windows Sockets implementations
(WINSOCK.DLL).    For each instance it can issue a LoadLibrary() call and use the
WSAStartup() routine to discover implementation specific data.

This version of the Windows Sockets specification does not attempt to address explicitly the issue
of multiple concurrent Windows Sockets implementations.    Nothing in the specification should be
interpreted as restricting multiple Windows Sockets DLLs from being present and used
concurrently by one or more Windows Sockets applications.

For further details of where to obtain Windows Sockets components, see "Windows Sockets
Components".

35# WinSockProg_StackInstall
36$ Windows Sockets Stack Installation Checking
37+ WinSockProg:0010
38K Installation Check

Appendix C: Background Information 15

#39 $40 +41 K42 K43 Programming with Sockets

Sockets

The following material is derived from the document "An Advanced 4.3BSD Interprocess
Communication Tutorial" by Samuel J. Leffler, Robert S. Fabry, William N. Joy, Phil Lapsley,
Steve Miller, and Chris Torek.

Basic concepts
Client-server model
Out-of-band data
Broadcasting

39# WinSockProg_Sockets
40$ Sockets
41+ WinSockProg:0020
42K Sockets
43K Berkeley Sockets

#44 $45 +46 K47 Sockets

Basic concepts

The basic building block for communication is the socket.    A socket is an endpoint of
communication to which a name may be bound.    Each socket in use has a type and an
associated process.    Sockets exist within communication domains.    A communication domain is
an abstraction introduced to bundle common properties of threads communicating through
sockets.    Sockets normally exchange data only with sockets in the same domain (it may be
possible to cross domain boundaries, but only if some translation process is performed).    The
Windows Sockets facilities support a single communication domain: the Internet domain, which is
used by processes which communicate using the Internet Protocol Suite.    (Future versions of
this specification may include additional domains.)

Sockets are typed according to the communication properties visible to a user.    Applications are
presumed to communicate only between sockets of the same type, although there is nothing that
prevents communication between sockets of different types should the underlying communication
protocols support this.   

Two types of sockets currently are available to a user.    A stream socket provides for the bi-
directional, reliable, sequenced, and unduplicated flow of data without record boundaries.   

A datagram socket supports bi-directional flow of data which is not promised to be sequenced,
reliable, or unduplicated.    That is, a process receiving messages on a datagram socket may find
messages duplicated, and, possibly, in an order different from the order in which it was sent.    An
important characteristic of a datagram socket is that record boundaries in data are preserved.   
Datagram sockets closely model the facilities found in many contemporary packet switched
networks such as Ethernet.   

44# WinSockSockets_BasicConcepts
45$ Basic concepts
46+ WinSockSock:0010
47K Sockets

Appendix C: Background Information 17

#48 $49 +50 K51 Sockets

Client-server model

The most commonly used paradigm in constructing distributed applications is the client/server
model.    In this scheme client applications request services from a server application.    This
implies an asymmetry in establishing communication between the client and server.   

The client and server require a well-known set of conventions before service may be rendered
(and accepted).    This set of conventions comprises a protocol which must be implemented at
both ends of a connection.    Depending on the situation, the protocol may be symmetric or
asymmetric.    In a symmetric protocol, either side may play the master or slave roles.    In an
asymmetric protocol, one side is immutably recognized as the master, with the other as the slave. 
An example of a symmetric protocol is the TELNET protocol used in the Internet for remote
terminal emulation.    An example of an asymmetric protocol is the Internet file transfer protocol,
FTP.    No matter whether the specific protocol used in obtaining a service is symmetric or
asymmetric, when accessing a service there is a "client process'' and a "server process''.   

A server application normally listens at a well-known address for service requests.    That is, the
server process remains dormant until a connection is requested by a client's connection to the
server's address.    At such a time the server process "wakes up'' and services the client,
performing whatever appropriate actions the client requests of it.    While connection-based
services are the norm, some services are based on the use of datagram sockets.   

48# WinSockSockets_ClientServer
49$ Client-server model
50+ WinSockSock:0020
51K Sockets

#52 $53 +54 K55 Sockets

Out-of-band data

Note: The following discussion of out-of-band data, also referred to as TCP Urgent data,   
follows the model used in the Berkeley software distribution.    Users and implementors should
be aware of the fact that there are at present two conflicting interpretations of RFC 793 (in
which the concept is introduced), and that the implementation of out-of-band data in the
Berkeley Software Distribution does not conform to the Host Requirements laid down in RFC
1122.    To minimize interoperability problems, applications writers are advised not to use out-of-
band data unless this is required in order to interoperate with an existing service.    Windows
Sockets suppliers are urged to document the out-of-band semantics (BSD or RFC 1122) which
their product implements.    It is beyond the scope of this specification to mandate a particular
set of semantics for out-of-band data handling.

The stream socket abstraction includes the notion of "out of band'' data.    Out-of-band data is a
logically independent transmission channel associated with each pair of connected stream
sockets.    Out-of-band data is delivered to the user independently of normal data.    The
abstraction defines that the out-of-band data facilities must support the reliable delivery of at least
one out-of-band message at a time.    This message may contain at least one byte of data, and at
least one message may be pending delivery to the user at any one time.    For communications
protocols which support only in-band signaling (i.e.    the urgent data is delivered in sequence with
the normal data), the system normally extracts the data from the normal data stream and stores it
separately.    This allows users to choose between receiving the urgent data in order and receiving
it out of sequence without having to buffer all the intervening data.    It is possible to "peek'' at out-
of-band data.   

An application may prefer to process out-of-band data "in-line", as part of the normal data stream.
This is achieved by setting the socket option SO_OOBINLINE (see setsockopt()).    In this case,
the application may wish to determine whether any of the unread data is "urgent" (the term
usually applied to in-line out-of-band data).    To facilitate this, the Windows Sockets
implementation will maintain a logical "mark" in the data stream to indicate the point at which the
out-of-band data was sent.    An application can use the SIOCATMARK ioctlsocket() command to
determine whether there is any unread data preceding the mark.    For example, it might use this
to resynchronize with its peer by ensuring that all data up to the mark in the data stream is
discarded when appropriate.

The WSAAsyncSelect() routine is particularly well suited to handling notification of the presence
of out-of-band-data.

52# WinSockSockets_OutOfBand
53$ Out-of-band data
54+ WinSockSock:0030
55K Sockets

Appendix C: Background Information 19

#56 $57 +58 K59 Sockets

Broadcasting

By using a datagram socket, it is possible to send broadcast packets on many networks
supported by the system.    The network itself must support broadcast: the system provides no
simulation of broadcast in software.    Broadcast messages can place a high load on a network,
since they force every host on the network to service them.    Consequently, the ability to send
broadcast packets has been limited to sockets which are explicitly marked as allowing
broadcasting.    Broadcast is typically used for one of two reasons: it is desired to find a resource
on a local network without prior knowledge of its address, or important functions such as routing
require that information be sent to all accessible neighbors.

The destination address of the message to be broadcast depends on the network(s) on which the
message is to be broadcast.    The Internet domain supports a shorthand notation for broadcast
on the local network, the address INADDR_BROADCAST.    Received broadcast messages
contain the senders address and port, as datagram sockets must be bound before use.

Some types of network support the notion of different types of broadcast.    For example, the IEEE
802.5 token ring architecture supports the use of link-level broadcast indicators, which control
whether broadcasts are forwarded by bridges.    The Windows Sockets specification does not
provide any mechanism whereby an application can determine the type of underlying network,
nor any way to control the semantics of broadcasting.

56# WinSockSockets_Broadcasting
57$ Broadcasting
58+ WinSockSock:0040
59K Sockets

#60 $61 +62 K63 Programming with Sockets

Byte Ordering

The Intel byte ordering is like that of the DEC VAX, and therefore differs from the Internet and
68000-type processor byte ordering.    Thus care must be taken to ensure correct orientation.

Any reference to IP addresses or port numbers passed to or from a Windows Sockets routine
must be in network order.    This includes the IP address and port fields of a struct sockaddr_in
(but not the sin_family field).

Consider an application which normally contacts a server on the TCP port corresponding to the
"time" service, but which provides a mechanism for the user to specify that an alternative port is
to be used.    The port number returned by getservbyname() is already in network order, which is
the format required constructing an address, so no translation is required.    However if the user
elects to use a different port, entered as an integer, the application must convert this from host to
network order (using the htons() function) before using it to construct an address.    Conversely, if
the application wishes to display the number of the port within an address (returned via, e.g.,
getpeername()), the port number must be converted from network to host order (using ntohs())
before it can be displayed.

Since the Intel and Internet byte orders are different, the conversions described above are
unavoidable.    Application writers are cautioned that they should use the standard conversion
functions provided as part of the Windows Sockets API rather than writing their own conversion
code, since future implementations of Windows Sockets are likely to run on systems for which the
host order is identical to the network byte order.    Only applications which use the standard
conversion functions are likely to be portable.

60# WinSockProg_ByteOrdering
61$ Byte Ordering
62+ WinSockProg:0030
63K Sockets

Appendix C: Background Information 21

#64 $65 +66 K67 Programming with Sockets

Socket Options

The socket options supported by Windows Sockets are listed in the pages describing setsockopt() and
getsockopt().    A Windows Sockets implementation must recognize all of these options, and (for
getsockopt()) return plausible values for each.    The default value for each option is shown in the
following table.

Value Type Meaning Default Note
SO_ACCEPTCON BOOL Socket is listen()ing. FALSE unless

a listen() has
been performed

SO_BROADCAST BOOL Socket is configured FALSE
for the transmission of
broadcast messages.

SO_DEBUG BOOL Debugging is enabled.    FALSE
(i)

SO_DONTLINGER BOOL If true, the SO_LINGER TRUE
option is disabled..

SO_DONTROUTE BOOL Routing is disabled. FALSE (i)
SO_ERROR int Retrieve error status 0

and clear.
SO_KEEPALIVE BOOL Keepalives are being FALSE

sent.
SO_LINGER struct linger FAR * Returns the current l_onoff is 0

linger options.
SO_OOBINLINE BOOL Out-of-band data is FALSE

being received in the
normal data stream.

SO_RCVBUF int Buffer size for receives Implementation
dependant. (i)

SO_REUSEADDR BOOL The address to which FALSE
this socket is bound
can be used by others.

SO_SNDBUF int Buffer size for sends Implementation
dependant. (i)

SO_TYPE int The type of the socket As created
(e.g. SOCK_STREAM). via socket()

TCP_NODELAY BOOL Disables the Nagle Implementation
dependant.

algorithm for send
coalescing.

Notes:
(i) An implementation may silently ignore this option on setsockopt() and return a

constant value for getsockopt(), or it may accept a value for setsockopt() and

64# WinSockProg_SocketOptions
65$ Socket Options
66+ WinSockProg:0040
67K Sockets

return the corresponding value in getsockopt() without using the value in any
way.

Appendix C: Background Information 23

#68 $69 +70 K71 K72 Programming with Sockets

Database Files

The getXbyY() and WSAAsyncGetXByY() classes of routines are provided for retrieving network
specific information.    The getXbyY() routines were originally designed (in the first Berkeley UNIX
releases) as mechanisms for looking up information in text databases.    Although the information
may be retrieved by the Windows Sockets implementation in different ways, a Windows Sockets
application requests such information in a consistent manner through either the getXbyY() or the
WSAAsyncGetXByY() class of routines.

68# WinSockProg_DatabaseFiles
69$ Database Files
70+ WinSockProg:0050
71K Sockets
72K Database Routines

#73 $74 +75 K76 Programming with Sockets

Deviation from Berkeley Sockets

There are a few limited instances where the Windows Sockets API has had to divert from strict
adherence to the Berkeley conventions, usually because of difficulties of implementation in a
Windows environment.

socket data type and error values
select() and FD_*
Error codes - errno, h_errno & WSAGetLastError()
Pointers
Renamed functions
Blocking routines & EINPROGRESS
Maximum number of sockets supported
Include files
Return values on API failure

73# WinSockProg_Deviation
74$ Deviation from Berkeley Sockets
75+ WinSockProg:0060
76K Sockets

Appendix C: Background Information 25

#77 $78 +79 K80 Deviation from Berkeley Sockets

socket data type and error values

A new data type, SOCKET, has been defined.    The definition of this type was necessary for
future enhancements to the Windows Sockets specification, such as being able to use sockets as
file handles in Windows NT.    Definition of this type also facilitates porting of applications to a
Win/32 environment, as the type will automatically be promoted from 16 to 32 bits.

In UNIX, all handles, including socket handles, are small, non-negative intergers, and some
applications make assumptions that this will be true.    Windows Sockets handles have no
restrictions, other than that the value INVALID_SOCKET is not a valid socket.    Socket handles
may take any value in the range 0 to INVALID_SOCKET-1.

Because the SOCKET type is unsigned, compiling existing source code from, for example, a
UNIX environment may lead to compiler warnings about signed/unsigned data type mismatches.

This means, for example, that checking for errors when the socket() and accept() routines return
should not be done by comparing the return value with -1, or seeing if the value is negative (both
common, and legal, approaches in BSD).    Instead, an application should use the manifest
constant INVALID_SOCKET as defined in winsock.h.    For example:

TYPICAL BSD STYLE:
s = socket(...);
if (s == -1) /* or s < 0 */

{...}

PREFERRED STYLE:
s = socket(...);
if (s == INVALID_SOCKET)

{...}

77# WinSockDeviation_DataType
78$ socket data type and error values
79+ WinSockDev:0010
80K Sockets

#81 $82 +83 K84 Deviation from Berkeley Sockets

select() and FD_*

Because a SOCKET is no longer represented by the UNIX-style "small non-negative integer", the
implementation of the select() function was changed in the Windows Sockets API.    Each set of
descriptors is still represented by the fd_set type, but instead of being stored as a bitmask the set
is implemented as an array of SOCKETs..    To avoid potential problems, applications must
adhere to the use of the FD_XXX macros to set, initialize, clear, and check the fd_set structures.

81# WinSockDeviation_Select
82$ select() and FD_*
83+ WinSockDev:0020
84K Sockets

Appendix C: Background Information 27

#85 $86 +87 K88 Deviation from Berkeley Sockets

Error codes - errno, h_errno & WSAGetLastError()

Error codes set by the Windows Sockets implementation are NOT made available via the errno
variable.    Additionally, for the getXbyY() class of functions, error codes are NOT made available
via the h_errno variable.    Instead, error codes are accessed by using the WSAGetLastError()
API.    This function is provided in Windows Sockets as a precursor (and eventually an alias) for
the Win32 function GetLastError().    This is intended to provide a reliable way for a thread in a
multi-threaded process to obtain per-thread error information.

For compatibility with BSD, an application may choose to include a line of the form:

#define errno WSAGetLastError()

This will allow networking code which was written to use the global errno to work correctly in a
single-threaded environment.    There are, obviously, some drawbacks.    If a source file includes
code which inspects errno for both socket and non-socket functions, this mechanism cannot be
used.    Furthermore, it is not possible for an application to assign a new value to errno.    (In
Windows Sockets the function WSASetLastError() may be used for this purpose.)

TYPICAL BSD STYLE:
r = recv(...);
if (r == -1
        && errno == EWOULDBLOCK)

{...}

PREFERRED STYLE:
r = recv(...);
if (r == -1              /* (but see below) */
        && WSAGetLastError() == EWOULDBLOCK)

{...}
Although error constants consistent with 4.3 Berkeley Sockets are provided for compatibility
purposes, applications should, where possible, use the "WSA" error code definitions.    For
example, a more accurate version of the above source code fragment is:

r = recv(...);
if (r == -1
        && WSAGetLastError() == WSAEWOULDBLOCK)

{...}

85# WinSockDeviation_ErrorCodes
86$ Error codes - errno, h_errno & WSAGetLastError()
87+ WinSockDev:0030
88K Sockets

#89 $90 +91 K92 Deviation from Berkeley Sockets

Pointers

All pointers used by applications with Windows Sockets should be FAR.    To facilitate this, data
type definitions such as LPHOSTENT are provided.

89# WinSockDeviation_Pointers
90$ Pointers
91+ WinSockDev:0040
92K Sockets

Appendix C: Background Information 29

#93 $94 +95 K96 Deviation from Berkeley Sockets

Renamed functions

In two cases it was necessary to rename functions which are used in Berkeley Sockets in order to
avoid clashes with other APIs.

close() & closesocket()
In Berkeley Sockets, sockets are represented by standard file descriptors, and so
the close() function can be used to close sockets as well as regular files.    While
nothing in the Windows Sockets API prevents an implementation from using
regular file handles to identify sockets, nothing requires it either.    Socket
descriptors are not presumed to correspond to regular file handles, and file
operations such as read(), write(), and close() cannot be assumed to work
correctly when applied to socket descriptors..    Sockets must be closed by using
the closesocket() routine.    Using the close() routine to close a socket is
incorrect and the effects of doing so are undefined by this specification.

ioctl() & ioctlsocket()
Various C language run-time systems use the ioctl() routine for purposes
unrelated to Windows Sockets.    For this reason we have defined the routine
ioctlsocket() which is used to handle socket functions which in the Berkeley
Software Distribution are performed using ioctl() and fcntl().

93# WinSockDeviation_RenamedFunctions
94$ Renamed functions
95+ WinSockDev:0050
96K Sockets

#97 $98 +99 K100 Deviation from Berkeley Sockets

Blocking routines & EINPROGRESS

Although blocking operations on sockets are supported under Windows Sockets, their use is
strongly discouraged.    Programmers who are constrained to use blocking mode - for example, as
part of an existing application which is to be ported - should be aware of the semantics of
blocking operations in Windows Sockets.    See Blocking/Non blocking & Data Volatility for more
details.

97# WinSockDeviation_BlockingRoutines
98$ Blocking routines & EINPROGRESS
99+ WinSockDev:0060
100K Sockets

Appendix C: Background Information 31

#101 $102 +103 K104 Deviation from Berkeley Sockets

Maximum number of sockets supported

The maximum number of sockets supported by a particular Windows Sockets supplier is
implementation specific.    An application should make no assumptions about the availability of a
certain number of sockets.    This topic is addressed further in the section on WSAStartup().   
However, independent of the number of sockets supported by a particular implementation is the
issue of the maximum number of sockets which an application can actually make use of.

The maximum number of sockets which a Windows Sockets application can make use of is
determined at compile time by the manifest constant FD_SETSIZE.    This value is used in
constructing the fd_set structures used in select().    The default value in winsock.h is 64.    If an
application is designed to be capable of working with more than 64 sockets, the implementor
should define the manifest FD_SETSIZE in every source file before including winsock.h.    One
way of doing this may be to include the definition within the compiler options in the makefile, for
example adding -DFD_SETSIZE=128 as an option to the compiler command line for Microsoft C. 
It must be emphasized that defining FD_SETSIZE as a particular value has no effect on the
actual number of sockets provided by a Windows Sockets implementation.

101# WinSockDeviation_MaxSockets
102$ Maximum number of sockets supported
103+ WinSockDev:0070
104K Sockets

#105 $106 +107 K108 Deviation from Berkeley Sockets

Include files

For ease of portability of existing Berkeley sockets based source code, a number of standard
Berkeley include files are supported.    However, these Berkeley header files merely include the
winsock.h include file, and it is therefore sufficient (and recommended) that Windows Sockets
application source files should simply include winsock.h.

105# WinSockDeviation_IncludeFiles
106$ Include files
107+ WinSockDev:0080
108K Sockets

Appendix C: Background Information 33

#109 $110 +111 K112 Deviation from Berkeley Sockets

Return values on API failure

The manifest constant SOCKET_ERROR is provided for checking API failure.    Although use of
this constant is not mandatory, it is recommended.    The following example illustrates the use of
the SOCKET_ERROR constant:

TYPICAL BSD STYLE:
r = recv(...);
if (r == -1          /* or r < 0 */
        && errno == EWOULDBLOCK)

{...}
PREFERRED STYLE:

r = recv(...);
if (r == SOCKET_ERROR
        && WSAGetLastError() == WSAEWOULDBLOCK)

{...}

109# WinSockDeviation_ReturnValues
110$ Return values on API failure
111+ WinSockDev:0090
112K Sockets

#113 $114 +115 K116 Programming with Sockets

Raw Sockets

The Windows Sockets specification does not mandate that a Windows Sockets DLL support raw
sockets, that is, sockets opened with SOCK_RAW.    However, a Windows Sockets DLL is
allowed and encouraged to supply raw socket support.    A Windows Sockets-compliant
application that wishes to use raw sockets should attempt to open the socket with the socket()
call (see section Error: Reference source not found), and if it fails either attempt to use another
socket type or indicate the failure to the user.

113# WinSockProg_RawSockets
114$ Raw Sockets
115+ WinSockDev:0100
116K Sockets

Appendix C: Background Information 35

#117 $118 +119 K120 Programming with Sockets

Windows Sockets in Multithreaded Versions of Windows

The Windows Sockets interface is designed to work for both single-threaded versions of Windows
(such as Windows 3.1) and future multithreaded versions of Windows (such as Windows NT).    In
a multithreaded environment the sockets interface is basically the same, but the author of a
multithreaded application must be aware that it is the responsibility of the application, not the
Windows Sockets implementation, to synchronize access to a socket between threads.    This is
the same rule as applies to other forms of I/O such as file I/O.    Failure to synchronize calls on a
socket leads to unpredictable results; for example if there are two simultaneous calls to send(),
there is no guarantee as to the order in which the data will be sent.   

Closing a socket in one thread that has an outstanding blocking call on the same socket in
another thread will cause the blocking call to fail with WSAEINTR, just as if the operation were
cancelled.    This also applies if there is a select() call outstanding and the application closes one
of the sockets being selected.

There is no default blocking hook installed in preemptive multithreaded versions of Windows.   
This is because the machine will not be blocked if a single application is waiting for an operation
to complete and hence not calling PeekMessage() or GetMessage() which cause the application
to yield in nonpremptive Windows.    However, for backwards compatibility the
WSASetBlockingHook() call is implemented in multithreaded versions of Windows, and any
application whose behavior depends on the default blocking hook may install their own blocking
hook which duplicates the default hook's semantics, if desired.

117# WinSockProg_MultithreadedWindows
118$ Windows Sockets in Multithreaded Versions of Windows
119+ WinSockProg:0070
120K Sockets

#121 $122 +123 Windows Sockets

Socket Library Overview

Socket Functions
Blocking/Non blocking & Data Volatility

Database Functions
Microsoft Windows-specific Extension Functions

121# WinSock_SocketLibraryOverview
122$ SOCKET LIBRARY OVERVIEW
123+ WinSock:0030

Appendix C: Background Information 37

#124 $125 +126 K127 Socket Library Overview

Socket Functions

The Windows Sockets specification includes the following Berkeley-style socket routines:

accept() An incoming connection is acknowledged and associated with an
immediately created socket.    The original socket is returned to
the listening state.

bind() Assign a local name to an unnamed socket.
closesocket() Remove a socket descriptor from the per-process object

reference table.    Only blocks if SO_LINGER is set.
connect() Initiate a connection on the specified socket.
getpeername() Retrieve the name of the peer connected to the specified socket

descriptor.
getsockname() Retrieve the current name for the specified socket
getsockopt() Retrieve options associated with the specified socket descriptor.
htonl() Convert a 32-bit quantity from host byte order to network byte

order.
htons() Convert a 16-bit quantity from host byte order to network byte

order.
inet_addr() Converts a character string representing a number in the Internet

standard ".'' notation to an Internet address value.
inet_ntoa() Converts an Internet address value to an ASCII string in ".''

notation i.e.    "a.b.c.d''.
ioctlsocket() Provide control for descriptors.
listen() Listen for incoming connections on a specified socket.
ntohl() Convert a 32-bit quantity from network byte order to host byte

order.
ntohs() Convert a 16-bit quantity from network byte order to host byte

order.
recv()* Receive data from a connected socket.
recvfrom()* Receive data from either a connected or unconnected socket.
select()* Perform synchronous I/O multiplexing.
send()* Send data to a connected socket.
sendto()* Send data to either a connected or unconnected socket.
setsockopt() Store options associated with the specified socket descriptor.
shutdown() Shut down part of a full-duplex connection.
socket() Create an endpoint for communication and return a socket

descriptor.

* The routine can block if acting on a blocking socket.

124# WinSockOverview_SocketFunctions
125$ Socket Functions
126+ WinSockOver:0010
127K Socket Functions

#128 $129 +130 K131 Socket Library Overview

Blocking/Non blocking & Data Volatility

One major issue in porting applications from a Berkeley sockets environment to a Windows
environment involves "blocking"; that is, invoking a function which does not return until the
associated operation is completed.    The problem arises when the operation may take an
arbitrarily long time to complete: an obvious example is a recv() which may block until data has
been received from the peer system.    The default behavior within the Berkeley sockets model is
for a socket to operate in a blocking mode unless the programmer explicitly requests that
operations be treated as non-blocking.    It is strongly recommended that programmers use
the nonblocking (asynchronous) operations if at all possible, as they work significantly
better within the nonpreemptive Windows environment.    Use blocking operations only if
absolutely necessary, and carefully read and understand this section if you must use
blocking operations.

Even on a blocking socket, some operations (e.g. bind(), getsockopt(), getpeername()) can be
completed immediately.    For such operations there is no difference between blocking and non-
blocking operation.    Other operations (e.g. recv()) may be completed immediately or may take
an arbitrary time to complete, depending on various transport conditions.    When applied to a
blocking socket, these operations are referred to as blocking operations.    All routines which can
block are listed with an asterisk in the tables above and below.

Within a Windows Sockets implementation, a blocking operation which cannot be completed
immediately is handled as follows.    The DLL initiates the operation, and then enters a loop in
which it dispatches any Windows messages (yielding the processor to another thread if
necessary) and then checks for the completion of the Windows Sockets function.    If the function
has completed, or if WSACancelBlockingCall() has been invoked, the blocking function
completes with an appropriate result.    Refer to    WSASetBlockingHook(), for a complete
description of this mechanism, including pseudocode for the various functions.

If a Windows message is received for a process for which a blocking operation is in progress,
there is a risk that the application will attempt to issue another Windows Sockets call.    Because
of the difficulty of managing this condition safely, the Windows Sockets specification does not
support such application behavior.    Two functions are provided to assist the programmer in this
situation.    WSAIsBlocking() may be called to determine whether or not a blocking Windows
Sockets call is in progress.    WSACancelBlockingCall() may be called to cancel an in-progress
blocking call, if any.    Any other Windows Sockets function which is called in this situation
will fail with the error WSAEINPROGRESS.    It should be emphasized that this restriction
applies to both blocking and non-blocking operations.

Although this mechanism is sufficient for simple applications, it cannot support the complex
message-dispatching requirements of more advanced applications (for example, those using the
MDI model).    For such applications, the Windows Sockets API includes the function
WSASetBlockingHook(), which allows the programmer to define a special routine which will be
called instead of the default message dispatch routine described above.

128# WinSockOverview_BlockingNonBlocking
129$ Blocking/Non blocking & Data Volatility
130+ WinSockOver:0020
131K Sockets

Appendix C: Background Information 39

The Windows Sockets DLL will call the blocking hook function only if all of the following are true:
the routine is one which is defined as being able to block, the specified socket is a blocking
socket, and the request cannot be completed immediately.    (A socket is set to blocking by
default, but the IOCTL FIONBIO and    WSAAsyncSelect() both set a socket to nonblocking
mode.)    If an application uses only non-blocking sockets and uses the WSAAsyncSelect()
and/or the WSAAsyncGetXByY() routines instead of select() and the getXbyY() routines, then
the blocking hook will never be called and the application does not need to be concerned with the
reentrancy issues the blocking hook can introduce.

