
About this Help document
OpenScript Help, version 1.5

February 16, 1991

OpenScript Encyclopedia

Main Topics:
Using this Encyclopedia Glossary

Commands Parameters
Constants Properties
Functions Script Editor Shortcut Keys
Handlers/Control Structures Special Terms
Messages Special Variables
Operators Using DLLs with ToolBook

© Copyright 1989-1991 by Asymetrix Corporation. All rights reserved.
ToolBook and OpenScript are registered trademarks of and DayBook is a

trademark of Asymetrix Corporation.
Special thanks to Greg Riker

Adobe Type Manager® and PostScript® are registered trademarks of
Adobe Systems, Inc. Corel Draw!® is a registered trademark of Corel
Systems Corporation. dBase III® is a registered trademark of Ashton-Tate.
Micrografx(tm), Micrografx Designer(tm), and Micrografx Draw(tm) are
trademarks of Micrografx, Inc. PageMaker® is a registered trademark of
Aldus Corporation. Pixie(tm) is a trademark of Zenographics, Inc.
PowerPoint® is a registered trademark of Microsoft Corporation. Guide(tm)
is a trademark of Owl International, Inc. Scrapbook+(tm) is a trademark of
Eikon Systems, Inc.

How to use OpenScript Help
Calling up OpenScript Help

Press F1 while the active window is the ToolBook Script Editor, the ToolBook
Command window, or the ToolBook Debugger.
If you press F1 while in ToolBook, and the active window is not one of those, the
Help Book, and not OpenScript Help, will be opened automatically.

Context sensitive help
1. Select one or more words in the Script Editor or the Command window.
2. Press F1.   
If the first word in the selection is an OpenScript keyword, OpenScript Help will
open to the proper page automatically. If it is not an OpenScript keyword,
OpenScript Help will open to the Index page.

Script Editor shortcut keys Quick Reference
Keyboard shortcut keys for the script editor

Ctrl+X Exit/Cancel
Tab Inserts an actual tab character (ANSI 09) instead of spaces
Ctrl+Tab Indents the selection one tab stop (formerly Ctrl+Right)
Ctrl+Left Moves the insertion point left one word
Ctrl+Right Moves the insertion point right one word
Ctrl+Home Moves the insertion point to the top of the script
Ctrl+End Moves the insertion point to the bottom of the script
Ctrl+PgUp Moves the insertion point to the first word in the display
Ctrl+PgD Move the insertion point to the last word in the display
Shift+Tab Moves the selection back one tab stop (formerly Ctrl+Left)

For all Ctrl+arrow key shortcuts, you can press Shift to extend the selection. For
example, Shift+Ctrl+Left extends the selection one word to the left.

Constants Quick reference
black LF red
blue leftQuote rightQuote
CR magenta space
CRLF null tab
cyan pi white
formfeed quote yellow
green
Key constants

black Constant

Description
The color black.

Value
The value is 0,0,0. These three numbers represent hue, lightness, and
saturation.

blue Constant

Description
The color blue.

Value
The value is 240,50,100. These three numbers represent hue, lightness, and
saturation.

cr Constant
The carriage return constant (ANSI 13).

crlf Constant
The carriage return/linefeed constant (ANSI 13/ANSI 10). ToolBook evaluates the
crlf constant as two characters. All text lines in fields are terminated with the
crlf constant.

cyan Constant

Description
The color cyan.

Value
The value is 180,50,100. These three numbers represent hue, lightness, and
saturation.

formfeed Constant
A character that starts a new page or a new paragraph, depending on the file
format. The ANSI value of the formfeed constant is 12.

green Constant

Description
The color green.

Value
The value is 120,50,100. These three numbers represent hue, lightness, and
saturation.

leftQuote Special Term
The left quotation constant (ANSI 171).

lf Constant
The linefeed constant (ANSI 10).

magenta Constant

Description
The color magenta.

Value
The value is 300,50,100. These three numbers represent hue, lightness, and
saturation.

null Constant

Description
The null value.

Value
The value of the null constant is "" (a string with a charCount of 0).

Examples
set text of field id 1 to null

-- Deletes all text in field id 1

-- Prints pages where there is something in field Name
to handle print

set printerConditions to \
"text of field ""Name"" of this page is not null"

start spooler
print all pages

end spooler
end print

pi Constant

Description
The arithmetic value which is the ratio of the circumference to the diameter of a
circle.

Value
The value of pi is 3.141592653589793.

quote Constant

Description
The quotation mark (").

Examples
Usually, when ToolBook evaluates a string that begins and ends with quotation
marks, it strips out the quotation marks. If you want ToolBook to include quotation
marks as part of a string, you can use the quote constant and the & operator,
like this:
put "Bill" && quote & "The Whiz" & quote && "Chen" \

into text of field "Contestant 2"

Another way to include a quotation mark in a string is to use two quotation marks.
For example, you could write the previous statement like this:
put "Bill ""The Whiz"" Chen" into \

text of field "Contestant 2"

red Constant

Description
The color red.

Value
The value is 0,50,100. These three numbers represent hue, lightness, and
saturation.

rightQuote Special Term
The right quotation mark constant (ANSI 187).

space Constant
The space character (ANSI 32). The space character is the same character that is
entered when you press the spacebar.

tab Constant
The tab character (ANSI 9). The tab character is what is entered when you press
the Tab key.

white Constant

Description
The color white.

Value
The value is 0,100,0. These three numbers represent hue, lightness, and
saturation.

yellow Constant

Description
The color yellow.

Value
The value is 60,50,100. These three numbers represent hue, lightness, and
saturation.

Key constants
Constant Value Constant Value
keyLeftButton 1 keyRightButton 2
keyCancel 3 keyMiddleButton 4
keyBack 8 keyTab 9
keyClear 12 keyEnter 13
keyShift 16 keyControl 17
keyMenu 18 keyPause 19
keyCapital 20 keyKana 21
keyRomanji 22 keyZenkaku 23
keyHiraGana 24 keyKanji 25
keyEscape 27 keyConvert 28
keyNonConvert 29 keyAccept 30
keyModeChange 31 keySpace 32
keyPrior 33 keyNext 34
keyEnd 35 keyHome 36
keyLeftArrow 37 keyUpArrow 38
keyRightArrow 39 keyDownArrow 40
keySelect 41 keyPrint 42
keyExecute 43 keyCopy 44
keyInsert 45 keyDelete 46
keyHelp 47 key0 48
key1 49 key2 50
key3 51 key4 52
key5 53 key6 54
key7 55 key8 56
key9 57 keyA 65
keyB 66 keyC 67
keyD 68 keyE 69
keyF 70 keyG 71
keyH 72 keyI 73
keyJ 74 keyK 75
keyL 76 keyM 77
keyN 78 keyO 79
keyP 80 keyQ 81
keyR 82 keyS 83
keyT 84 keyU 85
keyV 86 keyW 87
keyX 88 keyY 89
keyZ 90 keyNumpad0 96
keyNumpad1 97 keyNumpad2 98
keyNumpad3 99 keyNumpad4 100
keyNumpad5 101 keyNumpad6 102
keyNumpad7 103 keyNumpad8 104
keyNumpad9 105 keyMultiply 106
keyAdd 107 keySeparator 108
keySubtract 109 keyDecimal 110
keyDivide 111 keyF1 112
keyF2 113 keyF3 114
keyF4 115 keyF5 116
keyF6 117 keyF7 118
keyF8 119 keyF9 120
keyF10 121 keyF11 122
keyF12 123 keyF13 124
keyF14 125 keyF15 126

keyF16 127 keyNumLock 144
keyScrollLock 145 keySemicolon 186
keyEqual 187 keyComma 188
keyDash 189 keyPoint 190
keySlash 191 keyBackQuote 192
keyLeftBracket 219 keyBackSlash 220
keyRightBracket 221 keyQuote 222

The following table describes the keyboard equivalents for some of the less
obvious key constants.
Keyboard equivalents for selected key constants
Key constant Keyboard equivalent
keyClear 5 on numeric keypad when Num Lock is off
keyMenu Alt
keyCapital Caps Lock (down means on, up means off)
keyPrior PgUp
keyNext PgDn
keyMultiply * on numeric keypad
keyAdd + on numeric keypad
keySubtract - on numeric keypad
keyDivide / on numeric keypad
keyDecimal . on numeric keypad when Num Lock is on

Glossary Quick Reference
Application
Argument
Arithmetic expression
Arithmetic function
Author level

Book
Bug
Built-in message
Built-in property
Breakpoint

Call
Character string
Client application
Command
Command window
Comment
Constant
Container
Control structure

Debug window
Debugging
Declare
Default
Dynamic Data Exchange (DDE)
Dynamic Link Library (DLL)

Event
Execute
Execution Suspended message box
Expression

Focus
Function

Gettable property

Handler
Hierarchy

Image control
Initialize
It

Literal
Local variable
Logical expression

Message
Message handler

Message target

Nesting
Numeric value

Offscreen Image
Object
Object hierarchy
Object-oriented language
Operand
Operator

Page unit
Parameter
Persistence
Property

Reader level
Runtime error

Scope
Screen coordinate
Script
Script buffer
Script recorder
Script window
Self
Server application
Settable property
Special terms
Statement
String
String expression
String function
String specifier
Syntax
System
System book
System variable

To get handler
To set handler
ToolBook system
Trace

Unique handler identifier
User-defined function
User-defined message
User-defined property

Value
Variable
Variable window

Windows Dynamic Data Exchange (DDE)

Windows Dynamic Link Library (DLL)

Application    Definition
A computer program that performs specific tasks. A ToolBook application is one or
more books that work together for a particular purpose, such as training,
information management, or entertainment. ToolBook itself is an application that
runs under Microsoft Windows.

Argument Definition
See parameter .

Arithmetic expression Definition
An expression that has arithmetic operators and numeric operands, and results in
a numeric value.

Arithmetic function Definition
A function that performs arithmetic calculations. For example, the
annuityFactor function calculates and returns the ratio of the present value of
an ordinary annuity to the annuity payment.

Author level Definition
The working level in ToolBook that provides tools and commands for creating and
modifying objects, including writing and modifying scripts for objects. Compare
Reader level.

Book Definition
A collection of ToolBook pages stored together in a file, usually based on one
topic. A ToolBook application is made up of one or more books.

Bug Definition
 An error in a script. A bug might keep a script from executing, result in
unpredictable behavior, or provide inaccurate results.

Built-in message Definition
A message ToolBook automatically sends to an object when a particular event
occurs. Built-in messages, which are terms in the OpenScript language, can also
be sent from scripts. Compare User-defined message.

Built-in property Definition
A property that has a corresponding term in the OpenScript language and whose
possible values are determined by ToolBook. Compare User-defined property.

Breakpoint Definition
A flag you set on a term or statement while debugging a script to indicate that
you want ToolBook to pause script execution before executing the term or
statement.

Call Definition
 A reference in a script to another handler.

Character string Definition
See string.

Client application Definition
In Windows DDE (Dynamic Data Exchange), the application that initiates the data
exchange between two Windows applications. See also DDE and Server
application.

Command Definition
A term in the OpenScript language that tells ToolBook what to do. Most
OpenScript commands are verbs, such as go, move, and ask.

Command window Definition
A window in which you can type OpenScript statements and expressions outside
of the context of a script. When you press Enter, ToolBook executes the
statements or expressions.

Comment Definition
Information in a script that explains a part of the script, but does not cause
ToolBook to take any action. Comments start with two hyphens.

Constant Definition
A specific value that can be referred to by name. For example, pi always refers
to the value 3.141592653589793.

Container Definition
Anything that can hold a value. The text of fields, variables, settable properties,
and the Command window are containers. Container names are often used in
scripts to refer to the values they hold.

Control structure Definition
A group of statements that define the conditions under which ToolBook should
perform particular actions and also define what those actions are. For example, an
if/then/else control structure might indicate that some statements will be
executed only if the value in a field is greater than 100, and other statements will
be executed only if the value in that field is less than or equal to 100.

Debug window Definition
The window in which you isolate errors in a script by tracing script execution and
viewing variable values. See also Variable window.

Debugging Definition
The process of finding errors, or bugs, in a script. You use ToolBook’s Debug
window to isolate bugs in a script. After you isolate a bug, you can correct it in the
Script window.

Declare Definition
To specify whether a variable is a local or system variable, which determines its
scope and persistence, and to give the variable a name.

Default Definition
The behavior that ToolBook objects have when they are created. An object’s
default behavior is determined by its type and by the default settings of its
properties. You can change this behavior in a variety of ways, such as changing
the values of an object’s properties, or by writing scripts to define new or different
behavior for the object.

Event Definition
An action that causes ToolBook to send a message automatically. For example,
ToolBook sends the buttonUp message when the left mouse button is clicked.
See also Message.

Execute Definition
To carry out the actions described by the statements in a handler.

Execution Suspended message box Definition
A message box that appears when an error occurs during script execution. This
box contains the unique handler identifier for the handler that was executing
when the error occurred, describes the nature of the error, and gives you the
option of going to the Debug window, going to the Script window, or returning to
Reader level.

Expression Definition
Anything in an OpenScript statement that yields a value, including the name of a
container, the name of a property, a literal value entered in a script, a constant, a
function and its parameters, a group of operators and operands, and a string
specifier.

Focus Definition
The object that will receive the next keyboard event message at Reader level.

Function Definition
A term in the OpenScript language that represents a particular operation that
returns a value based on the parameters you give it. For example, if you type
average(sum1, sum2, sum3) in a script, ToolBook calculates the average of the
values contained in the sum1, sum2, and sum3 variables.

Gettable property Definition
A property whose value you can find and use in a script. For example, to find out
if the value of the highlight property is true or false, you get the value of
the highlight property. All properties are gettable. See also Settable property.

Handler Definition
A group of statements that is executed in response to a particular message or
that defines a user-defined function or property. See also Message handler, To get
handler, and To set handler.

Hierarchy Definition
 See Object hierarchy .

Image Control Definition
Image control in ToolBook is a set of properties and commands that control how a
page and its objects are drawn on the screen. The choice when drawing an object
is whether to draw it directly to the screen or whether to compose it in another
part of memory (called an offscreen image). For offscreen images, ToolBook waits
until all offscreen objects are composed then transfers the resulting image to the
screen.
Drawing directly to the screen allows objects to display more quickly since the
step of transferring the composed image to the screen is skipped. However,
drawing directly to the screen can cause some unwanted flashing of objects,
especially for objects used in animations. Composing the image offscreen usually
results in smoother display but can be somewhat slower.
ToolBook allows you to determine for each object whether it will be drawn
offscreen or directly to the screen.

Initialize Definition
To put a starting value into a variable.

It Definition
A special local variable into which ToolBook puts a value if a destination for the
value has not been specified, and from which ToolBook gets a value if the source
of a value has not been specified.

Literal Definition
A value entered character-by-character in a script. All literal values that contain
spaces or special characters must be placed in quotation marks.

Local variable Definition
 A variable whose scope is one handler and whose persistence is the duration of
the handler’s execution.

Logical expression Definition
An expression that has logical operators and numeric, logical, or string operands,
and results in a logical value.

Message Definition
A communication sent to an object to trigger the execution of a corresponding
message handler in the object’s script. If there isn’t a corresponding message
handler in the object’s script, the message travels up the object hierarchy in
search of one. See also Built-in message and User-defined message.

Message handler Definition
A group of statements in an object’s script that tells ToolBook what actions to
perform when the object receives a particular message. A message handler starts
with to handle, followed by the name of the message to which it corresponds.

Message target Definition
The object to which a particular message is first sent.

Nesting Definition
Placing one control structure inside another control structure.

Numeric value Definition
A value that consists of a combination of the characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
E, e, +, -, $, %, and a decimal point, and that ToolBook can read as a number.

Object Definition
A button, field, recordfield, hotword, paintObject, picture, rectangle,
irregularPolygon, polygon, pie, curve, angledLine, line, arc, roundedRectangle,
ellipse, group, page, background, or book. Any object can have a script. All
objects have properties.

Object hierarchy Definition
The order in which messages are passed from object to object in search of a
corresponding message handler.

Object-oriented language Definition
A programming language in which data is and behavior is encapsulated in
abstract "objects." Applications are built by combining objects and specifying
communication paths between them so that they may trigger each other's
behavior. In ToolBook, objects are often displayed on the screen, like buttons,
fields of text, and graphics.

