
SNMP++SNMP++

An Object Oriented Approach

For Network Management

Programming

Using C++

Revision 2.1

Peter E Mellquist

Network Management

Roseville Networks Division

Hewlett Packard Company

SNMP++ HP RND 1/18/95 12:32 PM 2

Copyright © 1994 Hewlett Packard Company

All Rights Reserved

Roseville Networks Division

Network Management Section

Peter E Mellquist

This document may be distributed in any form, electronic or otherwise, provided that it is distributed in its

entirety and that the copyright and this notice are included. Comments, suggestions and inquiries

regarding SNMP++ may be submitted via electronic mail to mellqust@hprnd.rose.hp.com or

banker@hprnd.rose.hp.com.

Technical Contributors:

Kim Banker

Gary Berard

Chuck Black

Bruce Falzarano

Harry Kellog

Moises Medina

Tom Milner

Mark Pearson

SNMP++ HP RND 1/18/95 12:32 PM 3

Table Of Contents

WHAT’S NEW IN REVISION 2.0 7

PRODUCTS NOW USING SNMP++ 8

INTRODUCTION 9

WHAT IS SNMP++ 9

SNMP++ OBJECTIVES 9

EASE OF USE 9

Provides an easy-to-use interface into SNMP 10

Preserves the flexibility of lower level SNMP programming 10

Encourage programmers to use the full power of C++ without chastising them for not

learning fast enough 10

SAFETY 10

Provides automatic management of SNMP resources. 10

Provides built in error checking, automatic timeout and retry 10

PORTABILITY 11

EXTENSIBILITY 11

OVERLOADING SNMP++ BASE CLASSES 11

AN INTRODUCTORY EXAMPLE 12

WINDOWS 3.1 EXAMPLE 12

EXPLANATION OF INTRODUCTORY EXAMPLE 12

SNMP++ FEATURES 13

OID, VB AND SNMP OBJECTS 13

AUTOMATIC SNMP RESOURCE MEMORY MANAGEMENT 13

EASE OF USE 13

POWER AND FLEXIBILITY 13

PORTABLE OBJECTS 13

AUTOMATIC TIMEOUT AND RETRIES 13

BLOCKED MODE REQUESTS 14

NON-BLOCKING ASYNCHRONOUS MODE REQUESTS 14

TRAPS 14

SUPPORT FOR SNMP VERSION 1 14

SNMP GET, GET NEXT AND SET SUPPORTED 14

REDEFINITION THROUGH INHERITANCE 14

MANY ENGINE 14

SNMP++ HP RND 1/18/95 12:32 PM 4

SNMP++ FOR WINDOWS 3.1 15

RUNS OVER WINSNMP VER 1.1 15

MULTIPLE SESSIONS VIA MULTIPLE INSTANCES 15

MULTIPLE CONCURRENT BLOCKED MODE REQUESTS 15

IP AND IPX SUPPORT USING FTP SOFTWARE INC.’S WINSNMP.DLL 15

IP SUPPORT USING AMERICAN COMPUTER AND ELECTRONICS CORP. NETPLUS

WINSNMP.DLL 15

WINDOWS MESSAGE HANDLING 15

MEDIUM OR LARGE MODEL SUPPORT 16

RENDEZVOUS SHUT DOWN MESSAGES 16

RUNS ON MS-WINDOWS NT 16

TRAP SUPPORT 16

COMPATABILITY WITH HP OPENVIEW FOR WINDOWS 16

THE PDU CONTAINER CLASS 17

TESTED OVER MFC AND 3.1 API 17

SNMP++ FOR HPUX 18

RUNS USING SNMP RESEARCH’S SNMP LIBRARIES 18

IDENTICAL CLASS INTERFACE 18

PORTABLE TO UNIX-WINDOWS EMULATORS 18

MULTIPLE CONNECTIONS VIA MULTIPLE INSTANCES 18

THE OBJECT IDENTIFICATION CLASS 19

OBJECT MODELING TECHNIQUE REPRESENTATION 19

OMT PUBLIC VIEW OF OID CLASS 19

OID CLASS PUBLIC MEMBER FUNCTIONS 20

OID CLASS CONSTRUCTORS & DESTRUCTORS 20

OID CLASS OVERLOADED OPERATORS 20

OID CLASS STRING VALUE METHODS 21

OID CLASS SET INSTANCE & GET INSTANCE METHODS 22

OID CLASS TRIM METHOD 22

OID CLASS NCOMPARE METHOD 22

OID CLASS EXAMPLES 23

THE VARIABLE BINDING CLASS 25

OBJECT MODELING TECHNIQUE REPRESENTATION 25

OMT PUBLIC VIEW OF VB CLASS 25

VB CLASS PUBLIC MEMBER FUNCTIONS 26

VB CLASS CONSTRUCTORS & DESTRUCTORS 26

VB CLASS GET OID / SET OID MEMBER FUNCTIONS 26

VB CLASS GET VALUE / SET VALUE MEMBER FUNCTIONS 27

SNMP++ HP RND 1/18/95 12:32 PM 5

VB CLASS GET VALUE MEMBER FUNCTIONS 28

VB OBJECT GET SYNTAX MEMBER FUNCTION 30

TIMETICKS, COUNTER AND GAUGE CLASSES 34

TIMETICKS CLASS EXAMPLE 34

COUNTER CLASS EXAMPLE 34

GAUGE CLASS EXAMPLE 34

THE SNMP CLASS 35

OBJECT MODELING TECHNIQUE REPRESENTATION 36

PUBLIC VIEW OF SNMP CLASS 36

SNMP CLASS PUBLIC MEMBER FUNCTIONS 36

SNMP CLASS CONSTRUCTORS AND DESTRUCTORS 36

SNMP CLASS CONSTRUCTOR, BLOCKED MODE 37

SNMP CLASS CONSTRUCTOR, ASYNCHRONOUS MODE 37

SNMP CLASS DESTRUCTOR 38

SNMP CLASS ACCESS AND MUTATOR MEMBER FUNCTIONS 38

SNMP Class Set Timeout & Get Timeout 38

Snmp Class Set Retry & Get Retry 39

SNMP Class Set Community Name 39

SNMP CLASS REQUEST MEMBER FUNCTIONS 40

Request Member Function Parameter Description 40

SNMP CLASS BLOCKED GET MEMBER FUNCTION 41

SNMP CLASS BLOCKED GET NEXT MEMBER FUNCTION 41

SNMP CLASS BLOCKED SET MEMBER FUNCTION 42

SNMP CLASS ASYNCHRONOUS MEMBER FUNCTIONS 42

SNMP CLASS ASYNCHRONOUS GET MEMBER FUNCTION 42

SNMP CLASS ASYNCHRONOUS SET MEMBER FUNCTION 43

SNMP CLASS ASYNCHRONOUS GET NEXT MEMBER FUNCTION 43

MEDINA’S MANY ENGINE MEMBER FUNCTIONS 44

SNMP CLASS GET MANY 44

SNMP CLASS SET MANY 44

SNMP CLASS TRAP METHODS 45

SNMP CLASS TRAP REGISTRATION MEMBER FUNCTION 45

SNMP CLASS ERROR RETURN CODES 46

SNMP CLASS EXAMPLES 48

SNMP++ EXAMPLE #1, GETTING A BUNCH OF VALUES IN HPUX 48

SNMP++ EXAMPLE #2, SETTING VALUES IN MS-WINDOWS MFC 50

NETWORK TRANSPORT MECHANISMS 51

TRANSPORT START UP 51

TRANSPORT SHUT DOWN 51

SNMP++ HP RND 1/18/95 12:32 PM 6

SNMP++ PROPOSED NEW FEATURES 52

SUPPORT FOR SNMP VERSION 2 52

TRAPS FOR UNIX 52

ASYNCHRONOUS MODE FOR UNIX 52

DEMO ENGINE 52

COMMUNITY NAME DATABASE ACCESS 52

SNMP++ SCRIPT 52

OID DATABASE 52

FULL WIN32 SUPPORT 52

SOLARIS OS SUPPORT 52

APPLE OS SUPPORT 52

OS/2 SUPPORT 52

NMS SUPPORT 52

LISTING AND DESCRIPTION OF FILES 53

REQUIRED FILES FOR MS-WINDOWS DEVELOPMENT 53

REQUIRED FILES FOR HPUX DEVELOPMENT 53

REFERENCES 54

APPENDIX A, PUBLIC OID CLASS INTERFACE: 55

APPENDIX B, PUBLIC VB CLASS INTERFACE: 57

APPENDIX C, PUBLIC SNMP CLASS INTERFACE: 60

APPENDIX D, PUBLIC TIMETICKS, COUNTER AND GAUGE CLASS INTERFACE:64

SNMP++ HP RND 1/18/95 12:32 PM 7

What’s New in Revision 2.0

SNMP++ revision 2.0 includes a variety of new enhancements. Enhancements include new features,

increased flexibility and better performance. The following is a summary of new features for rev 2.0.

• Asynchronous SNMP requests for MS-Windows

SNMP++ for MS-Windows now supports both blocked and non-blocked (asynchronous) modes.

The UNIX implementation does not currently support async mode.

• Rendezvous shutdown mechanism

Rendezvous shut down mechanisms for globally or partially shutting down a blocked SNMP++

request is now possible.

• Medina’s many engine

Medina’s Many Engine is a powerful member function for obtaining SNMP objects in bulk. The

many engine makes it easy for the implementor to grab up to fifty objects from a device in one

call . As SNMP++ migrates to SNMP v2, the internals of the many engine will utilize SNMP

version 2’s get-bulk.

• • Timeticks, Counter and Gauge objects

These three new SNMP++ classes make getting and setting SMI TimeTicks, Counters and Gauge

Objects easy.

• New Oid class member functions

A variety of new Oid class member functions were created extending the functionality and power

of the Oid class.

• • Medium memory model support for MS-Windows

SNMP++ may now be compiled in the MS-Windows medium or large model.

• • Windows NT and Windows ‘95 Beta Support

A Win16 SNMP++ application will now function under Win32 driving through WinSNMP and

NT’s WinSock protocol stack. This includes Windows ‘95 Beta II.

• • Trap Support for MS-Windows

SNMP++ now includes support for arming and receiving traps for MS-Windows.

• • HPUX support for series 700 and 800 workstations

An SNMP++ HPUX app can now operate on series 700 or 800 HP Workstations.

• • Extended Error Codes

SNMP++ error codes have been extended to provide more detail on possible errors which can

occur.

• Faster, More Efficient Oid Class

Leaner and faster Oid class offers significant performance improvements.

• Runs over FTP’s and ACEC (American Computer Electronics Corp) WinSNMP DLL

SNMP++ has been tested over FTP Softwares and ACEC s NetPlus WinSNMP

SNMP++ HP RND 1/18/95 12:32 PM 8

Products Now Using SNMP++

• • HP DownLoad Manager For MS-Windows

 Uses SNMP++ for MS-Windows running over WinSNMP. Runs over IP & IPX on MS-

Windows 3.1, Windows For Work Groups 3.11(WFWG) and Windows NT.

• • HP DownLoad Manager For HPUX

 Uses SNMP++ for HPUX. Runs over IP on series 700 and 800 HP work stations.

• • HP Router Monitor For MS-Windows

 Uses SNMP++ for MS-Windows running over WinSnmp. Runs over IP on MS-Windows

 3.1, WFWG and Windows NT for the HP OpenView for Windows platform.

• • HP Router Monitor For HPUX

 Uses SNMP++ for MS-Windows running over WinSnmp. Runs Over IP on series 700 and

 800 HP workstations for the HP OpenView for HPUX platform.

• • HP InterConnect Manager (ICM) For MS-Windows

 Uses SNMP++ for MS-Windows running over WinSnmp. Runs over IP on MS-Windows

 3.1, WFWG and Windows NT. Operates in a stand alone manner or with HP OpenView for

 Windows.

• HP InterConnect Manager For HPUX

 Uses SNMP++ for MS-Windows running over WinSnmp. Runs Over IP on series 700 and

 800 HP workstations for the HP OpenView for HPUX platform.

• • SNMP++ Demo Application

 A powerful browser application which demonstrates the ease, power and flexibility of

 SNMP++. Implemented using MS-Visual C++ and MFC for Win16. The demo application

 is available through HP Roseville Network Division for evaluation purposes.