If an application invokes an asynchronous or non-blocking operation which takes a pointer to a
memory object (e.g. a buffer, or a global variable) as an argument, it is the responsibility of the
application to ensure that the object is available to the Windows Sockets implementation
throughout the operation.    The application must not invoke any Windows function which might
affect the mapping or addressability of the memory involved.    In a multithreaded system, the
application is also responsible for coordinating access to the object using appropriate
synchronization mechanisms.    A Windows Sockets implementation cannot, and will not, address
these issues.    The possible consequences of failing to observe these rules are beyond the scope
of this specification.

#132 $133 +134 K135 K136 Socket Library Overview

Database Functions

The Windows Sockets specification defines the following "database" routines.    As noted earlier, a
Windows Sockets supplier may choose to implement these in a manner which does not depend
on local database files.    The pointer returned by certain database routines such as
gethostbyname() points to a structure which is allocated by the Windows Sockets library.    The
data which is pointed to is volatile and is good only until the next Windows Sockets API call from
that thread.    Additionally, the application must never attempt to modify this structure or to free
any of its components.    Only one copy of this structure is allocated for a thread, and so the
application should copy any information which it needs before issuing any other Windows
Sockets API calls.

gethostbyaddr()* Retrieve the name(s) and address corresponding to a network
address.

gethostname() Retrieve the name of the local host.
gethostbyname()* Retrieve the name(s) and address corresponding to a host

name.
getprotobyname()* Retrieve the protocol name and number corresponding to a

protocol name.
getprotobynumber()* Retrieve the protocol name and number corresponding to a

protocol number.
getservbyname()* Retrieve the service name and port corresponding to a service

name.
getservbyport()* Retrieve the service name and port corresponding to a port.

* The routine can block under some circumstances.

132# WinSockOverview_DatabaseFunctions
133$ Database Functions
134+ WinSockOver:0030
135K Socket Functions
136K Database Functions

Appendix C: Background Information 41

#137 $138 +139 K140 K141 Socket Library Overview

Microsoft Windows-specific Extension Functions

The Windows Sockets specification provides a number of extensions to the standard set of
Berkeley Sockets routines.    Principally, these extended APIs allow message-based,
asynchronous access to network events.    While use of this extended API set is not mandatory for
socket-based programming (with the exception of WSAStartup() and WSACleanup()), it is
recommended for conformance with the Microsoft Windows programming paradigm.

Asynchronous select() Mechanism
Asynchronous Support Routines
Hooking Blocking Methods
Error Handling
Accessing a Windows Sockets DLL from an Intermediate DLL
Internal Use of Messages by Windows Sockets Implementations
Private API Interfaces

WSAAsyncGetHostByAddr() A set of functions which provide asynchronous
WSAAsyncGetHostByName() versions of the standard Berkeley
WSAAsyncGetProtoByName() getXbyY() functions.    For example, the
WSAAsyncGetProtoByNumber() WSAAsyncGetHostByName() function

provides an asynchronous message based
WSAAsyncGetServByName() implementation of the standard Berkeley
WSAAsyncGetServByPort() gethostbyname() function.
WSAAsyncSelect() Perform asynchronous version of select()
WSACancelAsyncRequest() Cancel an outstanding instance of a

WSAAsyncGetXByY() function.
WSACancelBlockingCall() Cancel an outstanding "blocking" API call
WSACleanup() Sign off from the underlying Windows Sockets

DLL.
WSAGetLastError() Obtain details of last Windows Sockets API error
WSAIsBlocking() Determine if the underlying Windows Sockets

DLL is already blocking an existing call for this
thread

WSASetBlockingHook() "Hook" the blocking method used by the
underlying Windows Sockets implementation

WSASetLastError() Set the error to be returned by a subsequent
WSAGetLastError()

WSAStartup() Initialize the underlying Windows Sockets DLL.
WSAUnhookBlockingHook() Restore the original blocking function

137# WinSockOverview_WindowsSpecific
138$ Microsoft Windows-specific Extension Functions
139+ WinSockOver:0040
140K Socket Functions
141K Windows Extensions

#142 $143 +144 K145 K146 Microsoft Windows Extension Functions

Asynchronous select() Mechanism

The WSAAsyncSelect() API allows an application to register an interest in one or many network
events.    This API is provided to supersede the need to do polled network I/O.    Any situation in
which select() or non-blocking I/O routines (such as send() and recv()) are either already used or
are being considered is usually a candidate for the WSAAsyncSelect() API.    When declaring
interest in such condition(s), you supply a window handle to be used for notification.    The
corresponding window then receives message-based notification of the conditions in which you
declared an interest.

WSAAsyncSelect() allows interest to be declared in the following conditions for a particular
socket:

Socket readiness for reading
Socket readiness for writing
Out-of-band data ready for reading
Socket readiness for accepting incoming connection
Completion of non-blocking connect()
Connection closure

142# WinSockWindows_AsyncSelect
143$ Asynchronous select() Mechanism
144+ WinSockWin:0010
145K Socket Functions
146K Windows Extensions

Appendix C: Background Information 43

#147 $148 +149 K150 K151 Microsoft Windows Extension Functions

Asynchronous Support Routines

The asynchronous "database" functions allow applications to request information in an
asynchronous manner.    Some network implementations and/or configurations perform network
based operations to resolve such requests.    The WSAAsyncGetXByY() functions allow
application developers to request services which would otherwise block the operation of the
whole Windows environment if the standard Berkeley function were used.    The
WSACancelAsyncRequest() function allows an application to cancel any outstanding
asynchronous request.

147# WinSockWindows_AsyncSupport
148$ Asynchronous Support Routines
149+ WinSockWin:0020
150K Socket Functions
151K Windows Extensions

#152 $153 +154 K155 Microsoft Windows Extension Functions

Hooking Blocking Methods

As noted in Blocking/Non blocking & Data Volatility, Windows Sockets implements blocking
operations in such a way that Windows message processing can continue, which may result in
the application which issued the call receiving a Windows message.    In certain situations an
application may want to influence or change the way in which this pseudo-blocking process is
implemented.    The WSASetBlockingHook() provides the ability to substitute a named routine
which the Windows Sockets implementation is to use when relinquishing the processor during a
"blocking" operation.

152# WinSockWindows_HookingBlocking
153$ Hooking Blocking Methods
154+ WinSockWin:0030
155K Windows Extensions

Appendix C: Background Information 45

#156 $157 +158 K159 Microsoft Windows Extension Functions

Error Handling

For compatibility with thread-based environments, details of API errors are obtained through the
WSAGetLastError() API.    Although the accepted "Berkeley-Style" mechanism for obtaining
socket-based network errors is via "errno", this mechanism cannot guarantee the integrity of an
error ID in a multi-threaded environment.    WSAGetLastError() allows you to retrieve an error
code on a per thread basis.

WSAGetLastError() returns error codes which avoid conflict with standard Microsoft C error
codes.    Certain error codes returned by certain Windows Sockets routines fall into the standard
range of error codes as defined by Microsoft C.    If you are NOT using an application
development environment which defines error codes consistent with Microsoft C, you are advised
to use the Windows Sockets error codes prefixed by "WSA" to ensure accurate error code
detection.

Note that this specification defines a recommended set of error codes, and lists the possible
errors which may be returned as a result of each function.    It may be the case in some
implementations that other Windows Sockets error codes will be returned in addition to those
listed, and applications should be prepared to handle errors other than those enumerated under
each API description.    However a Windows Sockets implementation must not return any value
which is not enumerated in the table of legal Windows Sockets errors given in Error Codes.

156# WinSockWindows_ErrorHandling
157$ Error Handling
158+ WinSockWin:0040
159K Windows Extensions

#160 $161 +162 K163 Microsoft Windows Extension Functions

Accessing a Windows Sockets DLL from an Intermediate DLL

A Windows Sockets DLL may be accessed both directly from an application and through an
"intermediate" DLL.    An example of such an intermediate DLL would be a virtual network API
layer that supports generalized network functionality for applications and uses Windows Sockets. 
Such a DLL could be used by several applications simultaneously, and the DLL must take special
precautions with respect to the WSAStartup() and WSACleanup() calls to ensure that these
routines are called in the context of each task that will make Windows Sockets calls.    This is
because the Windows Sockets DLL will need a call to WSAStartup() for each task in order to set
up task-specific data structures, and a call to WSACleanup() to free any resources allocated for
the task.   

There are (at least) two ways to accomplish this.    The simplest method is for the intermediate
DLL to have calls similiar to WSAStartup() and WSACleanup() that applications call as
appropriate.    The DLL would then call WSAStartup() or WSACleanup() from within these
routines.    Another mechanism is for the intermediate DLL to build a table of task handles, which
are obtained from the GetCurrentTask() Windows API, and at each entry point into the
intermediate DLL check whether WSAStartup() has been called for the current task, then call
WSAStartup() if necessary.

If a DLL makes a blocking call and does not install its own blocking hook, then the DLL author
must be aware that control may be returned to the application either by an application-installed
blocking hook or by the default blocking hook.    Thus, it is possible that the application will cancel
the DLL's blocking operation via WSACancelBlockingCall().    If this occurs, the DLL's blocking
operation will fail with the error code WSAEINTR, and the DLL must return control to the calling
task as quickly as possible, as the used has likely pressed a cancel or close button and the task
has requested control of the CPU.    It is recommended that DLLs which make blocking calls
install their own blocking hooks with WSASetBlockingHook() to prevent unforeseen interactions
between the application and the DLL.

Note that this is not necessary for DLLs in Windows NT because of its different process and DLL
structure.    Under Windows NT, the intermediate DLL could simply call WSAStartup() in its DLL
initialization routine, which is called whenever a new process which uses the DLL starts.

160# WinSockWindows_Intermediate
161$ Accessing from an Intermediate DLL
162+ WinSockWin:0050
163K Windows Extensions

Appendix C: Background Information 47

#164 $165 +166 K167 Microsoft Windows Extension Functions

3.3.6 Internal use of Messages by Windows Sockets
Implementations

In order to implement Windows Sockets purely as a DLL, it may be necessary for the DLL to post
messages internally for communication and timing.    This is perfectly legal; however, a Windows
Sockets DLL must not post messages to a window handle opened by a client application except
for those messages requested by the application.    A Windows Sockets DLL that needs to use
messages for its own purposes must open a hidden window and post any necessary messages
to the handle for that window.

164# WinSockWindows_InternalMessages
165$ Internal use of Messages
166+ WinSockWin:0060
167K Windows Extensions

#168 $169 +170 K171 Microsoft Windows Extension Functions

3.3.7 Private API Interfaces
The winsock.def file lists the ordinals defined for the Windows Sockets APIs.    In addition to the
ordinal values listed, all ordinals 999 and below are reserved for future Windows Sockets use.    It
may be convenient for a Windows Sockets implementation to export additional, private interfaces
from the Windows Sockets DLL.    This is perfectly acceptable, as long as the ordinals for these
exports are above 1000.    Note that any application that uses a particular Windows Sockets DLL's
private APIs will most likely not work on any other vendor's Windows Sockets implementation.   
Only the APIs defined in this document are guaranteed to be present in every Windows Sockets
implementation.

If an application uses private interfaces of a particular vendor's Windows Sockets DLL, it is
recommended that the DLL not be statically linked with the application but rather dynamically
loaded with the Windows routines LoadLibrary() and GetProcAddress().    This allows the
application to give an informative error message if it is run on a system with a Windows Sockets
DLL that does not support the same set of extended functionality.

168# WinSockWindows_PrivateAPIs
169$ Private API Interfaces
170+ WinSockWin:0070
171K Windows Extensions

Appendix C: Background Information 49

#172 $173 +174 K175 Windows Sockets

Socket Library Reference

Socket Routines
Database Routines
Microsoft Windows-specific Extensions

172# WinSock_SocketLibraryReference
173$ Socket Library Reference
174+ WinSock:0040
175K Socket Library Reference

#176 $177 +178 Socket Library Reference

Socket Routines

This chapter presents the socket library routines in alphabetical order, and describes each routine
in detail.   

In each routine it is indicated that the header file winsock.h must be included.    Header Files lists
the Berkeley-compatible header files which are supported.    These are provided for compatibility
purposes only, and each of them will simply include winsock.h.    The Windows header file
windows.h is also needed, but winsock.h will include it if necessary.

accept()
bind()
closesocket()
connect()
getpeername()
getsockname()
getsockopt()
htonl()
htons()
inet_addr()
inet_ntoa()
ioctlsocket()
listen()
ntohl()
ntohs()
recv()
recvfrom()
select()
send()
sendto()
setsockopt()
shutdown()
socket()

176# WinSockRef_SocketRoutines
177$ Socket Routines
178+ WinSockRef:0010

Appendix C: Background Information 51

#179 $180 +181 K182 Windows Sockets - Socket Routines

accept()

Description Accept a connection on a socket.

 #include <winsock.h>

 SOCKET PASCAL FAR accept (SOCKET s, struct sockaddr FAR * addr, int FAR
* addrlen);

s A descriptor identifying a socket which is listening for
connections after a listen ().

addr An optional pointer to a buffer which receives the address of the
connecting entity, as known to the communications layer.    The
exact format of the addr argument is determined by the address
family established when the socket was created.

addrlen A optional pointer to an integer which contains the length of the
address addr .

Remarks This routine extracts the first connection on the queue of pending connections on
s, creates a new socket with the same properties as s and returns a handle to the
new socket.    If no pending connections are present on the queue, and the
socket is not marked as non-blocking, accept() blocks the caller until a
connection is present.    If the socket is marked non-blocking and no pending
connections are present on the queue, accept() returns an error as described
below.    The accepted socket may not be used to accept more connections.    The
original socket remains open.

The argument addr is a result parameter that is filled in with the address of the
connecting entity, as known to the communications layer.    The exact format of
the addr parameter is determined by the address family in which the
communication is occurring.    The addrlen is a value-result parameter; it should
initially contain the amount of space pointed to by addr; on return it will contain
the actual length (in bytes) of the address returned.    This call is used with
connection-based socket types such as SOCK_STREAM.    If addr and/or
addrlen are equal to NULL, then no information about the remote address of the
accepted socket is returned.

Return Value If no error occurs, accept() returns a value of type SOCKET which is a descriptor
for the accepted packet.    Otherwise, a value of INVALID_SOCKET is returned,
and a specific error code may be retrieved by calling WSAGetLastError () .

179# WinSock_Accept
180$ accept()
181+ WinSockSR:0010
182K accept()

The integer referred to by addrlen initially contains the amount of space pointed
to by addr.    On return it will contain the actual length in bytes of the address
returned.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEFAULT The addrlen argument is too small (less than the
sizeof a struct sockaddr).

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall()

WSAEINPROGRESS A blocking Windows Sockets call is in progress.

WSAEINVAL listen() was not invoked prior to accept().

WSAEMFILE The queue is empty upon entry to accept() and
there are no descriptors available.

WSAENOBUFS No buffer space is available.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The referenced socket is not a type that
supports connection-oriented service.

WSAEWOULDBLOCK The socket is marked as non-blocking and no
connections are present to be accepted.

See Also bind(), connect(), listen(), select(), socket(), WSAAsyncSelect().

Appendix C: Background Information 53

#183 $184 +185 K186 Windows Sockets - Socket Routines

bind()

Description Associate a local address with a socket.

 #include <winsock.h>

 int PASCAL FAR bind (SOCKET s, const struct sockaddr FAR * name, int
namelen);

s A descriptor identifying an unbound socket.

name The address to assign to the socket.    The sockaddr structure is
defined as follows:

 struct sockaddr {
 u_short sa_family;
 char sa_data[14];
 };

namelen The length of the name .

Remarks This routine is used on an unconnected datagram or stream socket, before
subsequent connect () s or listen () s.    When a socket is created with socket () , it
exists in a name space (address family), but it has no name assigned.    bind()
establishes the local association (host address/port number) of the socket by
assigning a local name to an unnamed socket.

In the Internet address family, a name consists of several components.    For
SOCK_DGRAM and SOCK_STREAM, the name consists of three parts: a host
address, the protocol number (set implicitly to UDP or TCP, respectively), and a
port number which identifies the application.    If an application does not care
what address is assigned to it, it may specify an Internet address equal to
INADDR_ANY, a port equal to 0, or both.    If the Internet address is equal to
INADDR_ANY, any appropriate network interface will be used; this simplifies
application programming in the presence of multi-homed hosts.    If the port is
specified as 0, the Windows Sockets implementation will assign a unique port to
the application with a value between 1024 and 5000.    The application may use
getsockname() after bind() to learn the address that has been assigned to it, but
note that getsockname() will not necessarily fill in the Internet address until the
socket is connected, since several Internet addresses may be valid if the host is
multi-homed.

If an application desires to bind to an arbitrary port outside of the range 1024 to
5000, such as the case of rsh which must bind to any reserved port, code similar
to the following may be used:

183# WinSock_Bind
184$ bind()
185+ WinSockSR:0020
186K bind()

        SOCKADDR_IN sin;
        SOCKET s;
        u_short alport = IPPORT_RESERVED;

        sin.sin_family = AF_INET;
        sin.sin_addr.s_addr = 0;
        for (;;) {
                sin.sin_port = htons(alport);
                if (bind(s, (LPSOCKADDR)&sin, sizeof (sin)) == 0)
{
                        /* it worked */
                }
                if (GetLastError() != WSAEADDRINUSE) {
                        /* fail */
                }
                alport--;
                if (alport == IPPORT_RESERVED/2) {
                        /* fail--all unassigned reserved ports are
*/
                        /* in use. */
                }
        }

Return Value If no error occurs, bind() returns 0.    Otherwise, it returns SOCKET_ERROR, and
a specific error code may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEADDRINUSE The specified address is already in use.    (See
the SO_REUSEADDR socket option under
setsockopt().)

WSAEFAULT The namelen argument is too small (less than
the size of a struct sockaddr).

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall()

WSAEINPROGRESS A blocking Windows Sockets call is in progress.

WSAEAFNOSUPPORT The specified address family is not supported by
this protocol.

WSAEINVAL The socket is already bound to an address.

WSAENOBUFS Not enough buffers available, too many
connections.

WSAENOTSOCK The descriptor is not a socket.

Appendix C: Background Information 55

See Also connect(), listen(), getsockname(), setsockopt(), socket(),
WSACancelBlockingCall().

#187 $188 +189 K190 Windows Sockets - Socket Routines

closesocket()

Description Close a socket.

 #include <winsock.h>

 int FAR PASCAL closesocket (SOCKET s);

s A descriptor identifying a socket.

Remarks This function closes a socket.    More precisely, it releases the socket descriptor
s, so that further references to s will fail with the error WSAENOTSOCK.    If this
is the last reference to the underlying socket, the associated naming information
and queued data are discarded.

The semantics of closesocket() are affected by the socket options SO_LINGER
and SO_DONTLINGER as follows:

Option IntervalType of close Wait for close?
SO_DONTLINGER Don't care Graceful No
SO_LINGER Zero Hard No
SO_LINGER Non-zero Graceful Yes

If SO_LINGER is set (i.e. the l_onoff field of the linger structure is non-zero; see
Socket Options, getsockopt() and setsockopt()) with a zero timeout interval
(l_linger is zero), closesocket() is not blocked even if queued data has not yet
been sent or acknowledged.    This is called a "hard" close, because the socket is
closed immediately, and any unsent data is lost.    Any recv() call on the remote
side of the circuit can fail with WSAECONNRESET.

If SO_LINGER is set with a non-zero timeout interval, the closesocket() call
blocks until the remaining data has been sent or until the timeout expires.    This
is called a graceful disconnect.    Note that if the socket is set to non-blocking and
SO_LINGER is set to a non-zero timeout, the call to closesocket() will fail with
an error of WSAEWOULDBLOCK.

If SO_DONTLINGER is set on a stream socket (i.e. the l_onoff field of the linger
structure is zero; see Socket Options, getsockopt() and setsockopt()), the
closesocket() call will return immediately.    However, any data queued for
transmission will be sent if possible before the underlying socket is closed.    This
is also called a graceful disconnect.    Note that in this case the Windows Sockets
implementation may not release the socket and other resources for an arbitrary
period, which may affect applications which expect to use all available sockets.

187# WinSock_CloseSocket
188$ closesocket()
189+ WinSockSR:0030
190K closesocket()

Appendix C: Background Information 57

Return Value If no error occurs, closesocket() returns 0.    Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by
calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEINPROGRESS A blocking Windows Sockets call is in progress.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall().

WSAEWOULDBLOCK The socket is marked as nonblocking and
SO_LINGER is set to a nonzero timeout value.

See Also accept(), socket(), ioctlsocket(), setsockopt(), WSAAsyncSelect().

#191 $192 +193 K194 Windows Sockets - Socket Routines

connect()

Description Establish a connection to a peer.

 #include <winsock.h>

 int PASCAL FAR connect (SOCKET s, const struct sockaddr FAR * name, int
namelen);

s A descriptor identifying an unconnected socket.

name The name of the peer to which the socket is to be connected.

namelen The length of the name .

Remarks This function is used to create a connection to the specified foreign association.   
The parameter s specifies an unconnected datagram or stream socket    If the
socket is unbound, unique values are assigned to the local association by the
system, and the socket is marked as bound.    Note that if the address field of the
name structure is all zeroes, connect() will return the error
WSAEADDRNOTAVAIL.

For stream sockets (type SOCK_STREAM), an active connection is initiated to
the foreign host using name (an address in the name space of the socket).   
When the socket call completes successfully, the socket is ready to send/receive
data.   

For a datagram socket (type SOCK_DGRAM), a default destination is set, which
will be used on subsequent send () and recv () calls.

On a non-blocking socket, if the return value is SOCKET_ERROR an application
should call WSAGetLastError().    If this indicates an error code of
WSAEWOULDBLOCK, then your application can either:

1. Use select() to determine the completion of the connection request by
checking if the socket is writeable,    or

2. If your application is using the message-based WSAAsyncSelect() to indicate
interest in connection events, then your application will receive an
FD_CONNECT message when the connect operation is complete.

Return Value If no error occurs, connect() returns 0.    Otherwise, it returns SOCKET_ERROR,
and a specific error code may be retrieved by calling WSAGetLastError().

191# WinSock_Connect
192$ connect()
193+ WinSockSR:0040
194K connect()

Appendix C: Background Information 59

On a blocking socket, the return value indicates success or failure of the
connection attempt.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEADDRINUSE The specified address is already in use.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall()

WSAEINPROGRESS A blocking Windows Sockets call is in progress.

WSAEADDRNOTAVAIL The specified address is not available from the
local machine.

WSAEAFNOSUPPORT Addresses in the specified family cannot be
used with this socket.

WSAECONNREFUSED The attempt to connect was forcefully rejected.

WSAEDESTADDREQ A destination address is required.

WSAEFAULT The namelen argument is incorrect.

WSAEINVAL The socket is not already bound to an address.

WSAEISCONN The socket is already connected.

WSAEMFILE No more file descriptors are available.

WSAENETUNREACH The network can't be reached from this host at
this time.

WSAENOBUFS No buffer space is available.    The socket cannot
be connected.

WSAENOTSOCK The descriptor is not a socket.

WSAETIMEDOUT Attempt to connect timed out without
establishing a connection

WSAEWOULDBLOCK The socket is marked as non-blocking and the
connection cannot be completed immediately.   
It is possible to select() the socket while it is
connecting by select()ing it for writing.

See Also accept(), bind(), getsockname(), socket(), and WSAAsyncSelect.

#195 $196 +197 K198 Windows Sockets - Socket Routines

getpeername()

Description Get the address of the peer to which a socket is connected.

 #include <winsock.h>

 int PASCAL FAR getpeername(SOCKET s, struct sockaddr FAR * name, int FAR
* namelen);

s A descriptor identifying a connected socket.

name The structure which is to receive the name of the peer.

namelen A pointer to the size of the name structure.

Remarks getpeername() retrieves the name of the peer connected to the socket s and
stores it in the struct sockaddr identified by name.    It is used on a connected
datagram or stream socket.

On return, the namelen argument contains the actual size of the name returned
in bytes.

Return Value If no error occurs, getpeername() returns 0.    Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by
calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEFAULT The namelen argument is not large enough.

WSAEINPROGRESS A blocking Windows Sockets call is in progress.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is not a socket.

See Also bind(), socket(), getsockname().

195# WinSock_GetPeerName
196$ getpeername()
197+ WinSockSR:0050
198K getpeername()

Appendix C: Background Information 61

#199 $200 +201 K202 Windows Sockets - Socket Routines

getsockname()

Description Get the local name for a socket.

 #include <winsock.h>

 int PASCAL FAR getsockname(SOCKET s, struct sockaddr FAR * name, int FAR
* namelen);

s A descriptor identifying a bound socket.

name Receives the address (name) of the socket.

namelen The size of the name buffer.

Remarks getsockname() retrieves the current name for the specified socket descriptor in
name.    It is used on a bound and/or connected socket specified by the s
parameter.    The local association is returned.    This call is especially useful
when a connect() call has been made without doing a bind() first; this call
provides the only means by which you can determine the local association which
has been set by the system.

On return, the namelen argument contains the actual size of the name returned
in bytes.

If a socket was bound to INADDR_ANY, indicating that any of the host's IP
addresses should be used for the socket, getsockname() will not necessarily
return information about the host IP address, unless the socket has been
connected with connect() or accept().    A Windows Sockets application must not
assume that the IP address will be changed from INADDR_ANY unless the
socket is connected.    This is because for a multi-homed host the IP address that
will be used for the socket is unknown unless the socket is connected.

Return Value If no error occurs, getsockname() returns 0.    Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by
calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEFAULT The namelen argument is not large enough.

199# WinSock_GetSockName
200$ getsockname()
201+ WinSockSR:0060
202K getsockname()

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAENOTSOCK The descriptor is not a socket.

WSAEINVAL The socket has not been bound to an address
with bind().

See Also bind(), socket(), getpeername().

Appendix C: Background Information 63

#203 $204 +205 K206 Windows Sockets - Socket Routines

getsockopt()

Description Retrieve a socket option.

 #include <winsock.h>

 int PASCAL FAR getsockopt (SOCKET s, int level, int optname, char FAR *
optval, int FAR * optlen);

s A descriptor identifying a socket.

level The level at which the option is defined; the only supported
levels are SOL_SOCKET and IPPROTO_TCP.

optname The socket option for which the value is to be retrieved.

optval A pointer to the buffer in which the value for the requested option
is to be returned.

optlen A pointer to the size of the optval buffer.

Remarks getsockopt() retrieves the current value for a socket option associated with a
socket of any type, in any state, and stores the result in optval.    Options may
exist at multiple protocol levels, but they are always present at the uppermost
"socket'' level.    Options affect socket operations, such as whether an operation
blocks or not, the routing of packets, out-of-band data transfer, etc.

The value associated    with the selected option is returned in the buffer optval.   
The integer pointed to by    optlen should originally contain the size of this buffer;
on return, it will be set to the size of the value returned.    For SO_LINGER, this
will be the size of    a struct linger; for all other options it will be the size of an
integer.

If the option was never set with setsockopt(), then getsockopt() returns the
default value for the option.

The following options are supported for getsockopt().    The Type identifies the
type of data addressed by optval.    The TCP_NODELAY option uses level
IPPROTO_TCP, all other options use level SOL_SOCKET.

Value Type Meaning
SO_ACCEPTCONN BOOL Socket is listen()ing.
SO_BROADCAST BOOL Socket is configured for the

transmission of broadcast messages.
SO_DEBUG BOOL Debugging is enabled.   

203# WinSock_GetSockOpt
204$ getsockopt()
205+ WinSockSR:0070
206K getsockopt()

SO_DONTLINGER BOOL If true, the SO_LINGER option is
disabled..

SO_DONTROUTE BOOL Routing is disabled.
SO_ERROR int Retrieve error status and clear.
SO_KEEPALIVE BOOL Keepalives are being sent.
SO_LINGER struct linger FAR * Returns the current linger options.
SO_OOBINLINE BOOL Out-of-band data is being received in

the normal data stream.   
SO_RCVBUF int Buffer size for receives
SO_REUSEADDR BOOL The socket may be bound to an address

which is already in use.
SO_SNDBUF int Buffer size for sends
SO_TYPE int The type of the socket (e.g.