Offscreen image Definition
An image that is composed in memory but that is not displayed on the screen. An
offscreen bitmap can be transferred rapidly to the screen using a BITBLT operation
(Bit Block Transfer).

Operand Definition
A value that an operator performs some action on. For example, in the expression
totalB < totalA, the less than operator < checks to see if the value of the operand
totalB is less than the operand totalA.

Operator Definition
A symbol or a word that causes OpenScript to perform some action on values
(operands), resulting in another value. For example, the + operator in the
expression 7 + 3 adds the values 7 and 3 to result in a value of 10.

Page unit Definition
The measurement used to indicate the location or movement of an object on a
ToolBook page. There are 1440 page units per inch, or about 567 per centimeter.
Locations are measured from the upper left corner of a ToolBook page, whether
that corner is visible or not. Compare Screen coordinate.

Parameter Definition
The part of a statement that indicates which object or other data a command is to
act on; the data that a function is to use in the operation that it performs; or the
data passed with a message from one handler to another. For example,
parameters following a go command tell ToolBook what page to display.

Persistence Definition
The conditions under which values can remain in a variable.

Property Definition
An attribute of an object, a window, a palette, or the ToolBook system that can be
modified in predetermined ways. See also Built-in message and User-defined
message.

Reader level Definition
One of two working levels in ToolBook, where you can move between pages and
books, click buttons, and type text in unlocked fields. Compare Author level.

Runtime error Definition
An error that suspends script execution and causes ToolBook to display the
Execution Suspended message box.

Scope Definition
The range of handlers that can affect or be affected by the value of a variable.

Screen coordinate Definition
Pixels measured from the upper left corner of a monitor’s display area, used to
indicate the location or movement of a ToolBook window or palette. The actual
display size of a pixel depends on the type of monitor you have. Compare Page
units.

Script Definition
A series of OpenScript statements divided into parts called handlers, which
describe what should happen in response to particular events. Every object,
including buttons, fields, record fields, hotwords, graphics, groups, pages,
backgrounds, and books, can have a script.

Script buffer Definition
A temporary storage area where ToolBook stores the statements that result from
recording actions with the script recorder. The statements remain in the script
buffer until you record another series of actions or end your ToolBook session.

Script recorder Definition
A ToolBook feature that records the results of your keystrokes and mouse actions
as OpenScript statements, which can be pasted into an object’s script.

Script window Definition
The window in which you can view, write, print, and edit an object’s script, check
a script’s syntax, and paste recordings made with the script recorder.

Self Definition
The object whose script is currently executing.

Server application Definition
In Windows DDE, the application that responds to the Client application’s initiation
of the data exchange between two Windows applications. See also Client
application and Windows Dynamic Data Exchange(DDE).

Settable property Definition
A property whose value you can define from within a script or from menus and
dialog boxes in ToolBook.

Special terms Definition
Terms in the OpenScript language other than OpenScript’s commands, functions,
messages, properties, operators, and constants. Special terms include object type
names, names of palettes and tools, directional words like left, right, vertical, and
horizontal, and other terms used in parameters.

Statement Definition
An instruction in a script; for example, clear textLine 3 of text of field
"x", or go to next page. Nearly all statements start with a command. The only
statements that don’t are those that start and end handlers and those that start
and end parts of control structures. All statements are grouped into handlers.

String Definition
Any contiguous group of characters. All values are strings.

String expression Definition
An expression that uses the & or && operator, has string operands, and results in
a string.

String function Definition
A function that acts on a specified string of characters. String functions do such
things as convert all characters to lowercase characters or count the number of
characters in a string.

String specifier Definition
A term used to extract a string from a longer string. For example, if field "abc"
contains the string primary colors, the expression word 1 of text of field
"abc" returns the string primary. The string specifier in this expression is word.

Syntax Definition
The rules for writing a script.

System Definition
The ToolBook program. The system is at the top of the object hierarchy. System
properties control attributes of ToolBook.

System book Definition
A book whose book script can be accessed and used by many books. You can use
any book as a system book.

System variable Definition
A variable whose scope is the scripts of all objects in books opened in one
instance of ToolBook. A system variable persists for one ToolBook instance.

To get handler Definition
A handler that defines a new function or defines how to get the value of a user-
defined property.

To set handler Definition
A handler that defines the valid values for a user-defined property.

ToolBook system Definition
See System .

Trace Definition
The process of stepping through the execution of a script in the Debug window.
You can trace statement by statement, you can trace a call to a handler, and you
can trace the evaluation order of an expression.

Unique handler identifier Definition
In the Trace box and in the Execution Suspended message box, a string that
identifies the message and the object that was handling the message when
execution paused.

User-defined function Definition
A function defined by a to get handler that performs an operation and returns a
value.

User-defined message Definition
A message that you write to correspond to an event you define in a ToolBook
application by writing a corresponding handler, or a message that corresponds to
choosing a user-defined menu command. All user-defined messages must have
corresponding handlers. Compare Built-in message .

User-defined property Definition
A property created by an author to determine an attribute of an object in addition
to the attributes determined by ToolBook’s built-in properties. The author
determines the name of the property, which objects have the property, and the
possible values of the property. Compare Built-in property .

Value Definition
A piece of data such as text, a number, or true or false.

Variable Definition
A named container that is not visible in the main ToolBook window, and that
maintains a value under particular conditions. These conditions vary depending
on whether the variable is a local or system variable.

Variable window Definition
The window in which you can view the values of variables while you trace script
execution in the Debug window.

Windows Dynamic Data Exchange (DDE) Definition
A communication protocol by which Windows applications can communicate with
one another and share data. See also Client application and Server application .

Windows Dynamic Link Library (DLL) Definition
A program separate from ToolBook, written in C, Pascal, or assembly language,
that a book can access to extend the capabilities of the book.

Handlers and Control Structures Quick reference

Handlers
to get
to handle
to set

Control Stuctures
conditions/when/else
do/until
if/then/else
linkDLL
start spooler
step
translateWindowMessage
while

to get Handler structure

Syntax
to get <name> [<parameters>]

<statements>
end [<name>]

Description
Defines a procedure for getting the value of a user-defined function or property.
This is the basic structure for defining user-defined functions and for controlling
what happens when a statement gets or refers to the value of a user-defined
property.
Every to get handler must include a return statement with the value to be
returned.
For details about using to get handlers, see "Defining Your Own Functions" and
"Doing More with User-Defined Properties" in Chapter 6, "Beyond the Basics," in
Using OpenScript. Also see the to set handler structure.

Parameters
The <name> parameter is a unique name that identifies the function or property
being defined.
The <parameters> parameter is one or more parameters which can be passed
with the function or property, separated by commas if there is more than one.
The <statements> parameter is one or more OpenScript statements to be
executed when the object receives a get message containing the name specified
by the <name> parameter.

Examples
to get buttonStyle

if "button" is in target
return the buttonStyleType of the target

else
set sysError to "buttonStyle target must be a button"
return null

end if
end buttonStyle

to get probability occurred,observations
-- Defines a function called probability
return occurred/observations

-- Calculate using the arguments and return the value of
-- the function to the calling handler

end probability

to get grossMargin sales, COGS
-- Check for valid data and return an error if data is invalid,
-- otherwise return the value of Sales - COGS

if Sales<0 and COGS<0

set sysError to "No valid data"
return sysError

end if
if Sales<0

set sysError to "Sales data is invalid"
return sysError

end if
if COGS<0

set sysError to "Cost data is invalid"
return sysError

end if
return Sales-COGS

end grossMargin

to handle Handler structure

Syntax
to handle <message name> [<parameters>]

<statements>
end [<message name>]

Description
Executes statements when a message is passed to an object. ToolBook sends
messages to indicate mouse, keyboard, and menu events, and scripts send
messages using the send command.
This is the basic structure for a message handler, one of the building blocks of
scripts. You use message handlers to define how objects respond to messages.
For details about message handlers, see "Handlers: The Building Blocks of Scripts"
in Chapter 2, "Script Basics," in Using OpenScript.

Parameters
The <message name> parameter is the name of any valid OpenScript command
or message. All message names must begin with a letter and cannot include
punctuation or other non-alphanumeric characters except the underscore
character (_). The <parameters> parameter is any parameters, separated by
commas, to be passed with the command or message. The <statements>
parameter is one or more OpenScript statements to be executed when the object
receives the specified message name.

Examples
-- Goes to the next page when the reader clicks the object
to handle buttonUp

go to the next page
end buttonUp

-- An error handling procedure in the script for a book
to handle errorProcedure msg

request "Error:" && msg with "Continue" or "Quit"
if it is "Quit"

break to system
end if

end errorProcedure

to set Handler structure

Syntax
to set <name> [<parameters>] to <value>

<statements>
end [<name>]

Description
Defines a procedure for setting the value of a user-defined property. This is the
basic structure for defining what happens when statements set the value of a
user-defined property. For details about using to set handlers with user-defined
properties, see "Doing More with User-Defined Properties" in Chapter 6, "Beyond
the Basics," in Using OpenScript.

Parameters
The <name> parameter is a unique name used to identify the property. The
<parameters> parameter is one or more parameters that can be passed with the
property, separated by commas if there is more than one. The <value>
parameter is any expression; ToolBook sets it to the value specified in the set
statement that calls the to set handler. The <statements> parameter is one or
more OpenScript statements to be executed. To avoid creating an infinite loop,
avoid referring to <name> in the body of the handler.

Examples
The following handler defines a buttonStyle property for buttons, restricts the
property’s value to zoom or dissolve, and sets the button’s script accordingly.
This handler is executed in response to statements such as set buttonStyle of
button "Next page" to "dissolve".
to set buttonStyle to effect

-- effect is set to value passed from set statement
conditions

when "button" is not in target
-- Make sure the target is a button
set sysError to "buttonStyle target must be a button"

when "zoom" is in effect
-- Property's value is zoom
set script of target to text of \

field "zoom" of page "scripts"
when "dissolve" is in effect

-- Property's value is dissolve
set script of target to text of field "dissolve" of \

page "scripts"
else

set sysError to "Invalid buttonStyle"
-- The effect is not valid

end conditions
end buttonStyle

The following handler defines a helpButton property for buttons, sets several
built-in button properties when a statement sets the property to true or false,

and prevents statements from setting the property to any other value. The
handler is executed in response to statements such as set helpButton of
button "Next Page" to "false".
to set helpButton to value

if the target contains "button"
-- Check property is being set for a button
conditions

-- Set attributes for the button for each value
when value is true

set the fontFace of the target to "Tms Rmn"
set the fontSize of the target to "12"
set the borderStyle of the target to shadowed
set the transparent of the target to true
set the invert of the target to true

-- Set the script for the button to forward
-- a menu message

set the script of the target to \
"to handle buttonUp;forward Topics;end buttonUp"

when value is false
set the fontFace of the target to "system"
set the fontSize of the target to "9"
set the borderStyle of the target to rounded
set the transparent of the target to false
set the invert of the target to false
set the script of the target to null

else
request "Not a valid value for this property."

end conditions
else

-- Set sysError and display the message in the Command
window

set sysError to "Property can only be set for a button."
put sysError into the commandWindow

end if
end helpButton

conditions/when/else Control structure

Syntax
conditions

[when <expression>
[<statements>]]

...
[else

<statements>]
end [conditions]

Description
Executes statements in the body of the control structure based on the value of an
expression. The conditions control structure includes zero or more when
statements and an optional else statement. For details about control structures,
see "Control Structures" in Chapter 2, "Script Basics," in Using OpenScript.
The conditions statement is evaluated by first determining the value of the
expression in each when statement. The statements associated with the first
when clause that evaluates to true are executed and control then passes to the
statement following the end [conditions] statement. If no when expression is
true and there is an else clause, the statements of the else clause are
executed. If there is no else clause, control passes to the statement following
the end [conditions] statement.
If you have multiple adjacent when statements only the last of which is followed
by statements to execute, then if any of the when statements is true the
statements following the last when statement are executed. This is demonstrated
in the first example.

Parameters
The <expression> parameter is any valid expression that evaluates to true or
false. The <statements> parameter is one or more OpenScript statements.

Examples
conditions

-- Increments NorthDistrict if ZipCode is 98001, 98002,
-- or 98003
when ZipCode is 98001 or ZipCode is 98002 or ZipCode is 98003

increment NorthDistrict

-- Increments CentralDistrict if ZipCode is 98004
when ZipCode is 98004

increment CentralDistrict

-- Increments SouthDistrict if ZipCode is
-- 98005 or 98006
when ZipCode is 98005
when ZipCode is 98006

increment SouthDistrict

else
increment Uncategorized

end conditions

to handle buttonUp loc
system locations
conditions

when the target contains "button"
forward

when the target contains "ellipse"
go to page "Faces" of book "c:\art\pictures.tbk"

else
push loc onto locations
forward

end conditions
end buttonUp

do/until Control structure

Syntax
do

<statements>
until <expression>

Description
Executes the statements in the body of the control structure until the expression
evaluates to true. ToolBook checks the value of the expression after it executes
the statements in the body of the control structure. Consequently, the statements
in the body of the control structure are always executed at least once.

Parameters
The <statements> parameter is one or more OpenScript statements. The
<expression> parameter is any expression that evaluates to true or false.

Example
to get otherDistrictTotal

local OtherDistricts,NumberOfDistricts
set OtherDistricts to 0
set NumberOfDistricts to the pageCount of this book

-- Perform the loop for each district in NumberOfDistricts
do

if text of field "ZipCode" contains 98001
increment OtherDistricts

-- Adds 1 to OtherDistricts
end if
go to the next page
decrement NumberOfDistricts

until NumberOfDistricts = 0
return OtherDistricts

end otherDistrictTotal

if/then/else Control structure

Syntax
if <expression> [then]

<statements>
[else

<statements>]
end [if]

Description
Allows statements to be executed depending on the value of <expression>.

Parameters
The <expression> parameter is any expression that evaluates to true or
false. The <statements> parameter is one or more OpenScript statements.

Examples
to handle buttonUp

if text of field id 12 contains "yes" then
-- Displays the Sort dialog box if the value in It is "yes"
send sort

-- Sends the Sort menu message
end if

end buttonUp

to handle buttonUp
-- This handler calculates mortgage payments
-- Declare and initialize variables
local Rate, Price, Payment
set Rate to 0
set Price to 0
set Payment to 0

-- Get input data
ask "What is the interest rate?"
put it/100 into Rate

-- Convert the interest rate
ask "What is the price of the house?"
put it into Price

-- Calculate the payments and return information to reader
put pmt(Rate, Price) into Payment

-- User-defined function
if Payment < 1000 then

put Payment into text of field "Payments"
-- Puts the value of Payment into field Payments if
-- the value is less than 1000

else
if Payment <= 1500 then

put Payment into text of field "Payments"
request "These payments will be a stretch."

else
beep 5
request "This house is too expensive!"

-- Beeps and displays message in field if
-- Payment exceeds 1500

end if
end if

end buttonUp

-- This handler evaluates student answers and increments a score
to handle answer correct_answer, student_answer

if my score is null
set score to 0

-- Set score to 0 if the user-defined property
-- has not been used

end if
-- If the student's answer is the same as correct_answer,
-- increment the score
-- and provide feedback; otherwise try again

if the student_answer contains the correct_answer
increment my score
request "That's right!" with "Continue" or "Quit"
if "Continue" is in it

go to the next page
else

go to page "Menu"
end if

else
-- When the student's answer is wrong
request "Try again." with "OK" or "Review"

-- Go to review section if student requests
if "Review" is in it

go to page "Review"
end if

end if
end answer

linkDLL Control structure

Syntax
linkDLL <dll name>

[<return type> <function name> ([<parameter type> \
[,<parameter type]])]

.

.

.
[<returntype> <function name> ([<parameter type> \

[,<parameter type]])]
end linkDLL

Description
Links the specified DLL so that its routines can be called from a script.