SNMP++ HP RND 1/18/95 12:32 PM 9

Introduction

Various Simple Network Management Protocol (SNMP) Application Programmers Interfaces (APIs) exist

which allow for the creation of network management applications. The majority of these APIs provide a

large library of functions which require the programmer to be familiar with the inner workings of SNMP

and SNMP resource management. Most of these APIs are platform specific, resulting in SNMP code

specific to an operating system or network operating system platform and thus not portable. Application

development using C++ has entered the main stream and with it a rich set of reusable class libraries are

now readily available. What is missing is a standard set of C++ classes for network management. An

object oriented approach to SNMP network programming provides many benefits including ease of use,

safety, portability and extensibility. SNMP++ offers power and flexibility which would otherwise be

difficult to implement and manage.

What Is SNMP++

SNMP++ is a set of C++ classes which provide SNMP services to a network management application

developer. SNMP++ is not an additional layer or wrapper over existing SNMP engines. SNMP++ layers

over existing SNMP libraries in a few minimized areas and in doing so is efficient and portable. The

majority of SNMP++ includes a full implementation of SNMP. SNMP++ is not meant to replace other

existing SNMP APIs such as WinSNMP, rather it offers power and flexibility which would otherwise be

difficult to manage and implement. SNMP++ brings the Object Advantage to network management

programming.

SNMP++ Objectives

Ease of Use

An Object Oriented (OO) approach to SNMP programming should be easy to use. After all, this

is supposed to be a simple network management protocol. SNMP++ attempts to put the simple

back into SNMP! The application programmer does not need be concerned with low level SNMP

mechanisms. An OO approach to SNMP encapsulates and hides the internal mechanisms of

SNMP. This provides safety since it protects the programmer from inadvertently doing the wrong

thing. In regard to ease of use, SNMP++ addresses the following areas.

SNMP++ HP RND 1/18/95 12:32 PM 10

Provides an easy-to-use interface into SNMP

A user does not have to be an expert in SNMP to use SNMP++. Furthermore, a user

does not have to be an expert in C++!

Preserves the flexibility of lower level SNMP programming

A user may want to bypass the OO approach and code directly to low level SNMP calls.

SNMP++ is fast and efficient. However, there may be instances where the programmer

requires coding directly to an SNMP API.

Encourage programmers to use the full power of C++ without

chastising them for not learning fast enough

A user does not have to be an expert in C++ to use SNMP++. Basic knowledge of

SNMP is required, but as will be shown, a minimal understanding of C++ is needed.

Safety

Most SNMP APIs require the programmer to manage a variety of resources. These include

Object Id’s (Oids), Variable Bindings (Vbs), Variable Binding Lists (Vbls), Protocol Data Units

(PDUs), Community Names, and authentication structures [RFC 1442]. Improper allocation or

de-allocation of these resources can result in corrupted or lost memory. SNMP++ provides safety

by managing these resources internally. The user of SNMP++ realizes the benefits of automatic

resource and session management. In regard to safety, SNMP++ addresses the following areas.

Provides automatic management of SNMP resources.

This includes SNMP structures, sessions, and transport layer management.

SNMP classes are designed as Abstract Data Types (ADTs) [Saks]. This includes data

hiding and the provision of public member functions to inspect or modify hidden

instance variables.

Provides built in error checking, automatic timeout and retry

A user of SNMP++ does not have to be concerned with providing reliability for an

unreliable transport mechanism. SNMP relies on network transport layer

communication via unreliable services (eg. UDP , IPX) [Stallings]. A variety of

communications errors can occur including: lost datagrams, duplicated datagrams, and

reordered datagrams. SNMP++ addresses each of these possible error conditions and

provides the user with transparent reliability.

SNMP++ HP RND 1/18/95 12:32 PM 11

Portability

A major goal of SNMP++ is to provide a portable API across a variety of operating systems

(OSs), network operating systems (NOSs), and network management platforms. Since the

internal mechanisms of SNMP++ are hidden, the public interface remains the same across any

platform. A programmer who codes to SNMP++ does not have to make changes to move it to

another platform. The current working SNMP++ platforms include MS-Windows 3.1, MS-

Windows For Work Groups 3.11, MS-Windows NT, MS-Windows ‘95 Beta II, and HPUX (HP

UNIX). Note!, Currently only Win16 is supported. Platforms currently supported are HP

OpenView for Windows and HP OpenView for HPUX. Another issue in the area of portability is

the ability to run across a variety of protocols. SNMP++ currently operates over the Internet

Protocol (IP) or Internet Packet Exchange (IPX) protocols, or both using a dual stack.

Extensibility

Extensibility is not a binary function but rather one of degree. SNMP++ not only can be

extended, but can and has been extended easily. Extensions to SNMP++ include supporting new

OS’s, NOS’s , network management platforms, protocols, supporting SNMP version 2, and

adding new features. Through C++ class derivation, users of SNMP++ can inherit what they like

and overload what they wish to redefine.

OverLoading SNMP++ Base Classes

The application programmer may subclass the base SNMP++ classes to provide

specialized behavior and attributes. This theme is central to object orientation [Gama].

The base classes of SNMP++ are meant to be generic and do not contain any vendor

specific data structures or behavior. New attributes can be easily added through C++

sub-classing and member function redefinition.

SNMP++ HP RND 1/18/95 12:32 PM 12

An Introductory Example

Rather than begin by describing SNMP++ and all of its features, here is a simple example that illustrates

its power and simplicity. The following example is designed to run on MS-Windows 3.1 using the 3.1 API

[Petzold]. This example obtains a System Descriptor object from the specified agent. Included is all code

needed to create a session, get an SMI octet variable, and print it out. Retries and time-outs are managed

automatically. The SNMP++ code is in bold font.

Windows 3.1 Example

#include “snmp.h”

void get_system_descriptor(HWND hWnd)

{

 int status;

 long int err_status, err_index;

 char msg[255];

 Vb vb; // construct a vb object

 vb.set_oid(“1.3.6.1.2.1.1.0”); // get the system descriptor

 // construct a Snmp Object

 Snmp snmp(hWnd, (Protocol) ip, "public", &status); // construct an ip snmp object

 if (status != SNMP_CLASS_SUCCESS)

 {

 MessageBox(hWnd,"Failure Instantiating SNMP Class!","Snmp++ Error",MB_ICONSTOP);

 return;

 }

 snmp.set_retry(3); // set retries @ 3, default is 1 second

 status = snmp.get(&vb,1,err_status, err_index,”15.29.33.10”); // get the data

 if (status != SNMP_CLASS_SUCCESS)

 {

 sprintf(msg,"Get Fail %d ",status);

 MessageBox(hWnd,msg,"Snmp++ Error",MB_ICONSTOP); // display it

 }

 else

 {

 vb.get_value((char *)msg); // extract the char string into msg

 MessageBox(hWnd,msg,”System Descriptor”, MB_OK);

 }

};

Explanation of Introductory Example

The majority of code in the above example provides for error checking . The actual SNMP++

calls are made up of six lines of code. Two SNMP++ objects are utilized, the Variable Binding

(Vb) object and the SNMP object. The Vb object is constructed and two public member functions

are utilized. Vb::set_oid, sets the Oid portion of the Vb object. Vb::get_value extracts a octet

array from the returned Vb object.

SNMP++ HP RND 1/18/95 12:32 PM 13

SNMP++ Features

Oid, Vb and SNMP Objects

SNMP++ is based around three C++ classes, the SNMP Object Identification (OID) class, the

SNMP Variable Binding (Vb) class, and the SNMP class. Together, these classes give the

programmer full SNMP management support.

Automatic SNMP Resource Memory Management

The Oid, Vb and SNMP classes manage various SNMP structures and resources automatically

when objects are instantiated and destroyed. This frees the application programmer from having

to worry about de-allocating structures and resources and thus provides better protection from

memory corruption and leaks. SNMP++ objects may be instantiated statically or dynamically.

Static object instantiation allows destruction when the object goes out of scope. Dynamic

allocation requires use of C++ constructs New and Delete [Stroustrup]. Internal to SNMP++ are

various Structure of Management Information (SMI) structures which are protected and hidden

from the public interface. All SMI structures are managed internally, the programmer does not

need to define or manage SMI structures or values.

Ease Of Use

By hiding and managing all SMI structures and values, the SNMP++ classes are easy and safe to

use. The programmer cannot corrupt what is hidden and protected from scope.

Power and Flexibility

SNMP++ provides power and flexibility which would otherwise be difficult to implement and

manage. Each SNMP++ object communicates with an agent through a session model. That is, an

instance of a SNMP++ class maintains a connection to the specified agent. Each SNMP++ object

provides reliability through automatic retry and timeouts. An application may have multiple

SNMP++ object instances, each instance communicating to the same or different agent(s). This is

a powerful feature which allows a network management application to have different sessions for

each management component. For example, an application may have one SNMP++ object to

provide graphing statistics, another SNMP++ object to monitor traps, and a third SNMP++ object

to allow SNMP browsing. SNMP++ automatically handles multiple concurrent requests from

different SNMP++ instances.

Portable Objects

The majority of SNMP++ is portable C++ code. This includes the Oid and Vb classes. The

SNMP class definition is portable as well. Only the SNMP class implementation is different for

each target operating system. If your program contains SNMP++ code, this code will port

without any changes!

Automatic Timeout And Retries

SNMP++ supports automatic timeout and retries. This frees the programmer from having to

implement timeout or retry code. The SNMP class supports two public member functions for

accessing and modifying the retry and timeout behavior. Automatic timeout and retry is exclusive

to blocked mode SNMP++ objects.

SNMP++ HP RND 1/18/95 12:32 PM 14

Blocked Mode Requests

SNMP++ includes a blocked model. The blocked model supported allows multiple blocked

requests on separate SNMP class instances. The blocked model provides a cleaner, simpler

SNMP interface while introducing no restrictions. Note!, blocked mode only applies to individual

SNMP object instances. You may have multiple instances which operate asynchronously.

Non-Blocking Asynchronous Mode Requests

For the MS-Windows environment, SNMP++ supports a non-blocking asynchronous mode for

gets, sets and get-nexts. For this mode of operation, the programmer is responsible for handling

time-outs and retries. Asynchronous mode lends itself well for applications which do periodic

polling such as graphing.

Traps

For the MS-Windows environment, SNMP++ supports trap reception. Traps are received through

WinSNMP which manages the well known UDP or IPX trap port. This allows an SNMP++

application to coexist with other applications receiving traps on the same computer. This is the

case with applications wishing to coexist with HP OpenView for MS-Windows.

Support For SNMP Version 1

The current implementation for SNMP++ is for SNMP version 1. The classes have been designed

to be adapted to SNMP Version 2 and some of the V2 capability already exists. Many of the SMI

structures for SNMP version 2 are already present in SNMP++.

SNMP Get, Get Next and Set Supported

The SNMP class supports three access methods for getting and setting MIB variables. All three

member functions utilize similar parameter lists and operate in a blocked or non-blocked

(asynchronous) manner.

Redefinition Through Inheritance

SNMP++ is implemented using C++ and thus allows a programmer to overload or redefine

behavior which does not suite their needs [Stroustrup]. For example, if an application requires

special Oid object needs, a subclass of the Oid class may be created, inheriting all the attributes

and behavior the Oid base class while allowing new behavior and attributes to be added to the

derived class.

Many Engine

The many engine provides an easy to use interface for getting or setting objects in bulk using

SNMP version 1. Using a single member function call, the caller may retrieve up to fifty objects

from the specified agent. For SNMP v1, the many engine breaks up the request into multiple

request PDUs based on maximum PDU size. As SNMP++ migrates to SNMP v2, the many

engine will utilize v2’s awesome get-bulk request.

SNMP++ HP RND 1/18/95 12:32 PM 15

SNMP++ for Windows 3.1

SNMP++ has currently been tested and runs over MS-Windows 3.1, MS-Windows For Work Groups 3.11,

MS-Windows NT 3.5, and MS-Windows ‘95 Beta II. SNMP++ for MS-Windows utilizes WinSNMP for

its SNMP Basic Encoding Rules (BER) and transport services. This includes the encoding and decoding

of Protocol Data Units (PDUs) and transporting them over WinSockets or Novells NWIPXSPX . SNMP++

relies on a robust and reliable WinSNMP.DLL. The hope and intent is that as WinSNMP solidifies and

matures, SNMP++ will run over any WinSnmp.DLL implementation.