SOCK_STREAM).   
TCP_NODELAY BOOL Disables the Nagle algorithm for send

coalescing.

BSD options not supported for getsockopt() are:

Value Type Meaning
SO_RCVLOWAT int Receive low water mark
SO_RCVTIMEO int Receive timeout
SO_SNDLOWAT int Send low water mark
SO_SNDTIMEO int Send timeout
IP_OPTIONS Get options in IP header.
TCP_MAXSEG int Get TCP maximum segment size.

Calling getsockopt() with an unsupported option will result in an error code of
WSAENOPROTOOPT being returned from WSAGetLastError().

Return Value If no error occurs, getsockopt() returns 0.    Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by
calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEFAULT The optlen argument was invalid.

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAENOPROTOOPT The option is unknown or unsupported.    In
particular, SO_BROADCAST is not supported on
sockets of type SOCK_STREAM, while
SO_ACCEPTCON, SO_DONTLINGER,
SO_KEEPALIVE, SO_LINGER and
SO_OOBINLINE are not supported on sockets
of type SOCK_DGRAM.

Appendix C: Background Information 65

WSAENOPROTOOPT The option is unknown or unsupported.    In
particular, SO_BROADCAST is not supported on
sockets of type SOCK_STREAM, while
SO_ACCEPTCONN, SO_DONTLINGER,
SO_KEEPALIVE, SO_LINGER and
SO_OOBINLINE are not supported on sockets
of type SOCK_DGRAM.

WSAENOTSOCK The descriptor is not a socket.

See Also setsockopt(), WSAAsyncSelect(), socket().

#207 $208 +209 K210 Windows Sockets - Socket Routines

htonl()

Description Convert a u_long from host to network byte order.

 #include <winsock.h>

 u_long PASCAL FAR htonl (u_long hostlong);

hostlong A 32-bit number in host byte order.

Remarks This routine takes a 32-bit number in host byte order and returns a 32-bit number
in network byte order.

Return Value htonl() returns the value in network byte order.

See Also htons(), ntohl(), ntohs().

207# WinSock_HtoNL
208$ htonl()
209+ WinSockSR:0080
210K htonl()

Appendix C: Background Information 67

#211 $212 +213 K214 Windows Sockets - Socket Routines

htons()

Description Convert a u_short from host to network byte order.

 #include <winsock.h>

 u_short PASCAL FAR htons (u_short hostshort);

hostshort A 16-bit number in host byte order.

Remarks This routine takes a 16-bit number in host byte order and returns a 16-bit number
in network byte order.

Return Value htons() returns the value in network byte order.

See Also htonl(), ntohl(), ntohs().

211# WinSock_HtoNS
212$ htons()
213+ WinSockSR:0090
214K htons()

#215 $216 +217 K218 Windows Sockets - Socket Routines

inet_addr()

Description Convert a string containing a dotted address into an in_addr.

 #include <winsock.h>

 unsigned long PASCAL FAR inet_addr (const char FAR * cp);

cp A character string representing a number expressed in the
Internet standard ".'' notation.

Remarks This function interprets the character string specified by the cp parameter.    This
string represents a numeric Internet address expressed in the Internet standard
".'' notation.    The value returned is a number suitable for use as an Internet
address.    All Internet addresses are returned in network order (bytes ordered
from left to right).

Internet Addresses

Values specified using the ".'' notation take one of the following forms:

a.b.c.d a.b.c a.b a

When four parts are specified, each is interpreted as a byte of data and
assigned, from left to right, to the four bytes of an Internet address.    Note that
when an Internet address is viewed as a 32-bit integer quantity on the Intel
architecture, the bytes referred to above appear as "d.c.b.a''.    That is, the bytes
on an Intel processor are ordered from right to left.

Note: The following notations are only used by Berkeley, and nowhere else on
the Internet.    In the interests of compatibility with their software, they are
supported as specified.

When a three part address is specified, the last part is interpreted as a 16-bit
quantity and placed in the right most two bytes of the network address.    This
makes the three part address format convenient for specifying Class B network
addresses as "128.net.host''.

When a two part address is specified, the last part is interpreted as a 24-bit
quantity and placed in the right most three bytes of the network address.    This
makes the two part address format convenient for specifying Class A network
addresses as "net.host''.

When only one part is given, the value is stored directly in the network address
without any byte rearrangement.

215# WinSock_InetAddr
216$ inet_addr()
217+ WinSockSR:0100
218K inet_addr()

Appendix C: Background Information 69

Return Value If no error occurs, inet_addr() returns an unsigned long containing a suitable
binary representation of the Internet address given.    If the passed-in string does
not contain a legitimate Internet address, for example if a portion of an "a.b.c.d"
address exceeds 255, inet_addr() returns the value INADDR_NONE.

See Also inet_ntoa().

#219 $220 +221 K222 Windows Sockets - Socket Routines

inet_ntoa()

Description Convert a network address into a string in dotted format.

 #include <winsock.h>

 char FAR * PASCAL FAR inet_ntoa (struct in_addr in);

in A structure which represents an Internet host address.

Remarks This function takes an Internet address structure specified by the in parameter.   
It returns an ASCII string representing the address in ".''    notation as "a.b.c.d''.   
Note that the string returned by inet_ntoa() resides in memory which is allocated
by the Windows Sockets implementation.    The application should not make any
assumptions about the way in which the memory is allocated.    The data is
guaranteed to be valid until the next Windows Sockets API call within the same
thread, but no longer.

Return Value If no error occurs, inet_ntoa() returns a char pointer to a static buffer containing
the text address in standard ".'' notation.    Otherwise, it returns NULL.    The data
should be copied before another Windows Sockets call is made.

See Also inet_addr().

219# WinSock_InetNtoA
220$ inet_ntoa()
221+ WinSockSR:0110
222K inet_ntoa()

Appendix C: Background Information 71

#223 $224 +225 K226 Windows Sockets - Socket Routines

ioctlsocket()

Description Control the mode of a socket.

 #include <winsock.h>

 int PASCAL FAR ioctlsocket (SOCKET s, long cmd, u_long FAR * argp);

s A descriptor identifying a socket.

cmd The command to perform on the socket s .

argp A pointer to a parameter for cmd .

Remarks This routine may be used on any socket in any state.    It is used to get or retrieve
operating parameters associated with the socket, independent of the protocol
and communications subsystem.    The following commands are supported:

Command Semantics
FIONBIO Enable or disable non-blocking mode on the socket s .    argp

points at an unsigned long , which is non-zero if non-blocking
mode is to be enabled and zero if it is to be disabled.    When a
socket is created, it operates in blocking mode (i.e. non-blocking
mode is disabled).    This is consistent with BSD sockets.

 The WSAAsyncSelect() routine automatically sets a socket to
nonblocking mode.    If WSAAsyncSelect() has been issued on
a socket, then any attempt to use ioctlsocket() to set the socket
back to blocking mode will fail with WSAEINVAL.    To set the
socket back to blocking mode, an application must first disable
WSAAsyncSelect() by calling WSAAsyncSelect() with the
lEvent parameter equal to 0.

FIONREAD Determine the amount of data which can be read atomically from
socket s .    argp points at an unsigned long in which
ioctlsocket() stores the result.    If s is of type SOCK_STREAM,
FIONREAD returns the total amount of data which may be read
in a single recv() ; this is normally the same as the total amount
of data queued on the socket.    If s is of type SOCK_DGRAM,
FIONREAD returns the size of the first datagram queued on the
socket.

SIOCATMARK Determine whether or not all out-of-band data has been read.   
This applies only to a socket of type SOCK_STREAM which has
been configured for in-line reception of any out-of-band data
(SO_OOBINLINE).    If no out-of-band data is waiting to be read, 

223# WinSock_IOCTLSocket
224$ ioctlsocket()
225+ WinSockSR:0120
226K ioctlsocket()

the operation returns TRUE.    Otherwise it returns FALSE, and
the next recv() or recvfrom() performed on the socket will
retrieve some or all of the data preceding the "mark"; the
application should use the SIOCATMARK operation to determine
whether any remains.    If there is any normal data preceding the
"urgent" (out of band) data, it will be received in order.    (Note
that a recv() or recvfrom() will never mix out-of-band and
normal data in the same call.)    argp points at a BOOL in which
ioctlsocket() stores the result.

Compatibility This function is a subset of ioctl() as used in Berkeley sockets.    In particular,
there is no command which is equivalent to FIOASYNC, while SIOCATMARK is
the only socket-level command which is supported.

Return Value Upon successful completion, the ioctlsocket() returns 0.    Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by
calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEINVAL cmd is not a valid command, or argp is not an
acceptable parameter for cmd, or the command
is not applicable to the type of socket supplied

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAENOTSOCK The descriptor s is not a socket.

See Also socket(), setsockopt(), getsockopt(), WSAAsyncSelect().

Appendix C: Background Information 73

#227 $228 +229 K230 Windows Sockets - Socket Routines

listen()

Description Establish a socket to listen for incoming connection.

 #include <winsock.h>

 int PASCAL FAR listen(SOCKET s, int backlog);

s A descriptor identifying a bound, unconnected socket.

backlog The maximum length to which the queue of pending connections
may grow.

Remarks To accept connections, a socket is first created with socket () , a backlog for
incoming connections is specified with listen(), and then the connections are
accepted with accept () .    listen() applies only to sockets that support
connections, i.e. those of type SOCK_STREAM.    The socket s is put into
"passive'' mode where incoming connections are acknowledged and queued
pending acceptance by the process.

This function is typically used by servers that could have more than one
connection request at a time: if a connection request arrives with the queue full,
the client will receive an error with an indication of WSAECONNREFUSED.

listen() attempts to continue to function rationally when there are no available
descriptors.    It will accept connections until the queue is emptied.    If descriptors
become available, a later call to listen() or accept () will re-fill the queue to the
current or most recent "backlog'', if possible, and resume listening for incoming
connections.

Compatibility backlog is currently limited (silently) to 5.    As in 4.3BSD, illegal values (less than
1 or greater than 5) are replaced by the nearest legal value.

Return Value If no error occurs, listen() returns 0.    Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling
WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEADDRINUSE An attempt has been made to listen() on an
address in use.

227# WinSock_Listen
228$ listen()
229+ WinSockSR:0130
230K listen()

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAEFAULT An invalid argument was given.

WSAEINVAL The socket has not been bound with bind() or is
already connected.

WSAEISCONN The socket is already connected.

WSAEMFILE No more file descriptors are available.

WSAENOBUFS No buffer space is available.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The referenced socket is not of a type that
supports the listen() operation.

See Also accept(),    connect(), socket().

Appendix C: Background Information 75

#231 $232 +233 K234 Windows Sockets - Socket Routines

ntohl()

Description Convert a u_long from network to host byte order.

 #include <winsock.h>

 u_long PASCAL FAR ntohl (u_long netlong);

netlong A 32-bit number in network byte order.

Remarks This routine takes a 32-bit number in network byte order and returns a 32-bit
number in host byte order.

Return Value ntohl() returns the value in host byte order.

See Also htonl(), htons(), ntohs().

231# WinSock_NtoHL
232$ ntohl()
233+ WinSockSR:0140
234K ntohl()

#235 $236 +237 K238 Windows Sockets - Socket Routines

ntohs()

Description Convert a u_short from network to host byte order.

 #include <winsock.h>

 u_short PASCAL FAR ntohs (u_short netshort);

netshort A 16-bit number in network byte order.

Remarks This routine takes a 16-bit number in network byte order and returns a 16-bit
number in host byte order.

Return Value ntohs() returns the value in host byte order.

See Also htonl(), htons(), ntohl().

235# WinSock_NtoHS
236$ ntohs()
237+ WinSockSR:0150
238K ntohs()

Appendix C: Background Information 77

#239 $240 +241 K242 Windows Sockets - Socket Routines

recv()

Description Receive data from a socket.

 #include <winsock.h>

 int PASCAL FAR recv (int s, char FAR * buf, int len, int flags);

s A descriptor identifying a connected socket.

buf A buffer for the incoming data.

len The length of buf .

flags Specifies the way in which the call is made.

Remarks This function is used on connected datagram or stream sockets specified by the
s parameter and is used to read incoming data.

For sockets of type SOCK_STREAM, as much information as is currently
available up to the size of the buffer supplied is returned.    If the socket has been
configured for in-line reception of out-of-band data (socket option
SO_OOBINLINE) and out-of-band data is unread, only out-of-band data will be
returned.    The application may use the ioctlsocket() SIOCATMARK to
determine whether any more out-of-band data remains to be read.

For datagram sockets, data is extracted from the first enqueued datagram, up to
the size of the size of the buffer supplied.    If the datagram is larger than the
buffer supplied, the excess data is lost, and recv() returns the error
WSAEMSGSIZE.

If no incoming data is available at the socket, the recv() call waits for data to
arrive unless the socket is non-blocking.    In this case a value of
SOCKET_ERROR is returned with the error code set to WSAEWOULDBLOCK.   
The select () or WSAAsyncSelect () calls may be used to determine when more
data arrives.

If the socket is of type SOCK_STREAM and the remote side has shut down the
connection gracefully, a recv() will complete immediately with 0 bytes received.   
If the connection has been abortively disconnected, a recv() will fail with the error
WSAECONNRESET.

Flags may be used to influence the behavior of the function invocation beyond
the options specified for the associated socket.    That is, the semantics of this

239# WinSock_Recv
240$ recv()
241+ WinSockSR:0160
242K recv()

function are determined by the socket options and the flags parameter.    The
latter is constructed by or-ing any of the following values:

Value Meaning
MSG_PEEK Peek at the incoming data.    The data is copied into the buffer

but is not removed from the input queue.

MSG_OOB Process out-of-band data (See Out of Band Data for a
discussion of this topic.)

Return Value If no error occurs, recv() returns the number of bytes received.    If the connection
has been closed, it returns 0.    Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling
WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAENOTCONN The socket is not connected.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall()

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not
of type SOCK_STREAM.

WSAESHUTDOWN The socket has been shutdown; it is not possible
to recv() on a socket after shutdown() has been
invoked with how set to 0 or 2.

WSAEWOULDBLOCK The socket is marked as non-blocking and the
receive operation would block.

WSAEMSGSIZE The datagram was too large to fit into the
specified buffer and was truncated.

WSAEINVAL The socket has not been bound with bind().

WSAECONNABORTED The virtual circuit was aborted due to timeout or
other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

See Also recvfrom(), send(), select(), WSAAsyncSelect(), socket().

Appendix C: Background Information 79

#243 $244 +245 K246 Windows Sockets - Socket Routines

recvfrom()

Description Receive a datagram and store the source address.

 #include <winsock.h>

 int PASCAL FAR recvfrom (int s, char FAR * buf, int len, int flags, struct
sockaddr FAR * from, int FAR * fromlen);

s A descriptor identifying a bound socket.

buf A buffer for the incoming data.

len The length of buf .

flags Specifies the way in which the call is made.

from An optional pointer to a buffer which will hold the source address
upon return.

fromlen An optional pointer to the size of the from buffer.

Remarks This function is used to read incoming data on a (possibly connected) socket and
capture the address from which the data was sent.

For sockets of type SOCK_STREAM, as much information as is currently
available up to the size of the buffer supplied is returned.    If the socket has been
configured for in-line reception of out-of-band data (socket option
SO_OOBINLINE) and out-of-band data is unread, only out-of-band data will be
returned.    The application may use the ioctlsocket() SIOCATMARK to
determine whether any more out-of-band data remains to be read.    The from
and fromlen parameters are ignored for SOCK_STREAM sockets.

For datagram sockets, data is extracted from the first enqueued datagram, up to
the size of the size of the buffer supplied.    If the datagram is larger than the
buffer supplied, the buffer is filled with the first part of the message, the excess
data is lost, and recvfrom() returns the error code WSAEMSGSIZE.

If from is non-zero, and the socket is of type SOCK_DGRAM, the network
address of the peer which sent the data is copied to the corresponding struct
sockaddr.    The value pointed to by fromlen is initialized to the size of this
structure, and is modified on return to indicate the actual size of the address
stored there.

243# WinSock_RecvFrom
244$ recvfrom()
245+ WinSockSR:0170
246K recvfrom()

Appendix C: Background Information 81

If no incoming data is available at the socket, the recvfrom() call waits for data to
arrive unless the socket is non-blocking.    In this case a value of
SOCKET_ERROR is returned with the error code set to WSAEWOULDBLOCK.   
The select () or WSAAsyncSelect () calls may be used to determine when more
data arrives.

If the socket is of type SOCK_STREAM and the remote side has shut down the
connection gracefully, a recvfrom() will complete immediately with 0 bytes
received.    If the connection has been abortively disconnected, a recvfrom() will
fail with the error WSAECONNRESET.

Flags may be used to influence the behavior of the function invocation beyond
the options specified for the associated socket.    That is, the semantics of this
function are determined by the socket options and the flags parameter.    The
latter is constructed by or-ing any of the following values:

Value Meaning
MSG_PEEK Peek at the incoming data.    The data is copied into the buffer

but is not removed from the input queue.

MSG_OOB Process out-of-band data (See Out of Band Data for a
discussion of this topic.)

Return Value If no error occurs, recvfrom() returns the number of bytes received.    If the
connection has been closed, it returns 0.    Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by
calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEFAULT The fromlen argument was invalid: the from
buffer was too small to accommodate the peer
address.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall()

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAEINVAL The socket has not been bound with bind().

WSAENOTCONN The socket is not connected (SOCK_STREAM
only).

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not
of type SOCK_STREAM.

WSAESHUTDOWN The socket has been shutdown; it is not possible
to recvfrom() on a socket after shutdown() has
been invoked with how set to 0 or 2.

WSAEWOULDBLOCK The socket is marked as non-blocking and the
recvfrom() operation would block.

WSAEMSGSIZE The datagram was too large to fit into the
specified buffer and was truncated.

WSAECONNABORTED The virtual circuit was aborted due to timeout or
other failure.

WSCONNRESET The virtual circuit was reset by the remote side.

See Also recv(), send(), socket(), WSAAsyncSelect().

Appendix C: Background Information 83

#247 $248 +249 K250 Windows Sockets - Socket Routines

select()

Description Determine the status of one or more sockets, waiting if necessary.

 #include <winsock.h>

 long PASCAL FAR select (int nfds, fd_set FAR * readfds, fd_set FAR * writefds,
fd_set FAR * exceptfds, const struct timeval FAR * timeout);

nfds This argument is ignored and included only for the sake of
compatibility.

readfds An optional pointer to a set of sockets to be checked for
readability.

writefds An optional pointer to a set of sockets to be checked for
writeability

exceptfds An optional pointer to a set of sockets to be checked for errors.

timeout The maximum time for select() to wait, or NULL for blocking
operation.

Remarks This function is used to determine the status of one or more sockets.    For each
socket, the caller may request information on read, write or error status.    The set
of sockets for which a given status is requested is indicated by an fd_set
structure.    Upon return, the structure is updated to reflect the subset of these
sockets which meet the specified condition, and select() returns the number of
sockets meeting the conditions.    A set of macros is provided for manipulating an
fd_set.    These macros are compatible with those used in the Berkeley software,
but the underlying representation is completely different.   

The parameter readfds identifies those sockets which are to be checked for
readability.    If the socket is currently listen()ing, it will be marked as readable if
an incoming connection request has been received, so that an accept() is
guaranteed to complete without blocking.    For other sockets, readability means
that queued data is available for reading or, for sockets of type SOCK_STREAM,
that the virtual socket corresponding to the socket has been closed, so that a
recv() or recvfrom() is guaranteed to complete without blocking.    If the virtual
circuit was closed gracefully, then a recv() will return immediately with 0 bytes
read; if the virtual circuit was closed abortively, then a recv() will complete
immediately with the error code WSAECONNRESET.    The presence of out-of-
band data will be checked if the socket option SO_OOBINLINE has been
enabled (see setsockopt()).

247# WinSock_Select
248$ select()
249+ WinSockSR:0180
250K select()

The parameter writefds identifies those sockets which are to be checked for
writeability.    If a socket is connect()ing (non-blocking), writeability means that
the connection establishment is complete.    For other sockets, writeability means
that a send() or sendto() will complete without blocking.    [It is not specified how
long this guarantee can be assumed to be valid, particularly in a multithreaded
environment.]

The parameter exceptfds identifies those sockets which are to be checked for the
presence of out-of-band data or any exceptional error conditions.    Note that out-
of-band data will only be reported in this way if the option SO_OOBINLINE is
FALSE.    For a SOCK_STREAM, the breaking of the connection by the peer or
due to KEEPALIVE failure will be indicated as an exception.    This specification
does not define which other errors will be included.    If a socket is connect()ing
(non-blocking), failure of the connect attempt is indicated in exceptfds.

Any of readfds, writefds, or exceptfds may be given as NULL if no descriptors are
of interest.

Four macros are defined in the header file winsock.h for manipulating the
descriptor sets.    The variable FD_SETSIZE determines the maximum number of
descriptors in a set.    (The default value of FD_SETSIZE is 64, which may be
modified by #defining FD_SETSIZE to another value before #including
winsock.h.)    Internally, an fd_set is represented as an array of SOCKETs; the
last valid entry is followed by an element set to INVALID_SOCKET.    The macros
are:

FD_CLR(s , * set) Removes the descriptor s from set .

FD_ISSET(s , * set) Nonzero if s is a member of the set , zero otherwise.

FD_SET(s , * set) Adds descriptor s to set .

FD_ZERO(* set) Initializes the set to the NULL set.

The parameter timeout controls how long the select() may take to complete.    If
timeout is a null pointer, select() will block indefinitely until at least one descriptor
meets the specified criteria.    Otherwise, timeout points to a struct timeval which
specifies the maximum time that select() should wait before returning.    If the
timeval is initialized to {0, 0}, select() will return immediately; this is used to "poll"
the state of the selected sockets.    If this is the case, then the select() call is
considered nonblocking and the standard assumptions for nonblocking calls
apply.    For example, the blocking hook must not be called, and the Windows
Sockets implementation must not yield.

Return Value select() returns the total number of descriptors which are ready and contained in
the fd_set structures, or 0 if the time limit expired, or SOCKET_ERROR if an error
occurred.    If the return value is SOCKET_ERROR, WSAGetLastError() may be used
to retrieve a specific error code.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

Appendix C: Background Information 85

WSAEINVAL The timeout value is not valid.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall()

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAENOTSOCK One of the descriptor sets contains an entry
which is not a socket.

See Also WSAAsyncSelect(), accept(), connect(), recv(), recvfrom(), send().

#251 $252 +253 K254 Windows Sockets - Socket Routines

send()

Description Send data on a connected socket.

 #include <winsock.h>

 int PASCAL FAR send (SOCKET s, const char FAR * buf, int len, int flags);

s A descriptor identifying a connected socket.

buf A buffer containing the data to be transmitted.

len The length of the data in buf .

flags Specifies the way in which the call is made.

Remarks send() is used on connected datagram or stream sockets and is used to write
outgoing data on a socket.    For datagram sockets, care must be taken not to
exceed the maximum IP packet size of the underlying subnets, which is given by
the iMaxUdpDg element in the WSAData structure returned by WSAStartup().   
If the data is too long to pass atomically through the underlying protocol the error
WSAEMSGSIZE is returned, and no data is transmitted.

Note that the successful completion of a send() does not indicate that the data
was successfully delivered.

If no buffer space is available within the transport system to hold the data to be
transmitted, send() will block unless the socket has been placed in a non-
blocking I/O mode.    On non-blocking SOCK_STREAM sockets, the number of
bytes written may be between 1 and the requested length, depending on buffer
availability on both the local and foreign hosts.    The select () call may be used to
determine when it is possible to send more data.

Flags may be used to influence the behavior of the function invocation beyond
the options specified for the associated socket.    That is, the semantics of this
function are determined by the socket options and the flags parameter.    The
latter is constructed by or-ing any of the following values:

Value Meaning
MSG_DONTROUTE

Specifies that the data should not be subject to routing.    A
Windows Sockets supplier may choose to ignore this flag; see
also the discussion of the SO_DONTROUTE option in Socket
Options.

251# WinSock_Send
252$ send()
253+ WinSockSR:0190
254K send()

Appendix C: Background Information 87

MSG_OOB Send out-of-band data (SOCK_STREAM only; see also Out of
Band Data)

Return Value If no error occurs, send() returns the total number of characters sent.    (Note that
this may be less than the number indicated by len.) Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by
calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEACCES The requested address is a broadcast address,
but the appropriate flag was not set.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall()

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAEFAULT The buf is not in a valid part of the user address
space.

WSAENETRESET The connection must be reset because the
Windows Sockets implementation dropped it.

WSAENOBUFS The Windows Sockets implementation reports a
buffer deadlock.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not
of type SOCK_STREAM.

WSAESHUTDOWN The socket has been shutdown; it is not possible
to send() on a socket after shutdown() has
been invoked with how set to 1 or 2.

WSAEWOULDBLOCK The socket is marked as non-blocking and the
requested operation would block.

WSAEMSGSIZE The socket is of type SOCK_DGRAM, and the
datagram is larger than the maximum supported
by the Windows Sockets implementation.

WSAEINVAL The socket has not been bound with bind().

WSAECONNABORTED The virtual circuit was aborted due to timeout or
other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

See Also recv(), recvfrom(), socket(), sendto(), WSAStartup().

Appendix C: Background Information 89

#255 $256 +257 K258 Windows Sockets - Socket Routines

sendto()

Description Send data to a specific destination.

 #include <winsock.h>

 int PASCAL FAR sendto (SOCKET s, const char FAR * buf, int len, int flags,
const struct sockaddr FAR * to, int tolen);

s A descriptor identifying a socket.

buf A buffer containing the data to be transmitted.

len The length of the data in buf .

flags Specifies the way in which the call is made.

to A optional pointer to the address of the target socket.

tolen The size of the address in to .

Remarks sendto() is used on datagram or stream sockets and is used to write outgoing
data on a socket.    For datagram sockets, care must be taken not to exceed the
maximum IP packet size of the underlying subnets, which is given by the
iMaxUdpDg element in the WSAData structure returned by WSAStartup().    If
the data is too long to pass atomically through the underlying protocol the error
WSAEMSGSIZE is returned, and no data is transmitted.

Note that the successful completion of a sendto() does not indicate that the data
was successfully delivered.

sendto() is normally used on a SOCK_DGRAM socket to send a datagram to a
specific peer socket identified by the to parameter.    On a SOCK_STREAM
socket, the to and tolen parameters are ignored; in this case the sendto() is
equivalent to send () .

To send a broadcast (on a SOCK_DGRAM only), the address in the to parameter
should be constructed using the special IP address INADDR_BROADCAST
(defined in winsock.h) together with the intended port number.    It is generally
inadvisable for a broadcast datagram to exceed the size at which fragmentation
may occur, which implies that the data portion of the datagram (excluding
headers) should not exceed 512 bytes.

If no buffer space is available within the transport system to hold the data to be
transmitted, sendto() will block unless the socket has been placed in a non-

255# WinSock_SendTo
256$ sendto()
257+ WinSockSR:0200
258K sendto()

blocking I/O mode.    On non-blocking SOCK_STREAM sockets, the number of
bytes written may be between 1 and the requested length, depending on buffer
availability on both the local and foreign hosts.    The select () call may be used to
determine when it is possible to send more data.

Flags may be used to influence the behavior of the function invocation beyond
the options specified for the associated socket.    That is, the semantics of this
function are determined by the socket options and the flags parameter.    The
latter is constructed by or-ing any of the following values:

Value Meaning
MSG_DONTROUTE

Specifies that the data should not be subject to routing.    A
Windows Sockets supplier may choose to ignore this flag; see
also the discussion of the SO_DONTROUTE option in Socket
Options.