Parameters
The <dll name> parameter is the name of the DLL whose functions you want to
make available to ToolBook and is any expression that evaluates to a valid DLL
name. You can also link to a device driver by specifying the device driver’s file
name for the <dll name> parameter; be sure to include the device driver’s full
file name.
The <return type> parameter is the literal data type that the function returns.
The allowed values are byte, INT, word, long, dword, float, double, STRING, or
pointer. The STRING data type is returned as a string. OpenScript automatically
deallocates the string after copying to free the handle.
If a DLL function returns an array, string, or data structure, follow this sequence to
allocate and free memory when calling DLL functions from OpenScript:
1. Link the DLL.
2. Allocate the memory needed for the array, string, or data structure with

the Windows function globalAlloc.
3. Lock the allocated memory with the Windows function globalLock.
4. Call the DLL functions from OpenScript.
5. Unlock the allocated memory with the Windows function globalUnlock.
6. Free the allocated memory with the Windows function globalFree.

The <function name> parameter is the literal name of the function in the DLL.
The <parameter type> parameter is the literal data type of the function’s
parameter(s). The allowed values are BYTE, INT, WORD, LONG, DWORD, FLOAT,
DOUBLE, STRING, or POINTER.
The following table shows how the Windows data types used with DLLs compare
to the standard C data types. These Windows data types are defined in the
WINDOWS.H file included with the Microsoft Windows Software Development Kit.

DLL function parameter data types
DLL data type Standard C data type
BYTE unsigned char
INT int
WORD unsigned INT
LONG Long
DWORD unsigned long
FLOAT float
DOUBLE double
POINTER void far*
STRING void far*, lpstr

The POINTER data type is four bytes, always unsigned, and is two integers
separated by a comma (segment, offset). The POINTER data type can be a
pointer to any data type, such as a long pointer to a string or a pointer to a data
structure. Although you can declare a parameter or return value as a POINTER
data type, ToolBook will convert the parameters with the net result that all
parameters are passed by value rather than reference.
You can also link by alias or by ordinal number that refers to the thunk table
numeric reference of the exported function. For example, suppose you want to
link the DLL named USER which contains the functions setWindowText and
setUpPrinter, but you want to use another name in your scripts to call
setWindowText. Also suppose you want to call setUpPrinter by its thunk table
numeric reference. In this case, the linkDLL structure might look something like
the following:
linkDLL user

WORD setUpPrinter = 1(WORD)
-- 1 is the thunk table numeric reference for
-- setUpPrinter and can be used interchangeably in
-- a script with the function name

WORD setWindowTextPtr = setWindowText(WORD, POINTER)
-- setWindowTextPtr is the alias for calling
-- setWindowText and can be used interchangeably in a
-- script with the function name

end linkDLL
Examples

-- Links the DLL music.dll and declares the functions
-- initializeMidi, midiPlayNote, and midiPlaySong
linkDLL "music.dll"

WORD initializeMidi(WORD)
WORD midiPlayNote (WORD, WORD, FLOAT)
WORD midiPlaySong (WORD, WORD, FLOAT)

end linkDLL

linkDLL "finance.dll"

FLOAT StdDeprec=DeprecA(WORD, WORD, FLOAT)
-- Use the alias StdDeprec in scripts for the function
-- DeprecA

FLOAT GovDeprec=DeprecB(WORD, WORD, FLOAT)
-- Use the alias GovDeprec in scripts for the function
-- DeprecB

FLOAT Amort(FLOAT, WORD, WORD)
FLOAT COGS(WORD, WORD, WORD)
FLOAT TaxRate (WORD, FLOAT, WORD)

end linkDLL

start spooler Control structure

Syntax
start spooler

<statements>
end [spooler]

Description
Starts a print job that prints the pages specified by print statements executed
between the start spooler and end [spooler] statements. Before the
statements in the body of the control structure are executed, the current printer
page is set to the currently displayed page.
Using the go command in the body of a start spooler control structure causes
ToolBook to navigate to the specified page but the page is not displayed. ToolBook
returns to the current page when it executes the end spooler statement.
You cannot nest start spooler control structures.

Parameter
The <statements> parameter is any number of OpenScript statements.

Example
-- Prints all pages of the book if the word
-- "Complete" is in the book's caption, starting with
-- the current page
start spooler

if the caption of this book contains "Complete"
print all pages

end if
end spooler

step Control structure

Syntax
step <variable> from <start> to <finish> [by <steps>]

<statements>
end [step]

Description
Allows a block of statements to be executed a specified number of times. The
specified variable is set to the value of <start>. If the value of <steps> is
positive, the value of the variable is incremented by that number until the value
of the variable is greater than or equal to the value of <finish>. If the value of
<steps> is negative, the value of the variable is decremented by the absolute
value of <steps> until the value of the variable is less than or equal to the value
of <finish>. The variable does not have to be declared; if it is not declared, the
variable is introduced as a local variable.
When ToolBook has completely executed the step control structure, the value of
the <variable> parameter is the value of the <finish> parameter plus the
value of the <steps> parameter. For example, if the value of the <finish>
parameter is 10 and the value of the <steps> parameter is 1, then the value of
the <variable> parameter will be 11 after ToolBook completely executes the
control structure.
You can use the continue command to control execution within a step control
structure and the break command to exit the step control structure before the
variable has reached the finish value.

Parameters
The <variable> parameter is a variable name. The <start> and <finish>
parameters are expressions that evaluate to a number. The <steps> parameter
is an expression that evaluates to a number; its default value is 1. The
<statements> parameter is any OpenScript statements you want ToolBook to
repeat.
The <start>, <finish>, and <step> parameters are evaluated only once each
time ToolBook executes the step control structure.

Example
-- If the name in the variable thisPerson is in the
-- invitation list, send a printInvitation user-defined
-- message
step i from 1 to textLineCount(text of field "Invite List")

get textLine i of text of field "Invite List"
if it is thisPerson

send printInvitation thisPerson
end

end step

-- Delete pages numbered in the range specified in the
-- pageRange variable. Count down so deleting a page
-- won't effect page numbers of other pages to delete

set pageRange to "15,5"
set firstPage to min(pageRange)
set lastPage to max(pageRange)
step i from lastPage to firstPage by -1

select page i
send clear

end

translateWindowMessage Control structure

Syntax
translateWindowMessage [for <winHandle>]

before|after <winMsg> get <tbkMsg> [of <tbkObj>] return
<dllType>
.
.
.
before|after <winMsg> send <tbkMsg> [to <tbkObj>]

end [translateWindowMessage]

Description
Note:

This description is for advanced users and Windows programmers.

Sets up a Windows-to-OpenScript message translation and specifies how the
OpenScript message is be sent to a ToolBook message target. Zero or more
clauses beginning with before or after can be specified. You must use either
before or after to specify when the OpenScript message is sent in relation to
the window's default processing of <winMsg>. The get form obtains a property
value of the target. The send form specifies that a message is sent to the target
object.
With the translateWindowMessage control structure, you can write scripts that
allow ToolBook to take direct control of a Windows system message, whether the
message is passed directly by Windows or through a DLL. The handler that
translates a Windows message can specify that an OpenScript message is sent or
that the value of a property is returned. The general steps to translate and handle
a Windows message are:
1. Enable Windows-to-OpenScript message translation with the

translateWindowMessage control structure.
2. Handle the OpenScript translation of the Windows message in a script

using a to handle or to get handler.
3. Disable message translation with the untranslateWindowMessage or

untranslateAllWindowMessages command.

To disable message translation, you can do any of the following:
o Exit ToolBook.
o Destroy a window. All translations are removed after the window receives

the WM_NCDESTROY message.
o Execute the untranslateWindowMessage command for a specific

Windows message.
o Execute the untranslateAllWindowMessages command for the window

where you want to disable translations .
If you are writing a Windows Dynamic Link Library (DLL) see Executing OpenScript

Commands from a DLL.

Parameters
The <winHandle> parameter is the window handle for the window that is to
translate the message. The default value is the sysWindowHandle for the
ToolBook main window.
The <winMsg> parameter is the decimal equivalent of the hexadecimal number
of the Windows message to be translated.
The <tbkMsg> parameter is the OpenScript form of the translated Windows

message.
The <tbkObj> parameter is the target of the OpenScript message.
The <dllType> parameter specifies the data type of the return value from the
to get handler as CHAR, BYTE, INT, WORD, LONG, DWORD, or POINTER.

Examples
-- This script detects WIN.INI changes and reloads values
-- that affect the book
to handle enterBook

translateWindowMessage
after 26 send winIniChange

end
-- initial loading of WIN.INI settings

end

to handle winIniChange
-- reload related WIN.INI settings and set other
-- properties in this book

end

As another example, the following translates Windows message 28
(WM_ACTIVATEAPP) into a user-defined message in OpenScript, and specifies that
this OpenScript message is sent after the Windows message has finished
processing.
translateWindowMessage

after 28 send activateApp
end

A separate handler must be written to define the response for the user-defined
activateApp message. For example:
to handle activateApp hwnd, winMsg, wp, lplo, lphi

if wp=1
-- ToolBook instance is being activated because
-- parameter sent by Windows (wParam) is 1
send activateInstance

end
end

The parameters used in this example are:
o hwnd is the window handle of the window that is translating the Windows

message to a ToolBook message.
o winMsg is the decimal number for the Windows message that is translated

to the ToolBook message activateApp.
o wp is the word length parameter for the Windows message.
o lplo is the LOWORD of the DWORD length parameter for the Windows

message.
o lphi is the HIWORD of the DWORD length parameter for the Windows

message.
The following control structure translates Windows message 19 (WM_QUERYOPEN)
to an OpenScript user-defined message and specifies that this message is sent
after the Windows message has finished processing.
translateWindowMessage

after 19 get bookProp of book S_query return int
end

The return int keyword in this example indicates that INT will be the data
type for the value returned by the user-defined message. The to get handler
must always return a value appropriate for the <dllType> parameter specified in
the translateWindowMessage control structure. Also, this handler must return a
value appropriate for the Windows message being translated. For the message
translation of 19 (WM_QUERYOPEN), the to get handler for the user-defined
message bookProp must return a boolean value: non-zero to activate the instance
and zero to prevent the instance from being activated.

while Control structure

Syntax
while <expression>

<statements>
end [while]

Description
Executes the statements in the body of the control structure until the expression
evaluates to false. ToolBook checks the value of the expression before any of
the statements are executed. Consequently, the statements in the body of the
control structure are not executed if the expression evaluates to false when the
while statement is first encountered.

Parameters
The <expression> parameter is any valid expression that evaluates to true or
false. The <statements> parameter is an expression that evaluates to one or
more OpenScript statements.

Example
while word 1 of text of field "ZipCode" contains "98004"

increment SouthDistrict
go to next page

end while

Messages Quick reference
Alphabetical Index
Menu-event messages
aboutToolBook grid reshape
align group rotateLeft
author history rotateRight
back import rulers
background importGraphic run
backgroundProperties index save
bold italic saveAs
bookProperties keyboard search
bringCloser last selectAll
bringToFront new selectPage
character newBackground sendFarther
clear newPage sendToBack
command next showHotwords
commands open sizeToPage
copy pageProperties sort
createHotword palettes startRecording
cut paragraph stopRecording
drawCentered paste strikeout
drawDirect previous transparent
exit printerSetup tutorial
export printPages underline
first printReport undo
flipHorizontal properties ungroup
flipVertical reader usingHelp
foreground redo
glossary removeHotword
Enter-event and leave-event messages
activateInstance enterPage leaveButton
enterBackground enterRecordField leaveField
enterBook enterSystem leavePage
enterButton leaveBackground leaveRecordField
enterField leaveBook leaveSystem
Miscellaneous notification messages
destroy sized windowMoved
idle textScrolled windowShown
make toggleStatus windowSized
moved
Mouse- and keyboard-event messages
buttonDoubleClick keyChar mouseLeave
buttonDown keyDown rightButtonDoubleClick
buttonStillDown keyUp rightButtonDown
buttonUp mouseEnter rightButtonUp
DDE messages
remoteCommand remoteGet remoteSet

Messages: Alphabetical list Quick reference
aboutToolBook grid redo
activateInstance group remoteCommand
align history remoteGet
author idle remoteSet
back import removeHotword
background importGraphic reshape
backgroundProperties index rightButtonDoubleClick
bold italic rightButtonDown
bookProperties keyboard rightButtonUp
bringCloser keyChar rotateLeft
bringToFront keyDown rotateRight
buttonDoubleClick keyUp rulers
buttonDown last run
buttonStillDown leaveBackground save
buttonUp leaveBook saveAs
character leaveButton search
clear leaveField selectAll
command leavePage selectPage
commands leaveRecordField sendFarther
copy leaveSystem sendToBack
createHotword make shortcutKeys
cut mouseEnter showHotwords
destroy mouseLeave sized
drawCentered moved sizeToPage
drawDirect new sort
enterBackground newBackground startRecording
enterBook newPage stopRecording
enterButton next strikeout
enterField open textScrolled
enterPage pageProperties toggleStatus
enterRecordField palettes transparent
enterSystem paragraph tutorial
exit paste underline
export previous undo
first printerSetup ungroup
flipHorizontal printPages usingHelp
flipVertical printReport windowMoved
foreground properties windowShown
glossary reader windowSized

aboutToolBook Message
This message is sent to the current page when a reader or author chooses the
About ToolBook command from the Help menu. ToolBook’s default response is to
display the About ToolBook dialog box.

activateInstance Message
This message is sent to the current page when that instance of ToolBook becomes
active. This message is sent only if the instance is at Reader level. ToolBook’s
default response to this message is to do nothing.    If an instance becomes active
because a reader clicks on the menu bar or a scroll bar, ToolBook does not send
the activateInstance message until the reader releases the mouse button. If the
user chooses a command from the menu bar when releasing the mouse button,
ToolBook does not send the activateInstance message until after it completes the
command.   

align Message
This message is sent to the current page when an author chooses the Align
command from the Draw menu. ToolBook’s default response is to display the Align
dialog box.

author Message
This message is sent to the current page when a reader chooses the Author
command from the Edit menu. ToolBook’s default response is to change the
working level from Reader to Author.
Scripts that send the author message will cause an error in Runtime ToolBook.

back Message
This message is sent to the current page when a reader or author chooses the
Back command from the Page menu. ToolBook’s default response is to display the
most recent page in the session history.

background Message
This message is sent to the current page when an author chooses the Background
command from the Page menu. ToolBook’s default response is to switch the focus
from the foreground to the background of the current page.
If you send this message from a script, ToolBook automatically switches back to
the foreground when ToolBook finishes executing the last called handler.

backgroundProperties Message
This message is sent to the current page when an author chooses the Background
Properties command from the Object menu. ToolBook’s default response is to
display the Background Properties dialog box.
Scripts that send the backgroundProperties message will cause an error in
Runtime ToolBook.

bold Message
This message is sent to the current page when a reader or author chooses the
Bold command from the Text menu. ToolBook’s default response is to change the
font style of selected text or selected field to bold. If nothing is selected,
sysFontStyle is sent to bold and newly created fields will have a font style of
bold.

bookProperties Message
This message is sent to the current page when an author chooses the Book
Properties command from the Object menu. ToolBook’s default response is to
display the Book Properties dialog box.
Scripts that send the bookProperties message will cause an error in Runtime
ToolBook.

bringCloser Message
This message is sent to the current page when an author chooses the Bring Closer
command from the Object menu. ToolBook’s default response is to bring a
selected object one layer closer to the front of the foreground or background. This
message causes ToolBook to change the layer number of the object. If the
selected object is already on the front layer, this message has no effect.
Also see the sendFarther message.

bringToFront Message
This message is sent to the page when an author chooses Bring To Front from the
Object menu. ToolBook’s default response is to bring a selected object all the way
to the front of the foreground or background. This message causes ToolBook to
change the layer number of the object. If the selected object is already on the
front layer, this message has no effect.
Also see the sendToBack message.

buttonDoubleClick Message

Syntax
buttonDoubleClick <location>, <isShift>, <isCtrl>

Description
This message is sent to the object whose active area contains the mouse pointer
when the left mouse button is pressed and released twice within the double-click
time specified in the Control Panel. ToolBook supplies three parameters that tell
where the mouse button was pressed and if the Shift or Ctrl key was pressed
when the button was pressed. ToolBook’s default response to this message is to
do nothing.
If a button is the target of a buttonDoubleClick message and the highlight
property for the button is true, the button is highlighted before the
buttonDoubleClick message is sent.
When a user double-clicks, the first click sends a buttonDown message and the
second click sends a buttonDoubleClick message. Consequently, an object
receives messages in the following order: buttonDown, buttonStillDown (if the
button is held down), buttonUp, buttonDoubleClick, buttonStillDown (if the
button is held down), buttonUp.