Runs Over WinSnmp Ver 1.1

WinSNMP ver 1.1 is required to run SNMP++ on MS-Windows. WinSNMP Version 1.0 will not

work since the interface has changed.

Multiple Sessions Via Multiple Instances

WinSNMP supports a session model. Sessions are supported in SNMP++ through different

instances of the SNMP class. Each instance creates and maintains its own session. The number of

instances allowed is limited only by the WinSNMP.DLL and WinSock.DLL being used. A

program may create and use different SNMP objects for different sessions. Note!, since each

session maps to an underlying UDP or IPX socket, you may need to fine-tune your stack to allow

more sockets.

Multiple Concurrent Blocked Mode Requests

Using different SNMP class instances, multiple blocked Snmp::gets or Snmp::sets requests may

be evoked concurrently. This feature leans heavily on the robustness of the WinSNMP.DLL. For

example, a windows timer may trigger a get request on a given SNMP object. While this request

is pending, another timer on a different object may fire which causes a different request to be

issued. SNMP++ manages this scenario by: 1) allowing Windows messages to be processed

while waiting for a PDU response, and 2) queuing incoming PDU responses in a container class.

IP and IPX Support using FTP Software Inc.’s WinSNMP.DLL

By utilizing FTP’s WinSNMP, IP and IPX support are available. For IP operation, a WinSock

compliant stack is required. For IPX, a Netware client and the required Netware drivers are

needed. SNMP++ has been tested to run over a wide variety of protocol stacks including FTP,

Netmanage, LanWorkPlace, MS-WFWG 3.11, and Windows NT.

IP Support Using American Computer and Electronics Corp. Netplus

WinSNMP.DLL

Utilizing ACECs NetPlus WinSNMP, IP support is available. A Winsock compliant stack is

required. Contact ACEC for supported WinSock stacks.

Windows Message Handling

While blocking on a Snmp::get, Snmp::get_next , or Snmp::set, SNMP++ allows other Windows

messages to be processed. Without this feature, the entire Windows application would be tied up

while waiting for the response PDU. There are times when an application may want to terminate

while in a pending blocked mode request. SNMP++ provides facilities for globally shutting down

all pending blocked requests global shutdown, and partially shutting down just one SNMP++

session, partial shutdown. This allows an application to shut down on the fly and not have to

wait for outstanding requests to complete.

SNMP++ HP RND 1/18/95 12:32 PM 16

Medium or Large Model Support

SNMP++ may be compiled and used in both medium and large memory models.

Rendezvous Shut Down Messages

MS-Windows SNMP++ supports shut down messages for shutting down a blocked SNMP++

request. This allows an application to shut down a request without waiting for it to finish.

Runs on MS-Windows NT

SNMP++ applications for Win16 may run on Windows NT using the native NT Winsock

compliant stack. This does not offer the performance of a Win32 application but does allow

execution on the NT platform.

Trap Support

SNMP++ includes support for interfacing with WinSNMP trap mechanisms. This includes

arming, filtering and receiving traps. The interface for traps utilizes the asynchronous mode of

SNMP++.

Compatability with HP OpenView for Windows

A number of applications have been created using SNMP++ which coexist and are compatible

with HP’s OpenView for MS-Windows. This includes full SNMP support and the reception of

traps.

SNMP++ HP RND 1/18/95 12:32 PM 17

The PDU Container Class

In order to accommodate multiple concurrent blocked mode requests, a container class is used to

hold the incoming response PDUs. As an SNMP object is instantiated, a new session and new

Windows class is created. This procedure is used to process any incoming PDUs for that session.

This hidden window remains for the life of the SNMP object and WinSNMP will call it whenever

a PDU has arrived for that session. The windows procedure processes the WinSNMP notification

by receiving the PDU, verifying that it is valid, and stuffing it into the PDU container. By

default, the container can handle twenty concurrent requests. The verification includes verifying

that the response PDU matches a pending request and contains no errors. If it is invalid, the PDU

is discarded automatically. In addition to storing incoming PDUs, the container class serves

PDUs to the waiting blocked process. While a process is waiting in a message pump loop, it

queries the container class for the PDU matching the one it had issued a request for. If the PDU

is present in the container before the timeout period, the process then extracts the PDU from the

container and uses it. In addition to processing and serving PDUs, the PDU class maintains

statistics PDU traffic. These statistics include...

• Number of Received PDUs

• Number of Transmitted PDUs

• Number of Time-outs

• Number of Send Errors

• Number of Receive Errors

The Bottom Line: The programmer does not need to know anything about the PDU Container

Class or its mechanisms unless you are interested in obtaining performance statistics.

Tested Over MFC and 3.1 API

SNMP++ / MS-Windows applications have been created and tested using Microsoft’s Visual

C++ Foundation Classes (MFC) and using the standard 3.1 API.

SNMP++ HP RND 1/18/95 12:32 PM 18

SNMP++ for HPUX

Runs Using SNMP Research’s SNMP Libraries

 The HPUX implementation offers the identical interface and behavior as SNMP++ for MS-

Windows. SNMP++ for HPUX is compatible with HP OpenView for HPUX. A number of

SNMP++ applications have been created for HP OpenView for MS-Windows and then ported to

HP OpenView for HPUX using SNMP++ as the portable SNMP interface.

Identical Class Interface

The class interface for the UNIX implementation is identical to MS-Windows. Only the internal

class implementation of the SNMP class have been changed.

Portable to UNIX-Windows Emulators

SNMP++ runs over HPUX by compiling and linking the proper SNMP++ class implementation.

SNMP++ / HPUX is designed to run in a native text mode HPUX app, in a X-Window app, or

using Windows-to-UNIX porting tools.

Multiple Connections via Multiple Instances

Under HPUX, the concept of multiple SNMP++ object instances mapping to unique UDP

connections has been preserved. Each SNMP++ object maintains and manages its own UDP

socket. This ensures that Windows code will have the same behavior in a HPUX environment.

Note! Async mode and traps are not yet available for SNMP++ on HPUX.

SNMP++ HP RND 1/18/95 12:32 PM 19

The Object Identification Class

The Object Identification (Oid) class is the encapsulation of an SNMP object identifier. The SMI Oid, its

related structures and functions, are a natural fit for object orientation. In fact, the Oid class shares many

common features to the C++ String class. For those of you familiar with the C++ String class or MFC’s

Cstring class, the Oid class will be familiar and easy to use. The Oid class is designed to be efficient and

fast. Do not make the false assumption that by using C++, a performance penalty must be paid. A well

encapsulated C++ class is easier to fine tune than the equivalent C code [Meyers]. The Oid class allows

definition and manipulation of object identifiers. The Oid Class is fully portable and does not rely on

WinSNMP or any other Windows or UNIX SNMP API to be present. The Oid class may be compiled and

used with any ANSI C++ compiler. The Oid class includes all the related SMI types for Oids.

Object Modeling Technique Representation

The Object Modeling Technique (OMT) methodology was used to design all SNMP++ classes .

OMT is a popular design methodology for modeling objects [Rumbaugh].

OMT Public View Of Oid Class

Oid

get_instance(UINT32 n)

get_instance()

nCompare(UINT32 n, Oid oid)

Oid(char* dotted_string)

Oid(const Oid oid)

Oid(void)

oidval()

operator += char *dotted string

operator += UNIT32

operator = char* dotted_string

operator = Oid

operator == Oid

set_instance(UINT32 i)

set_instance(UINT32 n, UINT32 i)

strval(UINT32 start, UINT32 n)

strval(UINT32)

strval()

trim(UINT32 n)

~Oid

SNMP++ HP RND 1/18/95 12:32 PM 20

Oid Class Public Member Functions

There are a variety of public member functions which allow for the construction, destruction,

access and modification of Oid objects.

Oid Class Constructors & Destructors

Oid objects may be instantiated either statically or dynamically depending on your need.

Oid Class Overloaded Operators

Various operators are overloaded which allow comparison and mutation of Oid objects.

Overloaded operators allow easy assignment and comparison of Oid objects.

An Oid object may be constructed with no arguments. Using this constructor, the Oid

object has no value, but can be mutated to change its value.

// constructor using no arguments

Oid::Oid(void);

An Oid object may be constructed with a character array representing the object id.

// constructor using a dotted string

Oid::Oid(const char WINFAR * dotted_oid_string);

An Oid object may be constructed using another Oid object.

// constructor using another oid object

Oid::Oid (const Oid &oid);

The destructor for the Oid object frees up any memory occupied by the object.

// destructor

Oid::~Oid();

Assign an Oid object a dotted string value.

// assignment to a string operator overloaded

Oid::Oid& operator=(const char WINFAR *dotted_oid_string);

Assign an Oid object another Oid Object

// assignment to another oid object overloaded

Oid::Oid& operator=(const Oid &oid);

Test the equivalence of two Oid objects

// equivalence operator overloaded

friend int operator==(Oid &x,Oid &y)

Append a dotted string to an existing Oid object

// append operator, appends a string

Oid::Oid& operator+=(const char WINFAR *a);

Append a unsigned long int as the last instance of an Oid object

// appends an int

Oid::Oid& operator+=(const unsigned long i);

SNMP++ HP RND 1/18/95 12:32 PM 21

Oid Class String Value Methods

Oid class string value member functions allow retrieval of an Oid objects dotted string

representation. This is valuable when printing out an Oid object.

Return the entire dotted string representation

// return an oid as a dotted string value

char * Oid::strval();

Return the dotted string representation where n specifies the position from the

rightmost value.

// return dotted string value from the right

// where the user specifies how many positions to print

char * Oid::strval(unsigned long n);

Return the dotted string representation where start specifies the beginning location

and n specifies how many values to right.

// return a dotted string where the caller specifies

// where the starting position is and how many to include to the right

char * Oid::strval(unsigned long start, unsigned long n);

SNMP++ HP RND 1/18/95 12:32 PM 22

Oid Class Set Instance & Get Instance Methods

The set and get instance member functions allow setting and getting individual Oid

object values. These methods are particularly useful when intricate Oid object

manipulation is required, such as when implementing get-nexts.

Oid Class Trim Method

The trim member function allows trimming off the n rightmost values of an Oid object.

Oid Class nCompare Method

The nCompare method allows comparing two Oid objects where n specifies the n

leftmost values of each Oid object to compare.

The set instance method allows changing the rightmost instance of

an Oid object.

// set the rightmost instance

void Oid::set_instance(unsigned long i)

The set instance with an argument allows modifying an Oid object at position n.

// modify position n of an oid to value i

// indexes are 1 to n

void Oid::set_instance(unsigned long n, // instance # to change

 unsigned long i) // new value

The get instance member function allows retrieval of the rightmost Oid object value.

// returns the rightmost value of the oid

unsigned long Oid::get_instance()

The get instance with an argument allows retrieval of an Oid object value at

position n.

// returns the value of an oid

// at position n

unsigned long Oid::get_instance(unsigned long n)

// trim off the n rightmost values of an oid

void Oid::trim(unsigned long n)

// compare the n leftmost bytes

// returns TRUE or FALSE

int Oid::nCompare(unsigned long n, const Oid &o);

SNMP++ HP RND 1/18/95 12:32 PM 23

Oid Class Examples

The following examples show different ways in which to use the Oid class. The Oid class does

not require or depend on any other libraries or modules. The following code is ANSI C++

compatible.