MSG_OOB Send out-of-band data (SOCK_STREAM only; see also Out of
Band Data)

Return Value If no error occurs, sendto() returns the total number of characters sent.    (Note
that this may be less than the number indicated by len.) Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by
calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEACCES The requested address is a broadcast address,
but the appropriate flag was not set.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall()

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAEFAULT The buf or to are not in a valid part of the user
address space, or the to argument is too small
(less than the sizeof a struct sockaddr).

WSAENETRESET The connection must be reset because the
Windows Sockets implementation dropped it.

WSAENOBUFS The Windows Sockets implementation reports a
buffer deadlock.

WSAENOTCONN The socket is not connected (SOCK_STREAM
only).

WSAENOTSOCK The descriptor is not a socket.

Appendix C: Background Information 91

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not
of type SOCK_STREAM.

WSAESHUTDOWN The socket has been shutdown; it is not possible
to sendto() on a socket after shutdown() has
been invoked with how set to 1 or 2.

WSAEWOULDBLOCK The socket is marked as non-blocking and the
requested operation would block.

WSAEMSGSIZE The socket is of type SOCK_DGRAM, and the
datagram is larger than the maximum supported
by the Windows Sockets implementation.

WSAECONNABORTED The virtual circuit was aborted due to timeout or
other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

WSAEADDRNOTAVAIL The specified address is not available from the
local machine.

WSAEAFNOSUPPORT Addresses in the specified family cannot be
used with this socket.

WSAEDESTADDRREQ A destination address is required.

WSAENETUNREACH The network can't be reached from this host at
this time.

See Also recv(), recvfrom(), socket(), send(), WSAStartup().

#259 $260 +261 K262 Windows Sockets - Socket Routines

setsockopt()

Description Set a socket option.

 #include <winsock.h>

 int PASCAL FAR setsockopt (SOCKET s, int level, int optname, const char FAR *
optval, int optlen);

s A descriptor identifying a socket.

level The level at which the option is defined; the only supported
levels are SOL_SOCKET and IPPROTO_TCP.

optname The socket option for which the value is to be set.

optval A pointer to the buffer in which the value for the requested option
is supplied.

optlen The size of the optval buffer.

Remarks setsockopt() sets the current value for a socket option associated with a socket
of any type, in any state.    Although options may exist at multiple protocol levels,
this specification only defines options that exist at the uppermost "socket'' level.   
Options affect socket operations, such as whether expedited data is received in
the normal data stream, whether broadcast messages may be sent on the
socket, etc.   

There are two types of socket options: Boolean options that enable or disable a
feature or behavior, and options which require an integer value or structure.    To
enable a Boolean option, optval points to a nonzero integer.    To disable the
option optval points to an integer equal to zero.    optlen should be equal to
sizeof(int) for Boolean options.    For other options, optval points to the an integer
or structure that contains the desired value for the option, and optlen is the length
of the integer or structure.

SO_LINGER controls the action taken when unsent data is queued on a socket
and a closesocket() is performed.    See closesocket() for a description of the
way in which the SO_LINGER settings affect the semantics of closesocket().   
The application sets the desired behavior by creating a struct linger (pointed to
by the optval argument) with the following elements:

struct linger {
int l_onoff;
int l_linger;

259# WinSock_SetSockOpt
260$ setsockopt()
261+ WinSockSR:0210
262K setsockopt()

Appendix C: Background Information 93

}

To enable SO_LINGER, the application should set l_onoff to a non-zero value,
set l_linger to 0 or the desired timeout (in seconds), and call setsockopt().    To
enable SO_DONTLINGER (i.e. disable SO_LINGER) l_onoff should be set to
zero and setsockopt() should be called.

By default, a socket may not be bound (see bind()) to a local address which is
already in use.    On occasions, however, it may be desirable to "re-use" an
address in this way.    Since every connection is uniquely identified by the
combination of local and remote addresses, there is no problem with having two
sockets bound to the same local address as long as the remote addresses are
different.    To inform the Windows Sockets implementation that a bind() on a
socket should not be disallowed because the desired address is already in use
by another socket, the application should set the SO_REUSEADDR socket
option for the socket before issuing the bind().    Note that the option is
interpreted only at the time of the bind(): it is therefore unnecessary (but
harmless) to set the option on a socket which is not to be bound to an existing
address, and setting or resetting the option after the bind() has no effect on this
or any other socket..

An application may request that the Windows Sockets implementation enable the
use of "keep-alive" packets on TCP connections by turning on the
SO_KEEPALIVE socket option.    A Windows Sockets implementation need not
support the use of keep-alives: if it does, the precise semantics are
implementation-specific but should conform to section 4.2.3.6 of RFC 1122:
Requirements for Internet Hosts -- Communication Layers.    If a connection is
dropped as the result of "keep-alives" the error code WSAENETRESET is
returned to any calls in progress on the socket, and any subsequent calls will fail
with WSAENOTCONN.   

The TCP_NODELAY option disables the Nagle algorithm.    The Nagle algorithm
is used to reduce the number of small packets sent by a host by buffering
unacknowledged send data until a full-size packet can be sent.    However, for
some applications this algorithm can impede performance, and TCP_NODELAY
may be used to turn it off.    Application writers should not set TCP_NODELAY
unless the impact of doing so is well-understood and desired, since setting
TCP_NODELAY can have a significant negative impact of network performance. 
TCP_NODELAY is the only supported socket option which uses level
IPPROTO_TCP; all other options use level SOL_SOCKET.

Windows Sockets suppliers are encouraged (but not required) to supply output
debug information if the SO_DEBUG option is set by an application.    The
mechanism for generating the debug information and the form it takes are
beyond the scope of this specification.

The following options are supported for setsockopt().    The Type identifies the
type of data addressed by optval.

Value Type Meaning
SO_BROADCAST BOOL Allow transmission of broadcast

messages on the socket.
SO_DEBUG BOOL Record debugging information.   
SO_DONTLINGER BOOL Don't block close waiting for unsent

data to be sent.    Setting this option

is equivalent to setting SO_LINGER
with l_onoff set to zero.

SO_DONTROUTE BOOL Don't route: send directly to
interface.

SO_KEEPALIVE BOOL Send keepalives
SO_LINGER struct linger FAR * Linger on close if unsent data is

present
SO_OOBINLINE BOOL Receive out-of-band data in the

normal data stream.   
SO_RCVBUF int Specify buffer size for receives
SO_REUSEADDR BOOL Allow the socket to be bound to an

address which is already in use.   
(See bind().)

SO_SNDBUF int Specify buffer size for sends
TCP_NODELAY BOOL Disables the Nagle algorithm for

send coalascing.

BSD options not supported for setsockopt() are:

Value Type Meaning
SO_ACCEPTCON BOOL Socket is listening
SO_ERROR int Get error status and clear
SO_RCVLOWAT int Receive low water mark
SO_RCVTIMEO int Receive timeout
SO_SNDLOWAT int Send low water mark
SO_SNDTIMEO int Send timeout
SO_TYPE int Type of the socket
IP_OPTIONS Set options field in IP header.

Return Value If no error occurs, setsockopt() returns 0.    Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by
calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEFAULT optval is not in a valid part of the process
address    space.

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAEINVAL level is not valid, or the information in optval is
not valid.

WSAENETRESET Connection has timed out when
SO_KEEPALIVE is set.

Appendix C: Background Information 95

WSAENOPROTOOPT The option is unknown or unsupported.    In
particular, SO_BROADCAST is not supported on
sockets of type SOCK_STREAM, while
SO_DONTLINGER, SO_KEEPALIVE,
SO_LINGER and SO_OOBINLINE are not
supported on sockets of type SOCK_DGRAM.

WSAENOTCONN Connection has been reset when
SO_KEEPALIVE is set.

WSAENOTSOCK The descriptor is not a socket.

See Also bind(), getsockopt(), ioctlsocket(), socket(), WSAAsyncSelect().

#263 $264 +265 K266 Windows Sockets - Socket Routines

shutdown()

Description Disable sends and/or receives on a socket.

 #include <winsock.h>

 int PASCAL FAR shutdown (SOCKET s, int how);

s A descriptor identifying a socket.

how A flag that describes what types of operation will no longer be
allowed.

Remarks shutdown() is used on all types of sockets to disable reception, transmission, or
both.

If how is 0, subsequent receives on the socket will be disallowed.    This has no
effect on the lower protocol layers.    For TCP, the TCP window is not changed
and incoming data will be accepted (but not acknowledged) until the window is
exhausted.    For UDP, incoming datagrams are accepted and queued.    In no
case will an ICMP error packet be generated.

If how is 1, subsequent sends are disallowed.    For TCP sockets, a FIN will be
sent.

Setting how to 2 disables both sends and receives as described above.

Note that shutdown() does not close the socket, and resources attached to the
socket will not be freed until closesocket() is invoked.

Comments shutdown() does not block regardless of the SO_LINGER setting on the socket.

An application should not rely on being able to re-use a socket after it has been
shut down.    In particular, a Windows Sockets implementation is not required to
support the use of connect() on such a socket.

Return Value If no error occurs, shutdown() returns 0.    Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by
calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

263# WinSock_ShutDown
264$ shutdown()
265+ WinSockSR:0220
266K shutdown()

Appendix C: Background Information 97

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEINVAL how is not valid.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall()

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAENOTCONN The socket is not connected (SOCK_STREAM
only).

WSAENOTSOCK The descriptor is not a socket.

See Also connect(), socket().

#267 $268 +269 K270 Windows Sockets - Socket Routines

socket()

Description Create a socket.

 #include <winsock.h>

 SOCKET PASCAL FAR socket (int af, int type, int protocol);

af An address format specification.    The only format currently
supported is PF_INET, which is the ARPA Internet address
format.

type A type specification for the new socket.

protocol A particular protocol to be used with the socket, or 0 if the caller
does not wish to specify a protocol.

Remarks socket() allocates a socket descriptor of the specified address family, data type
and protocol, as well as related resources.    If a protocol is not specified (i.e.
equal to 0), the default for the specified connection mode is used.

Only a single protocol exists to support a particular socket type using a given
address format.    However, the address family may be given as AF_UNSPEC
(unspecified), in which case the protocol parameter must be specified.    The
protocol number to use is particular to the "communication domain'' in which
communication is to take place.

The following type specifications are supported:

Type Explanation
SOCK_STREAM Provides sequenced, reliable, two-way,

connection-based byte streams with an out-of-
band data transmission mechanism.    Uses TCP
for the Internet address family.

SOCK_DGRAM Supports datagrams, which are connectionless,
unreliable buffers of a fixed (typically small)
maximum length.    Uses UDP for the Internet
address family.

Sockets of type SOCK_STREAM are full-duplex byte streams.    A stream socket
must be in a connected state before any data may be sent or received on it.    A
connection to another socket is created with a connect () call.    Once connected,
data may be transferred using send () and recv () calls.    When a session has

267# WinSock_Socket
268$ socket()
269+ WinSockSR:0230
270K socket()

Appendix C: Background Information 99

been completed, a closesocket () must be performed.    Out-of-band data may
also be transmitted as described in send () and received as described in recv () .

The communications protocols used to implement a SOCK_STREAM ensure that
data is not lost or duplicated.    If data for which the peer protocol has buffer
space cannot be successfully transmitted within a reasonable length of time,    the
connection is considered broken and subsequent calls will fail with the error code
set to WSAETIMEDOUT.

SOCK_DGRAM sockets allow sending and receiving of datagrams to and from
arbitrary peers using sendto() and recvfrom().    If such a socket is connect()ed
to a specific peer, datagrams may be send to that peer send () and may be
received from (only) this peer using recv () .

Return Value If no error occurs, socket() returns a descriptor referencing the new socket.   
Otherwise, a value of INVALID_SOCKET is returned, and a specific error code
may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEAFNOSUPPORT The specified address family is not supported..

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAEMFILE No more file descriptors are available.

WSAENOBUFS No buffer space is available.    The socket cannot
be created.

WSAEPROTONOSUPPORT The specified protocol is not supported.

WSAEPROTOTYPE The specified protocol is the wrong type for this
socket.

WSAESOCKTNOSUPPORT The specified socket type is not supported in this
address family.

See Also accept(), bind(), connect(), getsockname(), getsockopt(), setsockopt(),
listen(), recv(), recvfrom(), select(), send(), sendto(), shutdown(),
ioctlsocket().

#271 $272 +273 K274 Socket Library Reference

Database Routines

gethostbyaddr()
gethostbyname()
gethostname()
getprotobyname()
getprotobynumber()
getservbyname()
getservbyport()

271# WinSockRef_DatabaseRoutines
272$ Database Routines
273+ WinSockRef:0020
274K Database Functions

Appendix C: Background Information 101

#275 $276 +277 K278 Database Routines

gethostbyaddr()

Description Get host information corresponding to an address.

 #include <winsock.h>

 struct hostent FAR * PASCAL FAR gethostbyaddr (const char FAR * addr, int
len, int type);

addr A pointer to an address in network byte order.

len The length of the address, which must be 4 for PF_INET
addresses.

type The type of the address, which must be PF_INET.

Remarks gethostbyaddr() returns a pointer to the following structure which contains the
name(s) and address which correspond to the given address.   

struct hostent {
char FAR * h_name;
char FAR * FAR * h_aliases;
short h_addrtype;
short h_length;
char FAR * FAR * h_addr_list;

};

The members of this structure are:
Element Usage
h_name Official name of the host (PC).
h_aliases A NULL-terminated array of alternate names.
h_addrtype The type of address being returned; for Windows Sockets this is

always PF_INET.
h_length The length, in bytes, of each address; for PF_INET, this is

always 4.
h_addr_list A NULL-terminated list of addresses for the host.    Addresses

are returned in network byte order.

The macro h_addr is defined to be h_addr_list[0] for compatibility with older
software.

The pointer which is returned points to a structure which is allocated by the
Windows Sockets implementation.    The application must never attempt to
modify this structure or to free any of its components.    Furthermore, only one
copy of this structure is allocated per thread, and so the application should copy

275# WinSock_GetHostByAddr
276$ gethostbyaddr()
277+ WinSockDB:0010
278K gethostbyaddr()

any information which it needs before issuing any other Windows Sockets API
calls.

Return Value If no error occurs, gethostbyaddr() returns a pointer to the hostent structure
described above.    Otherwise it returns a NULL pointer and a specific error
number may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO_RECOVERY Non recoverable errors, FORMERR, REFUSED,
NOTIMP.

WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall()

See Also WSAAsyncGetHostByAddr(), gethostbyname(),

Appendix C: Background Information 103

#279 $280 +281 K282 Database Routines

gethostbyname()

Description Get host information corresponding to a hostname.

 #include <winsock.h>

 struct hostent FAR * PASCAL FAR gethostbyname (const char FAR * name);

name A pointer to the name of the host.

Remarks gethostbyname() returns a pointer to a hostent structure as described under
gethostbyaddr () .    The contents of this structure correspond to the hostname
name.

The pointer which is returned points to a structure which is allocated by the
Windows Sockets implementation.    The application must never attempt to
modify this structure or to free any of its components.    Furthermore, only one
copy of this structure is allocated per thread, and so the application should copy
any information which it needs before issuing any other Windows Sockets API
calls.

A gethostbyname() implementation must not resolve IP address strings passed
to it.    Such a request should be treated exactly as if an unknown host name
were passed.    An application with an IP address string to resolve should use
inet_addr() to convert the string to an IP address, then gethostbyaddr() to
obtain the hostent structure.

Return Value If no error occurs, gethostbyname() returns a pointer to the hostent structure
described above.    Otherwise it returns a NULL pointer and a specific error
number may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO_RECOVERY Non recoverable errors, FORMERR, REFUSED,
NOTIMP.

279# WinSock_GetHostByName
280$ gethostbyname()
281+ WinSockDB:0020
282K gethostbyname()

WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall()

See Also WSAAsyncGetHostByName(), gethostbyaddr()

Appendix C: Background Information 105

#283 $284 +285 K286 Database Routines

gethostname()

Description Return the standard host name for the local machine.

 #include <winsock.h>

 int PASCAL FAR gethostname (char FAR * name, int namelen);

name A pointer to a buffer that will receive the host name.

namelen The length of the buffer.

Remarks This routine returns the name of the local host into the buffer specified by the
name parameter.    The host name is returned as a null-terminated string.    The
form of the host name is dependent on the Windows Sockets implementation--it
may be a simple host name, or it may be a fully qualified domain name.   
However, it is guaranteed that the name returned will be successfully parsed by
gethostbyname() and WSAAsyncGetHostByName().

Return Value If no error occurs, gethostname() reutrns 0, otherwise it returns
SOCKET_ERROR and a specific error code may be retrieved by calling
WSAGetLastError().

Error Codes WSAEFAULT The namelen parameter is too small

 WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

 WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

 WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

See Also gethostbyname(), WSAAsyncGetHostByName().

283# WinSock_GetHostName
284$ gethostname()
285+ WinSockDB:0025
286K gethostname()

#287 $288 +289 K290 Database Routines

getprotobyname()

Description Get protocol information corresponding to a protocol name.

 #include <winsock.h>

 struct protoent FAR * PASCAL FAR getprotobyname (const char FAR * name);

name A pointer to a protocol name.

Remarks getprotobyname() returns a pointer to the following structure which contains the
name(s) and protocol number which correspond to the given protocol name.   

struct protoent {
char FAR * p_name;
char FAR * FAR * p_aliases;
short p_proto;

};

The members of this structure are:
Element Usage
p_name Official name of the protocol.
p_aliases A NULL-terminated array of alternate names.
p_proto The protocol number, in host byte order.

The pointer which is returned points to a structure which is allocated by the
Windows Sockets library.    The application must never attempt to modify this
structure or to free any of its components.    Furthermore only one copy of this
structure is allocated per thread, and so the application should copy any
information which it needs before issuing any other Windows Sockets API calls.

Return Value If no error occurs, getprotobyname() returns a pointer to the protoent structure
described above.    Otherwise it returns a NULL pointer and a specific error
number may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSANO_RECOVERY Non recoverable errors, FORMERR, REFUSED,
NOTIMP.

287# WinSock_GetProtoByName
288$ getprotobyname()
289+ WinSockDB:0030
290K getprotobyname()

Appendix C: Background Information 107

WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall()

See Also WSAAsyncGetProtoByName(), getprotobynumber().

#291 $292 +293 K294 Database Routines

getprotobynumber()

Description Get protocol information corresponding to a protocol number.

 #include <winsock.h>

 struct protoent FAR * PASCAL FAR getprotobynumber (int number);

number A protocol number, in host byte order.

Remarks This function returns a pointer to a protoent structure as described above in
getprotobyname().    The contents of the structure correspond to the given
protocol number.

The pointer which is returned points to a structure which is allocated by the
Windows Sockets implementation.    The application must never attempt to
modify this structure or to free any of its components.    Furthermore, only one
copy of this structure is allocated per thread, and so the application should copy
any information which it needs before issuing any other Windows Sockets API
calls.

Return Value If no error occurs, getprotobynumber() returns a pointer to the protoent
structure described above.    Otherwise it returns a NULL pointer and a specific
error number may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSANO_RECOVERY Non recoverable errors, FORMERR, REFUSED,
NOTIMP.

WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall()

See Also WSAAsyncGetProtoByNumber(), getprotobyname()

291# WinSock_GetProtoByNumber
292$ getprotobynumber()
293+ WinSockDB:0040
294K getprotobynumber()

Appendix C: Background Information 109

#295 $296 +297 K298 Database Routines

getservbyname()

Description Get service information corresponding to a service name and protocol.

 #include <winsock.h>

 struct servent FAR * PASCAL FAR getservbyname (const char FAR * name,
const char FAR * proto);

name A pointer to a service name.

proto An optional pointer to a protocol name.    If this is NULL,
getservbyname() returns the first service entry for which the
name matches the s_name or one of the s_aliases.    Otherwise
getservbyname() matches both the name and the proto .

Remarks getservbyname() returns a pointer to the following structure which contains the
name(s) and service number which correspond to the given service name.   

struct servent {
char FAR * s_name;
char FAR * FAR * s_aliases;
short s_port;
char FAR * s_proto;

};

The members of this structure are:
Element Usage
s_name Official name of the service.
s_aliases A NULL-terminated array of alternate names.
s_port The port number at which the service may be contacted.    Port

numbers are returned in network byte order.
s_proto The name of the protocol to use when contacting the service.

The pointer which is returned points to a structure which is allocated by the
Windows Sockets library.    The application must never attempt to modify this
structure or to free any of its components.    Furthermore only one copy of this
structure is allocated per thread, and so the application should copy any
information which it needs before issuing any other Windows Sockets API calls.

Return Value If no error occurs, getservbyname() returns a pointer to the servent structure
described above.    Otherwise it returns a NULL pointer and a specific error
number may be retrieved by calling WSAGetLastError().

295# WinSock_GetServByName
296$ getservbyname()
297+ WinSockDB:0050
298K getservbyname()

Appendix C: Background Information 111

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSANO_RECOVERY Non recoverable errors, FORMERR, REFUSED,
NOTIMP.

WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall()

See Also WSAAsyncGetServByName(), getservbyport()

#299 $300 +301 K302 Database Routines

getservbyport()

Description Get service information corresponding to a port and protocol.

 #include <winsock.h>

 struct servent FAR * PASCAL FAR getservbyport (int port, const char FAR *
proto);

port The port for a service, in network byte order.

proto An optional pointer to a protocol name.    If this is NULL,
getservbyport() returns the first service entry for which the port
matches the s_port.    Otherwise getservbyport() matches both
the port and the proto .

Remarks getservbyport() returns a pointer a servent structure as described above for
getservbyname().

The pointer which is returned points to a structure which is allocated by the
Windows Sockets implementation.    The application must never attempt to
modify this structure or to free any of its components.    Furthermore, only one
copy of this structure is allocated per thread, and so the application should copy
any information which it needs before issuing any other Windows Sockets API
calls.

Return Value If no error occurs, getservbyport() returns a pointer to the servent structure
described above.    Otherwise it returns a NULL pointer and a specific error
number may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSANO_RECOVERY Non recoverable errors, FORMERR, REFUSED,
NOTIMP.

WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

299# WinSock_GetServByPort
300$ getservbyport()
301+ WinSockDB:0060
302K getservbyport

Appendix C: Background Information 113

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall()

See Also WSAAsyncGetServByPort(), getservbyname()

#303 $304 +305 K306 Socket Library Reference

Microsoft Windows-specific Extensions

WSAAsyncGetHostByAddr()
WSAAsyncGetHostByName()
WSAAsyncGetProtoByName()
WSAAsyncGetProtoByNumber()
WSAAsyncGetServByName()
WSAAsyncGetServByPort()
WSAAsyncSelect()
WSACancelAsyncRequest()
WSACancelBlockingCall()
WSACleanup()
WSAGetLastError()
WSAIsBlocking()
WSASetBlockingHook()
WSASetLastError()
WSAStartup()
WSAUnhookBlockingHook()

303# WinSockRef_WindowsExtensions
304$ Microsoft Windows-specific Extensions
305+ WinSockRef:0030
306K Windows Extensions

Appendix C: Background Information 115

#307 $308 +309 K310 Microsoft Windows Specific Extensions

WSAAsyncGetHostByAddr()

Description Get host information corresponding to an address - asynchronous version.

 #include <winsock.h>

 HANDLE PASCAL FAR WSAAsyncGetHostByAddr (HWND hWnd, unsigned int
wMsg, const char FAR * addr, int len, int type, char FAR * buf, int buflen);

hWnd The handle of the window which should receive a message when
the asynchronous request completes.

wMsg The message to be received when the asynchronous request
completes.

addr A pointer to the network address for the host.    Host addresses
are stored in network byte order.

len The length of the address, which must be 4 for PF_INET.

type The type of the address, which must be PF_INET.

buf A pointer to the data area to receive the hostent data.    Note that
this must be larger than the size of a hostent structure.    This is
because the data area supplied is used by the Windows Sockets
implementation to contain not only a hostent structure but any
and all of the data which is referenced by members of the
hostent structure.    It is recommended that you supply a buffer of
MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

Remarks This function is an asynchronous version of gethostbyaddr(), and is used to
retrieve host n`me and address information corresponding to a network address. 
The Windows Sockets implementation initiates the operation and returns to the
caller immediately, passing back an asynchronous task handle which the
application may use to identify the operation.    When the operation is completed,
the results (if any) are copied into the buffer provided by the caller and a
message is sent to the application's window.

When the asynchronous operation is complete the application's window hWnd
receives message wMsg.    The wParam argument contains the asynchronous
task handle as returned by the original function call.    The high 16 bits of lParam
contain any error code.    The error code may be any error as defined in
winsock.h.    An error code of zero indicates successful completion of the

307# WinSock_AsyncGetHostByAddr
308$ WSAAsyncGetHostByAddr()
309+ WinSockWSE:0010
310K WSAAsyncGetHostByAddr()

asynchronous operation.    On successful completion, the buffer supplied to the
original function call contains a hostent structure.    To access the elements of this
structure, the original buffer address should be cast to a hostent structure pointer
and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of the
buffer specified by buflen in the original call was too small to contain all the
resultant information.    In this case, the low 16 bits of lParam contain the size of
buffer required to supply ALL the requisite information.    If the application decides
that the partial data is inadequate, it may reissue the
WSAAsyncGetHostByAddr() function call with a buffer large enough to receive
all the desired    information (i.e.    no smaller than the low 16 bits of lParam).

The error code and buffer length should be extracted from the lParam using the
macros    WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in
winsock.h as:

#define WSAGETASYNCERROR(lParam)                        HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam)                      LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the
application.   

Return Value The return value specifies whether or not the asynchronous operation was
successfully initiated.    Note that it does not imply success or failure of the
operation itself.

If the operation was successfully initiated, WSAAsyncGetHostByAddr() returns
a nonzero value of type HANDLE which is the asynchronous task handle for the
request.    This value can be used in two ways.    It can be used to cancel the
operation using WSACancelAsyncRequest().    It can also be used to match up
asynchronous operations and completion messages, by examining the wParam
message argument.

If the asynchronous operation could not be initiated,
WSAAsyncGetHostByAddr() returns a zero value, and a specific error number
may be retrieved by calling WSAGetLastError().

Comments The buffer supplied to this function is used by the Windows Sockets
implementation to construct a hostent structure together with the contents of data
areas referenced by members of the same hostent structure.    To avoid the
WSAENOBUFS error noted above, the application should provide a buffer of at
least MAXGETHOSTSTRUCT bytes (as defined in winsock.h).

Notes For
Windows Sockets
Suppliers It is the responsibility of the Windows Sockets implementation to ensure that

messages are successfully posted to the application.    If a PostMessage()
operation fails, the Windows Sockets implementation must re-post that message
as long as the window exists.

Windows Sockets suppliers should use the WSAMAKEASYNCREPLY macro
when constructing the lParam in the message.

Appendix C: Background Information 117

Error Codes The following error codes may be set when an application window receives a
message.    As described above, they may be extracted from the lParam in the
reply message using the WSAGETASYNCERROR macro.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAENOBUFS No/insufficient buffer space is available

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO_RECOVERY Non recoverable errors, FORMERR, REFUSED,
NOTIMP.

WSANO_DATA Valid name, no data record of requested type.

The following errors may occur at the time of the function call, and indicate that
the asynchronous operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAEWOULDBLOCK The asynchronous operation cannot be
scheduled at this time due to resource or other
constraints within the Windows Sockets
implementation.

See Also gethostbyaddr(), WSACancelAsyncRequest()

#311 $312 +313 K314 Microsoft Windows Specific Extensions

WSAAsyncGetHostByName()

Description Get host information corresponding to a hostname - asynchronous version.