Parameters
The <location> parameter is a comma-separated pair of numbers indicating, in
page units, where the left mouse button was pressed. The <isShift> and
<isCtrl> parameters can be true or false, indicating if those keys were
pressed in conjunction with the mouse button.

Example
A handler for a field:
to handle buttonDoubleClick arg1

-- Select the textline that was double-clicked
select textline (item 1 of textFromPoint(arg1) of self) \

of the text of self
end buttonDoubleClick

buttonDown Message

Syntax
buttonDown <location>, <isShift>, <isCtrl>

Description
This message is sent to the object whose active area contains the mouse pointer
when the left mouse button is pressed. ToolBook supplies three parameters that
tell where the mouse button was pressed and if the Shift or Ctrl key was pressed
when the button was pressed.
If a button is the target of a buttonDown message and the highlight property
for the button is true, the button is highlighted before the buttonDown message
is sent.
ToolBook’s default response to this message is to do nothing.

Parameters
The <location> parameter is a comma-separated pair of numbers indicating, in
page units, where the left mouse button was pressed. The <isShift> and
<isCtrl> parameters can be true or false, indicating if those keys were
pressed in conjunction with the mouse button.

Example
to handle buttonDown location, isShift

if isShift is true
extend select target

-- Extend the selection to include the object that was
-- clicked

else
unselect the selection

-- Unselect selected objects
select target

-- Select the clicked object
end if

end buttonDown

buttonStillDown Message

Syntax
buttonStillDown <location>, <isShift>, <isCtrl>

Description
This message is sent repeatedly to the object whose active area contained the
mouse pointer when either mouse button was pressed, for as long as the mouse
button remains pressed. Each time ToolBook sends this message, it updates the
<location> parameter to identify the current location of the pointer.
The buttonStillDown message is useful for applications that need to track
mouse drag movement, such as in layout control or animation.
ToolBook’s default response to this message is to do nothing.

Parameters
The <location> parameter is a comma-separated pair of numbers indicating, in
page units, the current location of the pointer. The <isShift> and <isCtrl>
parameters can be true or false, indicating if those keys were pressed in
conjunction with the mouse button.

Example
The following handler keeps track of pointer locations passed with a
buttonStillDown message.
to handle buttonStillDown loc

system Selection_coords
local loc_count
if loc_count is null

set loc_count to 0
-- Set loc_count so that it can be incremented

end if
push loc onto Selection_coords

-- Use a system variable to keep a list of all
-- locations

increment loc_count
-- Keep track of the number of items pushed

end buttonStillDown

buttonUp Message

Syntax
buttonUp <location>, <isShift>, <isCtrl>

Description
This message is sent to the object whose active area contained the mouse pointer
when the left mouse button was pressed. ToolBook supplies three parameters that
tell where the mouse button was pressed and if the Shift or Ctrl key was pressed
when the button was pressed.
If a button is the target of a buttonUp message and the highlight property for
the button is true, the button’s highlighting is turned off before the buttonUp
message is sent.
ToolBook’s default response to this message is to do nothing.

Parameters
The <location> parameter is a comma-separated pair of numbers indicating, in
page units, where the left mouse button was released. The <isShift> and
<isCtrl> parameters can be true or false, indicating if those keys were
pressed in conjunction with the mouse button.

Example
to handle buttonUp

system Selection_coords
-- Do a net selection using the first two
-- and last two items of Selection_coords

select all from item 1 of Selection_coords, item 2 of \
Selection_coords to item itemCount (Selection_coords) - 1 \
of Selection_coords, item itemCount (Selection_coords) of\
Selection_coords

end buttonUp

changePrinter Message
This message is obsolete in ToolBook version 1.5. See printerSetup.

character Message
This message is sent to the current page when a reader or author chooses the
Character command from the Text menu. ToolBook’s default response is to display
the Character dialog box.

clear Message
This message is sent to the current page when a reader or author chooses the
Clear command from the Edit menu. ToolBook’s default response is to delete the
current selection without placing it on the Clipboard.

command Message
This message is sent to the current page when an author chooses the Command
command from the Window menu. ToolBook’s default response is to display the
Command window.
Scripts that send the command message will cause an error in Runtime ToolBook.

commands Message
The message sent to the current page when a reader or author chooses the
Commands command from the Help menu. ToolBook's default response is to
display a list of Reader and Author level commands in the Help book. If the Help
book is not open, sending this message opens it.

copy Message
This message is sent to the current page when a reader or author chooses the
Copy command from the Edit menu. ToolBook’s default response is to place a
copy of the current selection on the Clipboard.

createHotword Message
This message is sent to the current page when an author chooses the Create
Hotword command from the Text menu. ToolBook’s default response is to make
the selected text into a hotword.
Also see removeHotword and showHotwords.

cut Message
This message is sent to the current page when a reader or author chooses the Cut
command from the Edit menu. ToolBook’s default response is to delete the current
selection and place it on the Clipboard.

destroy Message
A destroy message is sent to an object just before it is deleted. ToolBook’s
default response to do nothing. This is a notification message only so writing a
handler for this message cannot affect whether or not the object is deleted. To
keep an object from being deleted you must write handlers for the cut and
clear messages in the page, background or book.
ToolBook sends a destroy message to a hotword only when the ToolBook system
receives a removeHotword message.
ToolBook does not propagate messages down the object hierarchy. Therefore,
when a page receives a destroy message, the message is not sent to the
objects on that page.

drawCentered Message
This message is sent to the current page when an author chooses the Draw
Centered command from the Draw menu. ToolBook’s default response is to draw
an object from the center rather than from one of its corners. Draw Centered
applies to lines, rectangles, rounded rectangles, arcs, ellipses, and pie wedges as
well as buttons and fields.

drawDirect Message
The menu-event message sent to the current page when an author chooses Draw
Direct from the Draw menu. ToolBook's default response is to toggle the value of
sysDrawDirect if no object is selected, or to toggle the value of drawDirect for
a selected object.

enterBackground Message
The message sent to the background of a page when you open a book to that
page or when you go to that page from a page with a different background.
ToolBook’s default response to this message is to do nothing.

enterBook Message
This message is sent to a page immediately after a book is opened. ToolBook’s
default response to this message is to do nothing. If a handler exists for this
message, ToolBook displays the main window, executes the handler, then displays
the first page. If the book is in a new instance, ToolBook instead executes the
handler, displays the main window, then displays the first page.
If you use an enterBook handler to modify the main window, such as adjusting
its position and size or changing its menu bar, you can set the sysLockScreen
property to true within the handler to suppress screen updates until after
ToolBook finishes executing the handler.

enterButton Message
This message is sent to a button when it gets the focus. ToolBook’s default
response to this message is to do nothing.

enterField Message
This message is sent to a field when it gets the focus. ToolBook’s default response
to this message is to do nothing.

enterPage Message
This message is sent to a page when it gets the focus. ToolBook’s default
response to this message is to do nothing.

enterRecordField Message
This message is sent to a record field when it gets the focus. ToolBook’s default
response to this message is to do nothing.

enterSystem Message
This message is sent to the current page after a book is displayed in a new
instance of ToolBook. ToolBook’s default response to this message is to do
nothing.

exit Message
This message is sent to the current page when a reader or author chooses the
Exit command from the File menu. ToolBook’s default response is to end the
ToolBook session.
ToolBook does not respond to the exit message until ToolBook finishes
executing the top-most calling handler. To exit ToolBook immediately from a
script, include the statement send exit followed by the statement break to
system. If you want to prevent unexpected errors from interfering, first include the
statement set sysSuspendMessages to true.

export Message
This message is sent to the current page when a reader or author chooses the
Export command from the File menu. ToolBook’s default response is to display the
Export dialog box.

first Message
This message is sent to the current page when a reader or author chooses the
First command from the Page menu. ToolBook’s default response is to display the
first page in the current book.

flipHorizontal Message
This message is sent to the current page when an author chooses the Flip
Horizontal command from the Draw menu. ToolBook's default response is to flip
the selected objects horizontally.
The flipHorizontal message does not flip the contents of fields, bitmaps or
pictures but it does flip their bounds.

flipVertical Message
This message is sent to the current page when an author chooses the Flip Vertical
command from the Draw menu. ToolBook's default response is to flip the selected
objects vertically.
The flipVertical message does not flip the contents of fields, bitmaps or
pictures but it does flip their bounds.

foreground Message
This message is sent to the current page when an author chooses the Foreground
command from the Page menu. ToolBook’s default response is to switch the focus
from the background to the foreground of the current page.

glossary Message
The message sent to the current page when a reader or author chooses the
Glossary command from the Help menu. ToolBook's default response is to display
a glossary of terms in the Help book.

grid Message
This message is sent to the current page when an author chooses the Grid
command from the Window menu. ToolBook’s default response is to display the
Grid dialog box.

group Message
This message is sent to the current page when an author chooses the Group
command from the Object menu. ToolBook’s default response is to make two or
more selected objects into a group.
Also see the ungroup message.

history Message
This message is sent to the current page when a reader or an author chooses the
History command from the Page menu. ToolBook’s default response is to display
the History dialog box. Also see the sysHistory property.

howToUseHelp Message
This message is obsolete in ToolBook version 1.5. See usingHelp.

idle Message
This message is sent to the current page when no other actions are occurring.
ToolBook’s default response to this message is to do nothing.

import Message
This message is sent to the current page when a reader or author chooses the
Import command from the File menu. ToolBook’s default response is to display the
Import dialog box.

importGraphic Message
The message sent to the current page when an author chooses the Import
Graphic command from the File menu. ToolBook's default response is to display
the Import Graphic dialog box.
Also see the ImportGraphic command.

index Message
The message sent to the current page when a reader or author chooses the Index
command from the Help menu. ToolBook's default response is to display a list of
the topics in the Help book. If the Help book is not already open, sending this
message opens it.

italic Message
This message is sent to the current page when a reader or author chooses the
Italic command from the Text menu. ToolBook’s default response is to change the
font style of selected text or a selected field to italic. If nothing is selected,
italic will be added to the sysFontStyle property.

keyboard Message
The message sent to the current page when a reader or author chooses the
Keyboard command from the Help menu. ToolBook's default response is to display
the Help book showing a list of keyboard equivalents for menu commands and
mouse actions.

keyChar Message

Syntax
keyChar <key>,<isShift>,<isCtrl>

Description
ToolBook sends this message when a key is pressed at Reader level. ToolBook
sends the message to the object with the focus or, if there is no focus, to the
current page. ToolBook’s default response depends on the key and the context in
which it is pressed. For example, if the focus is in a field, ToolBook’s default
response for alphanumeric keys is to insert the corresponding character in the
field.
A keyChar message is not sent when the user presses an accelerator key (for
example, Ctrl+O for File Open) or a key that does not generate a displayable
character (for example, the arrow keys and other navigation keys). This message
differs from the keyDown and keyUp messages in that, for keyChar, the <key>
parameter is the ANSI value of the typed character.
Write a keyChar handler if you want to intercept the Enter key or a printable
character, such as a letter, number of punctuation character, but not including
the Tab key.

Parameters
The <key> parameter is the ANSI value of any character. For a list of ANSI
characters and their values, see Appendix A, "ANSI and Other Character Sets," in
Using ToolBook.
The <isShift> and <isCtrl> parameters are true or false, indicating
whether the Shift or Control keys, respectively, were pressed in conjunction with
the key specified by <key>.

Examples
to handle keyChar key

conditions
-- Convert keyChar value to a character, then test it

when ansiToChar(key) is in "Yy"
-- Reader typed Y or y
flip all pages

-- Flip the book's pages
when ansiToChar(key) is in "Nn"

-- Reader typed N or n
go to first page

-- Go to the first page of the book
end conditions

end keyChar

send keyChar 78
-- Inserts "N" in the field with the focus at Reader level

You can put the following handler in a book script to see what parameters are
returned with the keyChar message when a particular key is pressed:

to handle keyChar key
put "- keyChar"&&key&&"("&ansiToChar(key)&")" \

into the commandWindow
forward

end

keyDown Message

Syntax
keyDown <key>,<isShift>,<isCtrl>

Description
ToolBook sends this message when a key is depressed at Reader level. ToolBook
sends the message to the object with the focus or, if there is no focus, to the
current page.
ToolBook’s default response to this message depends on the key and the context
in which it is pressed. For example, if the focus is in a field, ToolBook’s default
response for navigation keys and editing keys is to perform the respective
navigation or editing action, and its response for alphanumeric keys is to do
nothing.
A keyDown message is not sent when the user presses an accelerator key (for
example, Ctrl+O for File Open).
Write a keyDown handler if you want to intercept the Tab key or a movement-
oriented key, such as the arrow keys or the PgDn key. For details about using this
message and related messages, see "Controlling Keyboard Input" in Chapter 6 of
Using OpenScript, "Beyond the Basics," in Using OpenScript.

Parameters
The <key> parameter is an integer or key constant that represents a key.
The <isShift> and <isCtrl> parameters are true or false, indicating
whether the Shift or Control keys, respectively, were pressed in conjunction with
the key specified by <key>.
See Key constants for a list of the key constants.

Examples
-- When the <ESC> key is pressed, save changes and exit
-- When the <PGDN> key is pressed, go to the next page
to handle keyDown key

conditions
when the key is keyEscape -- <ESC> key

save changes to this book
send exit

when the key is keyNext -- <PGDN> key
go to the next page

end conditions
end keyDown

send keyDown keyTab,false,false

-- Move focus to next object in layer order

send keyDown keyTab,true,false

-- Move focus to previous object in layer order

send keyDown keyTab,false,true

-- Insert Tab character in field that has focus

You can put the following handler in a book script to see what parameters are
returned with the keyDown message when a particular key is pressed:
to handle keyDown key, isShift, isCtrl

put "- keyDown" && key && "(" & ansiToChar(key) &");"\
&& isShift && isCtrl into the commandWindow

forward
end

keyUp Message

Syntax
keyUp <key>,<isShift>,<isCtrl>

Description
ToolBook sends this message when a key is released at Reader level. ToolBook
sends the message to the object with the focus or, if there is no focus, to the
current page. ToolBook’s default response to this message is to do nothing.
See "Controlling Keyboard Input" in Chapter 6, "Beyond the Basics," in Using
OpenScript.

Parameters
The <key> parameter is an integer or key constant that represents a key.
The <isShift> and <isCtrl> parameters are true or false, indicating
whether the Shift or Control keys, respectively, were pressed in conjunction with
the key specified by <key>.
See Key constants for a list of the key constants.