#include “oid.h”

void oid_example_1()

{

 // construct an Oid with a dotted string and print it out

 Oid o1("1.2.3.4.5.6.7.8.9.1");

 printf(“o1=%s”,o1.strval());

 // construct an Oid with another Oid and print it out

 Oid o2(o1);

 printf(“o2=%s”,o2.strval());

 // trim o2’s last value and print it out

 o2.trim(1);

 printf(“o2=%s”,o2.strval());

 // add a 2 value to the end of o2 and print it out

 o2+=2;

 printf(“o2=%s”,o2.strval());

 // create a new Oid, o3

 Oid o3;

 // assign o3 a value and print it out

 o3="1.2.3.4.5.6.7.8.9.3";

 printf(“o3=%s”,o3.strval());

 // create o4

 Oid o4;

 // assign o4 o1’s value

 o4=o1;

 // trim off o4 by 1

 o4.trim(1);

 // concat a 4 onto o4 and print it out

 o4+=4;

 printf(“o4=%s”,o4.strval());

 // make o5 from o1 and print it out

 Oid o5(o1);

 printf(“o5=%s”,o5.strval());

SNMP++ HP RND 1/18/95 12:32 PM 24

Oid Example Continued...

 // compare two not equal oids

 if (o1==o2) printf("O1 EQUALS O2");

 else printf("O1 NOT EQUALS O2");

 char msg[100];

 // print out a piece of o1

 sprintf(msg,"strval(3) of O1 = %s", o1.strval(3));

 printf(“%s”,msg, strlen(msg));

 // print out a piece of o1

 sprintf(msg,"strval(1,3) of O1 = %s", o1.strval(1,3));

 printf(“%s”,msg, strlen(msg));

 // set o1's last instance

 o1.set_instance(49);

 sprintf(msg,"O1 modified = %s", o1.strval());

 printf(“%s”,msg, strlen(msg));

 // set o1's last instance

 o1.set_instance(3,49);

 sprintf(msg,"O1 modified = %s", o1.strval());

 printf(“%s”,msg, strlen(msg));

 // get the last instance of 02

 sprintf(msg,"last of o2 = %ld",o2.get_instance());

 printf(“%s”,msg,strlen(msg));

 // get the 3rd instance of 02

 sprintf(msg,"3rd of o2 = %ld",o2.get_instance(3));

 printf(“%s”,msg,strlen(msg));

 // ncompare

 if (o1.nCompare(3,o2))

 printf("nCompare o1,o2,3 ==");

 else

 printf("nCompare o1,o2,3 !=");

 // make an array of oids

 Oid oids[30]; int w;

 for (w=0;w<30;w++)

 {

 oids[w] = "300.301.302.303.304.305.306.307";

 oids[w] += (w+1);

 }

 for (w=0;w<25;w++)

 {

 sprintf(msg,"Oids[%d] = %s",w, oids[w].strval());

 printf(“%s”,msg, strlen(msg));

 }

}

SNMP++ HP RND 1/18/95 12:32 PM 25

The Variable Binding Class

The variable binding (Vb) class represents the encapsulation of a SNMP variable binding. A variable

binding is the association of a SNMP object ID with its SMI value. In object oriented methodology, this is

simply a has a relation. A Vb object has an Oid object and a SMI value. The Vb class allows the

application programmer to instantiate Vb objects and assign the Oid portion (Vb::set_oid), and assign the

value portion (Vb::set_value). Conversely, the Oid and value portions may be extracted using

Vb::get_oid() and Vb::get_value(). The public member functions Vb::set_value() and Vb::get_value() are

overloaded to provide the ability to set or get different values to the Vb binding. Variable binding lists in

SNMP++ are represented as arrays of Vb objects. All SMI types are provided within the Vb Class. The

Vb class provides full data hiding. The user does not need to know about SMI value types, Oid

representations, or other related SNMP structures. Like the Oid class, the Vb class is fully portable using a

standard ANSI C++ compiler.

Object Modeling Technique Representation

The Object Modeling Technique (OMT) was used to design the Variable Binding (Vb) Class. A

Vb object is related to Oid object since every Vb object has an Oid object. This is a one-to-one

association.

OMT Public View of Vb Class

Vb

int Vb::get_value(char* ptr)

int Vb::get_value(int &i)

int Vb::get_value(Iptype ipaddr)

int Vb::get_value(long &i)

int Vb::get_value(Oid &oid)

LPSmiVal Vb::get_smival()

UINT32 Vb::get_syntax()

Vb::get_oid(Oid &oid)

Vb::get_value(unsigned long &i)

Vb::get_value(unsigned char*p, unsigned long &i);

Vb::get_value(unsigned long hi, unsigned long lo)

Vb::set_oid(const Oid oid)

Vb::set_oid(char *dotted_string)

Vb::set_value(char *ptr)

Vb::set_value(int i)

Vb::set_value(IpType ipaddr)

Vb::set_value(long i)

Vb::set_value(Oid &oid)

Vb::set_value(unsigned char *ptr,unsigned long i)

Vb::set_value(unsigned long hi, unsigned long lo)

Vb::set_value(unsigned long i)

Vb::~Vb()

Vb:Vb(const Oid oid)

Vb:Vb(void)

Oid

get_instance(UINT32 n)

get_instance()

nCompare(UINT32 n, Oid oid)

Oid(char* dotted_string)

Oid(const Oid oid)

Oid(void)

oidval()

operator += char *dotted string

operator += UNIT32

operator = char* dotted_string

operator = Oid

operator == Oid

set_instance(UINT32 i)

set_instance(UINT32 n, UINT32 i)

strval(UINT32 start, UINT32 n)

strval(UINT32)

strval()

trim(UINT32 n)

~Oid

SNMP++ HP RND 1/18/95 12:32 PM 26

Vb Class Public Member Functions

The Vb class provides a variety of public member methods to access and modify Vb objects. The

Vb class requires presence and use of the Oid class.

Vb Class Constructors & Destructors

Alternatively, a Vb object may be constructed with an Oid object as a construction

parameter. This initializes the Oid part of the Vb object to the Oid passed in. The Vb

object makes a copy of the Oid passed in. This saves the programmer from having to

worry about the duration of the parameter Oid.

The destructor for a Vb object releases any memory and/or resources which were

occupied. For statically defined objects, the destructor is called automatically when the

object goes out of scope. Dynamically instantiated objects require usage of the delete

construct to cause destruction.

Vb Class Get Oid / Set Oid Member Functions

The get and set Oid member functions allow getting or setting the Oid part of a Vb

object. When doing SNMP gets or sets, the variable is identified by setting the Oid value

of the Vb via the Vb::set_oid(Oid oid). Conversely, the oid portion may be extracted via

the Vb::get_oid(Oid &oid) member function. The get_oid member function is

particularly useful when doing SNMP get_next’s.

The Oid portion of a Vb object can be set with an already constructed Oid object

A Vb object may be constructed with no arguments. In this case, the Oid and

 value portions must be set with subsequent member function calls.

// constructor with no arguments

// makes an vb, un-initialized

Vb::Vb(void);

// constructor to initialize the oid

// makes a vb with oid portion initialized

Vb::Vb(const Oid oid);

// destructor

// if the vb has a oid or an octect string then

// the associated memory needs to be freed

Vb::~Vb();

// set value oid only with another oid

void Vb::set_oid(const Oid &oid);

SNMP++ HP RND 1/18/95 12:32 PM 27

Alternatively, the Oid portion may be set with the dotted string representation of the

Oid.

The Oid portion may be retrieved by providing a target Oid object. This destroys the

previous value of the Oid parameter object.

Vb Class Get Value / Set Value Member Functions

The get_value, set_value member functions allow getting or setting the value portion of

a Vb object. These member functions are overloaded to provide getting or setting

different types. The internal hidden mechanisms of getting or setting Vb’s handles all

memory allocation/de-allocation. This frees the programmer from having to worry about

SMI-value structures and their management. Get value member functions are typically

used to get the value of a Vb object after having done a SNMP get. Set value member

functions are useful when wishing to set values of Vb’s when doing a SNMP set. The

get_value member functions return a -1 if the get does not match what the Vb is

holding.

Set the value portion of a Vb object to an integer.

Set the value portion of a Vb Object to a long integer.

Set the value portion of a Vb object to an unsigned long integer.

Set the value portion of a Vb object to two unsigned ints. This is used for SNMP 64 bit

counters comprised of a hi and lo 32 bit portion.

// set oid value with a const string

void Vb::set_oid(const char WINFAR * dotted_oid_string);

// get oid portion

void Vb::get_oid(Oid &oid);

// set the value with an int

void Vb::set_value(int I);

// set the value with a long signed int

void Vb::set_value(long int I); unsigned long

// set the value with an unsigned long int

void Vb::set_value(unsigned long int i);

// set value for building an 64 bit counter

void Vb::set_value(unsigned long int hi,unsigned long int lo);

SNMP++ HP RND 1/18/95 12:32 PM 28

Set the value portion of a Vb object to an Oid.

Set the value portion of a Vb object to an octet string. This is comprised of a unsigned

char string and a length.

Set the value portion of a Vb object to a char string. Really, this internally uses the SMI

value portion of an octet string but makes it easier to use when it is an ASCII string. (eg

system descriptor)

Set the value portion of a Vb to an IP address. The typedef for Iptype is defined in

Vb.hpp and is simply a 4 byte octet string. IP address is a explicit SMI value type.

Vb Class Get Value Member Functions

All Vb::get_value member functions modify the parameter passed in. If a Vb object does

not contain the requested parameter type, the parameter will not be modified and a -1

will be returned. Otherwise on success, a 0 status is returned.

Get an integer value from a Vb object.

// set value for setting an oid

// creates own space for an oid which

// needs to be freed when destroyed

void Vb::set_value(Oid &varoid);

//set value for setting an octet string

// creates own space for a octet which

// needs to be freed when destroyed

void Vb::set_value(unsigned char WINFAR * ptr, unsigned long len);

// set value on a string

// makes the string an octet

// this must be a null terminates string

void Vb::set_value(char WINFAR * ptr);

// set an ip address as a value

void Vb::set_value (Iptype ipaddr);

// get value int

// returns 0 on success and value

int Vb::get_value(int &i);

SNMP++ HP RND 1/18/95 12:32 PM 29

Get a long integer from a Vb object.

Get an unsigned long integer value from a Vb.

Get two unsigned longs from a Vb object. (64 counter hi,lo).

Get an Oid object from a Vb object.

Get an unsinged char string value from a Vb object (Octet string).

Get a char string from a Vb object. This grabs the octet string portion and pads it with a

null.

// get the signed long int

// returns 0 on success and a value

int Vb::get_value(long int &I);

// get the unsigned long int

// returns 0 on success and a value

int Vb::get_value(unsigned long int &i);

// get value for building an 64 bit counter

// returns 0 on success and a value

int Vb::get_value(unsigned long int &hi,unsigned long int &lo);

// get the oid value

// free the existing oid value

// copy in the new oid value

int Vb::get_value(Oid &varoid);

// get a unsigned char string value

// destructive, copies into given ptr of up

// to len length

//

// Note! the caller must provide a target string big

// enough to handle the vb string, else memory corruption

int Vb::get_value(unsigned char WINFAR * ptr, unsigned long &len);

// get a char * from an octet string

// the user must provide space or

// memory will be stepped on

int Vb::get_value(char WINFAR *ptr);

SNMP++ HP RND 1/18/95 12:32 PM 30

Get a IP address from a Vb object. Iptype is defined as an array of four unsigned chars.

Vb Object Get Syntax Member Function

This method violates the object oriented paradigm. An object knows what it is. By

having a method which returns the id of an object violates its data hiding. Putting that

aside, there are times when it may be necessary to know what value a Vb is holding to

allow extracting that value. For example, when implementing a browser it would be

necessary to grab a Vb, ask it what it has and then pull out whatever it may hold.

// get an ip address

int Vb::get_value(Iptype ipaddr);

// return the current syntax

// This method violates the OO paradigm but may be useful if

// the caller has a vb object and does not know what it is.

// This would be useful in the implementation of a browser.

unsigned long get_syntax();

SNMP++ HP RND 1/18/95 12:32 PM 31

Vb Class Examples
The following examples show different ways in which to use the Vb class. The Vb class does not

require or depend on any other libraries or modules other than the Oid class. The following C++

code is ANSI compatible.