 #include <winsock.h>

 HANDLE PASCAL FAR WSAAsyncGetHostByName (HWND hWnd, unsigned int
wMsg, const char FAR * name, char FAR * buf, int buflen);

hWnd The handle of the window which should receive a message when
the asynchronous request completes.

wMsg The message to be received when the asynchronous request
completes.

name A pointer to the name of the host.

buf A pointer to the data area to receive the hostent data.    Note that
this must be larger than the size of a hostent structure.    This is
because the data area supplied is used by the Windows Sockets
implementation to contain not only a hostent structure but any
and all of the data which is referenced by members of the
hostent structure.    It is recommended that you supply a buffer of
MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

Remarks This function is an asynchronous version of gethostbyname(), and is used to
retrieve host name and address information corresponding to a hostname.    The
Windows Sockets implementation initiates the operation and returns to the caller
immediately, passing back an asynchronous task handle which the application
may use to identify the operation.    When the operation is completed, the results
(if any) are copied into the buffer provided by the caller and a message is sent to
the application's window.

When the asynchronous operation is complete the application's window hWnd
receives message wMsg.    The wParam argument contains the asynchronous
task handle as returned by the original function call.    The high 16 bits of lParam
contain any error code.    The error code may be any error as defined in
winsock.h.    An error code of zero indicates successful completion of the
asynchronous operation.    On successful completion, the buffer supplied to the
original function call contains a hostent structure.    To access the elements of this
structure, the original buffer address should be cast to a hostent structure pointer
and accessed as appropriate.

311# WinSock_AsyncGetHostByName
312$ WSAAsyncGetHostByName()
313+ WinSockWSE:0020
314K WSAAsyncGetHostByName()

Appendix C: Background Information 119

Note that if the error code is WSAENOBUFS, it indicates that the size of the
buffer specified by buflen in the original call was too small to contain all the
resultant information.    In this case, the low 16 bits of lParam contain the size of
buffer required to supply ALL the requisite information.    If the application decides
that the partial data is inadequate, it may reissue the
WSAAsyncGetHostByName() function call with a buffer large enough to receive
all the desired    information (i.e. no smaller than the low 16 bits of lParam).

The error code and buffer length should be extracted from the lParam using the
macros    WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in
winsock.h as:

#define WSAGETASYNCERROR(lParam)                        HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam)                      LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the
application.   

Return Value The return value specifies whether or not the asynchronous operation was
successfully initiated.    Note that it does not imply success or failure of the
operation itself.

If the operation was successfully initiated, WSAAsyncGetHostByName() returns
a nonzero value of type HANDLE which is the asynchronous task handle for the
request.    This value can be used in two ways.    It can be used to cancel the
operation using WSACancelAsyncRequest().    It can also be used to match up
asynchronous operations and completion messages, by examining the wParam
message argument.

If the asynchronous operation could not be initiated,
WSAAsyncGetHostByName() returns a zero value, and a specific error number
may be retrieved by calling WSAGetLastError().

Comments The buffer supplied to this function is used by the Windows Sockets
implementation to construct a hostent structure together with the contents of data
areas referenced by members of the same hostent structure.    To avoid the
WSAENOBUFS error noted above, the application should provide a buffer of at
least MAXGETHOSTSTRUCT bytes (as defined in winsock.h).

Notes For
Windows Sockets
Suppliers It is the responsibility of the Windows Sockets implementation to ensure that

messages are successfully posted to the application.    If a PostMessage()
operation fails, the Windows Sockets implementation must re-post that message
as long as the window exists.

Windows Sockets suppliers should use the WSAMAKEASYNCREPLY macro
when constructing the lParam in the message.

Error Codes The following error codes may be set when an application window receives a
message.    As described above, they may be extracted from the lParam in the
reply message using the WSAGETASYNCERROR macro.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAENOBUFS No/insufficient buffer space is available

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO_RECOVERY Non recoverable errors, FORMERR, REFUSED,
NOTIMP.

WSANO_DATA Valid name, no data record of requested type.

The following errors may occur at the time of the function call, and indicate that
the asynchronous operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAEWOULDBLOCK The asynchronous operation cannot be
scheduled at this time due to resource or other
constraints within the Windows Sockets
implementation.

See Also gethostbyname(), WSACancelAsyncRequest()

Appendix C: Background Information 121

#315 $316 +317 K318 Microsoft Windows Specific Extensions

WSAAsyncGetProtoByName()

Description Get protocol information corresponding to a protocol name - asynchronous
version.

 #include <winsock.h>

 HANDLE PASCAL FAR WSAAsyncGetProtoByName (HWND hWnd, unsigned
int wMsg, const char FAR * name, char FAR * buf, int buflen);

hWnd The handle of the window which should receive a message when
the asynchronous request completes.

wMsg The message to be received when the asynchronous request
completes.

name A pointer to the protocol name to be resolved.

buf A pointer to the data area to receive the protoent data.    Note
that this must be larger than the size of a protoent structure.   
This is because the data area supplied is used by the Windows
Sockets implementation to contain not only a protoent structure
but any and all of the data which is referenced by members of
the protoent structure.    It is recommended that you supply a
buffer of MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

Remarks This function is an asynchronous version of getprotobyname(), and is used to
retrieve the protocol name and number corresponding to a protocol name.    The
Windows Sockets implementation initiates the operation and returns to the caller
immediately, passing back an asynchronous task handle which the application
may use to identify the operation.    When the operation is completed, the results
(if any) are copied into the buffer provided by the caller and a message is sent to
the application's window.

When the asynchronous operation is complete the application's window hWnd
receives message wMsg.    The wParam argument contains the asynchronous
task handle as returned by the original function call.    The high 16 bits of lParam
contain any error code.    The error code may be any error as defined in
winsock.h.    An error code of zero indicates successful completion of the
asynchronous operation.    On successful completion, the buffer supplied to the
original function call contains a protoent structure.    To access the elements of
this structure, the original buffer address should be cast to a protoent structure
pointer and accessed as appropriate.

315# WinSock_AsyncGetProtoByName
316$ WSAAsyncGetProtoByName()
317+ WinSockWSE:0030
318K WSAAsyncGetProtoByName()

Note that if the error code is WSAENOBUFS, it indicates that the size of the
buffer specified by buflen in the original call was too small to contain all the
resultant information.    In this case, the low 16 bits of lParam contain the size of
buffer required to supply ALL the requisite information.    If the application decides
that the partial data is inadequate, it may reissue the
WSAAsyncGetProtoByName() function call with a buffer large enough to
receive all the desired    information (i.e.    no smaller than the low 16 bits of
lParam).

The error code and buffer length should be extracted from the lParam using the
macros    WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in
winsock.h as:

#define WSAGETASYNCERROR(lParam)                        HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam)                      LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the
application.   

Return Value The return value specifies whether or not the asynchronous operation was
successfully initiated.    Note that it does not imply success or failure of the
operation itself.

If the operation was successfully initiated, WSAAsyncGetProtoByName()
returns a nonzero value of type HANDLE which is the asynchronous task handle
for the request.    This value can be used in two ways.    It can be used to cancel
the operation using WSACancelAsyncRequest().    It can also be used to match
up asynchronous operations and completion messages, by examining the
wParam message argument.

If the asynchronous operation could not be initiated,
WSAAsyncGetProtoByName() returns a zero value, and a specific error
number may be retrieved by calling WSAGetLastError().

Comments The buffer supplied to this function is used by the Windows Sockets
implementation to construct a protoent structure together with the contents of
data areas referenced by members of the same protoent structure.    To avoid the
WSAENOBUFS error noted above, the application should provide a buffer of at
least MAXGETHOSTSTRUCT bytes (as defined in winsock.h).

Notes For
Windows Sockets
Suppliers It is the responsibility of the Windows Sockets implementation to ensure that

messages are successfully posted to the application.    If a PostMessage()
operation fails, the Windows Sockets implementation must re-post that message
as long as the window exists.

Windows Sockets suppliers should use the WSAMAKEASYNCREPLY macro
when constructing the lParam in the message.

Error Codes The following error codes may be set when an application window receives a
message.    As described above, they may be extracted from the lParam in the
reply message using the WSAGETASYNCERROR macro.

Appendix C: Background Information 123

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAENOBUFS No/insufficient buffer space is available

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO_RECOVERY Non recoverable errors, FORMERR, REFUSED,
NOTIMP.

WSANO_DATA Valid name, no data record of requested type.

The following errors may occur at the time of the function call, and indicate that
the asynchronous operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAEWOULDBLOCK The asynchronous operation cannot be
scheduled at this time due to resource or other
constraints within the Windows Sockets
implementation.

See Also getprotobyname(), WSACancelAsyncRequest()

#319 $320 +321 K322 Microsoft Windows Specific Extensions

WSAAsyncGetProtoByNumber()

Description Get protocol information corresponding to a protocol number - asynchronous
version.

 #include <winsock.h>

 HANDLE PASCAL FAR WSAAsyncGetProtoByNumber (HWND hWnd, unsigned
int wMsg, int number, char FAR * buf, int buflen);

hWnd The handle of the window which should receive a message when
the asynchronous request completes.

wMsg The message to be received when the asynchronous request
completes.

number The protocol number to be resolved, in host byte order.

buf A pointer to the data area to receive the protoent data.    Note
that this must be larger than the size of a protoent structure.   
This is because the data area supplied is used by the Windows
Sockets implementation to contain not only a protoent structure
but any and all of the data which is referenced by members of
the protoent structure.    It is recommended that you supply a
buffer of MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

Remarks This function is an asynchronous version of getprotobynumber(), and is used to
retrieve the protocol name and number corresponding to a protocol number.   
The Windows Sockets implementation initiates the operation and returns to the
caller immediately, passing back an asynchronous task handle which the
application may use to identify the operation.    When the operation is completed,
the results (if any) are copied into the buffer provided by the caller and a
message is sent to the application's window.

When the asynchronous operation is complete the application's window hWnd
receives message wMsg.    The wParam argument contains the asynchronous
task handle as returned by the original function call.    The high 16 bits of lParam
contain any error code.    The error code may be any error as defined in
winsock.h.    An error code of zero indicates successful completion of the
asynchronous operation.    On successful completion, the buffer supplied to the
original function call contains a protoent structure.    To access the elements of
this structure, the original buffer address should be cast to a protoent structure
pointer and accessed as appropriate.

319# WinSock_AsyncGetProtoByNumber
320$ WSAAsyncGetProtoByNumber()
321+ WinSockWSE:0040
322K WSAAsyncGetProtoByNumber()

Appendix C: Background Information 125

Note that if the error code is WSAENOBUFS, it indicates that the size of the
buffer specified by buflen in the original call was too small to contain all the
resultant information.    In this case, the low 16 bits of lParam contain the size of
buffer required to supply ALL the requisite information.    If the application decides
that the partial data is inadequate, it may reissue the
WSAAsyncGetProtoByNumber() function call with a buffer large enough to
receive all the desired    information (i.e. no smaller than the low 16 bits of
lParam).

The error code and buffer length should be extracted from the lParam using the
macros    WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in
winsock.h as:

#define WSAGETASYNCERROR(lParam)                        HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam)                      LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the
application.   

Return Value The return value specifies whether or not the asynchronous operation was
successfully initiated.    Note that it does not imply success or failure of the
operation itself.

If the operation was successfully initiated, WSAAsyncGetProtoByNumber()
returns a nonzero value of type HANDLE which is the asynchronous task handle
for the request.    This value can be used in two ways.    It can be used to cancel
the operation using WSACancelAsyncRequest().    It can also be used to match
up asynchronous operations and completion messages, by examining the
wParam message argument.

If the asynchronous operation could not be initiated,
WSAAsyncGetProtoByNumber() returns a zero value, and a specific error
number may be retrieved by calling WSAGetLastError().

Comments The buffer supplied to this function is used by the Windows Sockets
implementation to construct a protoent structure together with the contents of
data areas referenced by members of the same protoent structure.    To avoid the
WSAENOBUFS error noted above, the application should provide a buffer of at
least MAXGETHOSTSTRUCT bytes (as defined in winsock.h).

Notes For
Windows Sockets
Suppliers It is the responsibility of the Windows Sockets implementation to ensure that

messages are successfully posted to the application.    If a PostMessage()
operation fails, the Windows Sockets implementation must re-post that message
as long as the window exists.

Windows Sockets suppliers should use the WSAMAKEASYNCREPLY macro
when constructing the lParam in the message.

Error Codes The following error codes may be set when an application window receives a
message.    As described above, they may be extracted from the lParam in the
reply message using the WSAGETASYNCERROR macro.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAENOBUFS No/insufficient buffer space is available

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO_RECOVERY Non recoverable errors, FORMERR, REFUSED,
NOTIMP.

WSANO_DATA Valid name, no data record of requested type.

The following errors may occur at the time of the function call, and indicate that
the asynchronous operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAEWOULDBLOCK The asynchronous operation cannot be
scheduled at this time due to resource or other
constraints within the Windows Sockets
implementation.

See Also getprotobynumber(), WSACancelAsyncRequest()

Appendix C: Background Information 127

#323 $324 +325 K326 Microsoft Windows Specific Extensions

WSAAsyncGetServByName()

Description Get service information corresponding to a service name and port -
asynchronous version.

 #include <winsock.h>

 HANDLE PASCAL FAR WSAAsyncGetServByName (HWND hWnd, unsigned int
wMsg, const char FAR * name, const char FAR * proto, char FAR * buf, int buflen
);

hWnd The handle of the window which should receive a message when
the asynchronous request completes.

wMsg The message to be received when the asynchronous request
completes.

name A pointer to a service name.

proto A pointer to a protocol name.    This may be NULL, in which case
WSAAsyncGetServByName() will search for the first service
entry for which s_name or one of the s_aliases matches the
given name .    Otherwise WSAAsyncGetServByName()
matches both name and proto .

buf A pointer to the data area to receive the servent data.    Note that
this must be larger than the size of a servent structure.    This is
because the data area supplied is used by the Windows Sockets
implementation to contain not only a servent structure but any
and all of the data which is referenced by members of the
servent structure.    It is recommended that you supply a buffer of
MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

Remarks This function is an asynchronous version of getservbyname(), and is used to
retrieve service information corresponding to a service name.    The Windows
Sockets implementation initiates the operation and returns to the caller
immediately, passing back an asynchronous task handle which the application
may use to identify the operation.    When the operation is completed, the results
(if any) are copied into the buffer provided by the caller and a message is sent to
the application's window.

When the asynchronous operation is complete the application's window hWnd
receives message wMsg.    The wParam argument contains the asynchronous

323# WinSock_AsyncGetServByName
324$ WSAAsyncGetServByName()
325+ WinSockWSE:0050
326K WSAAsyncGetServByName()

task handle as returned by the original function call.    The high 16 bits of lParam
contain any error code.    The error code may be any error as defined in
winsock.h.    An error code of zero indicates successful completion of the
asynchronous operation.    On successful completion, the buffer supplied to the
original function call contains a hostent structure.    To access the elements of this
structure, the original buffer address should be cast to a hostent structure pointer
and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of the
buffer specified by buflen in the original call was too small to contain all the
resultant information.    In this case, the low 16 bits of lParam contain the size of
buffer required to supply ALL the requisite information.    If the application decides
that the partial data is inadequate, it may reissue the
WSAAsyncGetServByName() function call with a buffer large enough to receive
all the desired    information (i.e. no smaller than the low 16 bits of lParam).

The error code and buffer length should be extracted from the lParam using the
macros    WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in
winsock.h as:

#define WSAGETASYNCERROR(lParam)                        HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam)                      LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the
application.   

Return Value The return value specifies whether or not the asynchronous operation was
successfully initiated.    Note that it does not imply success or failure of the
operation itself.

If the operation was successfully initiated, WSAAsyncGetServByName() returns
a nonzero value of type HANDLE which is the asynchronous task handle for the
request.    This value can be used in two ways.    It can be used to cancel the
operation using WSACancelAsyncRequest().    It can also be used to match up
asynchronous operations and completion messages, by examining the wParam
message argument.

If the asynchronous operation could not be initiated,
WSAAsyncGetHostByAddr() returns a zero value, and a specific error number
may be retrieved by calling WSAGetLastError().

Comments The buffer supplied to this function is used by the Windows Sockets
implementation to construct a hostent structure together with the contents of data
areas referenced by members of the same hostent structure.    To avoid the
WSAENOBUFS error noted above, the application should provide a buffer of at
least MAXGETHOSTSTRUCT bytes (as defined in winsock.h).

Notes For
Windows Sockets
Suppliers It is the responsibility of the Windows Sockets implementation to ensure that

messages are successfully posted to the application.    If a PostMessage()
operation fails, the Windows Sockets implementation must re-post that message
as long as the window exists.

Appendix C: Background Information 129

Windows Sockets suppliers should use the WSAMAKEASYNCREPLY macro
when constructing the lParam in the message.

Error Codes The following error codes may be set when an application window receives a
message.    As described above, they may be extracted from the lParam in the
reply message using the WSAGETASYNCERROR macro.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAENOBUFS No/insufficient buffer space is available

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO_RECOVERY Non recoverable errors, FORMERR, REFUSED,
NOTIMP.

WSANO_DATA Valid name, no data record of requested type.

The following errors may occur at the time of the function call, and indicate that
the asynchronous operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAEWOULDBLOCK The asynchronous operation cannot be
scheduled at this time due to resource or other
constraints within the Windows Sockets
implementation.

See Also getservbyname(), WSACancelAsyncRequest()

#327 $328 +329 K330 Microsoft Windows Specific Extensions

WSAAsyncGetServByPort()

Description Get service information corresponding to a port and protocol - asynchronous
version.

 #include <winsock.h>

 HANDLE PASCAL FAR WSAAsyncGetServByPort (HWND hWnd, unsigned int
wMsg, int port, const char FAR * proto, char FAR * buf, int buflen);

hWnd The handle of the window which should receive a message when
the asynchronous request completes.

wMsg The message to be received when the asynchronous request
completes.

port The port for the service, in network byte order.

proto A pointer to a protocol name.    This may be NULL, in which case
WSAAsyncGetServByPort() will search for the first service
entry for which s_port match the given port .    Otherwise
WSAAsyncGetServByPort() matches both port and proto .

buf A pointer to the data area to receive the servent data.    Note that
this must be larger than the size of a servent structure.    This is
because the data area supplied is used by the Windows Sockets
implementation to contain not only a servent structure but any
and all of the data which is referenced by members of the
servent structure.    It is recommended that you supply a buffer of
MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

Remarks This function is an asynchronous version of getservbyport(), and is used to
retrieve service information corresponding to a port number.    The Windows
Sockets implementation initiates the operation and returns to the caller
immediately, passing back an asynchronous task handle which the application
may use to identify the operation.    When the operation is completed, the results
(if any) are copied into the buffer provided by the caller and a message is sent to
the application's window.

When the asynchronous operation is complete the application's window hWnd
receives message wMsg.    The wParam argument contains the asynchronous
task handle as returned by the original function call.    The high 16 bits of lParam
contain any error code.    The error code may be any error as defined in

327# WinSock_AsyncGetServByPort
328$ WSAAsyncGetServByPort()
329+ WinSockWSE:0060
330K WSAAsyncGetServByPort()

Appendix C: Background Information 131

winsock.h.    An error code of zero indicates successful completion of the
asynchronous operation.    On successful completion, the buffer supplied to the
original function call contains a servent structure.    To access the elements of this
structure, the original buffer address should be cast to a servent structure pointer
and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of the
buffer specified by buflen in the original call was too small to contain all the
resultant information.    In this case, the low 16 bits of lParam contain the size of
buffer required to supply ALL the requisite information.    If the application decides
that the partial data is inadequate, it may reissue the
WSAAsyncGetServByPort() function call with a buffer large enough to receive
all the desired    information (i.e. no smaller than the low 16 bits of lParam).

The error code and buffer length should be extracted from the lParam using the
macros    WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in
winsock.h as:

#define WSAGETASYNCERROR(lParam)                        HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam)                      LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the
application.   

Return Value The return value specifies whether or not the asynchronous operation was
successfully initiated.    Note that it does not imply success or failure of the
operation itself.

If the operation was successfully initiated, WSAAsyncGetServByPort() returns
a nonzero value of type HANDLE which is the asynchronous task handle for the
request.    This value can be used in two ways.    It can be used to cancel the
operation using WSACancelAsyncRequest().    It can also be used to match up
asynchronous operations and completion messages, by examining the wParam
message argument.

If the asynchronous operation could not be initiated,
WSAAsyncGetServByPort() returns a zero value, and a specific error number
may be retrieved by calling WSAGetLastError().

Comments The buffer supplied to this function is used by the Windows Sockets
implementation to construct a servent structure together with the contents of data
areas referenced by members of the same servent structure.    To avoid the
WSAENOBUFS error noted above, the application should provide a buffer of at
least MAXGETHOSTSTRUCT bytes (as defined in winsock.h).

Notes For
Windows Sockets
Suppliers It is the responsibility of the Windows Sockets implementation to ensure that

messages are successfully posted to the application.    If a PostMessage()
operation fails, the Windows Sockets implementation must re-post that message
as long as the window exists.

Windows Sockets suppliers should use the WSAMAKEASYNCREPLY macro
when constructing the lParam in the message.

Error Codes The following error codes may be set when an application window receives a
message.    As described above, they may be extracted from the lParam in the
reply message using the WSAGETASYNCERROR macro.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAENOBUFS No/insufficient buffer space is available

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO_RECOVERY Non recoverable errors, FORMERR, REFUSED,
NOTIMP.

WSANO_DATA Valid name, no data record of requested type.

The following errors may occur at the time of the function call, and indicate that
the asynchronous operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAEWOULDBLOCK The asynchronous operation cannot be
scheduled at this time due to resource or other
constraints within the Windows Sockets
implementation.

See Also getservbyport(), WSACancelAsyncRequest()

Appendix C: Background Information 133

#331 $332 +333 K334 Microsoft Windows Specific Extensions

WSAAsyncSelect()

Description Request event notification for a socket.

 #include <winsock.h>

 int PASCAL FAR WSAAsyncSelect (SOCKET s, HWND hWnd, unsigned int
wMsg, long lEvent);

s A descriptor identifying the socket for which event notification is
required.

hWnd A handle identifying the window which should receive a message
when a network event occurs.

wMsg The message to be received when a network event occurs.

lEvent A bitmask which specifies a combination of network events in
which the application is interested.

Remarks This function is used to request that the Windows Sockets DLL should send a
message to the window hWnd whenever it detects any of the network events
specified by the lEvent parameter.    The message which should be sent is
specified by the wMsg parameter.    The socket for which notification is required is
identified by s.

The lEvent parameter is constructed by or'ing any of the values specified in the
following list.

Value Meaning
FD_READ Want to receive notification of readiness for reading
FD_WRITE Want to receive notification of readiness for writing
FD_OOB Want to receive notification of the arrival of out-of-band

data
FD_ACCEPT Want to receive notification of incoming connections
FD_CONNECT Want to receive notification of completed connection
FD_CLOSE Want to receive notification of socket closure

Issuing a WSAAsyncSelect() for a socket cancels any previous
WSAAsyncSelect() for the same socket.    For example, to receive notification
for both reading and writing, the application must call WSAAsyncSelect() with
both FD_READ and FD_WRITE, as follows:

rc = WSAAsyncSelect(s, hWnd, wMsg, FD_READ|FD_WRITE);

331# WinSock_AsyncSelect
332$ WSAAsyncSelect()
333+ WinSockWSE:0070
334K WSAAsyncSelect()

It is not possible to specify different messages for different events.    The following
code will not work; the second call will cancel the effects of the first, and only
FD_WRITE events will be reported with message wMsg2:

rc = WSAAsyncSelect(s, hWnd, wMsg1, FD_READ);
rc = WSAAsyncSelect(s, hWnd, wMsg2, FD_WRITE);

To cancel all notification - i.e., to indicate that the Windows Sockets
implementation should send no further messages related to network events on
the socket - lEvent should be set to zero.   

rc = WSAAsyncSelect(s, hWnd, 0, 0);

Although in this instance WSAAsyncSelect() immediately disables event
message posting for the socket, it is possible that messages may be waiting in
the application's message queue.    The application must therefore be prepared to
receive network event messages even after cancellation.    Closing a socket with
closesocket() also cancels WSAAsyncSelect() message sending, but the same
caveat about messages in the queue prior to the closesocket() still applies.

Since an accept()'ed socket has the same properties as the listening socket
used to accept it, any WSAAsyncSelect() events set for the listening socket
apply to the accepted socket.    For example, if a listening socket has
WSAAsyncSelect() events FD_ACCEPT, FD_READ, and FD_WRITE, then any
socket accepted on that listening socket will also have FD_ACCEPT, FD_READ,
and FD_WRITE events with the same wMsg value used for messages.    If a
different wMsg or events are desired, the application should call
WSAAsyncSelect(), passing the accepted socket and the desired new
information.

[Note: There is a timing window between the accept() call and the call to
WSAAsyncSelect() to change the events or wMsg.    An application which
desires a different wMsg for the listening and accept()'ed sockets should ask
for only FD_ACCEPT events on the listening socket, then set appropriate
events after the accept().    Since FD_ACCEPT is never sent for a connected
socket and FD_READ, FD_WRITE, FD_OOB, and FD_CLOSE are never
sent for listening sockets, this will not impose difficulties.]

When one of the nominated network events occurs on the specified socket s, the
application's window hWnd receives message wMsg.    The wParam argument
identifies the socket on which a network event has occurred.    The low word of
lParam specifies the network event that has occurred.    The high word of lParam
contains any error code.    The error code be any error as defined in winsock.h.

The error and event codes may be extracted from the lParam using the macros
WSAGETSELECTERROR and WSAGETSELECTEVENT, defined in winsock.h
as:

#define WSAGETSELECTERROR(lParam)                        HIWORD(lParam)
#define WSAGETSELECTEVENT(lParam)                        LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the
application.

The possible network event codes which may be returned are as follows:

Appendix C: Background Information 135

Value Meaning
FD_READ Socket s ready for reading
FD_WRITE Socket s ready for writing
FD_OOB Out-of-band data ready for reading on socket s.
FD_ACCEPT Socket s ready for accepting a new incoming connection
FD_CONNECT Connection on socket s completed
FD_CLOSE Connection identified by socket s has been closed

Return Value The return value is 0 if the application's declaration of interest in the network
event set was successful.    Otherwise the value SOCKET_ERROR is returned,
and a specific error number may be retrieved by calling WSAGetLastError().

Comments Although WSAAsyncSelect() can be called with interest in multiple events, the
application window will receive a single message for each network event.

As in the case of the select() function, WSAAsyncSelect() will frequently be
used to determine when a data transfer operation (send() or recv()) can be
issued with the expectation of immediate success.    Nevertheless, a robust
application must be prepared for the possibility that it may receive a message
and issue a Windows Sockets API call which returns WSAEWOULDBLOCK
immediately.    For example, the following sequence of events is possible:

(i) data arrives on socket s ; Windows Sockets posts
WSAAsyncSelect message

(ii) application processes some other message
(iii) while processing, application issues an ioctlsocket(s,

FIONREAD...) and notices that there is data ready to be read
(iv) application issues a recv(s,...) to read the data
(v) application    loops to process next message, eventually reaching

the WSAAsyncSelect message indicating that data is ready to
read

(vi) application issues recv(s,...), which fails with the error
WSAEWOULDBLOCK.

Other sequences are possible.   

The Windows Sockets DLL will not continually flood an application with
messages for a particular network event.    Having successfully posted
notification of a particular event to an application window, no further message(s)
for that network event will be posted to the application window until the
application makes the function call which implicitly re-enables notification of that
network event.

Event Re-enabling function
FD_READ recv() or recvfrom()
FD_WRITE send() or sendto()
FD_OOB recv()
FD_ACCEPT accept()
FD_CONNECT NONE
FD_CLOSE NONE

Any call to the reenabling routine, even one which fails, results in reenabling of
message posting for the relevent event.