Examples
to handle keyUp key

conditions
when the key is keyPrior -- When reader releases PgUp

go to the previous page -- Go to the previous page
when the key is keyNext -- When reader releases PgDn

go to the next page -- Go to the next page
end conditions

end keyUp

You can put the following handler in a book script to see what parameters are
returned with the keyUp message when a particular key is pressed:
to handle keyUp key, isShift, isCtrl

put "- keyUp"&&key&&"("&ansiToChar(key)&");"&&isShift&&isCtrl\
into the commandWindow

forward
end keyUp

last Message
This message is sent to the current page when a reader or author chooses the
Last command from the Page menu. ToolBook’s default response is to display the
last page of the current book.

leaveBackground Message
This message is sent to the background when you close the book containing that
background or when you go to a page with a different background. ToolBook’s
default response to this message is to do nothing.

leaveBook Message
This message is sent to the current page when the user quits ToolBook or goes to
another book. ToolBook’s default response to this message is to do nothing.
If the handler for a leaveBook message includes statements that make changes
to a book, those changes are not saved unless the handler also includes a
statement that explicitly saves changes to the book. This is also true for any other
leave messages sent when a book is closed, including leavePage and
leaveBackground.

leaveButton Message
This message is sent, at Reader level, to the button that has the focus just before
another object gets the focus. ToolBook’s default response to this message is to
do nothing.

leaveField Message
This message is sent, at Reader level, to the field that has the focus just before
another object gets the focus. ToolBook’s default response to this message is to
do nothing.

leavePage Message
This message is sent to the current page just before another page gets the focus.
ToolBook’s default response to this message is to do nothing.

leaveRecordField Message
This message is sent, at Reader level, to the record field that has the focus just
before another object gets the focus. ToolBook’s default response to this message
is to do nothing.

leaveSystem Message
This message is sent to the current page just before the instance of ToolBook is
closed. ToolBook’s default response to this message is to do nothing. This is a
notification message so writing a handler for this message cannot affect whether
or not the instance is closed.

make Message
This message is sent to an object just after it is created. If you create a group by
pasting it in a book, the make message is sent only to the group, not to the
objects in it.
ToolBook’s default response to this message is to do nothing.

mouseEnter Message
This message is sent, at Reader level, to an object when the mouse pointer is
moved into the object’s bounding rectangle. All objects on a page except groups
can receive this message directly. ToolBook’s default response to this message
depends on the object receiving the message; the mouse pointer changes to the
pointer type appropriate to the object.

mouseLeave Message
This message is sent to an object when the mouse pointer is moved out of the
object’s bounding rectangle. All objects on a page except groups can receive this
message directly. ToolBook’s default response to this message is to do nothing.

moved Message
The message sent, at Author level, to an object after it has been moved.

new Message
This message is sent to the current page when an author chooses the New
command from the File menu. ToolBook’s default response is to create a new,
empty book in the active window.

newBackground Message
This message is sent to the current page when an author chooses the New
Background command from the Page menu. ToolBook’s default response is to
create an empty page with a new, blank background. The new page is inserted
after the current page. The focus is on the new page, not the new background.

newPage Message
This message is sent to the current page when a Reader or an author chooses the
New Page command from the Page menu. ToolBook’s default response is to create
a new page with the same background as the current page. The new page is
inserted after the current page.

next Message
This message is sent to the current page when a reader or author chooses the
Next command from the Page menu. ToolBook’s default response is to display the
next page in the current book. If you send next when you are on the last page of
a book, ToolBook displays the first page of the book.

open Message
This message is sent to the current page when a reader or author chooses the
Open Command from the File menu. ToolBook’s default response is to display the
Open dialog box.
To open a file without displaying the Open dialog box, see the go command.

pageProperties Message
This message is sent to the current page when an author chooses the Page
Properties command from the Object menu. ToolBook’s default response is to
display the Page Properties dialog box so that the author can set and change the
values of page properties.
Scripts that send the pageProperties message will cause an error in Runtime
ToolBook.

palettes Message
This message is sent to the current page when an author chooses the Palettes
command from the Window menu. ToolBook’s default response is to display the
Palettes dialog box.
Scripts that send the palettes message will cause an error in Runtime ToolBook.

paragraph Message
This message is sent to the current page when a reader or author chooses the
Paragraph command from the Text menu. ToolBook’s default response is to
display the Paragraph dialog box.

paste Message
This message is sent to the current page when a reader or author chooses the
Paste command from the Edit menu. ToolBook’s default response is to paste the
contents of the Clipboard into the current book.

previous Message
This message is sent to the current page when a reader or author chooses the
Previous command from the Page menu. ToolBook’s default response is to display
the page before the current page in a book or in the Preview window. Sending the
previous message from the first page of a book displays the last page of the
book.

printerSetup Message
The message sent to the current page when a reader or author chooses the
Printer Setup command from the File menu. ToolBook's default response is to
display the Printer Setup dialog box.

printPages Message
This message is sent to the current page when a reader or author chooses the
Print Pages command from the File menu. ToolBook’s default response is to
display the Print Pages dialog box so that the reader or author can print pixel-by-
pixel copies of pages from the current book.

printReport Message
This message is sent to the current page when a reader or author chooses the
Print Report command from the File menu. ToolBook’s default response is to
display the Print Report dialog box so that the reader or author can print a report
from the contents of specified record fields.

properties Message
This message is sent to the current page when an author chooses the Button
Properties, Field Properties, Graphic Properties, Group Properties, or Hotword
Properties command from the Object menu. ToolBook’s default response is to
display the appropriate properties dialog box.
Scripts that send the properties message will cause an error in Runtime
ToolBook.

quickTour Message
This message is obsolete in ToolBook version 1.5. See tutorial.

reader Message
This message is sent to the current page when an author chooses the Reader
command from the Edit menu. ToolBook’s default response is to change the
working level from Author to Reader.

redo Message
This message is sent to the current page when a reader or author chooses the
Redo command from the Edit menu. ToolBook’s default response is to reverse the
effect of the Undo command.

remoteCommand Message

Syntax
remoteCommand <command>

Description
This message is sent to the current page when another instance of ToolBook or
another Windows application sends a Windows Dynamic Data Exchange (DDE)
request to execute one or more commands. For details about DDE, see "Using
Windows Dynamic Data Exchange" in Chapter 6, "Beyond the Basics," in Using
OpenScript.
ToolBook’s default response to this message is to execute the statement execute
<command> in the context of the currently displayed page. If the specified
command contains a syntax error, or if a runtime error occurs when ToolBook tries
to execute the commands, ToolBook does not process the message and instead
returns a Failed: Denied response to the application requesting the action.
After ToolBook handles the remoteCommand message, ToolBook sends a
respondRemote command to the application requesting the action. Also see the
respondRemote command.

Parameter
The <command> parameter is any expression that evaluates to one or more
OpenScript statements. If there is more than one statement in the list, the
statements must be separated by semicolons.

Example
-- Intercepting remote commands with a handler in a book
-- to prevent other applications from deleting data in
-- this book
to handle remoteCommand what

if what contains "delete" then
-- If the remoteCommand message contains a command
-- to delete something
respondRemote "Failed: Denied"

-- Send a message to the requesting
-- application that ToolBook could not
-- execute the command

else
forward

-- Forwards the remoteCommand message
end if

end remoteCommand

remoteGet Message

Syntax
remoteGet <data>

Description
This message is sent to the current page when another instance of ToolBook or
another Windows application sends a Windows Dynamic Data Exchange (DDE)
request for data. For details about DDE, see "Using Windows Dynamic Data
Exchange" in Chapter 6 of Using OpenScript, "Beyond the Basics".    Also see the
getRemote command.
ToolBook’s default response to this message is to execute the statement set it
to evaluate <data> and to return the value of It to the requesting application.
ToolBook executes this statement in the context of the currently displayed page. If
there is a syntax error in the request, or if a runtime error occurs when ToolBook
tries to execute the request, ToolBook does not process the message and instead
returns a Failed: Denied response to the requesting application.
If you write a handler for a remoteGet message, the handler must put the requested
data into It and must include a respondRemote command. If a respondRemote
command is not executed before the end of the handler, ToolBook returns a null
value to the requesting application with a Failed: Denied response. Also see the
respondRemote command.

Parameter
The <data> parameter is an expression that indicates the data to be returned.

Example
-- Intercepting a remote request for data
to handle remoteGet what

if what is "Your name" then
set it to text of field "Name" of page "Personal data"
respondRemote "OK"

else
forward -- Forwards the remoteGet message

end if
end remoteGet

remoteSet Message

Syntax
remoteSet <item>,<value>

Description
This message is sent to the current page when another instance of ToolBook or
another Windows application sends a Windows Dynamic Data Exchange (DDE)
request for ToolBook to set a property or variable to a specified value. For details
about DDE, see "Using Windows Dynamic Data Exchange" in Chapter 6 of Using
OpenScript, "Beyond the Basics".    Also see the setRemote command.
ToolBook’s default response to the remoteSet message is to execute the
statement set <item> to <value> as though you had entered this statement in
the Command window. That is, ToolBook executes this statement in the context of
the currently displayed page. If there is a syntax error in the message or a
runtime error when ToolBook tries to execute this statement, ToolBook sends a
Failed: Denied response to the application requesting the data and does not
process the request.
If you write a handler for a remoteSet message, the handler must send a
respondRemote command. If a respondRemote command is not sent before the
end of the handler, ToolBook sends the requesting application a Failed: Denied
response. See respondRemote.

Parameters
The <item> and <value> parameters can be any expression.

Example
The following handler updates a system variable in a book when the book
receives the appropriate remoteSet message from another book or application.
The handler is in the book’s script.
-- In the following handler, x contains the name of the
-- item to set and y contains the value.
to handle remoteSet x,y

if x is "inflation"
system inflation
set inflation to y
respondRemote OK

end
end remoteSet

removeHotword Message
This message is sent to the current page when an author chooses the Remove
Hotword command from the Text menu. ToolBook’s default response is to turn a
hotword back into ordinary text and discard its script. Also see the entries for
createHotword and showHotwords.

reshape Message
This message is sent to the current page when an author chooses the Reshape
command from the Draw menu. ToolBook’s default response is to display reshape
handles the author can drag to change the shape of the selected angled line, arc,
curve, polygon, irregular polygon, or pie wedge.

rightButtonDoubleClick Message

Syntax
rightButtonDoubleClick <location>, <isShift>, <isCtrl>

Description
This message is sent, at Reader level, to the object whose active area contains
the pointer when the right mouse button is pressed and released twice within the
double-click time specified in the Control Panel.
When a user double-clicks the right button, the first click sends a
rightButtonDown message and the second click sends a
rightButtonDoubleClick message. Consequently, an object receives messages
in the following order: rightButtonDown, buttonStillDown (if the button is held
down), rightButtonUp, rightButtonDoubleClick, buttonStillDown (if the
button is held down), rightButtonUp.
If a button is the target of a rightButtonDoubleClick message and the
highlight property for the button is true, the button is highlighted before the
rightButtonDoubleClick message is sent. ToolBook’s default response to this
message is to do nothing.
The rightButton messages are usually used to implement help functions.

Parameters
The <location> parameter is a comma-separated pair of numbers indicating, in
page units, where the right mouse button was pressed. The <isShift> and
<isCtrl> parameters can be true or false, indicating if one of those keys was
pressed in conjunction with the mouse button.

Example
to handle rightButtonDoubleClick loc, isShift, isCtrl

conditions
when isShift is false and isCtrl is false

go to page "Help"
when isShift is true and isCtrl is false

show field "Hints1"
when isShift is false and isCtrl is true

show field "Hints2"
else

forward
end conditions

end rightButtonDoubleClick

rightButtonDown Message

Syntax
rightButtonDown <location>, <isShift>, <isCtrl>

Description
This message is sent, at Reader level, to the object whose active area contains
the mouse pointer when the right mouse button is pressed.
If a button is the target of a rightButtonDown message and the highlight
property for the button is true, the button is highlighted before the
rightButtonDown message is sent. ToolBook’s default response to this message
is to do nothing.

Parameters
The <location> parameter is a comma-separated pair of numbers indicating, in
page units, where the right mouse button was pressed. The <isShift> and
<isCtrl> parameters can be true or false, indicating if one of those keys was
pressed in conjunction with the mouse button.

Example
to handle rightButtonDown loc, isShift

if isShift is true then
select text of field "Help"

else
forward

end if
end rightButtonDown

rightButtonUp Message

Syntax
rightButtonUp <location>, <isShift>, <isCtrl>

Description
This message is sent to the object whose active area contained the mouse pointer
when the right mouse button was pressed. If the mouse pointer is outside the
main window when the mouse button is pressed, then moved inside the main
window before the mouse button is released, the rightButtonUp message is
sent to the current page.
If a button is the target of a rightButtonUp message and the highlight
property for the button is true, the button is highlighted before the
rightButtonUp message is sent. ToolBook’s default response to this message is
to do nothing.
The rightButton messages are usually used to implement help functions.

Parameters
The <location> parameter is a comma-separated pair of numbers indicating, in
page units, where the right mouse button was pressed. The <isShift> and
<isCtrl> parameters can be true or false, indicating if one of those keys was
pressed in conjunction with the mouse button.

Examples
to handle rightButtonUp

if it contains "HELP"
forward rightButtonUp

end
end rightButtonUp

to handle rightButtonUp loc, isShift, isCtrl
if isCtrl is true

go to book "c:\helpbook\help1.tbk"
else

show field "Hints"
end if

end rightButtonUp

rotateLeft Message
This message is sent to the current page when an author chooses the Rotate Left
command from the Draw menu. ToolBook's default response is to rotate the
selected objects 90 degrees to the left.
The rotateLeft message does not rotate the contents of fields, bitmaps or
pictures but it does rotate their bounds.

rotateRight Message
This message is sent to the current page when an author chooses the Rotate
Right command from the Draw menu. ToolBook's default response is to rotate the
selected objects 90 degrees to the right.
The rotateRight message does not rotate the contents of fields, bitmaps or
pictures but it does rotate their bounds.

rulers Message
This message is sent to the current page when an author chooses the Rulers
command from the Window menu. ToolBook’s default response is to display
vertical and horizontal rulers at the left and top sides of the main ToolBook
window.

run Message
This message is sent to the current page when an author chooses the Run
command from the File menu. ToolBook’s default response is to display the Run
dialog box.

save Message
This message is sent to the current page when a reader or author chooses the
Save command from the File menu. ToolBook’s default response is to save a book
under its existing name. If the book has not yet been named, ToolBook displays
the Save As dialog box so the reader or author can specify a file name for the
book.

saveAs Message
This message is sent to the current page when a reader or author chooses the
Save As command from the File menu. ToolBook’s default response is to display
the Save As dialog box.

search Message
This message is sent to the current page when a reader or author chooses the
Search command from the Page menu. ToolBook’s default response is to display
the Search dialog box so that the reader or author can search in fields for
specified text.

selectAll Message
This message is sent to the current page when a reader or author chooses the
Select All command from the Edit menu. ToolBook’s default response is to select
all objects on the foreground or background of the current page or all text in the
field the reader or author is editing.

selectPage Message
The message sent to the current page when a reader or author chooses the Select
Page command from the File menu. ToolBook's default response is to select the
current page. The page can be unselected using the command clear the
selection.

sendFarther Message
This message is sent to the current page when an author chooses the Send
Farther command from the Object menu. ToolBook’s default response is to send
the selected object one layer farther toward the back of the background or
foreground from the object’s original position. This message causes ToolBook to
change the layer number of the selected object. If the selected object is already
on the back layer, this message has no effect.
Also see the bringCloser message. For details about sending built-in messages,
see Chapter 3, "Messages and Properties," in Using OpenScript.

sendToBack Message
This message is sent to the current page when an author chooses the Send To
Back command from the Object menu. ToolBook’s default response is to send the
selected object all the way to the back of the foreground or background. This
message causes ToolBook to change the layer number of the selected object. If
the selected object is already on the back layer, this message has no effect.
Also see the bringToFront message.

shortcutKeys Message
This message is obsolete in ToolBook version 1.5. See keyboard.

showHotwords Message
This message is sent to the current page when a reader or author chooses the
Show Hotwords command from the Text menu. ToolBook’s default response is to
display rectangular outlines around hotwords throughout the current book. Also
see the entries for createHotword and removeHotword.

sized Message
The message sent to an object when its bounds or vertices properties are set at
either Author or Reader level. When an author sizes an object in a selection, only
that object gets the sized message, not the other selected objects. If a group is
sized, the group members do not receive the sized message.

sizeToPage Message
This message is sent to the current page when a reader presses F11 or an author
chooses the Size To Page command from the Window menu. ToolBook’s default
response is to expand the ToolBook window to the page size of the current book or
to the maximum window size, whichever is smaller.
As of ToolBook version 1.5, the ToolBook window is automatically sized to a book's
page size when the book is opened. This automatic sizeToPage can be
overridden by explicitly setting the size of the ToolBook window in an enterBook
handler.

sort Message
This message is sent to the current page when an author chooses the Sort
command from the Page menu. ToolBook’s default response is to display the Sort
dialog box.
Scripts that send the sort message will cause an error in Runtime ToolBook.

startRecording, stopRecording Message
The startRecording message is sent to the current page when an author
chooses the Start Recording command from the Edit menu. ToolBook’s default
response is to start the script recorder. The stopRecording message is sent to
the current page when an author chooses the Stop Recording command from the
Edit menu. ToolBook’s default response is to stop the script recorder. For details
about using the script recorder, see Chapter 11, "Using the Script Recorder and
the Command Window," in Using ToolBook.
Scripts that send these messages will cause an error in Runtime ToolBook.

strikeout Message
This message is sent to the current page when a reader or author chooses the
Strikeout command from the Text menu. ToolBook’s default response is to change
the font style of selected text or a selected field to strikeout. If nothing is
selected, strikeOut will be added to the sysFontStyle property.

textScrolled Message

Syntax
textScrolled <scroll>

Description
This message is a notification message sent to a field after a reader clicks one of
the scroll arrows or moves the scroll box in the scroll bar using the mouse.
This message is not sent when a field's scroll changes as a result of keyboard
actions.