#include “oid.h”

#include “vb.h”

vb_test()

{

 // -------[Ways to construct vb objects]-------

 // construct a single vb object

 Vb vb1;

 // construct a vb object with an Oid object

 // this sets the oid portion of the vb

 Oid d1(“1.3.6.1.4.12”);

 Vb vb2(d1);

 // construct a vb object with a dotted string

 Vb vb3(“1.2.3.4.5.6”);

 // construct an array of ten vb’s

 Vb vbs[10];

 //------[Ways to set and get the oid portion of Vb objects]

 // set and get the oid portion

 Oid d2(“1.2.3.4.5.6”);

 vb1.set_oid(d2);

 Oid d3;

 vb1.get_oid(d3);

 if (d2==d3) printf(“They better be equal!!\n”);

 Vb ten_vbs[10];

 int z;

 for (z=0;z<10;z++)

 ten_vbs[0].set_oid(“1.2.3.4.5”);

 //-------[ways to set and get values]

 // set & get ints

 int x,y;

 x=5;

 vb1.set_value(x);

 vb1.get_value(y);

 if (x == y) printf(“x equals y\n”);

 // set and get long ints

 long int a,b;

 a=100;

SNMP++ HP RND 1/18/95 12:32 PM 32

Vb Class Example Continued..

//-------[ways to set and get values]

 // set & get ints

 int x,y;

 x=5;

 vb1.set_value(x);

 vb1.get_value(y);

 if (x == y) printf(“x equals y\n”);

 // set and get long ints

 long int a,b;

 a=100;

 vb2.set_value(a);

 vb2.get_value(b);

 if (a == b) printf(“a equals b\n”);

 // set & get unsigned long ints

 unsigned long int c,d;

 c = 1000;

 vbs[0].set_value(c); vbs[0].get_value(d);

 if (c == d) printf(“c equals d\n”);

 // get and set a 64 bit counter

 unsigned long int hi,lo;

 unsigned long int big,small;

 hi = 1000; lo = 1001;

 vbs[1].set_value(hi,lo);

 vbs[1].get_value(big, small);

 if ((hi==big) && (lo == small)) printf(“hi == big and lo == small\n”);

 // get and set an oid as a value

 Oid o1, o2;

 o1 = “1.2.3.4.5.6”;

 vbs[2].set_value(o1); vbs[2].get_value(o2);

 if (o1 == o2) printf(“o1 equals o2\n”);

 // set and get an octet string

 unsigned char data[4],outdata[4];

 unsigned long len,outlen;

 len =4; data[0] = 10; data[1] = 12; data[2] = 12; data[3] = 13;

 vbs[3].set_value(data,len);

 vbs[3].get_value(outdata, outlen);

 // get & set a string

 char beer[20]; char good_beer[20];

 strcpy(beer,”Sierra Nevada Pale Ale”);

 vbs[4].set_value(beer);

 vbs[4].get_value(good_beer);

 printf(“Good Beer = %s\n”,good_beer);

SNMP++ HP RND 1/18/95 12:32 PM 33

Vb Class Example Continued..

 // get and set an ip an address

 IpType ipaddr,new_ipaddr;

 ipaddr[0] = 10;

 ipaddr[1] = 4;

 ipaddr[2] = 8;

 ipaddr[3] = 69;

 vbs[5].set_value(ipaddr);

 vbs[5].get_value(new_ipaddr);

 printf(“%d .%d .%d . %d\n”, new_ipaddr[0], new_ipaddr[1],

new_ipaddr[2],new_ipaddr[3]);

} // end vb test

SNMP++ HP RND 1/18/95 12:32 PM 34

TimeTicks, Counter and Gauge Classes

These three classes allow the programmer to access or modify SMI timetick, counter and gauge variables.

The SMI values are distinguished as separate data types. For all practical purposes, the SNMP++

Timeticks, Counter and Gauge objects can be thought of as unsigned long ints in C++. That is, anything

that can be done with an unsigned long int can be done with a TimeTicks, Counter or Gauge object.

TimeTicks Class Example

Counter Class Example

Gauge Class Example

TimeTicks tt; // declare a time ticks object

vb.get_value(tt); // extract time ticks from a vb

printf(“Time up = %ld”, tt);

Counter ctr; // declare a counter object

ctr = 1200; // assign counter a value

vb.set_value(ctr); // set a vb with the counter object

Gauge g; // declare a gauge object

vb.get_value(g); // get a gauge object from a vb object

printf(“Gauge value = %ld”, g);

SNMP++ HP RND 1/18/95 12:32 PM 35

The SNMP Class

The most important class in SNMP++ is the SNMP class. The SNMP class is an encapsulation of a SNMP

session. A SNMP session includes a logical connection from an SNMP management station to a managed

agent or agents. Handled by the session is the construction, delivery and reception of PDUs. Most APIs

require the programmer to directly manage the session. This includes providing a reliable transport

mechanism handling time-outs, retries and packet duplication. The SNMP class manages a large part of

the session and frees the implementor to concentrate on the agent management. By going through the

SNMP class for session management, the implementor is driving through well developed and tested code.

The alternative is to design, implement and test your own SNMP engine. The SNMP class manages a

session by 1) managing the transport layer over a UDP or IPX connection. 2) handles packaging and un-

packaging of Vbs into PDUs 3) provides for delivery and reception of PDUs and 4) manages all necessary

SNMP resources.

The SNMP class is easy to use. Three basic methods, Snmp::get, Snmp::set and Snmp::get_next provide

the basic functions for a network management application. Blocking or non-blocking access may be used.

Multiple sessions may be used each asynchronously firing simultaneous requests. Each session maps to

underlying socket so the number of SNMP objects is limited by socket availability. Non-blocking or

asynchronous mode requires the programmer to handle request time-outs and retries.

The SNMP class is safe to use. The constructor and destructors allocate and de-allocate all resources

needed. This minimizes the likelihood of corrupt or leaked memory. All of the internal SNMP

mechanisms are hidden and thus cannot be inadvertently modified.

The SNMP class is portable. The SNMP class interface is portable across OS’s and NOS’s. The Oid and

Vb classes can be compiled and used on any ANSI C++ compiler. The implementation of the SNMP class

is platform specific. That is, the SNMP.CPP file is implemented for each OS /NOS platform. Currently

this module has been ported to run on MS-Windows over WinSNMP and on HPUX using SNMP++s

UNIX engine. The amount of coding needed to port SNMP++ to another platform is minimal. To the

application programmer, no code changes are required to move from one platform to the next. The vast

majority of SNMP++ is re-used across platforms; thus, development time and testing time are cut

drastically.

SNMP++ HP RND 1/18/95 12:32 PM 36

Object Modeling Technique Representation

The SNMP class was designed and developed using the Object Modeling Technique (OMT).

Note the relationship between the classes. A SNMP object has one or more Vb objects. The Vb

objects each have exactly one Oid object.

Public View of SNMP Class

snmp

int Snmp::get()

int Snmp::get_next()

int Snmp::get_retry()

int Snmp::set()

long Snmp::get_timeout()

Snmp::set_community(char *name)

Snmp::set_retry(int t)

Snmp::set_timeout(long t)

Snmp::Snmp(Hwnd, Protocol, Community,status)

Snmp::~Snmp()

Vb

int Vb::get_value(char* ptr)

int Vb::get_value(int &i)

int Vb::get_value(Iptype ipaddr)

int Vb::get_value(long &i)

int Vb::get_value(Oid &oid)

LPSmiVal Vb::get_smival()

UINT32 Vb::get_syntax()

Vb::get_oid(Oid &oid)

Vb::get_value(unsigned long &i)

Vb::get_value(unsigned char*p, unsigned long &i);

Vb::get_value(unsigned long hi, unsigned long lo)

Vb::set_oid(const Oid oid)

Vb::set_oid(char *dotted_string)

Vb::set_value(char *ptr)

Vb::set_value(int i)

Vb::set_value(IpType ipaddr)

Vb::set_value(long i)

Vb::set_value(Oid &oid)

Vb::set_value(unsigned char *ptr,unsigned long i)

Vb::set_value(unsigned long hi, unsigned long lo)

Vb::set_value(unsigned long i)

Vb::~Vb()

Vb:Vb(const Oid oid)

Vb:Vb(void)

Oid

get_instance(UINT32 n)

get_instance()

nCompare(UINT32 n, Oid oid)

Oid(char* dotted_string)

Oid(const Oid oid)

Oid(void)

oidval()

operator += char *dotted string

operator += UNIT32

operator = char* dotted_string

operator = Oid

operator == Oid

set_instance(UINT32 i)

set_instance(UINT32 n, UINT32 i)

strval(UINT32 start, UINT32 n)

strval(UINT32)

strval()

trim(UINT32 n)

~Oid

1+ 1+

SNMP Class Public Member Functions

The SNMP class provides a variety of member functions for creating, managing and terminating

a session. Multiple SNMP objects may be instantiated at the same time.

SNMP Class Constructors and Destructors

The constructors and destructors for the SNMP class allow sessions to be opened and

closed. By constructing a SNMP object, a SNMP session is open. UDP or IPX sockets

are created and managed until the objects are destroyed. SNMP objects may be

instantiated dynamically or statically.

SNMP++ HP RND 1/18/95 12:32 PM 37

SNMP Class Constructor, Blocked Mode

The construction parameters include a window handle, protocol type, community name

and a return status. Since constructors do not return values in C++, the caller must

provide a status which should be checked after instantiating the object. The window

parameter is applicable when programming in Windows only and may be null in

environments such as UNIX. The protocol type specifies the type of transport services to

use. The community name parameter allows the caller to specify the community name.

The community name may be modified at some later time via Snmp::set_community().

The caller should check the return status for ‘SNMP_CLASS_SUCCESS’. If the

construction status does not indicate success, the session should not be used.

SNMP Class Constructor, Asynchronous Mode

In order to use an SNMP++ asynchronous member functions, an asynchronous object

must be instantiated. Blocking and asynchronous SNMP objects are mutually exclusive.

An asynchronous object may not use blocking calls and a blocked object may not use

asynchronous calls. One additional parameter is required for async operation. The

callback function pointer allows the programmer to specify a function to be called when

asynchronous event occurs on the object. This gives the programmer the flexibility to

process the async event in any manner desired.

The snmp_callback typedef is the function prototype for the call back. When the

callback is called, the Vb objects contain the payload for the response PDU. Error status,

error index, address and community name information are provided to allow

differentiating on PDU from another.

// constructor, blocked SNMP object

 Snmp::Snmp(WORD hwnd, // parent handle

 Protocol protocol, // type of protocol to use

 const char *community_name, // community name

 int *status); // construction status

 // constructor SNMP async object

Snmp(WORD hwnd, // parent handle

 Protocol protocol, // type of protocol to use

 const char *community_name, // community name

 snmp_callback lpcallback, // callback function address

 int *status); // construction status

typedef void (WINFAR *snmp_callback)(long int, // request id

 Vb*, // vbs

 int, // number of vbs

 long int, // error status

 long int, // error index

 unsigned char *agent_addr, // agent address

 unsigned char *community, // community name

 unsigned long community_len); // len of comm. name

SNMP++ HP RND 1/18/95 12:32 PM 38

SNMP Class Destructor

The SNMP class destructor closes the session and releases all resources and memory.

 SNMP Class Access and Mutator Member Functions

SNMP Class Set Timeout & Get Timeout

By default, when an Snmp object is instantiated, automatic time-outs and

retries are set to one second and one retry respectively. Blocked request member

functions, (get set and get_next) will utilize the automatic timeout and retry

parameters. Timeout values may be accessed and modified using the

Snmp::set_timeout and Snmp::get_timeout member functions.

Set the timeout value. Parameter is the number of milliseconds to wait.

Get timeout allows the timeout value to be accessed. The returned value in

milliseconds.

// destructor

 Snmp::~Snmp();

// set timeout

 void Snmp::set_timeout(DWORD t)

// get timeout

DWORD Ssnmp:: get_timeout()

SNMP++ HP RND 1/18/95 12:32 PM 39

Snmp Class Set Retry & Get Retry

The set and get retry member functions allow accessing and modifying the retry

behavior of the SNMP class request member functions (get, set and get_next).

By default, the retry value is set to one when an Snmp object in instantiated.

Set the retry value.

Get the retry value.

SNMP Class Set Community Name

The set community name member function allows modification to the

community name which will be used when requesting data through the request

member functions. The initial value of the community name is passed in as a

construction parameter.

Or community names may be set using a pointer and a len.