For FD_READ, FD_OOB, and FD_ACCEPT events, message posting is "level-
triggerred."    This means that if the reenabling routine is called and the relevent
event is still valid after the call, a WSAAsyncSelect() message is posted to the
application.    This allows an application to be event-driven and not concern itself
with the amount of data that arrives at any one time.    Consider the following
sequence:

(i) Windows Sockets DLL receives 100 bytes of data on socket s
and posts an FD_READ message.

(ii) The application issues recv(s, buffptr, 50, 0) to read 50 bytes.
(iii) The Windows Sockets DLL posts another FD_READ message

since there is still data to be read.

With these semantics, an application need not read all available data in response
to an FD_READ message--a single recv() in response to each FD_READ
message is appropriate.    If an application issues multiple recv() calls in
response to a single FD_READ, it may receive multiple FD_READ messages.   
Such an application may wish to disable FD_READ messages before starting the
recv() calls by calling WSAAsyncSelect() with the FD_READ event not set.

If an event is true when the application initially calls WSAAsyncSelect() or when
the reenabling function is called, then a message is posted as appropriate.    For
example, if an application calls listen(), a connect attempt is made, then the
application calls WSAAsyncSelect() specifying that it wants to receive
FD_ACCEPT messages for the socket, the Windows Sockets implementation
posts an FD_ACCEPT message immediately.

The FD_WRITE event is handled slightly differently.    An FD_WRITE message is
posted when a socket is first connected with connect() or accepted with
accept(), and then after a send() or sendto() fails with WSAEWOULDBLOCK
and buffer space becomes available.    Therefore, an application can assume that
sends are possible starting from the first FD_WRITE message and lasting until a
send returns WSAEWOULDBLOCK.    After such a failure the application will be
notified that sends are again possible with an FD_WRITE message.

The FD_OOB event is used only when a socket is configured to receive out-of-
band data separately.    If the socket is configured to receive out-of-band data in-
line, the out-of-band (expedited) data is treated as normal data and the
application should register an interest in, and will    receive, FD_READ events,
not FD_OOB events.    An application may set or inspect the way in which out-of-
band data is to be handled by using setsockopt() or getsockopt for the
SO_OOBINLINE option.

The error code in an FD_CLOSE message indicates whether the socket close
was graceful or abortive.    If the error code is 0, then the close was graceful; if
the error code is WSAECONNRESET, then the socket's virtual socket was
abortively disconnected.    This only applies to sockets of type SOCK_STREAM.   

The FD_CLOSE message is posted when a close indication is received for the
virtual circuit corresponding to the socket.    In TCP terms, this means that the
FD_CLOSE is posted when the connection goes into the FIN WAIT or CLOSE
WAIT states.    This results from the remote end performing a shutdown() on the
send side or a closesocket().

Appendix C: Background Information 137

Please note your application will receive ONLY an FD_CLOSE message to
indicate closure of a virtual circuit. It will NOT receive an FD_READ message to
indicate this condition.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEINVAL Indicates that one of the specified parameters
was invalid

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

Additional error codes may be set when an application window receives a
message.    This error code is extracted from the lParam in the reply message
using the WSAGETSELECTERROR macro.    Possible error codes for each
network event are:
Event: FD_CONNECT
Error Code Meaning
WSAEADDRINUSE The specified address is already in use.

WSAEADDRNOTAVAIL The specified address is not available from the
local machine.

WSAEAFNOSUPPORT Addresses in the specified family cannot be
used with this socket.

WSAECONNREFUSED The attempt to connect was forcefully rejected.

WSAEDESTADDRREQ A destination address is required.

WSAEFAULT The namelen argument is incorrect.

WSAEINVAL The socket is already bound to an address.

WSAEISCONN The socket is already connected.

WSAEMFILE No more file descriptors are available.

WSAENETUNREACH The network can't be reached from this host at
this time.

WSAENOBUFS No buffer space is available.    The socket cannot
be connected.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is a file, not a socket.

WSAETIMEDOUT Attempt to connect timed out without
establishing a connection

Event: FD_CLOSE

Error Code Meaning
WSAENETDOWN The Windows Sockets implementation has

detected that the network subsystem has failed.

WSAECONNRESET The connection is reset by the remote side.

WSAECONNABORTED The connection was aborted due to timeout or
other failure.

Event: FD_READ
Event: FD_WRITE
Event: FD_OOB
Event: FD_ACCEPT
Error Code Meaning
WSAENETDOWN The Windows Sockets implementation has

detected that the network subsystem has failed.

Notes For
Windows Sockets
Suppliers It is the responsibility of the Windows Sockets Supplier to ensure that messages

are successfully posted to the application.    If a PostMessage() operation fails,
the Windows Sockets implementation must re-post that message as long as the
window exists.

Windows Sockets suppliers should use the WSAMAKESELECTREPLY macro
when constructing the lParam in the message.

When a socket is closed, the Windows Sockets Supplier should purge any
messages remaining for posting to the application window.    However the
application must be prepared to receive, and discard, any messages which may
have been posted prior to the closesocket().

See Also select()

Appendix C: Background Information 139

#335 $336 +337 K338 Microsoft Windows Specific Extensions

WSACancelAsyncRequest()

Description Cancel an incomplete asynchronous operation.

 #include <winsock.h>

 int PASCAL FAR WSACancelAsyncRequest (HANDLE hAsyncTaskHandle);

hAsyncTaskHandle Specifies the asynchronous operation to be canceled.

Remarks The WSACancelAsyncRequest() function is used to cancel an asynchronous
operation which was initiated by one of the WSAAsyncGetXByY() functions
such as WSAAsyncGetHostByName().    The operation to be canceled is
identified by the hAsyncTaskHandle parameter, which should be set to the
asynchronous task handle as returned by the initiating function.

Return Value The value returned by WSACancelAsyncRequest() is 0 if the operation was
successfully canceled.    Otherwise the value SOCKET_ERROR is returned, and
a specific error number may be retrieved by calling WSAGetLastError().

Comments An attempt to cancel an existing asynchronous WSAAsyncGetXByY() operation
can fail with an error code of WSAEALREADY for two reasons.    Firstly, the
original operation has already completed and the application has dealt with the
resultant message.    Secondly, the original operation has already completed but
the resultant message is still waiting in the application window queue.

Notes For
Windows Sockets
Suppliers It is unclear whether the application can usefully distinguish between

WSAEINVAL and WSAEALREADY, since in both cases the error indicates that
there is no asynchronous operation in progress with the indicated handle.   
[Trivial exception: 0 is always an invalid asynchronous task handle.]    The
Windows Sockets specification does not prescribe how a conformant Windows
Sockets implementation should distinguish between the two cases.    For
maximum portability, a Windows Sockets application should treat the two errors
as equivalent.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

335# WinSock_CancelAsyncRequest
336$ WSACancelAsyncRequest()
337+ WinSockWSE:0080
338K WSACancelAsyncRequest()

WSAEINVAL Indicates that the specified asynchronous task
handle was invalid

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAEALREADY The asynchronous routine being canceled has
already completed.

See Also WSAAsyncGetHostByAddr(), WSAAsyncGetHostByName(),
WSAAsyncGetProtoByNumber(), WSAAsyncGetProtoByName(),
WSAAsyncGetHostByName(), WSAAsyncGetServByPort(),
WSAAsyncGetServByName().

Appendix C: Background Information 141

#339 $340 +341 K342 Microsoft Windows Specific Extensions

WSACancelBlockingCall()

Description Cancel a blocking call which is currently in progress.

 #include <winsock.h>

 int PASCAL FAR WSACancelBlockingCall (void);

Remarks This function cancels any outstanding blocking operation for this task.    It is
normally used in two situations:

(1) An application is processing a message which has been received while a
blocking call is in progress.    In this case, WSAIsBlocking() will be true.

(2) A blocking call is in progress, and Windows Sockets has called back to the
application's "blocking hook" function (as established by
WSASetBlockingHook()).

In each case, the original blocking call will terminate as soon as possible with the
error WSAEINTR.    (In (1), the termination will not take place until Windows
message scheduling has caused control to revert to the blocking routine in
Windows Sockets.    In (2), the blocking call will be terminated as soon as the
blocking hook function completes.)

In the case of a blocking connect() operation, the Windows Sockets
implementation will terminate the blocking call as soon as possible, but it may not
be possible for the socket resources to be released until the connection has
completed (and then been reset) or timed out.    This is likely to be noticeable only
if the application immediately tries to open a new socket (if no sockets are
available), or to connect() to the same peer.

Cancelling an accept() or a select() call does not adversely impact the sockets
passed to these calls.    Only the particular call fails; any operation that was legal
before the cancel is legal after the cancel, and the state of the socket is not
affected in any way.

Cancelling any operation other than accept() and select() can leave the socket
in an indeterminate state.    If an application cancels a blocking operation on a
socket, the only operation that the application can depend on being able to
perform on the socket is a call to closesocket(), although other operations may
work on some Windows Sockets implementations.    If an application desires
maximum portability, it must be careful not to depend on performing operations
after a cancel.    An application may reset the connection by setting the timeout
on SO_LINGER to 0.

339# WinSock_CancelBlockingCall
340$ WSACancelBlockingCall()
341+ WinSockWSE:0090
342K WSACancelBlockingCall()

If a cancel operation comprimised the integrity of a SOCK_STREAM's data
stream in any way, the Windows Sockets implementation must reset the
connection and fail all future operations other than closesocket() with
WSAECONNABORTED.

Return Value The value returned by WSACancelBlockingCall() is 0 if the operation was
successfully canceled.    Otherwise the value SOCKET_ERROR is returned, and
a specific error number may be retrieved by calling WSAGetLastError().

Comments Note that it is possible that the network operation completes before the
WSACancelBlockingCall()    is processed, for example if data is received into
the user buffer at interrupt time while the application is in a blocking hook.    In
this case, the blocking operation will return successfully as if
WSACancelBlockingCall() had never been called.    Note that the
WSACancelBlockingCall() still succeeds in this case; the only way to know with
certainty that an operation was actually cancelled is to check for a return code of
WSAEINTR from the blocking call.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEINVAL Indicates that there is no outstanding blocking
call.

Appendix C: Background Information 143

#343 $344 +345 K346 Microsoft Windows Specific Extensions

WSACleanup()

Description Terminate use of the Windows Sockets DLL.

 #include <winsock.h>

 int PASCAL FAR WSACleanup (void);

Remarks An application is required to perform a (successful) WSAStartup() call before it
can use Windows Sockets services.    When it has completed the use of Windows
Sockets, the application must call WSACleanup() to deregister itself from a
Windows Sockets implementation and allow the implementation to free any
resources allocated on behalf of the application or DLL.    Any open
SOCK_STREAM sockets that are connected when WSACleanup() is called are
reset; sockets which have been closed with closesocket() but which still have
pending data to be sent are not affected--the pending data is still sent.

There must be a call to WSACleanup() for every call to WSAStartup() made by
a task.    Only the final WSACleanup() does the actual cleanup; the preceding
calls simply decrement an internal reference count in the Windows Sockets DLL. 
A naive application may ensure that WSACleanup() was called enough times by
calling WSACleanup() in a loop until it returns WSANOTINITIALISED.

Return Value The return value is 0 if the operation was successful.    Otherwise the value
SOCKET_ERROR is returned, and a specific error number may be retrieved by
calling WSAGetLastError().

Comments Attempting to call WSACleanup() from within a blocking hook and then failing to
check the return code is a common Windows Sockets programming error.    If an
application needs to quit while a blocking call is outstanding, the application must
first cancel the blocking call with WSACancelBlockingCall() then issue the
WSACleanup() call once control has been returned to the application.

Notes For
Windows Sockets
Suppliers Well-behaved Windows Sockets applications will make a WSACleanup() call to

indicate deregistration from a Windows Sockets implementation.    This function
can thus, for example, be utilized to free up resources allocated to the specific
application.

A Windows Sockets implementation must be prepared to deal with an application
which terminates without invoking WSACleanup() - for example, as a result of an
error.

In a multithreaded environment, WSACleanup() terminates Windows Sockets
operations for all threads.

343# WinSock_Cleanup
344$ WSACleanup()
345+ WinSockWSE:0100
346K WSACleanup()

A Windows Sockets implementation must ensure that WSACleanup() leaves
things in a state in which the application can invoke WSAStartup() to re-
establish Windows Sockets usage.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

See Also WSAStartup()

Appendix C: Background Information 145

#347 $348 +349 K350 Microsoft Windows Specific Extensions

WSAGetLastError()

Description Get the error status for the last operation which failed.

 #include <winsock.h>

 int PASCAL FAR WSAGetLastError (void);

Remarks This function returns the last network error that occurred.    When a particular
Windows Sockets API function indicates that an error has occurred, this function
should be called to retrieve the appropriate error code.

Return Value The return value indicates the error code for the last Windows Sockets API
routine performed by this thread.

Notes For
Windows Sockets
Suppliers The use of the WSAGetLastError() function to retrieve the last error code, rather

than relying on a global error variable (cf. errno), is required in order to provide
compatibility with future multi-threaded environments.   

Note that in a Win16 environment WSAGetLastError() is used to retrieve only
Windows Sockets API errors.    In a Win32 environment, WSAGetLastError() will
invoke GetLastError(), which is used to retrieve the error status for all Win32 API
functions on a per-thread basis.    For portability, an application should use
WSAGetLastError() immediately after the Windows Sockets API function which
failed.

See Also WSASetLastError()

347# WinSock_GetLastError
348$ WSAGetLastError()
349+ WinSockWSE:0110
350K WSAGetLastError()

#351 $352 +353 K354 Microsoft Windows Specific Extensions

WSAIsBlocking()

Description Determine if a blocking call is in progress.

 #include <winsock.h>

 BOOL PASCAL FAR WSAIsBlocking (void);

Remarks This function allows a task to determine if it is executing while waiting for a
previous blocking call to complete.

Return Value The return value is TRUE if there is an outstanding blocking function awaiting
completion.    Otherwise, it is FALSE.

Comments Although a call issued on a blocking socket appears to an application program as
though it "blocks", the Windows Sockets DLL has to relinquish the processor to
allow other applications to run.    This means that it is possible for the application
which issued the blocking call to be re-entered, depending on the message(s) it
receives.    In this instance, the WSAIsBlocking() function can be used to
ascertain whether the task has been re-entered while waiting for an outstanding
blocking call to complete.    Note that Windows Sockets prohibits more than one
outstanding call per thread.

Notes For
Windows Sockets
Suppliers A Windows Sockets implementation must prohibit more than one outstanding

blocking call per thread.

351# WinSock_IsBlocking
352$ WSAIsBlocking()
353+ WinSockWSE:0120
354K WSAIsBlcoking()

Appendix C: Background Information 147

#355 $356 +357 K358 Microsoft Windows Specific Extensions

WSASetBlockingHook()

Description Establish an application-specific blocking hook function.

#include <winsock.h>

 FARPROC PASCAL FAR WSASetBlockingHook (FARPROC lpBlockFunc);

lpBlockFunc A pointer to the procedure instance address of the blocking
function to be installed.

Remarks This function installs a new function which a Windows Sockets implementation
should use to implement blocking socket function calls.

A Windows Sockets implementation includes a default mechanism by which
blocking socket functions are implemented.    The function
WSASetBlockingHook() gives the application the ability to execute its own
function at "blocking" time in place of the default function.

When an application invokes a blocking Windows Sockets API operation, the
Windows Sockets implementation initiates the operation and then enters a loop
which is equivalent to the following pseudocode:

for(;;) {
          /* flush messages for good user response */
          while(BlockingHook())
                    ;
          /* check for WSACancelBlockingCall() */
          if(operation_cancelled())
                    break;
          /* check to see if operation completed */
          if(operation_complete())
                    break;          /* normal completion */
}

Note that Windows Sockets implementations may perform the above steps in a
different order; for example, the check for operation complete may occur before
calling the blocking hook.    The default BlockingHook() function is equivalent to:

BOOL DefaultBlockingHook(void) {
          MSG msg;
          BOOL ret;
          /* get the next message if any */
          ret = (BOOL)PeekMessage(&msg,NULL,0,0,PM_REMOVE);
          /* if we got one, process it */

355# WinSock_SetBlockingHook
356$ WSASetBlockingHook()
357+ WinSockWSE:0125
358K WSASetBlockingHook()

          if (ret) {
                    TranslateMessage(&msg);
                    DispatchMessage(&msg);
          }
          /* TRUE if we got a message */
          return ret;
}

The WSASetBlockingHook() function is provided to support those applications
which require more complex message processing - for example, those employing
the MDI (multiple document interface) model.    It is not intended as a mechanism
for performing general applications functions.    In particular, the only Windows
Sockets API function which may be issued from a custom blocking hook function
is WSACancelBlockingCall(), which will cause the blocking loop to terminate.

This function must be implemented on a per-task basis for non-multithreaded
versions of Windows and on a per-thread basis for multithreaded versions of
Windows such as Windows NT.    It thus provides for a particular task or thread to
replace the blocking mechanism without affecting other tasks or threads.

In multithreaded versions of Windows, there is no default blocking hook--blocking
calls block the thread that makes the call.    However, an application may install a
specific blocking hook by calling WSASetBlockingHook().   
This allows easy portability of applications that depend on the blocking hook
behavior.

Return Value The return value is a pointer to the procedure-instance of the previously installed
blocking function.    The application or library that calls the
WSASetBlockingHook() function should save this return value so that it can be
restored if necessary.    (If "nesting" is not important, the application may simply
discard the value returned by WSASetBlockingHook() and eventually use
WSAUnhookBlockingHook() to restore the default mechanism.)    If the
operation fails, a NULL pointer is returned, and a specific error number may be
retrieved by calling WSAGetLastError().

Notes For
Windows Sockets
Suppliers This function must be implemented on a per-thread basis.    It thus provides for a

particular thread to replace the blocking mechanism without affecting other
threads.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

See Also WSAUnhookBlockingHook()

Appendix C: Background Information 149

#359 $360 +361 K362 Microsoft Windows Specific Extensions

WSASetLastError()

Description Set the error code which can be retrieved by WSAGetLastError().

#include <winsock.h>

 void PASCAL FAR WSASetLastError (int iError);

Remarks This function allows an application to set the error code to be returned by a
subsequent WSAGetLastError() call for the current thread.    Note that any
subsequent Windows Sockets routine called by the application will override the
error code as set by this routine.

iError Specifies the error code to be returned by a subsequent
WSAGetLastError() call.

Notes For
Windows Sockets
Suppliers In a Win32 environment, this function will invoke SetLastError().

Return Value None.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

See Also WSAGetLastError()

359# WinSock_SetLastError
360$ WSASetLastError()
361+ WinSockWSE:0130
362K WSASetLastError()

#363 $364 +365 K366 Microsoft Windows Specific Extensions

WSAStartup()

Description

 #include <winsock.h>

 int PASCAL FAR WSAStartup (WORD wVersionRequired, LPWSADATA
lpWSAData);

wVersionRequired The highest version of Windows Sockets API support
that the caller can use.    The high order byte specifies
the minor version (revision) number; the low-order byte
specifies the major version number.

lpWSAData A pointer to the WSADATA data structure that is to
receive details of the Windows Sockets implementation.

Remarks This function must be the first Windows Sockets function called by an application
or DLL.    It allows an application to specify the version of Windows Sockets API
required and to retrieve details of the specific Windows Sockets implementation. 
The application may only issue further Windows Sockets API functions after a
successful WSAStartup() invocation.

In order to support future Windows Sockets implementations and applications
which may have functionality differences from Windows Sockets 1.1, a
negotiation takes place in WSAStartup().    The caller of WSAStartup() and the
Windows Sockets DLL indicate to each other the highest version that they can
support, and each confirms that the other's highest version is acceptable.    Upon
entry to WSAStartup(), the Windows Sockets DLL examines the version
requested by the application.    If this version is higher than the lowest version
supported by the DLL, the call succeeds and the DLL returns in wHighVersion the
highest version it supports and in wVersion the minimum of its high version and
wVersionRequested.    The Windows Sockets DLL then assumes that the
application will use wVersion.    If the wVersion field of the WSADATA structure is
unacceptable to the caller, it should call WSACleanup() and either search for
another Windows Sockets DLL or fail to initialize.

This negotiation allows both a Windows Sockets DLL and a Windows Sockets
application to support a range of Windows Sockets versions.    An application can
successfully utilize a Windows Sockets DLL if there is any overlap in the version
ranges.    The following chart gives examples of how WSAStartup() works in
conjunction with different application and Windows Sockets DLL versions:

App versions DLL Versions wVersionRequested wVersion wHighVersion End Result
1.1 1.1 1.1 1.1 1.1 use 1.1

363# WinSock_Startup
364$ WSAStartup()
365+ WinSockWSE:0140
366K WSAStartup()

Appendix C: Background Information 151

1.0 1.1 1.0 1.1 1.0 1.0 use 1.0
1.0 1.0 1.1 1.0 1.0 1.1 use 1.0

1.1 1.0 1.1 1.1 1.1 1.1 use 1.1
1.1 1.0 1.1 1.0 1.0 App fails
1.0 1.1 1.0 --- --- NotSupp
1.0 1.1 1.0 1.1 1.1 1.1 1.1 use 1.1
1.1 2.0 1.1 2.0 1.1 1.1 use 1.1

2.0 1.1 2.0 1.1 1.1 App fails

The following code fragment demonstrates how an application which supports
only version 1.1 of Windows Sockets makes a WSAStartup() call:

WORD wVersionRequested;
WSADATA wsaData;
int err;

wVersionRequested = MAKEWORD(1, 1);

err = WSAStartup(wVersionRequested, &wsaData);
if (err != 0) {
        /* Tell the user that we couldn't find a useable */
        /* winsock.dll.   
*/
        return;
}

/* Confirm that the Windows Sockets DLL supports 1.1.*/
/* Note that if the DLL supports versions greater        */
/* than 1.1 in addition to 1.1, it will still return */
/* 1.1 in wVersion since that is the version we            */
/* requested.   
*/

if (LOBYTE(wsaData.wVersion) != 1 ||
                  HIBYTE(wsaData.wVersion) != 1) {
        /* Tell the user that we couldn't find a useable */
        /* winsock.dll.   
*/
        WSACleanup();
        return;     
}

/* The Windows Sockets DLL is acceptable.    Proceed.    */

And this code fragment demonstrates how a Windows Sockets
DLL which supports only version 1.1 performs the
WSAStartup() negotiation:
/* Make sure that the version requested is >= 1.1.      */
/* The low byte is the major version and the high        */
/* byte is the minor version. 
*/

if (LOBYTE(wVersionRequested) < 1 ||
          (LOBYTE(wVersionRequested) == 1 &&
              HIBYTE(wVersionRequested) < 1) {

        return WSAVERNOTSUPPORTED;
}

/* Since we only support 1.1, set both wVersion and    */
/* wHighVersion to 1.1.   
*/

lpWsaData->wVersion = MAKEWORD(1, 1);
lpWsaData->wHighVersion = MAKEWORD(1, 1);

Once an application has made a successful WSAStartup() call, it may proceed
to make other Windows Sockets API calls as needed.    When it has finished
using the services of the Windows Sockets DLL, the application must call
WSACleanup() in order to allow the DLL to free any resources allocated by the
Windows Sockets DLL for the application.

Details of the actual Windows Sockets implementation are described in the
WSAData structure defined as follows:

struct WSAData {
WORD wVersion;
WORD wHighVersion;
char szDescription[WSADESCRIPTION_LEN+1];
char szSystemStatus[WSASYSSTATUS_LEN+1];
unsigned short iMaxSockets;
unsigned short iMaxUdpDg;
char FAR * lpVendorInfo

};

The members of this structure are:
Element Usage
wVersion The version of the Windows Sockets specification that the

Windows Sockets DLL expects the caller to use.
wHighVersion The highest version of the Windows Sockets specification that

this DLL can support (also encoded as above).    Normally this
will be the same as wVersion.

szDescription A null-terminated ASCII string into which the Windows Sockets
DLL copies a description of the Windows Sockets
implementation, including vendor identification.    The text (up
to 256 characters in length) may contain any characters, but
vendors are cautioned against including control and formatting
characters: the most likely use that an application will put this
to is to display it (possibly truncated) in a status message.

szSystemStatus A null-terminated ASCII string into which the Windows Sockets
DLL copies relevant status or configuration information.    The
Windows Sockets DLL should use this field only if the
information might be useful to the user or    support staff: it
should not be considered as an extension of the szDescription
field.

iMaxSockets The maximum number of sockets which a single process can
potentially open.    A Windows Sockets implementation may
provide a global pool of sockets for allocation to any process;
alternatively it may allocate per-process resources for sockets. 
The number may well reflect the way in which the Windows
Sockets DLL or the networking software was configured.   
Application writers may use this number as a crude indication

Appendix C: Background Information 153

of whether the Windows Sockets implementation is usable by
the application.    For example, an X Windows server might
check iMaxSockets when first started: if it is less than 8, the
application would display an error message instructing the user
to reconfigure the networking software.    (This is a situation in
which the szSystemStatus text might be used.)    Obviously
there is no guarantee that a particular application can actually
allocate iMaxSockets sockets, since there may be other
Windows Sockets applications in use.

iMaxUdpDg The size in bytes of the largest UDP datagram that can be sent
or received by a Windows Sockets application.    If the
implementation imposes no limit, iMaxUdpDg is zero.    In
many implementations of Berkeley sockets, there is an implicit
limit of 8192 bytes on UDP datagrams (which are fragmented if
necessary).    A Windows Sockets implementation may impose
a limit based, for instance, on the allocation of fragment
reassembly buffers.    The minimum value of iMaxUdpDg for a
compliant Windows Sockets implementation is 512.    Note that
regardless of the value of iMaxUdpDg, it is inadvisable to
attempt to send a broadcast datagram which is larger than the
Maximum Transmission Unit (MTU) for the network.    (The
Windows Sockets API does not provide a mechanism to
discover the MTU, but it must be no less than 512 bytes.)

lpVendorInfo A far pointer to a vendor-specific data structure.    The definition
of this structure (if supplied) is beyond the scope of this
specification.

An application may call WSAStartup() more than once if it needs to obtain the
WSAData structure information more than once.    However, the
wVersionRequired parameter is assumed to be the same on all calls to
WSAStartup(); that is, an application cannot change the version of Windows
Sockets it expects after the initial call to WSAStartup().   

There must be one WSACleanup() call corresponding to every WSAStartup()
call to allow third-party DLLs to make use of a Windows Sockets DLL on behalf of
an application.    This means, for example, that if an application calls
WSAStartup() three times, it must call WSACleanup() three times.    The first
two calls to WSACleanup() do nothing except decrement an internal counter; the
final WSACleanup() call does all necessary resource deallocation for the task.

Return Value WSAStartup() returns zero if successful.    Otherwise it returns one of the error
codes listed below.    Note that the normal mechanism whereby the application
calls WSAGetLastError() to determine the error code cannot be used, since the
Windows Sockets DLL may not have established the client data area where the
"last error" information is stored.

Notes For
Windows Sockets
Suppliers Each Windows Sockets application must make a WSAStartup() call before

issuing any other Windows Sockets API calls.    This function can thus be utilized
for initialization purposes.

Further issues are discussed in the notes for WSACleanup().

Error Codes WSASYSNOTREADY Indicates that the underlying network subsystem
is not ready for network communication.

WSAVERNOTSUPPORTED
The version of Windows Sockets API support
requested is not provided by this particular
Windows Sockets implementation.

WSAEINVAL The Windows Sockets version specified by the
application is not supported by this DLL.

See Also send(), sendto(), WSACleanup()

Appendix C: Background Information 155

#367 $368 +369 K370 Microsoft Windows Specific Extensions

WSAUnhookBlockingHook()

Description Restore the default blocking hook function.