Parameter
<scroll> is the resulting value of the scroll property of the field.

toggleStatus Message
This message is sent to the current page when a reader or author presses F12.
Toolbook’s default response is to toggle the status box on or off.

topics Message
This message is obsolete in ToolBook version 1.5. See index.

transparent Message
This message is sent to the current page when an author chooses the Transparent
command from the Draw menu. ToolBook’s default response is to reverse the
setting of the transparent property of selected objects or reverse the setting of
sysTransparent if no objects are selected.

tutorial Message
The message sent to the current page when a reader or author chooses the
Tutorial command from the Help menu. ToolBook's default response is to start the
Quick Tour.
Scripts that send the tutorial message will cause an error in Runtime ToolBook.

underline Message
This message is sent to the current page when a reader or author chooses the
Underline command from the Text menu. ToolBook’s default response is to change
the font style of selected text or a selected field to underline. If nothing is
selected, underline will be added to the sysFontStyle property.

undo Message
This message is sent to the current page when a reader or author chooses the
Undo command from the Edit menu. ToolBook’s default response is to reverse the
reader’s or author’s most recent action, as long as the action is undoable.
When the undo message is sent from a script, ToolBook’s default response is to
do nothing.

ungroup Message
This message is sent to the current page when an author chooses the Ungroup
command from the Object menu. ToolBook’s default response is to separate the
objects in a selected group so you can work with them individually.
Also see the group message and the group special term.

usingHelp Message
The message sent to the current page when a reader or author chooses the Using
Help command from the Help menu. ToolBook's default response is to display
instructions for using the Help book. If the Help book is not already open,
ToolBook opens it.

windowMoved Message
The message sent to the current page when the main window has been moved.
An author can write handlers for the windowMoved message to move other
related windows.

windowSized Message
The message sent to the page when the main window has been resized. An
author can write handlers for the windowSized message to resize objects to
match the client area size.

windowShown <isShown> Message
The message sent to the page when the main window is enlarged from or shrunk
to an icon. The <isShown> parameter is true when the window is enlarged and
false when it is shrunk to an icon. You can write handlers for the windowShown
message to hide or show related windows.

Operators Quick reference
& && *
+ - --
/ < <=
<> = >
>= ^ argument
contains div is
is in is not is not in
mod not or

& Operator

Syntax
<expression> & <expression>

Description
The concatenation operator joins the expression on its left to the expression on its
right.

Parameter
The <expression> parameter is any expression.

Example
put "Tool" & "Book" into it -- Puts ToolBook into It

&& Operator

Syntax
<expression> && <expression>

Description
The concatenation-with-space operator joins the expression on its left to the
expression on its right, with a space between them.

Parameter
The <expression> parameter is any expression.

Example
put "The" && "End" into it -- Puts The End into It

* Operator

Syntax
<expression> * <expression>

Description
The multiplication operator is an arithmetic operator that multiplies the two
expressions it appears between. Both expressions must yield numeric values.

Parameter
The <expression> parameter is any expression that yields a numeric value.

Example
put 25 * 4 into it -- Puts 100 into It

+ Operator

Syntax
<expression> + <expression>

Description
The addition operator is an arithmetic operator that adds the two expressions it
appears between. Both expressions must yield numeric values.

Parameter
The <expression> parameter is any expression that yields a numeric value.

Example
put 25.3 + 4 into it -- Puts 29.3 into It

- Operator

Syntax
<expression> - <expression>
- <expression>

Description
The minus operator is an arithmetic operator that makes the expression on its
right negative if it was positive or positive if it was negative or, if it is between two
expressions, subtracts the expression on its right from the expression on its left.
Both expressions must yield numeric values.

Parameter
The <expression> parameter is any expression that yields a numeric value.

Examples
put 25 - 4 into it -- Puts 21 into It
put 25 - (-4) into it -- Puts 29 into It

- - Comment character

Description
The comment character (two hyphens) indicates a comment. Whatever appears
to the right of the comment character and before the end of the line is not
executed by ToolBook.    If you are putting a comment on the same line as a
statement and want to continue the statement on the next line, put the
continuation character (\) at the end of the comment, not between the statement
and the beginning of the comment.

Example
-- This line is a comment, so ToolBook does not execute it
to handle buttonUp loc

put loc into textLine 1 -- This comment is on a line with
a\

of my text -- continuation character
end buttonUp -- This is yet another comment

/ Operator

Syntax
<expression> / <expression>

Description
The division operator is an arithmetic operator that divides the expression on its
left by the expression on its right, returning both the whole and fractional part of
the resulting value. Both expressions must yield numeric values.
Also see the div operator.

Parameter
The <expression> parameter is any expression that yields a numeric value.

Example
put 25 / 4 into it -- Puts 6.25 into It

< Operator

Syntax
<expression> < <expression> [as <type>]

Description
The less than operator is a logical operator that returns true if the expression on
its left has a value less than the expression on its right. Otherwise, it returns
false. The expressions can be compared as numbers, text, dates, or names.

Parameters
The <expression> parameter is any expression that yields a numeric value or a
value appropriate to the value of the <type> parameter. The <type> parameter
can be number, text, date, or name. The default value of the <type>
parameter is number, resulting in numeric comparison. If the <type> parameter
is text, the two expressions are compared alphabetically, according to the ANSI
values of the characters. For details about ANSI values, see Appendix A, "ANSI
and Other Character Sets," in Using ToolBook. If the <type> parameter is date,
the expressions are compared as dates according to the current value of the
sysDateFormat property. If the <type> parameter is name, the expressions are
compared as names. For details about how ToolBook compares names, see the
name special term.

Examples
put 25 < 4 into it -- Puts false into It
if textLine 1 of text of field id 1 < textLine 1 of text of \

field id 2 as text
put textLine 1 of text of field id 2 into textLine 1 of \
text of field id 1

end if

<= Operator

Syntax
<expression> <= <expression> [as <type>]

Description
The less-than-or-equal-to operator is a logical operator that returns true if the
expression on its left has a value that is less than or equal to the expression on its
right. Otherwise, it returns false. The expressions can be compared as numbers,
text, dates, or names.

Parameters
The <expression> parameter is any expression that yields a numeric value or a
value appropriate to the value of the <type> parameter. The <type> parameter
can be number, text, date, or name. The default value of the <type>
parameter is number, resulting in numeric comparison. If the <type> parameter
is text, the two expressions are compared alphabetically, according to the ANSI
values of the characters. For details about ANSI values, see Appendix A, "ANSI
and Other Character Sets," in Using ToolBook. If the <type> parameter is date,
the expressions are compared as dates according to the current value of the
sysDateFormat property. If the <type> parameter is name, the expressions are
compared as names. For details about how ToolBook compares names, see the
name special term.

Examples
put 25 <= 4 into it -- Puts false into It
to handle buttonUp

if textLine 1 of text of field "Date" <= sysDate as date
push sysDate onto textLine 1 of text of field "Access_dates"

end if
end buttonUp

<> Operator

Syntax
<expression> <> <expression> [as <type>]

Description
The not-equal-to operator is a logical operator that yields true if the expression
on its left and the expression on its right have different values or false if the
expressions are equal. The expressions can be compared as numbers, text, dates,
or names.

Parameters
The <expression> parameter is any expression that yields a numeric value or a
value appropriate to the value of the <type> parameter. The <type> parameter
can be number, text, date, or name. The default value of the <type>
parameter is number, resulting in numeric comparison. If the <type> parameter
is text, the two expressions are compared alphabetically, according to the ANSI
values of the characters. For details about ANSI values, see Appendix A, "ANSI
and Other Character Sets," in Using ToolBook. If the <type> parameter is date,
the expressions are compared as dates according to the current value of the
sysDateFormat property. If the <type> parameter is name, the expressions are
compared as names. For details about how ToolBook compares names, see the
name special term.

Examples
put 25 <> 4 into it -- Puts true into It

if text of field "Response" <> Answer as text
show field "Hint"

end if

= Operator

Syntax
<expression> = <expression> [as <type>]

Description
The equals operator is a logical operator that results in true if the expression on
its left and the expression on its right have the same value. Otherwise, it returns
false. The expressions can be compared as numbers, text, dates, or names. If
the values are compared as numbers, their numeric value must be the same to
result in true, although their formats may be different. For example, 1 = 1.000
results in true.

Parameters
The <expression> parameter is any expression that yields a numeric value or a
value appropriate to the value of the <type> parameter. The <type> parameter
can be number, text, date, or name. The default value of the <type>
parameter is number, resulting in numeric comparison. If the <type> parameter
is text, the two expressions are compared alphabetically, according to the ANSI
values of the characters. For details about ANSI values, see Appendix A, "ANSI
and Other Character Sets," in Using ToolBook. If the <type> parameter is date,
the expressions are compared as dates according to the current value of the
sysDateFormat property. If the <type> parameter is name, the expressions are
compared as names. For details about how ToolBook compares names, see the
name special term.

Examples
put 25 = 4 into it -- Puts false into It

if text of field "Response" = Answer as text
go to the next page

end if

> Operator

Syntax
<expression> > <expression> [as <type>]

Description
The greater than operator is a logical operator that yields true if the value of the
expression on its left is greater than the value of the expression on its right.
Otherwise, it returns false. The expressions can be compared as numbers, text,
dates, or names.

Parameters
The <expression> parameter is any expression that yields a numeric value or a
value appropriate to the value of the <type> parameter. The <type> parameter
can be number, text, date, or name. The default value of the <type>
parameter is number, resulting in numeric comparison. If the <type> parameter
is text, the two expressions are compared alphabetically, according to the ANSI
values of the characters. For details about ANSI values, see Appendix A, "ANSI
and Other Character Sets," in Using ToolBook. If the <type> parameter is date,
the expressions are compared as dates according to the current value of the
sysDateFormat property. If the <type> parameter is name, the expressions are
compared as names. For details about how ToolBook compares names, see the
name special term.

Examples
put 25 > 4 into it -- Puts true into It

if textLine 1 of text of field "City_1" > textLine 1 of text of \
field "City_2" as text
put textLine 1 of text of field "City_1" into textLine 1 of \
text of field "City_2"

end if

>= Operator

Syntax
<expression> >= <expression> [as <type>]

Description
The greater-than-or-equal-to operator is a logical operator that yields true if the
expression on its left has a value that is greater than or equal to the expression
on its right. Otherwise, it returns false. The expressions can be compared as
numbers, text, dates, or names.

Parameters
The <expression> parameter is any expression that yields a numeric value or a
value appropriate to the value of the <type> parameter. The <type> parameter
can be number, text, date, or name. The default value of the <type>
parameter is number, resulting in numeric comparison. If the <type> parameter
is text, the two expressions are compared alphabetically, according to the ANSI
values of the characters. For details about ANSI values, see Appendix A, "ANSI
and Other Character Sets," in Using ToolBook. If the <type> parameter is date,
the expressions are compared as dates according to the current value of the
sysDateFormat property. If the <type> parameter is name, the expressions are
compared as names. For details about how ToolBook compares names, see the
name special term.

Examples
put 25 >= 4 into it -- Puts true into It

to handle buttonUp
if sysDate >= textLine 1 of text of field "Date" as date

push sysDate onto textLine 1 of text of field "Access_dates"
end if

end buttonUp

^ Operator

Syntax
<expression> ^ <expression>

Description
The exponentiation operator is an arithmetic operator that raises the number on
its left to the power of the number on its right. Although exponentiation is
evaluated from left to right, grouping is done from right to left. Therefore, x^y^z
is evaluated as x^(y^z).

Parameter
The <expression> parameter is any expression that yields a numeric value.

Examples
put 25 ^ 4 into it -- Puts 390625 into It

put 4^1^3 into it -- Puts 4 into It

and Operator

Syntax
<expression> and <expression>

Description
A logical operator that yields true if the expression on its left and the expression
on its right are both true.

Parameter
The <expression> parameter is any expression.

Example
if text of field id 1 > 4 and text of field id 1 < 25 then

put "The expression is true" into the commandWindow
end if

argument Operator

Syntax
argument <expression>

Description
A special operator used to get the value of a parameter passed to the currently
executing handler. Note that getting argument n and getting item n of the
argList (where n is less than or equal to the value of argCount) can result in
two different values since an argument can consist of more than one item.

Parameter
The <expression> parameter is any expression that evaluates to a positive
integer.

Example
put argument 3 into text of field "Name"

-- Puts the value of the third parameter
-- passed to the current handler into field
-- "Name" of the current page

contains Operator

Syntax
<expression> contains <expression>

Description
A logical operator that yields true if the expression on its right is found in the
expression on its left. Otherwise, it returns false.    This operator is not case-
sensitive.

Parameter
The <expression> parameter is any expression.

Example
In the following example, field What Next contains the text I want to study
the Roman conquests:

if text of field "What Next" contains "Roman" then
-- Evaluates to true
go to book "c:\lessons\romans.tbk"

-- This clause is executed
else

go to book "c:\lessons\reviews.tbk"
end if

div Operator

Syntax
<expression> div <expression>

Description
An arithmetic operator that divides the number on its left by the number on its
right, and yields only the integer part of the result.    For an operator that yields
the whole and fractional parts of a division operation, see the division operator
(/).

Parameter
The <expression> parameter is any expression that yields a numeric value.

Example
put 25 div 4.5 into it -- Puts 5 into It

is Operator

Syntax
<expression> is <expression> [as <type>]

Description
The is operator is a logical operator that compares expressions and yields true
if the expression on its left and the expression on its right are equivalent or false
if the expressions are not equivalent. The expressions can be compared as text,
numbers, dates, or names.    This operator is not case-sensitive.

Parameters
The <expression> parameter is any expression that yields a numeric value or a
value appropriate to the value of the <type> parameter. The <type> parameter
can be number, text, date, or name. The default value of the <type>
parameter is number, resulting in numeric comparison. If the <type> parameter
is text, the two expressions are compared alphabetically, according to the ANSI
values of the characters. For details about ANSI values, see Appendix A, "ANSI
and Other Character Sets," in Using ToolBook. If the <type> parameter is date,
the expressions are compared as dates according to the current value of the
sysDateFormat property. If the <type> parameter is name, the expressions are
compared as names. For details about how ToolBook compares names, see the
name special term.

Example
to handle answer

if Answer_text is "Julius Caesar"
go to the next page

else
ask "Please try again:"
put it into Answer_text
send answer

end if
end answer

is in Operator

Syntax
<expression> is in <expression>

Description
A logical operator that yields true if the string on its left is found anywhere in
the string on its right or yields false is the string is not found. The is in
operator is the reverse of the contains operator.    This operator is not case-
sensitive.

Parameter
The <expression> parameter is any expression that yields a string.

Example
to handle buttonUp

ask "Do you want to continue?"
if "No" is in it

break
else

go to page "Exam"
end if

end buttonUp

is not Operator

Syntax
<expression> is not <expression> [as <type>]

Description
The is not operator is a logical operator that compares expressions and yields
true if the expression on its left and the expression on its right are not equivalent
strings or false if the expressions are equivalent. The expressions can be
compared as text, numbers, dates, or names.    This operator is not case-sensitive.

Parameters
The <expression> parameter is any expression that yields a numeric value or a
value appropriate to the value of the <type> parameter. The <type> parameter
can be number, text, date, or name. The default value of the <type>
parameter is number, resulting in numeric comparison. If the <type> parameter
is text, the two expressions are compared alphabetically, according to the ANSI
values of the characters. For details about ANSI values, see Appendix A, "ANSI
and Other Character Sets," in Using ToolBook. If the <type> parameter is date,
the expressions are compared as dates according to the current value of the
sysDateFormat property. If the <type> parameter is name, the expressions are
compared as names. For details about how ToolBook compares names, see the
name special term.

Example
to handle buttonUp

ask "Who fiddled while Rome burned?"
set answer_text to it

-- Set the value of the variable to the text of the response
if Answer_text is not "Nero"

request "Please try again:"
else

request "Correct"
go to the next page

end if
end buttonUp

is not in Operator

Syntax
<expression> is not in <expression>

Description
A logical operator that yields true if the string on its left is not found in the
string on its right or false if the string on its left is found in the string on its
right.    This operator is not case-sensitive.