// set retry

 void Snmp::set_retry(int r)

// get retry

 int Snmp::get_retry()

// set the community name

void Snmp:: set_community(const char * new_name);

// set community name using ptr and len

void Snmp::set_community(const char * new_name, int len);

SNMP++ HP RND 1/18/95 12:32 PM 40

SNMP Class Request Member Functions

In order to access or modify an agents MIB, requests must be made via the Snmp::get,

Snmp::set or Snmp::get_next. All of these member functions accept the identical

parameter lists. All blocked mode requests behave the same way in terms of timeout and

retries and all return the same success and error status values.

Request Member Function Parameter Description

Blocked mode request member functions, require five parameters and return an

error status. The first argument is a pointer to an array of Vb objects. The

second parameter specifies the size of the array. The third and fourth

parameters map directly to the received Pdu’s error status and error index. The

last parameter specifies the destination address. Asynchronous calls require

only four parameters.

• Parameter Vb*

The first parameter of the request methods specify a pointer to an array

of Vb objects. Variable binding lists in SNMP++ are represented as

arrays of Vb objects. These objects are the variable bindings to be

applied in the set or get. The caller may specify any number of Vb’s as

long as the max PDU size is not overrun. An error status will be

returned if this is the case.

• Parameter vb_count

The second parameter specifies the number of Vb objects passed in the

first parameter.

• • Parameter long int err_status

This parameter is the error status of the received response PDU. If this

value is non zero, the return status of the request member function will

flag it as ‘SNMP_ERR_STATUS_SET’. This parameter is valuable

when accessing objects incorrectly or accessing objects which do not

exist. This return parameter is the SMI error status and may have the

following values..

0 - No error

1 - PDU too Big

2 - No such MIB var name

3 - Bad MIB var value

4 - Read Only MIB var

5 - General Error

• Parameter err_index

This parameter specifies the Vb object in error. Note, the error index is

one not zero based. The first Vb will be flagged as index number 1.

SNMP++ HP RND 1/18/95 12:32 PM 41

• Parameter dest_addr

The last parameter specifies the destination address where the request

shall be directed. This address may in the form of an IP or IPX address

depending on the type of transport services available.

SNMP Class Blocked Get Member Function

The get member function allows getting objects from the agent at the specified

address. In order to use the get, the user needs to fill the Vb objects with the

requested Oid’s. Returned will be the Vb’s with their values set. Blocked

member functions will return as soon as the SNMP response is received or if a

timeout or error condition has occurred.

SNMP Class Blocked Get Next Member Function

The get next member function may be used to traverse an agents MIB. Get next

may traverse more than one table at a time. (In most cases just using one Vb

will be enough). The caller fills the request Vb with the Oid requested.

Returned will be the Oid and the value for the next table entry. The caller may

then call get_next again with the returned Vb. The caller must determine when

to stop calling get_next based on return Vb Oid values.

//--------[get]---

int get(Vb *vb, // pointer to array of vb objects

 int vb_count, // count of vb objects

 long int &err_status, // returned error status

 long int &err_index, // returned error index

 const char *dest_addr) // get address

//---------[get next]--------------------------------------

 int get_next(Vb *vb, // pointer to array of vb objects

 int vb_count, // count of vb objects

 long int &err_status, // returned error status

 long int &err_index, // returned error index

 const char *dest_addr) // get address

SNMP++ HP RND 1/18/95 12:32 PM 42

SNMP Class Blocked Set Member Function

The set member function allows setting agent objects. The caller fills in the

Vb’s to be set with the Oid values. Returned will be the status of the set.

SNMP Class Asynchronous Member Functions

When SNMP++ objects are instantiated as async objects, asynchronous member

functions may be utilized. For async SNMP++ objects, it is the programmers

responsibility to handle time-outs and retries. Async objects lend themselves well to

SNMP access which occurs repeatedly. This includes updating graphs or any other time

driven event where retries will occur automatically.

SNMP Class Asynchronous Get Member Function

The async get allows getting SNMP objects from the specified agent. The

async get call will return as soon as the request PDU has been sent. It does not

wait for the response PDU. The programmers defined callback, which was

specified upon the SNMP’s object async instantiation, will be called when the

response PDU has arrived. The implementation of the callback may utilize the

response payload in any desired manner.

//---------[set]--

 int set(Vb *vb, // pointer to array of objects

 int vb_count, // count of objects

 long int err_status, // returned error status

 long int err_index, // returned error index

 const char *dest_addr) // target address

//------------------------[get async]----------------------------------

 int Snmp:: get_async(Vb *vb, // pointer to array of vb objects

 int vb_count, // count of vb objects

 long int req_id, // request id to use, returned

 const char *dest_addr) // address to send to

SNMP++ HP RND 1/18/95 12:32 PM 43

SNMP Class Asynchronous Set Member Function

The asynchronous set member function works in the same manner as the get

counter part.

SNMP Class Asynchronous Get Next Member Function

The asynchronous get-next member function works in the same manner as does

async get and async set.

//------------------------[set async]----------------------------------

 int Snmp::set_async(Vb *vb, // pointer to array of vb objects

 int vb_count, // count of vb objects

 long int req_id, // request id to use, returned

 const char *dest_addr) // address to send to

//------------------------[get next async]-----------------------------

 int get_next_async(Vb *vb, // pointer to array of vb objects

 int vb_count, // count of vb objects

 long int req_id, // request id to use, returned

 const char *dest_addr) // address to send to

SNMP++ HP RND 1/18/95 12:32 PM 44

Medina’s Many Engine Member Functions

Moises Medina, software engineer at HP Roseville Networks division, extended

SNMP++ to include member functions for getting and setting SNMP objects in bulk

using SNMP v1. The many engine and the supporting member functions are generic and

are part of the SNMP base class. The many engine is convenient when getting or setting

many objects of the same type. This comes in handy when getting or setting an entire

row of objects. The many engine interface allows getting or setting up to fifty objects in

one call. The underlying many engine breaks up the request in separate PDU requests,

based on max PDU sizes. An example would be getting port status for a forty eight port

hub. With a single call, all forty eight Vb objects can be obtained. The many engine

would transparently break up the request into three PDU’s and when finished will return

the resulting Vb’s. As SNMP++ migrates to SNMP v2, the internals of the many engine

will utilize V2’s get-bulk. All many engine member functions require a base Oid. The

base Oid specifics the starting Oid used in the many operation. The caller also specifies

how many objects are to be gathered. The many engine will start at the base Oid and get

all objects up the number specified by concatenating instance values. For example,

given a base Oid value of ‘1.2.3.0’ and the number of values of 20, the many engine

would get or set values ‘1.2.3.1’ through ‘1.2.3.20’.

SNMP Class Get Many

The Snmp::get_many member function may be used to retrieve ints, long ints,

IP addresses and octet arrays with a single call.

SNMP Class Set Many

//---------------------------[get many ,ints]--------------------------

 int Snmp::get_many(Oid base_oid, // base oid to use

 int *ret_values, // returned int values

 int num_values, // number of values to get

 long int &err_status, // returned error status

 long int &err_index, // returned error index

 const char *dest_addr); // target address

//---------------------------[set many ,ints]--------------------------

 int Snmp::set_many(Oid base_oid, // base oid to use

 int *in_values, // values to set

 int num_values, // number of values to set

 long int &err_status, // returned error status

 long int &err_index, // returned error index

 const char *dest_addr); // target address

SNMP++ HP RND 1/18/95 12:32 PM 45

SNMP Class Trap Methods

SNMP++ allows the reception of traps through use of an SNMP++ asynchronous object. Traps

are an asynchronous event therefor asynchronous SNMP object must be used. An important

consideration when receiving traps is the concept of trap port ownership. For UDP or IPX

sockets, a well known trap port is utilized to receive incoming trap PDU’s. Agents throwing traps

direct their traps to a defined address and port. The manager listens on the well known port for

any incoming traps then receives and processes them. Since on a given machine there is only one

well know trap port, it must be shared if more than one application is to receive traps on the

machine. This is commonly known as the trap server. For WinSNMP, WinSNMP acts as the trap

server. It owns and listens on the well known port. MS-Windows applications may then receive

their traps from the WinSNMP.DLL. For other platforms such as Novell’s NMS or HPUX Open

View, the platforms themselves own the trap port. In order to receive traps on a given platform,

SNMP++ must interface with the trap server on that platform. Currently, SNMP++ receives traps

only from WinSNMP.

SNMP Class Trap Registration Member Function

SNMP++ for async objects allows registration for the reception of traps through the

Snmp::trap_register member function. When a registered trap arrives, it will be directed

to the specified call back function which was used when instantiating the SNMP async

object. Traps are received as SNMP version 2 format traps, even if they were transmitted

as version 1 traps. Version 1 traps are translated to version 2 traps as defined in the

SNMPv2 coexistence document [RFC 1452]. In the v2 format for traps, the first Vb is

the timestamp, the second vb is the trap id and the third through the last are the payload.

The time stamp may be extracted from the Vb object as a TimeTicks object. The trap

identifier may be extracted as an Oid object. The parameters on the member function

specify the managers address, agents address (agent sending the traps), an Oid mask

and a flag for turning the traps on or off. The Oid mask allows filtering specific traps

based on their id.

//----------------------------[trap register]--------------------------

 // To be used only for async Snmp objects

 // Note, WinSnmp v1 informs the trap receiver with SnmpV2 type

 // trap messages. In SnmpV2, the trap format consists of N variable

 // bindings where...

 // - the first vb is the time stamp

 // - the second vb identifies the trap

 // - the third through N vb's are the payload

 //

 //

 int Snmp::trap_register(const char * mgr_addr, // managers source address

 const char * agent_addr, // agents address

 Oid oidmask, // oid mask or empty for all

 int on); // boolean for on or off

SNMP++ HP RND 1/18/95 12:32 PM 46

SNMP Class Error Return Codes

There are a variety of return codes when using SNMP++. The error codes are common across

platforms and may aid the application programmer in finding and detecting error conditions.

SNMP_CLASS_SUCCESS 0

 Operation was Successful.

SNMP_CLASS_START_ERR -1

Transport start up has failed. Verify that the network protocol is in place and is working.

SNMP_CLASS_END_ERR -2

Unable to shut down transport services.

SNMP_CLASS_CONSTRUCT_ERR -3

Unable to construct an SNMP object. Verify that there is enough memory available and

that UDP or IPX sockets are available.

SNMP_CLASS_VBL_ERR -4

Internal error while creating an SNMP SMI Vbl.

SNMP_CLASS_OID_ERR -5

Internal error while creating an SMI Oid.

SNMP_CLASS_SETVB_ERR -6

Internal error while setting a SMI Vb.

SNMP_CLASS_ENTITY_ERR -7

Internal error while creating an SNMP entity.

SNMP_CLASS_CONTEXT_ERR -8

Internal error while creating an SNMP context.

SNMP_CLASS_PDUCREATE_ERR -9

Internal error while creating an SMI PDU.

SNMP_CLASS_SEND_ERR -10

Error sending request PDU. This error may occur if the destination address does not

exists or if the transport services are not working. Try pinging the device to verify the

address exists.

SNMP_CLASS_REC_ERR -11

Error while receiving the PDU response.

SNMP_CLASS_PDUGET_ERR -12

An error occurred while getting the Vbl from the PDU.

SNMP_CLASS_BAD_RESPONSE -13

The specified agent responded with a bad response PDU not matching the request type.

SNMP_CLASS_BAD_ID -14

The agents response did not match the request id. These errors cannot occur in blocked

mode since bad responses are discarded automatically.

SNMP++ HP RND 1/18/95 12:32 PM 47

SNMP_CLASS_BADVB_COUNT -15

The response PDUs id is a match but the Vb count does not match.

SNMP_CLASS_TIMEOUT -16

Timed out while waiting for response PDU. The error can happen and should be treated

as a benign condition. Try increasing the default retry or timeout values.

SNMP_CLASS_ENGINE_BUSY -17

The SNMP engine was busy. This error should not happen unless you are reentering an

already pending request. Pending blocked mode requests should not be reentered.

SNMP_CLASS_CREATE_FAIL -18

MS-Windows Only, Unable to create a hidden window class.

SNMP_CLASS_REG_FAIL -19

MS-Windows Only, Unable to register a SNMP++ window.

SNMP_CLASS_CONT_FAIL -20

MS-Windows Only, Unable to create a PDU container.