#include <winsock.h>

 int PASCAL FAR WSAUnhookBlockingHook (void);

Remarks This function removes any previous blocking hook that has been installed and
reinstalls the default blocking mechanism.   

WSAUnhookBlockingHook() will always install the default mechanism, not the
previous mechanism.    If an application wish to nest blocking hooks - i.e. to
establish a temporary blocking hook function and then revert to the previous
mechanism (whether the default or one established by an earlier
WSASetBlockingHook()) - it must save and restore the value returned by
WSASetBlockingHook(); it cannot use WSAUnhookBlockingHook().

In multithreaded versions of Windows such as Windows NT, there is no default
blocking hook.    Calling WSAUnhookBlockingHook() disables any blocking
hook installed by the application and any blocking calls made block the thread
which made the call.

Return Value The return value is 0 if the operation was successful.    Otherwise the value
SOCKET_ERROR is returned, and a specific error number may be retrieved by
calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

See Also WSASetBlockingHook()

367# WinSock_UnhookBlockingHook
368$ WSAUnhookBlockingHook()
369+ WinSockWSE:0150
370K WSAUnhookBlockingHook()

#371 $372 +373 K374 Windows Sockets

Error Codes

The following is a list of possible error codes returned by the WSAGetLastError() call, along with
their explanations.    The error numbers are consistently set across all Windows Sockets-
compliant implementations.

371# Winsock_ErrorCodes
372$ Error Codes
373+ WinSock:0040
374K Error Codes

Appendix C: Background Information 157

Windows Sockets code Berkeley equivalent Error Interpretation
WSAEINTR EINTR 10004 As in standard C
WSAEBADF EBADF 10009 As in standard C
WSEACCES EACCES 10013 As in standard C
WSAEFAULT EFAULT 10014 As in standard C
WSAEINVAL EINVAL 10022 As in standard C
WSAEMFILE EMFILE 10024 As in standard C
WSAEWOULDBLOCK EWOULDBLOCK 10035 As in BSD
WSAEINPROGRESS EINPROGRESS 10036 This error is returned if anyWindows

Sockets API function is called while a
blocking function is in progress.

WSAEALREADY EALREADY 10037 As in BSD
WSAENOTSOCK ENOTSOCK 10038 As in BSD
WSAEDESTADDRREQ EDESTADDRREQ 10039 As in BSD
WSAEMSGSIZE EMSGSIZE 10040 As in BSD
WSAEPROTOTYPE EPROTOTYPE 10041 As in BSD
WSAENOPROTOOPT ENOPROTOOPT 10042 As in BSD
WSAEPROTONOSUPPORT EPROTONOSUPPORT 10043 As in BSD
WSAESOCKTNOSUPPORT ESOCKTNOSUPPORT 10044 As in BSD
WSAEOPNOTSUPP EOPNOTSUPP 10045 As in BSD
WSAEPFNOSUPPORT EPFNOSUPPORT 10046 As in BSD
WSAEAFNOSUPPORT EAFNOSUPPORT 10047 As in BSD
WSAEADDRINUSE EADDRINUSE 10048 As in BSD
WSAEADDRNOTAVAIL EADDRNOTAVAIL 10049 As in BSD
WSAENETDOWN ENETDOWN 10050 As in BSD.    This error may be reported

at any time if the Windows Sockets
implementation detects an underlying
failure.

WSAENETUNREACH ENETUNREACH 10051 As in BSD
WSAENETRESET ENETRESET 10052 As in BSD
WSAECONNABORTED ECONNABORTED 10053 As in BSD
WSAECONNRESET ECONNRESET 10054 As in BSD
WSAENOBUFS ENOBUFS 10055 As in BSD
WSAEISCONN EISCONN 10056 As in BSD
WSAENOTCONN ENOTCONN 10057 As in BSD
WSAESHUTDOWN ESHUTDOWN 10058 As in BSD
WSAETOOMANYREFS ETOOMANYREFS 10059 As in BSD
WSAETIMEDOUT ETIMEDOUT 10060 As in BSD
WSAECONNREFUSED ECONNREFUSED 10061 As in BSD
WSAELOOP ELOOP 10062 As in BSD
WSAENAMETOOLONG ENAMETOOLONG 10063 As in BSD
WSAEHOSTDOWN EHOSTDOWN 10064 As in BSD
WSAEHOSTUNREACH EHOSTUNREACH 10065 As in BSD
WSASYSNOTREADY 10091 Returned by WSAStartup()

indicating that the network subsystem is
unusable.

WSAVERNOTSUPPORTED 10092 Returned by WSAStartup()
indicating that the Windows Sockets
DLL cannot support this app.

WSANOTINITIALISED 10093 Returned by any function except
WSAStartup() indicating that a
successful WSAStartup() has not yet
been performed.

WSAHOST_NOT_FOUND HOST_NOT_FOUND 11001 As in BSD.
WSATRY_AGAIN TRY_AGAIN 11002 As in BSD
WSANO_RECOVERY NO_RECOVERY 11003 As in BSD
WSANO_DATA NO_DATA 11004 As in BSD

The first set of definitions is present to resolve contentions between standard C error codes which
may be defined inconsistently between various C compilers.

The second set of definitions provides Windows Sockets versions of regular Berkeley Sockets
error codes.

The third set of definitions consists of extended Windows Sockets-specific error codes.

The fourth set of errors are returned by Windows Sockets getXbyY() and WSAAsyncGetXByY()
functions, and correspond to the errors which in Berkeley software would be returned in the
h_errno variable.    They correspond to various failures which may be returned by the Domain
Name Service.    If the Windows Sockets implementation    does not use the DNS, it will use the
most appropriate code.    In general, a Windows Sockets application should interpret
WSAHOST_NOT_FOUND and WSANO_DATA as indicating that the key (name, address, etc.)
was not found,, while WSATRY_AGAIN and WSANO_RECOVERY suggest that the name
service itself is non-operational.

The error numbers are derived from the winsock.h header file, and are based on the fact that
Windows Sockets error numbers are computed by adding 10000 to the "normal" Berkeley error
number.

Note that this table does not include all of the error codes defined in winsock.h.    This is because
it includes only errors which might reasonably be returned by a Windows Sockets
implementation: winsock.h, on the other hand, includes a full set of BSD definitions to ensure
compatibility with ported software.

Appendix C: Background Information 159

#375 $376 +377 K378 Windows Sockets

Header Files

Berkeley Header Files
Windows Sockets Header File - winsock.h

375# Winsock_HeaderFiles
376$ Header Files
377+ WinSock:0050
378K Header Files

#379 $380 +381 K382 Windows Sockets Header Files

Berkeley Header Files

A Windows Sockets supplier who provides a development kit to support the development of
Windows Sockets applications must supply a set of vestigial header files with names that match a
number of the header files in the Berkeley software distribution.    These files are provided for
source code compatibility only, and each consists of three lines:

#ifndef _WINSOCKAPI_
#include <winsock.h>
#endif

The header files provided for compatibility are:
netdb.h
arpa/inet.h
sys/time.h
sys/socket.h
netinet/in.h

The file winsock.h contains all of the type and structure definitions, constants, macros, and
function prototypes used by the Windows Sockets specification.    An application writer may
choose to ignore the compatibility headers and include winsock.h in each source file.

379# Winsock_BerkeleyHeaders
380$ Berkeley Header Files
381+ WinsockH:0010
382K Header Files

Appendix C: Background Information 161

#383 $384 +385 K386 Windows Sockets Header Files

Windows Sockets Header File - winsock.h

The winsock.h header file includes a number of types and definitions from the standard Windows
header file windows.h.    The windows.h in the Windows 3.0 SDK (Software Developer's Kit)
lacks a #include guard, so if you need to include windows.h as well as winsock.h, you should
define the symbol _INC_WINDOWS before #including winsock.h, as follows:

#include <windows.h>
#define _INC_WINDOWS
#include <winsock.h>

Users of the SDK for Windows 3.1 and later need not do this.

A Windows Sockets DLL vendor MUST NOT make any modifications to this header file which
could impact binary compatibility of Windows Sockets applications.    The constant values,
function parameters and return codes, and the like must remain consistent across all Windows
Sockets DLL vendors.

/* WINSOCK.H--definitions to be used with the WINSOCK.DLL
 *
 * This header file corresponds to version 1.1 of the Windows Sockets specification.
 *
 * This file includes parts which are Copyright (c) 1982-1986 Regents
 * of the University of California.    All rights reserved.    The
 * Berkeley Software License Agreement specifies the terms and
 * conditions for redistribution.
 */

#ifndef _WINSOCKAPI_
#define _WINSOCKAPI_

/*
 * Pull in WINDOWS.H if necessary
 */
#ifndef _INC_WINDOWS
#include <windows.h>
#endif /* _INC_WINDOWS */

/*
 * Basic system type definitions, taken from the BSD file sys/types.h.
 */
typedef unsigned char      u_char;
typedef unsigned short    u_short;
typedef unsigned int        u_int;
typedef unsigned long      u_long;

/*
 * The new type to be used in all
 * instances which refer to sockets.
 */
typedef u_int                      SOCKET;

/*

383# Winsock_WinsockH
384$ Windows Sockets Header File - winsock.h
385+ WinsockH:0020
386K Header Files

 * Select uses arrays of SOCKETs.    These macros manipulate such
 * arrays.    FD_SETSIZE may be defined by the user before including
 * this file, but the default here should be >= 64.
 *
 * CAVEAT IMPLEMENTOR and USER: THESE MACROS AND TYPES MUST BE
 * INCLUDED IN WINSOCK.H EXACTLY AS SHOWN HERE.
 */
#ifndef FD_SETSIZE
#define FD_SETSIZE            64
#endif /* FD_SETSIZE */

typedef struct fd_set {
                u_short fd_count;                              /* how many are SET? */
                SOCKET    fd_array[FD_SETSIZE];      /* an array of SOCKETs */
} fd_set;

extern int PASCAL FAR __WSAFDIsSet(SOCKET, fd_set FAR *);

#define FD_CLR(fd, set) do { \
        u_int __i; \
        for (__i = 0; __i < ((fd_set FAR *)(set))->fd_count ; __i++) { \
                if (((fd_set FAR *)(set))->fd_array[__i] == fd) { \
                        while (__i < ((fd_set FAR *)(set))->fd_count-1) { \
                                ((fd_set FAR *)(set))->fd_array[__i] = \
  ((fd_set FAR *)(set))->fd_array[__i+1]; \
                                __i++; \
                        } \
                        ((fd_set FAR *)(set))->fd_count--; \
                        break; \
                } \
        } \
} while(0)

#define FD_SET(fd, set) do { \
        if (((fd_set FAR *)(set))->fd_count < FD_SETSIZE) \
                ((fd_set FAR *)(set))->fd_array[((fd_set FAR *)(set))->fd_count++]=fd;\
} while(0)

#define FD_ZERO(set) (((fd_set FAR *)(set))->fd_count=0)

#define FD_ISSET(fd, set) __WSAFDIsSet((SOCKET)fd, (fd_set FAR *)set)

/*
 * Structure used in select() call, taken from the BSD file sys/time.h.
 */
struct timeval {
                long        tv_sec;                  /* seconds */
                long        tv_usec;                /* and microseconds */
};

/*
 * Operations on timevals.
 *
 * NB: timercmp does not work for >= or <=.
 */
#define timerisset(tvp)                  ((tvp)->tv_sec || (tvp)->tv_usec)
#define timercmp(tvp, uvp, cmp) \
                ((tvp)->tv_sec cmp (uvp)->tv_sec || \
                  (tvp)->tv_sec == (uvp)->tv_sec && (tvp)->tv_usec cmp (uvp)->tv_usec)
#define timerclear(tvp)                  (tvp)->tv_sec = (tvp)->tv_usec = 0

/*
 * Commands for ioctlsocket(),    taken from the BSD file fcntl.h.
 *
 *
 * Ioctl's have the command encoded in the lower word,
 * and the size of any in or out parameters in the upper
 * word.    The high 2 bits of the upper word are used
 * to encode the in/out status of the parameter; for now
 * we restrict parameters to at most 128 bytes.
 */

Appendix C: Background Information 163

#define IOCPARM_MASK        0x7f                        /* parameters must be < 128 bytes */
#define IOC_VOID                0x20000000            /* no parameters */
#define IOC_OUT                  0x40000000            /* copy out parameters */
#define IOC_IN                    0x80000000            /* copy in parameters */
#define IOC_INOUT              (IOC_IN|IOC_OUT)
  /* 0x20000000 distinguishes new &
  old ioctl's */
#define _IO(x,y)                (IOC_VOID|(x<<8)|y)

#define _IOR(x,y,t)          (IOC_OUT|(((long)sizeof(t)&IOCPARM_MASK)<<16)|(x<<8)|y)

#define _IOW(x,y,t)          (IOC_IN|(((long)sizeof(t)&IOCPARM_MASK)<<16)|(x<<8)|y)

#define FIONREAD        _IOR('f', 127, u_long) /* get # bytes to read */
#define FIONBIO          _IOW('f', 126, u_long) /* set/clear non-blocking i/o */
#define FIOASYNC        _IOW('f', 125, u_long) /* set/clear async i/o */

/* Socket I/O Controls */
#define SIOCSHIWAT    _IOW('s',    0, u_long)    /* set high watermark */
#define SIOCGHIWAT    _IOR('s',    1, u_long)    /* get high watermark */
#define SIOCSLOWAT    _IOW('s',    2, u_long)    /* set low watermark */
#define SIOCGLOWAT    _IOR('s',    3, u_long)    /* get low watermark */
#define SIOCATMARK    _IOR('s',    7, u_long)    /* at oob mark? */

/*
 * Structures returned by network data base library, taken from the
 * BSD file netdb.h.    All addresses are supplied in host order, and
 * returned in network order (suitable for use in system calls).
 */

struct    hostent {
                char        FAR * h_name;                      /* official name of host */
                char        FAR * FAR * h_aliases;    /* alias list */
                short      h_addrtype;                          /* host address type */
                short      h_length;                              /* length of address */
                char        FAR * FAR * h_addr_list; /* list of addresses */
#define h_addr    h_addr_list[0]                    /* address, for backward compat */
};

/*
 * It is assumed here that a network number
 * fits in 32 bits.
 */
struct    netent {
                char        FAR * n_name;                      /* official name of net */
                char        FAR * FAR * n_aliases;    /* alias list */
                short      n_addrtype;                          /* net address type */
                u_long    n_net;                                    /* network # */
};

struct    servent {
                char        FAR * s_name;                      /* official service name */
                char        FAR * FAR * s_aliases;    /* alias list */
                short      s_port;                                  /* port # */
                char        FAR * s_proto;                    /* protocol to use */
};

struct    protoent {
                char        FAR * p_name;                      /* official protocol name */
                char        FAR * FAR * p_aliases;    /* alias list */
                short      p_proto;                                /* protocol # */
};

/*
 * Constants and structures defined by the internet system,
 * Per RFC 790, September 1981, taken from the BSD file netinet/in.h.
 */

/*
 * Protocols
 */

#define IPPROTO_IP                            0                              /* dummy for IP */
#define IPPROTO_ICMP                        1                              /* control message protocol */
#define IPPROTO_GGP                          2                              /* gateway^2 (deprecated) */
#define IPPROTO_TCP                          6                              /* tcp */
#define IPPROTO_PUP                          12                            /* pup */
#define IPPROTO_UDP                          17                            /* user datagram protocol */
#define IPPROTO_IDP                          22                            /* xns idp */
#define IPPROTO_ND                            77                            /* UNOFFICIAL net disk proto */

#define IPPROTO_RAW                          255                          /* raw IP packet */
#define IPPROTO_MAX                          256

/*
 * Port/socket numbers: network standard functions
 */
#define IPPORT_ECHO                          7
#define IPPORT_DISCARD                    9
#define IPPORT_SYSTAT                      11
#define IPPORT_DAYTIME                    13
#define IPPORT_NETSTAT                    15
#define IPPORT_FTP                            21
#define IPPORT_TELNET                      23
#define IPPORT_SMTP                          25
#define IPPORT_TIMESERVER              37
#define IPPORT_NAMESERVER              42
#define IPPORT_WHOIS                        43
#define IPPORT_MTP                            57

/*
 * Port/socket numbers: host specific functions
 */
#define IPPORT_TFTP                          69
#define IPPORT_RJE                            77
#define IPPORT_FINGER                      79
#define IPPORT_TTYLINK                    87
#define IPPORT_SUPDUP                      95

/*
 * UNIX TCP sockets
 */
#define IPPORT_EXECSERVER              512
#define IPPORT_LOGINSERVER            513
#define IPPORT_CMDSERVER                514
#define IPPORT_EFSSERVER                520

/*
 * UNIX UDP sockets
 */
#define IPPORT_BIFFUDP                    512
#define IPPORT_WHOSERVER                513
#define IPPORT_ROUTESERVER            520
  /* 520+1 also used */

/*
 * Ports < IPPORT_RESERVED are reserved for
 * privileged processes (e.g. root).
 */
#define IPPORT_RESERVED                  1024

/*
 * Link numbers
 */
#define IMPLINK_IP                            155
#define IMPLINK_LOWEXPER                156
#define IMPLINK_HIGHEXPER              158

/*
 * Internet address (old style... should be updated)
 */
struct in_addr {
                union {

Appendix C: Background Information 165

                                struct { u_char s_b1,s_b2,s_b3,s_b4; } S_un_b;
                                struct { u_short s_w1,s_w2; } S_un_w;
                                u_long S_addr;
                } S_un;
#define s_addr    S_un.S_addr
  /* can be used for most tcp & ip code */
#define s_host    S_un.S_un_b.s_b2
  /* host on imp */
#define s_net      S_un.S_un_b.s_b1
  /* network */
#define s_imp      S_un.S_un_w.s_w2
  /* imp */
#define s_impno S_un.S_un_b.s_b4
  /* imp # */
#define s_lh        S_un.S_un_b.s_b3
  /* logical host */
};

/*
 * Definitions of bits in internet address integers.
 * On subnets, the decomposition of addresses to host and net parts
 * is done according to subnet mask, not the masks here.
 */
#define IN_CLASSA(i)                        (((long)(i) & 0x80000000) == 0)
#define IN_CLASSA_NET                      0xff000000
#define IN_CLASSA_NSHIFT                24
#define IN_CLASSA_HOST                    0x00ffffff
#define IN_CLASSA_MAX                      128

#define IN_CLASSB(i)                        (((long)(i) & 0xc0000000) == 0x80000000)
#define IN_CLASSB_NET                      0xffff0000
#define IN_CLASSB_NSHIFT                16
#define IN_CLASSB_HOST                    0x0000ffff
#define IN_CLASSB_MAX                      65536

#define IN_CLASSC(i)                        (((long)(i) & 0xc0000000) == 0xc0000000)
#define IN_CLASSC_NET                      0xffffff00
#define IN_CLASSC_NSHIFT                8
#define IN_CLASSC_HOST                    0x000000ff

#define INADDR_ANY                            (u_long)0x00000000
#define INADDR_LOOPBACK                  0x7f000001
#define INADDR_BROADCAST                (u_long)0xffffffff       
#define INADDR_NONE                          0xffffffff

/*
 * Socket address, internet style.
 */
struct sockaddr_in {
                short      sin_family;
                u_short sin_port;
                struct    in_addr sin_addr;
                char        sin_zero[8];
};

#define WSADESCRIPTION_LEN            256
#define WSASYS_STATUS_LEN              128

typedef struct WSAData {
                WORD  wVersion;
                WORD  wHighVersion;
                char  szDescription[WSADESCRIPTION_LEN+1];
                char  szSystemStatus[WSASYS_STATUS_LEN+1];
                unsigned short                    iMaxSockets;
                unsigned short                    iMaxUdpDg;
                char FAR *                            lpVendorInfo;
} WSADATA;

typedef WSADATA FAR *LPWSADATA;

/*

 * Options for use with [gs]etsockopt at the IP level.
 */
#define IP_OPTIONS            1                              /* set/get IP per-packet options */

/*
 * Definitions related to sockets: types, address families, options,
 * taken from the BSD file sys/socket.h.
 */

/*
 * This is used instead of -1, since the
 * SOCKET type is unsigned.
 */
#define INVALID_SOCKET    (SOCKET)(~0)
#define SOCKET_ERROR                        (-1)

/*
 * Types
 */
#define SOCK_STREAM          1                              /* stream socket */
#define SOCK_DGRAM            2                              /* datagram socket */
#define SOCK_RAW                3                              /* raw-protocol interface */
#define SOCK_RDM                4                              /* reliably-delivered message */
#define SOCK_SEQPACKET    5                              /* sequenced packet stream */

/*
 * Option flags per-socket.
 */
#define SO_DEBUG                0x0001                    /* turn on debugging info recording */
#define SO_ACCEPTCONN      0x0002                    /* socket has had listen() */
#define SO_REUSEADDR        0x0004                    /* allow local address reuse */
#define SO_KEEPALIVE        0x0008                    /* keep connections alive */
#define SO_DONTROUTE        0x0010                    /* just use interface addresses */
#define SO_BROADCAST        0x0020                    /* permit sending of broadcast msgs */
#define SO_USELOOPBACK    0x0040                    /* bypass hardware when possible */
#define SO_LINGER              0x0080                    /* linger on close if data present */
#define SO_OOBINLINE        0x0100                    /* leave received OOB data in line */

#define SO_DONTLINGER      (u_int)(~SO_LINGER)

/*
 * Additional options.
 */
#define SO_SNDBUF              0x1001                    /* send buffer size */
#define SO_RCVBUF              0x1002                    /* receive buffer size */
#define SO_SNDLOWAT          0x1003                    /* send low-water mark */
#define SO_RCVLOWAT          0x1004                    /* receive low-water mark */
#define SO_SNDTIMEO          0x1005                    /* send timeout */
#define SO_RCVTIMEO          0x1006                    /* receive timeout */
#define SO_ERROR                0x1007                    /* get error status and clear */
#define SO_TYPE                  0x1008                    /* get socket type */

/*
 * TCP options.
 */
#define TCP_NODELAY          0x0001

/*
 * Address families.
 */
#define AF_UNSPEC              0                              /* unspecified */
#define AF_UNIX                  1                              /* local to host (pipes, portals) */
#define AF_INET                  2                              /* internetwork: UDP, TCP, etc. */
#define AF_IMPLINK            3                              /* arpanet imp addresses */
#define AF_PUP                    4                              /* pup protocols: e.g. BSP */
#define AF_CHAOS                5                              /* mit CHAOS protocols */
#define AF_NS                      6                              /* XEROX NS protocols */
#define AF_ISO                    7                              /* ISO protocols */
#define AF_OSI                    AF_ISO                    /* OSI is ISO */
#define AF_ECMA                  8                              /* european computer manufacturers */
#define AF_DATAKIT            9                              /* datakit protocols */

Appendix C: Background Information 167

#define AF_CCITT                10                            /* CCITT protocols, X.25 etc */
#define AF_SNA                    11                            /* IBM SNA */
#define AF_DECnet              12                            /* DECnet */
#define AF_DLI                    13                            /* Direct data link interface */
#define AF_LAT                    14                            /* LAT */
#define AF_HYLINK              15                            /* NSC Hyperchannel */
#define AF_APPLETALK        16                            /* AppleTalk */
#define AF_NETBIOS            17                            /* NetBios-style addresses */

#define AF_MAX                    18

/*
 * Structure used by kernel to store most
 * addresses.
 */
struct sockaddr {
                u_short sa_family;                            /* address family */
                char        sa_data[14];                        /* up to 14 bytes of direct address */
};

/*
 * Structure used by kernel to pass protocol
 * information in raw sockets.
 */
struct sockproto {
                u_short sp_family;                            /* address family */
                u_short sp_protocol;                        /* protocol */
};

/*
 * Protocol families, same as address families for now.
 */
#define PF_UNSPEC              AF_UNSPEC
#define PF_UNIX                  AF_UNIX
#define PF_INET                  AF_INET
#define PF_IMPLINK            AF_IMPLINK
#define PF_PUP                    AF_PUP
#define PF_CHAOS                AF_CHAOS
#define PF_NS                      AF_NS
#define PF_ISO                    AF_ISO
#define PF_OSI                    AF_OSI
#define PF_ECMA                  AF_ECMA
#define PF_DATAKIT            AF_DATAKIT
#define PF_CCITT                AF_CCITT
#define PF_SNA                    AF_SNA
#define PF_DECnet              AF_DECnet
#define PF_DLI                    AF_DLI
#define PF_LAT                    AF_LAT
#define PF_HYLINK              AF_HYLINK
#define PF_APPLETALK        AF_APPLETALK

#define PF_MAX                    AF_MAX

/*
 * Structure used for manipulating linger option.
 */
struct    linger {
                u_short l_onoff;                                /* option on/off */
                u_short l_linger;                              /* linger time */
};

/*
 * Level number for (get/set)sockopt() to apply to socket itself.
 */
#define SOL_SOCKET            0xffff                    /* options for socket level */

/*
 * Maximum queue length specifiable by listen.
 */
#define SOMAXCONN              5

#define MSG_OOB                  0x1                          /* process out-of-band data */
#define MSG_PEEK                0x2                          /* peek at incoming message */
#define MSG_DONTROUTE      0x4                          /* send without using routing tables */

#define MSG_MAXIOVLEN      16

/*
 * Define constant based on rfc883, used by gethostbyxxxx() calls.
 */
#define MAXGETHOSTSTRUCT                1024

/*
 * Define flags to be used with the WSAAsyncSelect() call.
 */
#define FD_READ                  0x01
#define FD_WRITE                0x02
#define FD_OOB                    0x04
#define FD_ACCEPT              0x08
#define FD_CONNECT            0x10
#define FD_CLOSE                0x20

/*
 * All Windows Sockets error constants are biased by WSABASEERR from
 * the "normal"
 */
#define WSABASEERR                            10000
/*
 * Windows Sockets definitions of regular Microsoft C error constants
 */
#define WSAEINTR                                (WSABASEERR+4)
#define WSAEBADF                                (WSABASEERR+9)
#define WSAEACCES                              (WSABASEERR+13)
#define WSAEFAULT                              (WSABASEERR+14)
#define WSAEINVAL                              (WSABASEERR+22)
#define WSAEMFILE                              (WSABASEERR+24)

/*
 * Windows Sockets definitions of regular Berkeley error constants
 */
#define WSAEWOULDBLOCK                    (WSABASEERR+35)
#define WSAEINPROGRESS                    (WSABASEERR+36)
#define WSAEALREADY                          (WSABASEERR+37)
#define WSAENOTSOCK                          (WSABASEERR+38)
#define WSAEDESTADDRREQ                  (WSABASEERR+39)
#define WSAEMSGSIZE                          (WSABASEERR+40)
#define WSAEPROTOTYPE                      (WSABASEERR+41)
#define WSAENOPROTOOPT                    (WSABASEERR+42)
#define WSAEPROTONOSUPPORT            (WSABASEERR+43)
#define WSAESOCKTNOSUPPORT            (WSABASEERR+44)
#define WSAEOPNOTSUPP                      (WSABASEERR+45)
#define WSAEPFNOSUPPORT                  (WSABASEERR+46)
#define WSAEAFNOSUPPORT                  (WSABASEERR+47)
#define WSAEADDRINUSE                      (WSABASEERR+48)
#define WSAEADDRNOTAVAIL                (WSABASEERR+49)
#define WSAENETDOWN                          (WSABASEERR+50)
#define WSAENETUNREACH                    (WSABASEERR+51)
#define WSAENETRESET                        (WSABASEERR+52)
#define WSAECONNABORTED                  (WSABASEERR+53)
#define WSAECONNRESET                      (WSABASEERR+54)
#define WSAENOBUFS                            (WSABASEERR+55)
#define WSAEISCONN                            (WSABASEERR+56)
#define WSAENOTCONN                          (WSABASEERR+57)
#define WSAESHUTDOWN                        (WSABASEERR+58)
#define WSAETOOMANYREFS                  (WSABASEERR+59)
#define WSAETIMEDOUT                        (WSABASEERR+60)
#define WSAECONNREFUSED                  (WSABASEERR+61)
#define WSAELOOP                                (WSABASEERR+62)
#define WSAENAMETOOLONG                  (WSABASEERR+63)
#define WSAEHOSTDOWN                        (WSABASEERR+64)
#define WSAEHOSTUNREACH                  (WSABASEERR+65)
#define WSAENOTEMPTY                        (WSABASEERR+66)