Parameter
The <expression> parameter is any expression that yields a string.

Example
to handle buttonUp

ask "Who fiddled while Rome burned?"
set answer_text to it

-- Set the value of the variable to the text of the response
if "Nero" is not in Answer_text

request "Please try again:"
else

request "Correct"
go to the next page

end if
end buttonUp

mod Operator

Syntax
<expression> mod <expression>

Description
An arithmetic operator that divides the number on its left by the number on its
right, yielding only the remainder.

Parameter
The <expression> parameter is any expression that yields a numeric value.

Example
put 16 mod 5.0 into it -- Puts 1 into It

not Operator

Syntax
not <expression>

Description
A logical operator that yields true if the value of the expression on its right is
false or yields false if the expression on its right is true.

Parameter
The <expression> parameter is any logical expression.

Example
-- If field is invisible, make it visible
if not visible of field "Hint"

set visible of field "Hint" to true
end if

or Operator

Syntax
<expression> or <expression>

Description
A logical operator that returns true if either the expression on its left or the
expression on its right is true.

Parameter
The <expression> parameter is any expression.

Example
if Interest1 >10.5 or Interest1 < 9.5 then

request "Interest rate is not in acceptable range."
end if

Commonly Used Parameters Quick reference
The value of the parameters in the following table can be the literal values
specified or they can be any expression that yields the specified values.
Parameter Descriptions
Parameter Description
<amount> A number.
<application> The name of any Windows application combined with the

name of any file, including their path names if necessary,
and any other parameters to be passed to the application.

<book name> The name of a book.
<character> A character specified literally or as a constant.
<container> (1) With clear, any valid container.

(2) With format, a container name that contains the value
you want to format. If <type> is number, contents must be
numeric.
(3) With set, any ToolBook property or other valid container.
See also "Properties."

<control structure> (1) With exit, must be do, step, conditions, or while.
(2) With continue, must be while, do, or step
[<variable>].    The <variable> parameter in the next
step form of the command is the name of a step variable in
the enclosing step statement and indicates the step
statement on which next is to operate.

<default answer> A string. If the text contains spaces or special terms, it must
be enclosed in quotation marks.

<destination> (1) With pop, the name of a container. (2) With put, a
container.

<direction> Must be top, bottom, left, or right.
<expression> (1) With beep, a positive integer.

(2) With get or return, a value.
(3) With go, a valid identifier for a page or book.
(4) With push, an item.
(5) With put, a string or a number.

<fields> If <type> is fixed, must be a comma-separated list of
positive integers indicating the field lengths in a file to be
imported or exported. If <type> is delimited, must be the
field separator.

<file name> A valid DOS file name or a container that contains a valid
DOS file name, including the full path name if the file is not
in the current directory.

<handler name> The name of the current handler to exit from.
<level> Must be author, reader, or both. The default is the

current working level.

<location> A point on the page represented by two integers separated
by a comma; interpreted as page units (1440/inch) for
objects or screen coordinates (pixels) for windows and
palettes.

<menu item> The name of a user-defined command as it appears on a
menu, enclosed in quotation marks if the name contains
spaces or punctuation.

<menu name> The name of a menu as it appears on the menu bar,
enclosed in quotation marks if the name contains spaces or
punctuation.

<message> Any valid built-in or user-defined message name. See also
"Messages."

<new format> A valid numeric, date, or time format. See also "Numeric
Formats" and "Date and Time Formats."

<number of characters> A non-negative number.
<number> Any acceptable value.

(1) With flip or sort, a positive integer.
(2) With seed, a positive number.

<object> (1) With edit script, the identifier for an object.
(2) With hide or show, a hideable object, palette, or
window. Enclose object names in quotation marks.
(3) With move or unselect, the name, ID, or other valid
identifier for an object. The default is the current selection.
(4) With send, a ToolBook object or system.
(5) With set, an object or window name.

<object type> Arc, angledLine, background, button, curve, ellipse,
field, group, irregularPolygon, line, page,
paintObject, pie, polygon, rectangle, recordField, or
roundedRectangle.

<objects> A comma-separated list of object identifiers.
<old format> A valid numeric, date, or time format. See also "Numeric

Formats" and "Date and Time Formats."
<overwrite> Must be true or false.
<pages> With print, the word all or a non-negative integer

indicating the number of pages to be printed, beginning with
the current page.

<parameters> One or more expressions, separated by commas if there is
more than one.

<power> Must be 1, 2, 4, 8, or 16.
<position> A positive integer that indicates the placement of a menu

command in relation to the top of the menu.
<question> A string with up to three lines of 50 characters each.
<reply> A string of up to 8 characters.

<result> Black, gray, or white or valid page reference.
<sort key> A sort key consisting of [<order>], [<type>], <sort

expression>, where <order> can be ascending or
descending, <type> can be text, number, date, or name,
and <sort expression> is any expression that can be
evaluated in the context of a page.

<source> One or more OpenScript statements or any container that
contains OpenScript statements.

<speed> Must be slow, normal, or fast.
<stack> (1) With pop, the name of a container that contains a

comma-separated list of items.
(2) With push, the name of a container.

<string> A string enclosed in quotation marks or the source of such a
string.

<string specifier> An expression that evaluates to a chunk of text in a field or
record field.

<text> A string.
<time> A positive number.
<tool> The field tool, button tool, record field tool, or any of the

other drawing tools. See also "Drawing Tools."
<type> (1) With align, must be left, right, top, bottom,

horizontal, or vertical.
(2) With export or import, must be fixed or delimited.
(3) With format, must be number, date, or time.
(4) With is, is not, =, <>, =>, =<, <, or >, must be text,
number, date, or name.

<value> A valid setting for a particular property.
<variable list> One or more variable names, separated by commas if there

is more than one.

(1) A number.
(2) With move, two numbers, separated by a comma.
The first number specifies the horizontal distance and
the second specifies the vertical distance to move.
Distances are in page units.

Any expression that yields a number.

The name of any Windows application combined with the
name of any file, including their path names if necessary, and
any other parameters to be passed to the application.

Any expression that yields a number

The name of a book.

A character specified literally or as a constant.

Any expression that evaluates to one or more OpenScript
statements or to a valid command string for an application.

(1) With increment, clear, or decrement, the name
of any container.
(2) With format, a container name that contains the value
you want to format. If <type> is number, contents must be
numeric.
(3) With set, any ToolBook property or other valid container.
See also "Properties."

(1) With break, must be do, step, conditions, or
while.
(2) With continue, must be while, do, or step [<variable>].
The <variable> parameter in the step form of the
command is the name of a step variable and indicates the step
statement on which continue is to operate.

author or reader.

Any expression that yields a value that identifies the data
you want to get.

A string. If the text contains spaces or special terms, it must
be enclosed in quotation marks.

the name of a container.

The name of a DLL.    Must evaluate to a string.

Must be top, bottom, left, or right.

(1) With beep, a positive integer.
(2) With get or return, a value.
(3) With go, a valid identifier for a page or book.
(4) With push, an item.
(5) With put, a string or a number.
(6) With itemCount(), a comma separated list.
(7) With when, until, while or if, an expression evaluating to
true or false.

If <type> is fixed, must be a comma-separated list of
integers indicating the field lengths in a file to be imported or
exported. For import, values must be positive. For export, a
positive number left-justifies data in the field and a negative
number right-justifies it.
If <type> is delimited, must be the field separator.

A valid DOS file name or a container that contains a valid
DOS file name, including the full path name if the file is not in
the current directory.

An expression that evaluates to a number.

The literal name of the function in a DLL.

The name of the current handler.

A list of variable names that represent values supplied
the handler is called.

Any positive integer from 1 to 32767 inclusive

True if Shift key is being pressed, false otherwise.

True if Ctrl key is being pressed, false otherwise.

Any expression that evaluates to a settable item
recognized by the responding application.

A key constant or integer value that represents a key.
See key constants or keyState. For the keyChar message,
an integer ANSI value for a character.

Any expression that yields a number.

Any expression or group of expressions that yield a    sequence
of numbers separated by commas.

Must be author, reader, or both. The default is the
current working level.

A point on the page represented by two integers separated
by a comma; interpreted as page units (1440/inch) for
objects or screen coordinates (pixels) for windows and
palettes.

The name of a user-defined command as it appears on a
menu, enclosed in quotation marks if the name contains
spaces or punctuation.

The name of the menu item chosen.

The name of a menu as it appears on the menu bar
enclosed in quotation marks if the name contains spaces or
punctuation.

Any valid built-in or user-defined message name.

A valid numeric, date, or time format. See also "Numeric
Formats" and "Date and Time Formats."

An expression that evaluates to the new value.

A non-negative number.

Any acceptable value.
(1) With beep, flip, print or sort, a positive integer.
(2) With seed, a positive number.

(1) With edit script, the identifier for an object.
(2) With hide or show, a hideable object, palette, or
window. Enclose object names in quotation marks.
(3) With move or unselect, the name, ID, or other valid
identifier for an object. The default is the current selection.
(4) With send, a ToolBook object or system.
(5) With set, an object or window name.

Arc, angledLine, background, button, curve,
ellipse, field, group, irregularPolygon, line,
page, paintObject, picture, pie, polygon,
rectangle, recordField, or roundedRectangle.

A comma-separated list of object identifiers.

An expression that evaluates to the number of bytes offset from
the beginning of the data being referenced.

A valid numeric, date, or time format. See also "Numeric
Formats" and "Date and Time Formats."

Must be ascending or descending.    Default is ascending.

Must be true or false.

The current page.

With print, the word all or a non-negative integer indicating
the number of pages to be printed, beginning with the current
page.

One or more expressions, separated by commas if there is
more than one.

The literal data type of the function's parameters.    Allowable
values are BYTE, INT, WORD, LONG, DWORD, FLOAT,
DOUBLE, STRING or POINTER.

Any expression that yields a number.    For AnnuityFactor,
expressed in months.

An expression that evaluates to the    pointer.

Must be 1, 2, 4, 8, or 16.

A positive integer that indicates the placement of a menu
command in relation to the top of the menu.

A string.

Any expression that yields a number.    For AnnuityFactor,
.10/12 = 10%

A string of up to 8 characters.

A list of nine items passed between ToolBook and an
application communicating through DDE.

Black, gray, or white or valid page reference.

The literal data type that the function returns.    Allowable values
are BYTE, INT, WORD, LONG, DWORD, FLOAT, DOUBLE,
STRING or POINTER.

Any expression that can be evaluated in the context of a
page, for example, the page number or ID.

The DDE name of a Windows application.

A sort key consisting of [<order>], [<type>],
<sort expression>, where <order> can be
ascending or descending, <type> can be text,
number, date, or name, and <sort expression> is
any expression that can be evaluated in the context of a
page.

One or more OpenScript statements or any container that
contains OpenScript statements.

Must be slow, normal, or fast.

One or more OpenScript statements.

(1) With pop, the name of a container that contains a comma-
separated list of items.
(2) With push, the name of a container.

An expression that evaluates to a number.

An expression that evaluates to a number.    Default is 1.

A string enclosed in quotation marks or the source of such a
string.

An expression that evaluates to a chunk of text in a field or
record field.

A string.

A positive number.

The field tool, button tool, record field tool, or any of the other
drawing tools. See also "Drawing Tools."

Any expression that evaluates to a topic recognized
by the remote instance.    The topic is usually a file name.

(1) With align, must be left, right, top, bottom,
horizontal, or vertical.
(2) With export or import, must be fixed or delimited.
(3) With format, must be number, date, or time.
(4) With is, is not, =, <>, =>, =<, <, or >, must be text,
number, date, or name.
(5) With pointer is BYTE, INT, WORD, LONG, DWORD,
FLOAT, DOUBLE, STRING, or POINTER.

A valid setting for a particular property.

(1) With step, the name of the control variable for the loop. The
control variable will be incremented each cycle through the loop.
(2) With continue step, the control variable on which continue
is to operate. If variable is omitted, the innermost step control
structure is assumed.

One or more variable names, separated by commas if there
 is more than one.

The window handle of a window (ex. sysWindowHandle).

The decimal equivalent of the hexadecimal number of a Windows message.

Properties Quick reference
Alphabetical List

Book Properties
backgroundCount header script
caption icon size
captionShown name uniqueName
customColors object userProperties
footer pageCount
Background properties

fillColor pageCountstoreImage
idNumber parent strokeColor
name pattern uniqueName
object script userProperties
objects storedImages
Page properties

idNumber objects storedImages
imageInvalid pageNumber storeImage
name parent uniqueName
object script userProperties
Group properties
bounds object uniqueName
drawDirect objects userProperties
idNumber parent vertices
layer position visible
name script
Button properties
borderStyle fontStyle script
bounds highlight strokeColor
caption idNumber textOverflow
checked invert transparent
drawDirect layer uniqueName
excludeTab name userProperties
fillColor object vertices
fontFace parent visible
fontSize position
Field and record field properties
activated indents tabSpacing
baselines layer tabType
borderStyle name text
bounds object textAlignment
drawDirect objects textOverflow
drawTextDirect parent transparent
fieldType position uniqueName
fillColor script userProperties
fontFace scroll vertices
fontSize selectedTextLines visible

fontStyle spacing
idNumber strokeColor
Draw object, paint object, and picture properties
bounds name strokeColor
drawDirect object transparent
fillColor parent uniqueName
idNumber pattern userProperties
layer position vertices
lineStyle script visible
Window and palette properties
bounds position visible
object vertices
ToolBook regular system properties
focus sysFontSize sysPasswords
selectedText sysFontStyle sysPattern
selectedTextState sysGrid sysPolygonShape
selection sysGridSnap sysRuler
self sysGridSpacing sysRuntime
sysAlignment sysHistory sysStrokeColor
sysBooks sysHistoryRecord sysSuspend
sysCentered sysHotwordsShown sysSuspendMessages
sysChangesDB sysIndents sysTabSpacing
sysClientHandle sysLevel sysTabType
sysCursor sysLineSpacing sysTime
sysDate sysLineStyle sysTimeChar
sysDateFormat sysLockScreen sysTimeFormat
sysDrawDirect sysMagnification sysTransparent
sysError sysMousePosition sysUnits
sysErrorNumber sysNumberFormat sysVersion
sysFillColor sysOperatingSystem sysWindowHandle
sysFontFace sysPageScroll target
ToolBook printer properties
printerArrangement printerFieldWidths printerMargins
printerBorders printerGroupsAcross printerName
printerBottomMargin printerGutterHeight printerPageBitmap
printerClipText printerGutters printerRightMargin
printerConditions printerGutterWidth printerSize
printerFieldNames printerLabelWidth printerStyle
printerFields printerLeftMargin printerTopMargin
ToolBook international system properties
sysCountry sysIDate sysList
sysCurrency sysIDigits sysLongDate
sysDecimal sysILZero sysMorning
sysErrorNumber sysIMeasure sysShortDate
sysEvening sysINegCurr sysThousand
sysICountry sysITime sysTimeChar
sysICurrDigits sysITLZero
sysICurrency sysLanguage
ToolBook startup system properties

startupBook startupSysBooks startupWidth
startupDrawDirect startupSysColors
startupHeight startupUnits

Properties - Alphabetical List Quick reference
activated printerPageBitmap sysIDigits
backgroundCount printerRightMargin sysILZero
baselines printerSize sysIMeasure
borderStyle printerStyle sysINegCurr
bounds printerTopMargin sysIndents
caption script sysITime
captionShown scroll sysITLZero
checked selectedText sysLanguage
customColors selectedTextLines sysLevel
drawDirect selectedTextState sysLineSpacing
drawtextdirect selection sysLineStyle
excludeTab self sysList
fieldType size sysLockScreen
fillColor spacing sysLongDate
focus startupBook sysMagnification
fontFace startupDrawDirect sysMorning
fontSize startupHeight sysMousePosition
fontStyle startupSysBooks sysNumberFormat
footer startupSysColors sysOperatingSystem
header startupUnits sysPageScroll
highlight startupWidth sysPasswords
icon storedImages sysPattern
idNumber storeImage sysPolygonShape
imageInvalid strokeColor sysRuler
indents sysAlignment sysRuntime
invert sysBooks sysShortDate
layer sysCentered sysStrokeColor
lineStyle sysChangesDB sysSuspend
name sysClientHandle sysSuspendMessages
object sysCountry sysTabSpacing
objects sysCurrency sysTabType
pageCount sysCursor sysThousand
pageNumber sysDate sysTime
parent sysDateFormat sysTimeFormat
pattern sysDecimal sysTransparent
position sysError sysUnits
printerArrangement sysErrorNumber sysVersion
printerBorders sysEvening sysVersion
printerBottomMargin sysFillColor sysWindowHandle
printerClipText sysFontFace tabSpacing
printerConditions sysFontSize tabType
printerFieldNames sysFontStyle target
printerFields sysGrid text
printerFieldWidths sysGridSnap textAlignment
printerGroupsAcross sysGridSpacing textOverflow
printerGutterHeight sysHistory transparent
printerGutters sysHistoryRecord uniqueName
printerGutterWidth sysHotwordsShown userProperties
printerLabelWidth sysICountry vertices
printerLeftMargin sysICurrDigits visible
printerMargins sysICurrency
printerName sysIDate

activated Property

Description
A foreground field and record field property used to set or get whether a field’s
script and hotwords are active. For background fields, this property is only
gettable because fields on a background are always activated. Setting the
activated property to true is equivalent to checking Activate Scripts in the
Field Properties dialog box. If activated is set to true for a particular field, the
contents of that field cannot be edited by a reader, the mouse pointer does not
change to the text insertion point or arrow when it enters the protected field, the
field’s hotwords are active, and clicking on the field sends button messages to the
field.