SNMP_CLASS_QUEUE_FULL -21

MS-Windows Only, the PDU container class is full. Default is twenty concurrent

outstanding requests.

SNMP_ERR_STATUS_SET -22

The SMI error status flag has been set. See error status and error index for details on

error.

SNMP_CLASS_ILLEGAL_MODE -23

This error will occur is an asynchronous object is attempted to be used for blocked

requests or a blocked object used for asynchronous requests.

SNMP_CLASS_SHUTDOWN -25

A blocked mode request received a shutdown request while waiting for the response

PDU.

SNMP_CLASS_TRAP_IN_USE -26

Failed to register for traps. Trap port may already be in use.

SNMP_CLASS_TRAP_REG_FAIL -27

Failed to register for the specific trap is requested.

SNMP_CLASS_PARTIAL_SHUTDOWN -28

While waiting for a blocked mode request. A partial shutdown message was processed.

SNMP++ HP RND 1/18/95 12:32 PM 48

SNMP Class Examples

Following is a set of examples which illustrate the usage of SNMP++.

SNMP++ Example #1, Getting a Bunch of Values in HPUX

#include “snmp.h”

void hpux_example()

{

 int status;

 Vb vb[8];

 long int error_status, error_index;

 char name[255];

 unsigned long long_val;

 // start up the transport services

 transport_start_up(NULL, (Protocol) ip);

 // instantiate a snmp object

 Snmp snmp(NULL, (protocol) ip, “public”,&status);

 if (status != SNMP_CLASS_SUCCESS)

 {

 printf(“error constructing snmp object\n”);

 return;

 }

 // set retry and timeout

 snmp.set_retry(3);

 snmp.set_timeout(2000); // 2 seconds

 // set up the Vb’s required

 Vb[0].set_oid(“1.3.6.1.2.1.1.1.0”); // system descriptor

 Vb[1].set_oid(“1.3.6.1.2.1.1.3.0”); // system up time

 Vb[2].set_oid(“1.3.6.1.2.1.1.2.0”); // system id

 Vb[3].set_oid(“1.3.6.1.2.1.1.4.0”); // system contact

 Vb[4].set_oid(“1.3.6.1.2.1.1.5.0”); // system name

 Vb[5].set_oid(“1.3.6.1.2.1.1.6.0”); // system location

 Vb[6].set_oid(“1.3.6.1.2.1.1.7.0”); // system services

 Vb[7].set_oid(“1.3.6.1.2.1.2.2.1.1.0”); // number of network interfaces

 // get the objects

 status = snmp.get((Vb*) &vb,8,error_status, error_index,”15.29.32.143”);

 if (status != SNMP_CLASS_SUCCESS)

 {

 printf(“error getting objects = %d\n”,status);

 return;

 }

 // print out the object values

 vb[0].get_value(name);

 printf(“System Descriptor = %s\n”,name);

}

SNMP++ HP RND 1/18/95 12:32 PM 49

Getting a Bunch of Values in HPUX Continued....

 vb[1].get_value(long_val);

 printf(“System Up Time = %ld\n”,long_val);

 Oid soid;

 vb[2].get_value(soid);

 printf(“System Object Id = %s\n”, soid.strval());

 vb[3].get_value(name);

 printf(“System Contact = %s\n”,name);

 vb[4].get_value(name);

 printf(“System Name = %s\n”,name);

 vb[5].get_value(name);

 printf(“System Location = %s\n”,name);

 vb[6].get_value(long_val);

 printf(“System Services = %ld\n”,long_val);

 vb[7].get_value(long_val);

 printf(“Number of Interface = %ld\n”,long_val);

 transport_shutdown((Protocol) ip);

} // end hpux example

SNMP++ HP RND 1/18/95 12:32 PM 50

SNMP++ Example #2, Setting Values in MS-Windows MFC

void CMainFrame::OnGetst()

{

 // this example sets up a network device for a os image download

 int status;

 char msg[80];

 Vb vb[4];

 unsigned char ipaddr[6] = {10,4,8,82,0,69};

 CDC *cdc;

 long int error_status, error_index;

 // DownLoadStatus

 vb[0].set_oid(DOWNLOAD_STATUS_OID);

 vb[0].set_value(CREATE_AND_GO);

 // DownLoadTDomain

 vb[1].set_oid(DOWNLOAD_DOMAIN_OID);

 Oid oid1(UDP_FAMILY_OID);

 vb[1].set_value(oid1);

 // DownLoadTAddress

 vb[2].set_oid(DOWNLOAD_ADDRESS_OID);

 vb[2].set_value((unsigned char *) ipaddr,6);

 // DownLoadFileName

 vb[3].set_oid(DOWNLOAD_FILENAME_OID);

 vb[3].set_value((char *) "test36.dat");

 // construct a snmp object

 Snmp snmp((WORD) GetSafeHwnd(), (Protocol) ip, "public", &status);

 if (status != SNMP_CLASS_SUCCESS)

 MessageBox("Unable to Create Snmp Object");

 else

 {

 // do the get

 status = snmp.set((Vb *) &vb,

 4,

 error_status,

 error_index,

 "10.4.8.78");

 if (status != SNMP_CLASS_SUCCESS)

 {

 sprintf(msg,"Set Failure = %d",status);

 MessageBox(msg);

 }

 else

 {

 cdc = GetDC();

 cdc->TextOut(5,5,"Set Successful !!",17);

 ReleaseDC(cdc);

 }

 }

SNMP++ HP RND 1/18/95 12:32 PM 51

Network Transport Mechanisms

SNMP++ is designed to be portable across multiple OS platforms and run across multiple transport

mechanisms. SNMP++ has been designed to run across IP and IPX. In order for SNMP++ to run over

these different transport layers, two additional function calls are needed.

Transport Start Up

An application wishing to utilize the SNMP class must first call the transport_start_up function

before doing any request member functions. This function verifies that the type of transport

service requested is present and working. A fail status will be returned is the service is not

available. This function takes an instance pointer (not applicable for UNIX) and a protocol type.

Currently IP and IPX are supported.

Transport Shut Down

When an application is complete, transport_shut_down should be called. This function shuts

down the transport services for the type specified.

//-----------[transport layer start up]-------------------------

// Starts up transport services for protocol type passed in.

// Every call to this function should be followed by a

// transport_shut_down. This function must be called prior

// to instantiating and using snmp objects.

int transport_start_up(WORD hInst,Protocol protocol);

//-----------[transport layer shut down]-------------------------

// Shuts down transport services based on the protocol type passed

// in. Every call to this function should be preceeded by a call to

// transport_start_up.

int transport_shut_down(Protocol protocol);

SNMP++ HP RND 1/18/95 12:32 PM 52

SNMP++ Proposed New Features

There are a variety of new features and enhancements which may be included to SNMP++. Extensibility

may be accomplished either through inheritance and redefinition or via adding new attributes and

behavior to the classes. Below are listed possible enhancements ,they are not ordered.

Support for SNMP version 2

Currently SNMP++ only supports version 1. WinSnmp does not support version 2 at the time this

document was authored. Full V2 support includes the following areas.

• Additional SMI Value Types

v2 adds a variety of new SMI types including 64-bit counters and Uinteger types. Some

of these features are already in SNMP++.

• Protocol Operations

v2 adds new protocol requests including ‘get_bulk’ and ‘inform’ request Pdu’s.

• • Security

• • Manager to Manager Capability

Traps For UNIX

Trap coexistence with HP OpenView for HPUX. A trap server for stand alone operation.

Asynchronous Mode For UNIX

Async mode is currently only available for MS-Windows.

Demo Engine

SNMP++ demo engine which would allow a local database to be present to simulate an agent. All

gets & set would read or write from a local ASCII database. The database could be made up and

customized by anyone with knowledge of the agent MIB.

Community Name Database Access

Allow community names to be accessed from a community name database.

SNMP++ Script

Scripting language written using Lex an Yacc for easy SNMP coding.

Oid Database

Allow macro names to be used for referencing Oid’s.

Full Win32 Support

Full Win32 support running allowing Win32 network management apps.

Solaris OS Support

Support for Sun Solaris OS.

Apple OS Support

OS/2 Support

NMS Support

SNMP++ HP RND 1/18/95 12:32 PM 53

Listing and Description of Files

• oid.h - Class definition for the Object Identification class.

• vb.h - Class definition for the Variable binding class.

• • pdu_cls.h - Class definition for the PDU Container Class. (MS-Windows Only)

• snmp.h - Class definition for the SNMP class.

• • snmp_pp.lib - SNMP++ MS-Windows Win16 Library

• • libsnmp++.a - SNMP++ HPUX library for HPUX rev 9.X for series 700 & 800 series

workstations.

Required Files For MS-Windows Development

oid.h

vb.h

snmp.h

pdu_cls.h

snmp_pp.lib

winsnmp.h, winsnmp.lib, winsnmp.dll.

Required Files For HPUX Development

oid.h

vb.h

snmp.h

libsnmp++.a

SNMP++ HP RND 1/18/95 12:32 PM 54

 References

[Comer]

Comer, Douglas E. , Internetworking with TCP/IP, Principles, Protocols and Architecture, Volume I

Prentice Hall, 1991.

[Gama, Helm, Johnson, Vlissides]

Erich Gama, Richard Helm , Ralph Johnson, John Vlissides , Design Patterns, Addison Wesley, 1995.

[Meyers]

Meyers, Steve, Effective C++, Addison Wesley, 1994.

[Petzold]

Petzold Charles, Programming MS-Windows, Microsoft Press

[RFC 1452]

J. Case, K. McCloghrie, M. Rose, S. Waldbusser, Coextistence between version 1 and version 2 of the

Internet-standard Network Management Framework, May 03, 1993.

[RFC 1442]

 J. Case, K. McCloghrie, M. Rose, S. Waldbusser, Structure of Management Information for version 2 of

the Simple Network Management Protocol (SNMPv2), May 03 , 1993.

[Rose]

Rose, Marshall T. , The Simple Book, An Introduction to Internet Management , Second Edition,

Prentice Hall Series 1994.

[Rumbaugh]

Rumbaugh, James, Object-Oriented Modeling and Design, Prentice Hall, 1991.

[Saks]

Saks, Dan, C++ Programming Guidelines, Thomas Plum & Dan Sacks, 1992.

[Stallings]

Stallings, William, SNMP, SNMPv2 and CMIP The Practical Guide to Network Management Standards,

Addison Wesley, 1993.

[Stroustup]

Stroustrup , Bjarne, The C++ Programming Language, Edition #2 Addison Wesley, 1991.

[WinSNMP]

WinSNMP, Windows SNMP An Open Interface for Programming Network Management Application

under Microsoft Windows. Version 1.1.

[WinSockets]

WinSockets, Windows Sockets, An Open Interface for Network Programming under Microsoft Windows.