Appendix C: Background Information 169

#define WSAEPROCLIM                          (WSABASEERR+67)
#define WSAEUSERS                              (WSABASEERR+68)
#define WSAEDQUOT                              (WSABASEERR+69)
#define WSAESTALE                              (WSABASEERR+70)
#define WSAEREMOTE                            (WSABASEERR+71)

/*
 * Extended Windows Sockets error constant definitions
 */
#define WSASYSNOTREADY                    (WSABASEERR+91)
#define WSAVERNOTSUPPORTED            (WSABASEERR+92)
#define WSANOTINITIALISED              (WSABASEERR+93)

/*
 * Error return codes from gethostbyname() and gethostbyaddr()
 * (when using the resolver). Note that these errors are
 * retrieved via WSAGetLastError() and must therefore follow
 * the rules for avoiding clashes with error numbers from
 * specific implementations or language run-time systems.
 * For this reason the codes are based at WSABASEERR+1001.
 * Note also that [WSA]NO_ADDRESS is defined only for
 * compatibility purposes.
 */

#define h_errno                  WSAGetLastError()

/* Authoritative Answer: Host not found */
#define WSAHOST_NOT_FOUND              (WSABASEERR+1001)
#define HOST_NOT_FOUND                    WSAHOST_NOT_FOUND

/* Non-Authoritative: Host not found, or SERVERFAIL */
#define WSATRY_AGAIN                        (WSABASEERR+1002)
#define TRY_AGAIN                              WSATRY_AGAIN

/* Non recoverable errors, FORMERR, REFUSED, NOTIMP */
#define WSANO_RECOVERY                    (WSABASEERR+1003)
#define NO_RECOVERY                          WSANO_RECOVERY

/* Valid name, no data record of requested type */
#define WSANO_DATA                            (WSABASEERR+1004)
#define NO_DATA                                  WSANO_DATA

/* no address, look for MX record */
#define WSANO_ADDRESS                      WSANO_DATA
#define NO_ADDRESS                            WSANO_ADDRESS

/*
 * Windows Sockets errors redefined as regular Berkeley error constants
 */
#define EWOULDBLOCK                          WSAEWOULDBLOCK
#define EINPROGRESS                          WSAEINPROGRESS
#define EALREADY                                WSAEALREADY
#define ENOTSOCK                                WSAENOTSOCK
#define EDESTADDRREQ                        WSAEDESTADDRREQ
#define EMSGSIZE                                WSAEMSGSIZE
#define EPROTOTYPE                            WSAEPROTOTYPE
#define ENOPROTOOPT                          WSAENOPROTOOPT
#define EPROTONOSUPPORT                  WSAEPROTONOSUPPORT
#define ESOCKTNOSUPPORT                  WSAESOCKTNOSUPPORT
#define EOPNOTSUPP                            WSAEOPNOTSUPP
#define EPFNOSUPPORT                        WSAEPFNOSUPPORT
#define EAFNOSUPPORT                        WSAEAFNOSUPPORT
#define EADDRINUSE                            WSAEADDRINUSE
#define EADDRNOTAVAIL                      WSAEADDRNOTAVAIL
#define ENETDOWN                                WSAENETDOWN
#define ENETUNREACH                          WSAENETUNREACH
#define ENETRESET                              WSAENETRESET
#define ECONNABORTED                        WSAECONNABORTED
#define ECONNRESET                            WSAECONNRESET
#define ENOBUFS                                  WSAENOBUFS
#define EISCONN                                  WSAEISCONN

#define ENOTCONN                                WSAENOTCONN
#define ESHUTDOWN                              WSAESHUTDOWN
#define ETOOMANYREFS                        WSAETOOMANYREFS
#define ETIMEDOUT                              WSAETIMEDOUT
#define ECONNREFUSED                        WSAECONNREFUSED
#define ELOOP                                      WSAELOOP
#define ENAMETOOLONG                        WSAENAMETOOLONG
#define EHOSTDOWN                              WSAEHOSTDOWN
#define EHOSTUNREACH                        WSAEHOSTUNREACH
#define ENOTEMPTY                              WSAENOTEMPTY
#define EPROCLIM                                WSAEPROCLIM
#define EUSERS                                    WSAEUSERS
#define EDQUOT                                    WSAEDQUOT
#define ESTALE                                    WSAESTALE
#define EREMOTE                                  WSAEREMOTE

/* Socket function prototypes */

#ifdef __cplusplus
extern "C" {
#endif

SOCKET PASCAL FAR accept (SOCKET s, struct sockaddr FAR *addr,
  int FAR *addrlen);

int PASCAL FAR bind (SOCKET s, const struct sockaddr FAR *addr, int namelen);

int PASCAL FAR closesocket (SOCKET s);

int PASCAL FAR connect (SOCKET s, const struct sockaddr FAR *name, int namelen);

int PASCAL FAR ioctlsocket (SOCKET s, long cmd, u_long FAR *argp);

int PASCAL FAR getpeername (SOCKET s, struct sockaddr FAR *name,
  int FAR * namelen);

int PASCAL FAR getsockname (SOCKET s, struct sockaddr FAR *name,
  int FAR * namelen);

int PASCAL FAR getsockopt (SOCKET s, int level, int optname,
  char FAR * optval, int FAR *optlen);

u_long PASCAL FAR htonl (u_long hostlong);

u_short PASCAL FAR htons (u_short hostshort);

unsigned long PASCAL FAR inet_addr (const char FAR * cp);

char FAR * PASCAL FAR inet_ntoa (struct in_addr in);

int PASCAL FAR listen (SOCKET s, int backlog);

u_long PASCAL FAR ntohl (u_long netlong);

u_short PASCAL FAR ntohs (u_short netshort);

int PASCAL FAR recv (SOCKET s, char FAR * buf, int len, int flags);

int PASCAL FAR recvfrom (SOCKET s, char FAR * buf, int len, int flags,
  struct sockaddr FAR *from, int FAR * fromlen);

int PASCAL FAR select (int nfds, fd_set FAR *readfds, fd_set FAR *writefds,
  fd_set FAR *exceptfds, const struct timeval FAR *timeout);

int PASCAL FAR send (SOCKET s, const char FAR * buf, int len, int flags);

int PASCAL FAR sendto (SOCKET s, const char FAR * buf, int len, int flags,
  const struct sockaddr FAR *to, int tolen);

int PASCAL FAR setsockopt (SOCKET s, int level, int optname,
  const char FAR * optval, int optlen);

Appendix C: Background Information 171

int PASCAL FAR shutdown (SOCKET s, int how);

SOCKET PASCAL FAR socket (int af, int type, int protocol);

/* Database function prototypes */

struct hostent FAR * PASCAL FAR gethostbyaddr(const char FAR * addr,
  int len, int type);

struct hostent FAR * PASCAL FAR gethostbyname(const char FAR * name);

int PASCAL FAR gethostname (char FAR * name, int namelen);

struct servent FAR * PASCAL FAR getservbyport(int port, const char FAR * proto);

struct servent FAR * PASCAL FAR getservbyname(const char FAR * name,
  const char FAR * proto);

struct protoent FAR * PASCAL FAR getprotobynumber(int proto);

struct protoent FAR * PASCAL FAR getprotobyname(const char FAR * name);

/* Microsoft Windows Extension function prototypes */

int PASCAL FAR WSAStartup(WORD wVersionRequired, LPWSADATA lpWSAData);

int PASCAL FAR WSACleanup(void);

void PASCAL FAR WSASetLastError(int iError);

int PASCAL FAR WSAGetLastError(void);

BOOL PASCAL FAR WSAIsBlocking(void);

int PASCAL FAR WSAUnhookBlockingHook(void);

FARPROC PASCAL FAR WSASetBlockingHook(FARPROC lpBlockFunc);

int PASCAL FAR WSACancelBlockingCall(void);

HANDLE PASCAL FAR WSAAsyncGetServByName(HWND hWnd, u_int wMsg,
  const char FAR * name,
  const char FAR * proto,
  char FAR * buf, int buflen);

HANDLE PASCAL FAR WSAAsyncGetServByPort(HWND hWnd, u_int wMsg, int port,
  const char FAR * proto, char FAR *
buf,
  int buflen);

HANDLE PASCAL FAR WSAAsyncGetProtoByName(HWND hWnd, u_int wMsg,
  const char FAR * name, char FAR *
buf,
  int buflen);

HANDLE PASCAL FAR WSAAsyncGetProtoByNumber(HWND hWnd, u_int wMsg,
  int number, char FAR * buf,
  int buflen);

HANDLE PASCAL FAR WSAAsyncGetHostByName(HWND hWnd, u_int wMsg,
  const char FAR * name, char FAR * buf,
  int buflen);

HANDLE PASCAL FAR WSAAsyncGetHostByAddr(HWND hWnd, u_int wMsg,
  const char FAR * addr, int len, int
type,
  const char FAR * buf, int buflen);

int PASCAL FAR WSACancelAsyncRequest(HANDLE hAsyncTaskHandle);

int PASCAL FAR WSAAsyncSelect(SOCKET s, HWND hWnd, u_int wMsg,
  long lEvent);

#ifdef __cplusplus
}
#endif

/* Microsoft Windows Extended data types */
typedef struct sockaddr SOCKADDR;
typedef struct sockaddr *PSOCKADDR;
typedef struct sockaddr FAR *LPSOCKADDR;

typedef struct sockaddr_in SOCKADDR_IN;
typedef struct sockaddr_in *PSOCKADDR_IN;
typedef struct sockaddr_in FAR *LPSOCKADDR_IN;

typedef struct linger LINGER;
typedef struct linger *PLINGER;
typedef struct linger FAR *LPLINGER;

typedef struct in_addr IN_ADDR;
typedef struct in_addr *PIN_ADDR;
typedef struct in_addr FAR *LPIN_ADDR;

typedef struct fd_set FD_SET;
typedef struct fd_set *PFD_SET;
typedef struct fd_set FAR *LPFD_SET;

typedef struct hostent HOSTENT;
typedef struct hostent *PHOSTENT;
typedef struct hostent FAR *LPHOSTENT;

typedef struct servent SERVENT;
typedef struct servent *PSERVENT;
typedef struct servent FAR *LPSERVENT;

typedef struct protoent PROTOENT;
typedef struct protoent *PPROTOENT;
typedef struct protoent FAR *LPPROTOENT;

typedef struct timeval TIMEVAL;
typedef struct timeval *PTIMEVAL;
typedef struct timeval FAR *LPTIMEVAL;

/*
 * Windows message parameter composition and decomposition
 * macros.
 *
 * WSAMAKEASYNCREPLY is intended for use by the Windows Sockets implementation
 * when constructing the response to a WSAAsyncGetXByY() routine.
 */
#define WSAMAKEASYNCREPLY(buflen,error)          MAKELONG(buflen,error)
/*
 * WSAMAKESELECTREPLY is intended for use by the Windows Sockets implementation
 * when constructing the response to WSAAsyncSelect().
 */
#define WSAMAKESELECTREPLY(event,error)          MAKELONG(event,error)
/*
 * WSAGETASYNCBUFLEN is intended for use by the Windows Sockets application
 * to extract the buffer length from the lParam in the response
 * to a WSAGetXByY().
 */
#define WSAGETASYNCBUFLEN(lParam)                      LOWORD(lParam)
/*
 * WSAGETASYNCERROR is intended for use by the Windows Sockets application
 * to extract the error code from the lParam in the response
 * to a WSAGetXByY().
 */
#define WSAGETASYNCERROR(lParam)                        HIWORD(lParam)
/*
 * WSAGETSELECTEVENT is intended for use by the Windows Sockets application

Appendix C: Background Information 173

 * to extract the event code from the lParam in the response
 * to a WSAAsyncSelect().
 */
#define WSAGETSELECTEVENT(lParam)                      LOWORD(lParam)
/*
 * WSAGETSELECTERROR is intended for use by the Windows Sockets application
 * to extract the error code from the lParam in the response
 * to a WSAAsyncSelect().
 */
#define WSAGETSELECTERROR(lParam)                      HIWORD(lParam)

#endif    /* _WINSOCKAPI_ */

$387 #388 +389 K390 Windows Sockets

Notes for Windows Sockets Suppliers

Introduction
Windows Sockets Components
Multithreadedness and blocking routines.
Database Files
FD_ISSET
Error Codes
DLL Ordinal Numbers
Validation Suite

387$ Notes for Windows Sockets Suppliers
388# Winsock_NotesForSuppliers
389+ WinSock:0060
390K Notes for Suppliers

Appendix C: Background Information 175

#391 $392 +393 K394 Notes for Windows Sockets Suppliers

Introduction

A Windows Sockets implementation must implement ALL the functionality described in the
Windows Sockets documentation.    Validation of compliance is discussed in Validation Suite.

Windows Sockets Version 1.1 implementations must support both TCP and UDP type sockets.   
An implementation may support raw sockets (of type SOCK_RAW), but their use is deprecated.

Certain APIs documented above have special notes for Windows Sockets implementors.    A
Windows Sockets implementation should pay special attention to conforming to the API as
documented.    The Special Notes are provided for assistance and clarification.

391# WinSockNotes_Introduction
392$ Notes for Windows Sockets Suppliers - Introduction
393+ WinSockN:0010
394K Notes for Suppliers

#395 $396 +397 K398 Notes for Windows Sockets Suppliers

Windows Sockets Components

Development Components
The Windows Sockets development components for use by Windows Sockets application
developers will be provided by each Windows Sockets supplier.    These Windows Sockets
development components are:

Component Description
Windows Sockets Documentation This document
WINSOCK.LIB file Windows Sockets API Import Library
WINSOCK.H file Windows Sockets Header File
NETDB.H file Berkeley Compatible Header File
ARPA/INET.H file Berkeley Compatible Header File
SYS/TIME.H file Berkeley Compatible Header File
SYS/SOCKET.H file Berkeley Compatible Header File
NETINET/IN.H file Berkeley Compatible Header File

Run Time Components
The run time component provided by each Windows Sockets supplier is:

Component Description
WINSOCK.DLL The Windows Sockets API implementation DLL

395# WinSockNotes_WindowsComponents
396$ Notes for Windows Sockets Suppliers - Components
397+ WinSockN:0020
398K Notes for Suppliers

Appendix C: Background Information 177

#399 $400 +401 K402 Notes for Windows Sockets Suppliers

Multithreadedness and blocking routines.

Data areas returned by, for example, the getXbyY() routines MUST be on a per thread basis.

Note that an application MUST be prevented from making multiple nested Windows Sockets
function calls.    Only one outstanding function call will be allowed for a particular task.    Any
Windows Sockets call performed when an existing blocking call is already outstanding will fail
with an error code of WSAEINPROGRESS.    There are two exceptions to this restriction:
WSACancelBlockingCall() and WSAIsBlocking() may be called at any time.    Windows Sockets
suppliers should note that although preliminary drafts of this specification indicated that the
restriction only applied to blocking function calls, and that it would be permissible to make non-
blocking calls while a blocking call was in progress, this is no longer true.

Regarding the implementation of blocking routines, the solution in Windows Sockets is to
simulate the blocking mechanism by having each routine call PeekMessage() as it waits for the
completion of its operation.    In anticipation of this, the function WSASetBlockingHook() is
provided to allow the programmer to define a special routine to be called instead of the default
PeekMessage() loop.    The blocking hook functions are discussed in more detail in
WSASetBlockingHook().

399# WinSockNotes_Multithreadedness
400$ Multithreadedness and blocking routines.
401+ WinSockN:0030
402K Notes for Suppliers

#403 $404 +405 K406 Notes for Windows Sockets Suppliers

Database Files

The database routines in the getXbyY() family (gethostbyaddr(), etc.) were originally designed
(in the first Berkeley UNIX releases) as mechanisms for looking up information in text databases. 
A Windows Sockets supplier may choose to employ local files OR a name service to provide
some or all of this information.    If local files exist, the format of the files must be identical to that
used in BSD UNIX, allowing for the differences in text file formats.   

403# WinSockNotes_DatabaseFiles
404$ Notes for Windows Sockets Suppliers - Database Files
405+ WinSockN:0040
406K Notes for Suppliers

Appendix C: Background Information 179

#407 $408 +409 K410 Notes for Windows Sockets Suppliers

FD_ISSET

It is necessary to implement the FD_ISSET Berkeley macro using a supporting function:
__WSAFDIsSet().    It is the responsibility of a Windows Sockets implementation to make this
available as part of the Windows Sockets API.    Unlike the other functions exported by a Windows
Sockets DLL, however, this function is not intended to be invoked directly by Windows Sockets
applications: it should be used only to support the FD_ISSET macro.    The source code for this
function is listed below:

int FAR
__WSAFDIsSet(SOCKET fd, fd_set FAR *set)
{
        int i = set->count;

        while (i--)
if (set->fd_array[i] == fd)
        return 1;

        return 0;
}

407# WinSockNotes_FDISSET
408$ Notes for Windows Sockets Suppliers - FD_ISSET
409+ WinSockN:0050
410K Notes for Suppliers

#411 $412 +413 K414 Notes for Windows Sockets Suppliers

Error Codes

In order to avoid conflict between various compiler environments Windows Sockets
implementations MUST return the error codes listed in the API specification, using the manifest
constants beginning with "WSA".    The Berkeley-compatible error code definitions are provided
solely for compatibility purposes for applications which are being ported from other platforms.

411# WinSockNotes_ErrorCodes
412$ Notes for Windows Sockets Suppliers - Error Codes
413+ WinSockN:0060
414K Notes for Suppliers

Appendix C: Background Information 181

#415 $416 +417 K418 Notes for Windows Sockets Suppliers

DLL Ordinal Numbers

The winsock.def file for use by every Windows Sockets implementation is as follows.    Ordinal
values starting at 1000 are reserved for Windows Sockets implementors to use for exporting
private interfaces to their DLLs.    A Windows Sockets implementation must not use any ordinals
999 and below except for those APIs listed below.    An application which wishes to work with any
Windows Sockets DLL must use only those routines listed below; using a private export makes an
application dependent on a particular Windows Sockets implementation.

;   
;                  File: winsock.def
;              System: MS-Windows 3.x
;            Summary: Module definition file for Windows Sockets DLL.   
;   

LIBRARY                  WINSOCK                  ; Application's module name

DESCRIPTION          'BSD Socket API for Windows'

EXETYPE                  WINDOWS                  ; required for all windows applications

STUB                        'WINSTUB.EXE'      ; generates error message if application
  ; is run without Windows

;CODE can be FIXED in memory because of potential upcalls
CODE                        PRELOAD                  FIXED

;DATA must be SINGLE and at a FIXED location since this is a DLL
DATA                        PRELOAD                  FIXED                      SINGLE

HEAPSIZE                1024
STACKSIZE              16384

; All functions that will be called by any Windows routine
; must be exported.    Any additional exports beyond those defined
; here must have ordinal numbers 1000 or above.

EXPORTS
                accept  @1
                bind  @2
                closesocket  @3
                connect  @4
                getpeername  @5
                getsockname  @6
                getsockopt  @7
                htonl  @8
                htons  @9
                inet_addr  @10
                inet_ntoa  @11
                ioctlsocket  @12
                listen  @13
                ntohl  @14
                ntohs  @15
                recv  @16
                recvfrom  @17
                select  @18

415# WinSockNotes_DLLOrdinals
416$ Notes for Windows Sockets Suppliers - DLL Ordinals
417+ WinSockN:0070
418K Notes for Suppliers

                send  @19
                sendto  @20
                setsockopt  @21
                shutdown  @22
                socket  @23

                gethostbyaddr                                    @51
                gethostbyname                                    @52
                getprotobyname                                  @53
                getprotobynumber                              @54
                getservbyname                                    @55
                getservbyport                                    @56
                gethostname  @57

                WSAAsyncSelect                                  @101
                WSAAsyncGetHostByAddr                    @102
                WSAAsyncGetHostByName                    @103
                WSAAsyncGetProtoByNumber              @104
                WSAAsyncGetProtoByName                  @105
                WSAAsyncGetServByPort                    @106
                WSAAsyncGetServByName                    @107
                WSACancelAsyncRequest                    @108
                WSASetBlockingHook                          @109
                WSAUnhookBlockingHook                    @110
                WSAGetLastError                                @111
                WSASetLastError                                @112
                WSACancelBlockingCall                    @113
                WSAIsBlocking                                    @114
                WSAStartup  @115
                WSACleanup  @116

                __WSAFDIsSet                                      @151

                WEP  @500        RESIDENTNAME

;eof

Appendix C: Background Information 183

#419 $420 +421 K422 Notes for Windows Sockets Suppliers

Validation Suite

The Windows Sockets API Tester (WSAT) to ensure Windows Sockets compatibility between
Windows Sockets DLL implementations is currently in beta test.    This beta version includes
functionality testing of the Windows Sockets interface and is supported by a comprehensive
scripting language.    The final version of WSAT will be available in Spring 1993.    If you wish to
receive the tester or more information on the beta, send email to wsat@microsoft.com.

419# WinSockNotes_Validation
420$ Notes for Windows Sockets Suppliers - Validation Suite
421+ WinSockN:0080
422K Notes for Suppliers

#423 $424 +425 K426 Notes for Windows Sockets Suppliers

For Further Reference

This specification is intended to cover the Windows Sockets interface to TCP/IP in detail.    Many
details of TCP/IP and Windows, however, are intentionally omitted in the interest of brevity, and
this specification often assumes background knowledge of these topics.    For more information,
the following references may be helpful:

Braden, R.[1989], RFC 1122, Requirements for Internet Hosts--Communication Layers, Internet
Engineering Task Force.

Comer, D. [1991], Internetworking with TCP/IP Volume I: Principles, Protocols, and Architecture,
Prentice Hall, Englewood Cliffs, New Jersey.

Comer, D. and Stevens, D. [1991], Internetworking with TCP/IP Volume II: Design,
Implementation, and Internals, Prentice Hall, Englewood Cliffs, New Jersey.

Comer, D. and Stevens, D. [1991], Internetworking with TCP/IP Volume III: Client-Server
Programming and Applications, Prentice Hall, Englewood Cliffs, New Jersey.

Leffler, S. et al., An Advanced 4.3BSD Interprocess Communication Tutorial.

Petzold, C. [1992], Programming Windows 3.1, Microsoft Press, Redmond, Washington.

Stevens, W.R. [1990], Unix Network Programming, Prentice Hall, Englewood Cliffs, New Jersey.

423# WinSock_FurtherReference
424$ For Further Reference
425+ WinSock:0065
426K References

Appendix C: Background Information 185

#427 $428 +429 K430 Background Information

Origins of Windows Sockets

The Windows Sockets project had its origins in a Birds Of A Feather session held at Interop '91 in
San Jose on October 10, 1991.    A committee was established, and an intensive debate via email
resulted in the creation of a first draft specification, which was largely based on submissions from
JSB and NetManage.    This draft, and issues arising from it, were debated at a committee
meeting hosted by Microsoft in Redmond, WA on December 9, 1991.    Following further email
discussions, a working group was established to develop the specification into its current form.

The following people participated in the process as committee members, in working meetings, or
in email review.    The authors would like to thank everyone who participated in any way, and
apologize in advance if we have omitted anyone.

Martin Hall (Moderator) JSB Corporation martinh@jsbus.com
Mark Towfiq (Coordinator) Microdyne Corporation towfiq@microdyne.com
Geoff Arnold Sun Microsystems, Inc. geoff@east.sun.com
Alistair Banks Microsoft alistair@microsoft.com
Carl Beame Beame & Whiteside beame@mcmaster,ca
David Beaver Microsoft dbeaver@microsoft.com
Amatzia BenArtzi NetManage, Inc. amatzia@netmanage.com
Mark Beyer Ungermann-Bass mbeyer@ub.com
James Van Bokkelen FTP Software jbvb@ftp.com
Nelson Bolyard Silicon Graphics, Inc. nelson@sgi.com
Pat Bonner Hewlett-Packard p_bonner@cnd.hp.com
Isaac Chan Microsoft isaacc@microsoft.com
Nestor Fesas Hughes LAN Systems nestor@hls.com
Gary Gere Gupta ggere@gupta.com
Bill Hayes Hewlett-Packard billh@hpchdpc.cnd.hp.com
Hoek Law Citicorp law@dcc.tti.com
Paul Hill MIT pbh@athena.mit.edu
Graeme Le Roux Moresdawn P/L -
Terry Lister Hewlett-Packard tel@cnd.hp.com
Lee Murach Network Research lee@nrc.com
David Pool Spry, Inc. dave@spry.com
Brad Rice Age rice@age.com
Allen Rochkind 3Com -
Henry Sanders Microsoft henrysa@microsoft.com
David Treadwell Microsoft davidtr@microsoft.com
Miles Wu Wollongong wu@twg.com
Boris Yanovsky NetManage, Inc. boris@netmanage.com
J Allard Microsoft Corporation jallard@microsoft.com

427# Winsock_Origins
428$ Origins of Windows Sockets
429+ WinSock:0070
430K Background Information

#431 $432 +433 K434 Background Information

Legal Status of Windows Sockets

The copyright for the Windows Sockets specification is owned by the specification authors listed
on the title page.    Permission is granted to redistribute this specification in any form, provided
that the contents of the specification are not modified.    Windows Sockets implementors are
encouraged to include this specification with their product documentation.

The Windows Sockets logo on the title page of this document is meant for use on both Windows
Sockets implementations and for applications that use the Windows Sockets interface.    Use of
the logo is encouraged on packaging, documentation, collateral, and advertising.    The logo is
available on microdyne.com in pub/winsock as winsock.bmp.    The suggested color for the logo's
title bar is blue, the electrical socket grey, and the text and outline black.   

431# Winsock_LegalStatus
432$ Legal Status of Windows Sockets
433+ WinSock:0080
434K Background Information

Appendix C: Background Information 187

#435 $436 +437 K438 Background Information

The Story Behind the Windows Sockets Icon

(by Alistair Banks, Microsoft Corporation)

We thought we'd do a "Wind Sock" at one stage--but you try to get that into 32x32 bits! It would
have had to look wavy and colorful, and... well, it just didn't work. Also, our graphics designers
have "opinions" about the icons truly representing what they are--people would have thought this
was "The colorful wavy tube specification 1.0!"

I tried to explain "API" "Programming Interface" to the artist--we ended up with toolbox icons with
little flying windows

Then we came to realise that we should be going after the shortened form of the name, rather the
name in full... Windows Sockets... And so we went for that - so she drew (now remember I'm
English and you're probably American) "Windows Spanner", a.k.a. a socket wrench.    In the U.S.
you'd have been talking about the "Windows Socket spec" OK, but in England that would have
been translatated as "Windows Spanner Spec 1.0" - so we went to Electrical sockets - well the
first ones came out looking like "Windows Pignose Spec 1.0"!!!!

So how do you use 32x32, get an international electrical socket! You take the square type
(American & English OK, Europe & Australia are too rounded)--you choose the American one,
because it's on the wall in front of you (and it's more compact (but less safe, IMHO) and then you
turn it upside down, thereby compromising its nationality!

[IMHO = "In My Humble Opinion"--ed.]

{bmc winsock.bmp}

435# Winsock_IconStory
436$ The Story Behind the Icon
437+ WinSock:0090
438K Background Information