SNMP++ HP RND 1/18/95 12:32 PM 55

Appendix A, Public Oid Class Interface:

public:

 // constructor using no arguments

 // initialize octet ptr and string

 // ptr to null

 Oid::Oid(void);

 // constructor using a dotted string

 Oid::Oid(const char WINFAR * dotted_oid_string);

 // constructor using another oid object

 Oid::Oid (const Oid &oid);

 // destructor

 Oid::~Oid();

 // assignment to a string operator overloaded

 Oid::Oid& operator=(const char WINFAR *dotted_oid_string);

 // assignment to another oid object overloaded

 Oid::Oid& operator=(const Oid &oid);

 // equivalence operator overloaded

 friend int operator==(Oid &x,Oid &y);

 // equivalence operator overloaded

 friend int operator==(Oid &x,char WINFAR *dotted_oid_string);

 // append operator, appends a string

 Oid::Oid& operator+=(const char WINFAR *a);

 // appends an int

 Oid::Oid& operator+=(const unsigned long i);

 // return an oid as a dotted string value

 char WINFAR * Oid::strval();

 // return dotted string value from the right

 // where the user specifies how many positions to print

 char WINFAR * Oid::strval(unsigned long n);

 // return a dotted string where the caller specifies

 // where the starting position is and how many to include to the right

 char WINFAR * Oid::strval(unsigned long start, unsigned long n);

// return the WinSnmp oid part

 SmiLPOID Oid::oidval();

SNMP++ HP RND 1/18/95 12:32 PM 56

Appendix A, Public Oid Class Interface Continued:

 // set the leftmost instance

 void Oid::set_instance(unsigned long i);

 // modify position n of an oid to value i

 // indexes are 1 to n

 void Oid::set_instance(unsigned long n, // instance # to change

 unsigned long i); // new value

 // returns the rightmost value of the oid

 unsigned long Oid::get_instance();

 // returns the value of an oid

 // at position n

 unsigned long Oid::get_instance(unsigned long n);

 // return the len of the oid

 unsigned long Oid::len();

 // trim off the n leftmost values of an oid

 // Note!, does not adjust actual space for

 // speed

 void Oid::trim(unsigned long n);

 // compare the n leftmost bytes

 // returns TRUE or FALSE

 int Oid::nCompare(unsigned long n, const Oid &o);

SNMP++ HP RND 1/18/95 12:32 PM 57

Appendix B, Public Vb Class Interface:

public:

 //-----[constructors / destructors]-------------------------------

 // constructor with no arguments

 // makes an vb, unitialized

 Vb::Vb(void);

 // constructor to initialize the oid

 // makes a vb with oid portion initialized

 Vb::Vb(const Oid oid);

 // destructor

 // if the vb has a oid or an octect string then

 Vb::~Vb();

 //-----[set oid / get oid]--

 // set value oid only with another oid

 void Vb::set_oid(const Oid &oid);

 // set oid value with a const string

 void Vb::set_oid(const char WINFAR * dotted_oid_string);

 // get oid portion

 void Vb::get_oid(Oid &oid);

//-----[set value]--

 // set the value with an int

 void Vb::set_value(int i);

 // set the value with a long signed int

 void Vb::set_value(long int i);

 // set the value with an unsigned long int

 void Vb::set_value(unsigned long int i);

 // set value for building an 64 bit counter

 void Vb::set_value(unsigned long int hi,unsigned long int lo);

 // set value for setting an oid

 // creates own space for an oid which

 void Vb::set_value(Oid &varoid);

 // set value for setting an octet string

 // creates own space for a octet

 void Vb::set_value(unsigned char WINFAR * ptr, unsigned long len);

SNMP++ HP RND 1/18/95 12:32 PM 58

Appendix B, Public Vb Class Interface Continued:

 // set value on a string

 // makes the string an octet

 // this must be a null terminates string

 void Vb::set_value(char WINFAR * ptr);

 // set an ip address as a value

 void Vb::set_value (Iptype ipaddr);

 // set value for timeticks

 void Vb::set_value(TimeTicks timeticks);

 // set value for a counter

 void Vb::set_value(Counter counter);

 // set value for a gauge

 void Vb::set_value(Gauge gauge);

//----[get value]--

 // get value int

 // returns 0 on success and value

 int Vb::get_value(int &i);

 // get the signed long int

 // returns 0 on success and a value

 int Vb::get_value(long int &i);

 // get the unsigned long int

 // returns 0 on success and a value

 int Vb::get_value(unsigned long int &i);

 // get value for building an 64 bit counter

 // returns 0 on success and a value

 int Vb::get_value(unsigned long int &hi,unsigned long int &lo);

 // get the oid value

 // free the existing oid value

 // copy in the new oid value

 int Vb::get_value(Oid &varoid);

 // get a unsigned char string value

 // destructive, copies into given ptr

 // also returned is the len length

 // Note! the caller must provide a target string big

 // enough to handle the vb string

 int Vb::get_value(unsigned char WINFAR * ptr, unsigned long &len);

 // get an unsigned char array

 // caller specifies max len of target space

 int Vb::get_value(unsigned char WINFAR * ptr, // pointer to target space

 unsigned long &len, // returned len

 unsigned long maxlen); // max len of target space

SNMP++ HP RND 1/18/95 12:32 PM 59

Appendix B, Public Vb Class Interface Continued:

 // get a char * from an octet string

 // the user must provide space or

 // memory will be stepped on

 int Vb::get_value(char WINFAR *ptr);

 // get an ip address

 int Vb::get_value(Iptype ipaddr);

 // get value for timeticks

 int Vb::get_value(TimeTicks &timeticks);

 // get value for a counter

 int Vb::get_value(Counter &counter);

 // get value for a gauge

 int Vb::get_value(Gauge &gauge);

 //-----[misc]--

 // return the current syntax

 // This method violates Object Orientation but may be useful if

 // the caller has a vb object and does not know what it is.

 // This would be useful in the implementation of a browser.

 SmiUINT32 Vb::get_syntax();

 // return smivalue portion

 // this should really be a friend function

 // since it violates data hiding

 SmiLPVALUE Vb::get_smival();

SNMP++ HP RND 1/18/95 12:32 PM 60

Appendix C, Public SNMP Class Interface:

public:

 //------------------[constructor,blocked usage]---------------------

 Snmp::Snmp(WORD hwnd, // parent handle

 Protocol protocol // type of protocol to use

 const char *community_name, // community name

 int *status); // construction status

 //------------------[constructor, async usage]-----------------------

 Snmp:: Snmp(WORD hwnd, // parent handle

 Protocol protocol, // type of protocol to use

 const char *community_name, // community name

 snmp_callback lpcallback, // callback function address

 int *status); // construction status

 //-------------------[destructor]------------------------------------

 Snmp::~Snmp();

 //--------------------[set timeout]----------------------------------

 void Snmp::set_timeout(DWORD t);

 //---------------------[get timeout]---------------------------------

 DWORD Snmp::get_timeout();

 //----------------------[set retry]----------------------------------

 void Snmp::set_retry(int r);

 //----------------------[get retry]----------------------------------

 int Snmp::get_retry();

 //----------------------[set the community name]---------------------

 void Snmp::set_community(const char * new_name);

 //----------------------[set community name ptr and len]

 void Snmp::set_community(const char * new_name, int len);

 //----------------------[set partial shut down value]-----------------

 void Snmp::set_shutdown_val(WORD val) { partial_shutdown_val = val;};

//------------------------[get]---------------------------------------

 int Snmp::get(Vb *vb, // pointer to array of vb objects

 int vb_count, // count of vb objects

 long int &err_status, // returned error status

 long int &err_index, // returned error index

 const char *dest_addr); // get address

SNMP++ HP RND 1/18/95 12:32 PM 61

Appendix C, Public SNMP Class Interface, Continued:

//------------------------[get async]----------------------------------

 int Snmp::get_async(Vb *vb, // pointer to array of vb objects

 int vb_count, // count of vb objects

 long int req_id, // request id to use, returned

 const char *dest_addr); // address to send to

 //------------------------[get next]-----------------------------------

 int Snmp::get_next(Vb *vb, // pointer to array of vb objects

 int vb_count, // count of vb objects

 long int &err_status, // returned error status

 long int &err_index, // returned error index

 const char *dest_addr) ; // get address

 //------------------------[get next async]-----------------------------

 int Snmp::get_next_async(Vb *vb, // pointer to array of vb objects

 int vb_count, // count of vb objects

 long int req_id, // request id to use, returned

 const char *dest_addr); // address to send to

 //-------------------------[set]---------------------------------------

 int Snmp::set(Vb *vb, // pointer to array of objects

 int vb_count, // count of objects

 long int &err_status, // returned error status

 long int &err_index, // returned error index

 const char *dest_addr) ; // target address

 //------------------------[set async]----------------------------------

 int Snmp::set_async(Vb *vb, // pointer to array of vb objects

 int vb_count, // count of vb objects

 long int req_id, // request id to use, returned

 const char *dest_addr); // address to send to

//---------------------------[get many ,ints]--------------------------

 int Snmp::get_many(Oid base_oid, // base oid to use

 int *ret_values, // returned int values

 int num_values, // number of values to get

 long int &err_status, // returned error status

 long int &err_index, // returned error index

 const char *dest_addr); // target address

 //---------------------------[get many ,long ints]---------------------

 int Snmp::get_many(Oid base_oid, // base oid to use

 long int *ret_values, // returned int values

 int num_values, // number of values to get

 long int &err_status, // returned error status

 long int &err_index, // returned error index

 const char *dest_addr); // target address

SNMP++ HP RND 1/18/95 12:32 PM 62

Appendix C, Public SNMP Class Interface, Continued:

//---------------------------[get many ,ip addresses]------------------

 int Snmp::get_many(Oid base_oid, // base oid to use

 Iptype ret_values[], // returned int values

 int num_values, // number of values to get

 long int &err_status, // returned error status

 long int &err_index, // returned error index

 const char *dest_addr); // target address

 //---------------------------[get many array of chars]-----------------

 int Snmp::get_many(Oid base_oid, // base oid to use

 unsigned char ret_values[][MAX_ADDR_LEN],

 int num_values, // number of values to get

 long int &err_status, // returned error status

 long int &err_index, // returned error index

 const char *dest_addr); // target address

 //---------------------------[set many ,ints]--------------------------

 int Snmp::set_many(Oid base_oid, // base oid to use

 int *in_values, // values to set

 int num_values, // number of values to set

 long int &err_status, // returned error status

 long int &err_index, // returned error index

 const char *dest_addr); // target address

 //---------------------------[set many ,long ints]---------------------

 int Snmp::set_many(Oid base_oid, // base oid to use

 long int *in_values, // values to set

 int num_values, // number of values to set

 long int &err_status, // returned error status

 long int &err_index, // returned error index

 const char *dest_addr); // target address

 //---------------------------[set many ,iptypes]---------------------

 int Snmp::set_many(Oid base_oid, // base oid to use

 Iptype in_values[], // values to set

 int num_values, // number of values to set

 long int &err_status, // returned error status

 long int &err_index, // returned error index

 const char *dest_addr); // target address

 //---------------------------[set many ,uinsigned chars]-------------

 int Snmp::set_many(Oid base_oid, // base oid to use

 unsigned char in_values[][MAX_ADDR_LEN], // values to set

 int num_values, // number of values to set

 long int &err_status, // returned error status

 long int &err_index, // returned error index

 const char *dest_addr); // target address

SNMP++ HP RND 1/18/95 12:32 PM 63

Appendix C, Public SNMP Class Interface, Continued:

//----------------------------[trap register]--------------------------

 // To be used only for async Snmp objects

 // Note, WinSnmp v1 informs the trap receiver with SnmpV2 type

 // trap messages. In SnmpV2, the trap format consists of N variable

 // bindings where...

 // - the first vb is the time stamp

 // - the second vb identifies the trap

 // - the third through N vb's are the payload

 //

 //

 int Snmp::trap_register(const char * mgr_addr, // managers source address

 const char * agent_addr, // agents address

 Oid oidmask, // oid mask or empty for all

 int on); // boolean for on or off

SNMP++ HP RND 1/18/95 12:32 PM 64

Appendix D, Public Timeticks, Counter and Gauge Class Interface:

public:

 // constructor with no args

 TimeTicks::TimeTicks(void)

 // constructor with an unsigned long

 TimeTicks::TimeTicks(unsigned long i)

 // overloaded equivalence operator to an unsigned long

 TimeTicks::TimeTicks& operator=(unsigned long int i)

 // overloaded equivalence operator to another Timeticks object

 TimeTicks::TimeTicks& operator=(const TimeTicks &uli)

 // behavior like an unsigned long int

 operator Counter::unsigned long()

 public:

 // construct a counter object

 Counter::Counter(void)

 // construct a counter with an unsigned long

 Counter::Counter(unsigned long i)

 // overloaded assignment to an unsigned long int

 Counter::Counter& operator=(unsigned long int i)

 // overloaded assignment to another counter object

 Counter& operator=(const Counter &uli)

 // give it the full functionality of an unsigned int

 operator Counter::unsigned long()

 public:

 // constructor

 Gauge::Gauge(void)

 // constructor with an unsigned long

 Gauge::Gauge(unsigned long i)

 // overloaded assignment with an unsigned long

 Gauge::Gauge& operator=(unsigned long int i)

 // overloaded assignment with another gauge

 Gauge::Gauge& operator=(const Gauge &uli)

 // give it full functionality of an unsigned long

 operator Gauge::unsigned long()

SNMP++ HP RND 1/18/95 12:32 PM 65