Value
The value can be true or false. The default value is false for all record fields
and fields on a foreground. Background fields are always activated so the value of
activated is true.

backgroundCount Property

Description
A book property used to get the number of backgrounds in a book.

Value
The value is a positive integer indicating the number of backgrounds in a book.

baselines Property

Description
A field and record field property used to set or get whether the text baselines in a
field are visible. Setting the baselines property to true is the equivalent of
checking Baselines in the Field Properties dialog box.

Value
The value can be true or false. The default value is false.

borderStyle Property

Description
A button, field, or record field property used to set or get button border styles or
field border styles.

Value
The allowable values for button border styles are none, pushbutton, rectangle,
rounded, shadowed, radiobutton, and checkbox. The default value for button
border styles is pushbutton. The allowable values for field border styles are
none, rectangle, scrolling, and shadowed. The default value for field border
styles is rectangle.

Example
set borderStyle of button "Editor" to checkbox

-- Sets the border style for a button

bounds Property

Description
A field, button, group, graphic, or window property used to set or get the location
and size of the bounding rectangle of a field, a button, a group, a graphic, or the
ToolBook main window. This property can also be used to get the coordinates of
the bounding rectangle for the Command window and for palettes. For graphic
objects, the bounds of the object are analogous to the location of the selection
handles of the object as shown at Author level.
Scripts that get the bounds of palettes or the Command window will cause an
error in Runtime ToolBook.

Value
The value is four comma-separated numbers that together define the bounding
rectangle of the object (for example, 5025, 1640, 7780, 2880).    The first two
numbers give the x and y coordinates of the upper left corner of the bounding
rectangle, and the last two numbers give the x and y coordinates of the lower
right corner.    For fields, buttons groups, and graphic objects, the numbers are in
page units.    For windows and palettes, the numbers are in screen coordinates
(pixels).

caption Property

Description
A book property used to set or get text shown in the caption bar instead of the
book name, and a button property used to set or get the text in a button’s label.
Setting the caption property for books is equivalent to entering a value in the
Caption box in the Book Properties dialog box. Setting the caption property for
buttons is equivalent to entering a value in the Button Label box in the Button
Properties dialog box.

Value
The value is a string that is the book caption or button label as shown in the Book
Properties or Button Properties dialog box. The string can be up to 32 characters
long for book captions and up to 255 characters long for button labels. The
default value for books is null. The default value for buttons is Button.

captionShown Property

Description
A book property used to set or get whether the book caption is shown in the
caption bar. Setting the captionShown property to true is the equivalent of
checking Show Caption in the Book Properties dialog box.

Value
The value can be true or false. The default value is false.

checked Property

Description
A button property used to set or get whether a checkbox-style button is checked
or a radio-style button is filled in.

Value
The value can be true or false. The default value is false.

customColors Property

Description
A book property used to set or get the 64 colors of the color tray.
The 64 default custom colors are the colors of the color tray when you choose the
color tray’s Revert button.

Value
The value consists of 64 text lines; each text line is a comma-separated list of
three numbers that represents the hue, lightness, and saturation of a single color
in the color tray. Each text line is terminated with crlf. The colors in the color
tray are numbered from top to bottom, left to right.
The hue value ranges from 0 to 360, corresponding to the angle in a color wheel
where:
0 is red 60 is yellow 120 is green
180 is cyan 240 is blue 300 is magenta
Intermediate angles represent intermediate colors. 0 and 360 are equivalent.
The lightness value ranges from 0 to 100, with 0 representing 0% lightness
(black) and 100 representing 100% lightness (white).
The saturation value ranges from 0 to 100, with 0 representing 0% saturation
(gray) and 100 representing 100% (pure color).
ToolBook may have to convert the value you specify to the closest value that
represents an available color. The default value is the value of the current colors
in the color tray.

Examples
set textline 32 of customColors of this book to 0,0,0

-- Sets the 32nd color tile in the color tray
-- palette to black

set item 1 of textline 3 of customColors of this book to 180

to handle enterBook
-- Put the customColors into the user-defined property
-- originalColors
set originalColors of this book to customColors of this book

end enterBook

to handle leaveBook
-- Restore the original colors (in case user has
-- changed them)
set customColors of this book to originalColors of this book

end leaveBook

drawDirect Property

Description
An object property that specifies the method for drawing the screen image of the
object. All object types except hotwords, pages, and books have this property.

Value
The value can be true or false; the default is the value of sysDrawDirect. If
drawDirect is true, the object is drawn directly on screen; if false, it is drawn as
part of the offscreen image.
Objects with this property set to true will usually display more quickly than
objects with this property set to false. For details about other techniques to
optimize page display speed, see Chapter 3, "Tips for ToolBook Authors," in the
ToolBook Ideas booklet.

Example
set the drawDirect of button "Example" to true

-- draws button "Example" directly to the screen when the
-- page is displayed or the button is moved or sized.

drawTextDirect Property

Description
A field or record field property that specifies the method for drawing the screen
image of text in a field. A field's or record field's borders, including scroll bars, are
drawn as specified by the drawDirect property.

Value
 The value can be true or false; the default is false when drawDirect is
false for the field. If drawTextDirect is true, the text is drawn directly on
screen even if the field is drawn in the offscreen image; if false, the text is
drawn as part of the offscreen image when the field is drawn offscreen. Setting
this property to true is the same as checking Draw Text Direct in the Field
Properties or Record Field Properties dialog box.

Example
set the drawTextDirect of recordField "Instructions" to true

excludeTab Property

Description
A button property that specifies whether or not the button is included in the
tabbing order.

Value
The values are true or false. The defalult is false. When excludeTab is true,
the button cannot get the focus by tabbing, and therefore the button's script
cannot run as a result of keyboard action.

fieldType Property

Description
A field or record field property that determines the field's behavior. This property
effects the type of word wrap applied in displaying text in a field. It also
determines whether the field is a single-select or multi-select listbox.

Value
The fieldType property can have one of the following values:
o wordWrap Allows normal word wrap at the right margin when a user types

or pastes text in the field. Use this style to display text or to allow readers
to enter text. Set the activated property of the field to true if you want
readers to be able to click hotwords in this type of field of if you want to
lock the field so that readers cannot edit text.

o noWrap Prevents word wrap at the right margin for each paragraph. That
is, individual lines of text are created only by pressing Enter while typing or
at every CRLF in pasted or imported text. You cannot scroll the insertion
point past the right edge of the field, even if a line of text continues past
the border.

o singleLineWrap Allows users to enter a single line of text between the
field's borders. Pressing Enter or Shift+Enter has no effect on line breaks in
this type of field. Use this type of field to create data entry forms, and set
the activated property of the field to true if you want readers to be able
to click hotwords in this type of field.

o singleSelect Allows readers to move the focus in the list and to select a
text line, as in a Windows-style listbox. Each paragraph appears as a single
text line, with no word wrap at the right margin, and paragraph alignment
options have no effect. Scripts are automatically activated for this type of
field. (That is, readers cannot enter text.)

o multiSelect Allows readers to move the focus in the list and to select
multiple, discontinuous text lines, as in a multiple-choice Windows style
listbox. Other behavior is the same as a single-select listbox.

For listbox fields (the fieldType property set to singleSelect or
multiSelect) keyboard and mouse actions produce these results:
o Pressing a key selects a textline that begins with that letter, and

repeatedly pressing a key cycles through all textlines that begin with that
letter.

o Dragging the mouse or pressing an arrow key moves the focus, which
appears as a dotted rectangle enclosing the textline. For single-select
listbox fields, moving the focus also moves the selection to the textline
that has the focus. For multi-select listbox fields, clicking a textline or
pressing the space bar toggles selection of the textline.

Listbox fields in ToolBook are similar to Windows 3.0 listboxes in most ways,
except:

o Text can be edited directly at Author level, rather than writing a program to
set the contents.

o A listbox field can contain hotwords, the text can be formatted in multiple
fonts, baselines can be shown, and all types of paragraph formatting
except alignment can be displayed.

o The textlines are not sorted automatically in a ToolBook listbox.
For information about writing scripts for listboxes, see the selectedTextLines
field property.

fillColor Property

Description
A button, field, record field, draw object, paint object, or background property
used to set or get the fill color of an object.

Value
The value is a comma-separated list of three non-negative numbers representing
the hue, lightness, and saturation of a single color.
The hue value ranges from 0 to 360, corresponding to the angle in a color wheel
where:
0 is red 60 is yellow 120 is green
180 is cyan 240 is blue 300 is magenta
Intermediate angles represent intermediate colors. 0 and 360 are equivalent.
The lightness value ranges from 0 to 100, with 0 representing 0% lightness
(black) and 100 representing 100% lightness (white).
The saturation value ranges from 0 to 100, with 0 representing 0% saturation
(gray) and 100 representing 100% (pure color).
ToolBook may have to convert the value you provide to the closest value that
represents an available color. The default value is the value of the sysFillColor
property.

focus Property

Description
A system property used to set or get the object on the current page or
background that has the focus.
If a button has the focus, its caption will be surrounded by a focus outline (a
dashed rectangle). If the button's caption is null then no outline will appear but
the button will still have the focus. If a button has its excludeTab property set to
true it cannot receive the focus through a keyboard action (like tabbing) but will
receive the focus when it is clicked with the mouse.

Value
The value is the uniqueName of the object on the current page or background
that will receive keyboard events at Reader level, or null if there is no focus.

fontFace Property

Description
A button, field, or record field property used to set or get the default font for
button labels and field text.
If this property is set to a value that specifies a font typeface not available in the
Character dialog box, the font typeface in effect before the fontFace property is
set remains the object’s default font typeface. If, at a later time, the font typeface
specified as the value for the property becomes available, that font typeface is
used.

Value
The value is an expression that evaluates to the name of the default font for a
button label or field text as shown in the Character dialog box for a button label or
field text. The default value is the value of the sysFontFace property.

Example
set the fontFace of button "Next" to "Tms Rmn"

-- Changes the font for the button label to Tms Rmn

fontSize Property

Description
A button, field, or record field property used to set or get the default point size of
button labels or field text.
If this property is set to a value that specifies a point size not available for the
object’s default font face, the nearest smaller valid value is used.

Value
The value is an expression that evaluates to a positive integer, which defines the
point size of the default font as shown in the Character dialog box for a button or
field. The default value is the value of the sysFontSize property.

fontStyle Property

Description
A button, field, or record field property used to set or get the font style of button
labels or field text.

Value
The value is an expression that evaluates to null or to a comma-separated list of
one or more of the values bold, italic, underline, and strikeout. The
combination of these values describes the style of the object’s default font. A null
value is equivalent to plain style. The default value is the value of the
sysFontStyle property.

footer Property

Description
A book property used to set or get the contents of a footer to be printed on each
printed page.

Value
The value is an expression that evaluates to a string of up to 32,000 characters.
The default value is null, or no footer. You can include three special codes in a
footer to print out the date, time and page number. They are:
~d date
~t time
~p page number
For example, you can set the footer:
set footer of this book to "Date: ~d ~t" & CRLF & "Page ~p"
Any printed pages would have the date on the first line and the page number on
the second line of the footer.

header Property

Description
A book property used to set or get the contents of the header to be printed on
each printed pages.

Value
The value can be any expression that evaluates to a string of up to 32,000
characters. The default value is null, or no header. You can include three special
codes in a header to print out the date, time and page number. They are:
~d date
~t time
~p page number
For example, you can set the header to:
set header of this book to "Date: ~d ~t"
Any printed pages would have the date and time in the header.

highlight Property

Description
A button or hotword property used to set or get whether a button or hotword is
highlighted briefly when it is clicked. Setting the highlight property to true is
the equivalent of checking Highlight in the Button or Hotword Properties dialog
box.

Value
The value can be true or false. The default value is true for buttons and
false for hotwords.

icon Property

Description
A book property that sets or gets the icon displayed when a book is minimized.
The icon property can be set to the icon of another book or to the name of a
icon resource file (.ico file).
The icon property does not effect the icon displayed by the Program Manager. To
set the icon displayed by the Program Manager use the Properties command from
the Program Manager's File menu and type the name of the icon file containing
the icon.
Icon files can be created using tools like SDKPaint supplied with the Microsoft
Windows Software Developement Kit.

Value
The icon property can be set to the value of the icon property of another book or
to the name of an icon file. Once the icon property is set, the icon file is no longer
required.
If you display the value of the icon property    (such as putting it into the
Command window), the name of the resource file used to create the icon will be
displayed.
If you set the icon property to the name of a file that isn't a proper .ico file or a
file that doesn't exist sysError will be set to "Specified file is not a valid icon"
and sysErrorNumber will be set to 8214.

Example
set the icon of this book to the icon of book "clipart.tbk"

set the icon of this book to "logo.ico"

set the icon of this book to "umbrella.ico"
set the text of field "icon name" to the icon of this book

-- Places the text "umbrella.ico" into the text of
-- the field "icon name" on this page.

idNumber Property

Description
A background, page, button, field, hotword, group, or graphic object property
used to get the ID number of an object.

Value
The value is a positive integer that is unique to each page in a book, each
background in a book, and each object on a page or background. The value can
be in the range 0 through (2^32 - 1).

imageInvalid Property

Description
A field or record field property that indicates an image has been changed since it
was last stored. Images are stored using the store command or by setting the
storeImage property to true.

Value
The value can be true or false. If true, the page or background has changed
since the image was stored. This property cannot be set. When imageInvalid is
true, a message appears in the Page Properties or Background Properties dialog
box to indicate that the page or background has changed since its image was
stored.

indents Property

Description
A field and record field property used to set or get the width of paragraph indents
for a field.

Value
The value is three non-negative numbers separated by commas. The first number
is the first line indent, the second is the left indent for a paragraph, and the last is
the right indent for a paragraph. The numbers are interpreted in page units. The
default value is 0,0,0.

invert Property

Description
A button or hotword property used to set or get whether the color of a button or
hotword is inverted. If the invert property is set to true, the stroke and fill
colors of the button or hotword are inverted.

Value
The value can be true or false. The default value is false.

layer Property

Description
A button, field, group, or graphic object property used to set or get the layer
number of a button, field, or graphic object on a page. Setting this property is
equivalent to entering a value in the Layer box in the Properties dialog box for the
object.

Value
The value is a positive integer identifying the current layer number of the object
on the page or background.

lineStyle Property

Description
A graphic object property used to set or get the style of lines drawn with the line
or shape tools and the line drawn around the border of paint objects and imported
pictures.

Value
The value can be none, 0, 1, 2, 3, 4, 6, or 8 to represent the number of pixels
in the line width, dashed for a dashed line style, or dotted for a dotted line
style. The default value is the value of the sysLineStyle property when the
object was created.

name Property

Description
A button, field, group, page, background, hotword, or graphic object property
used to set or get the name of the object as it appears in the Properties dialog
box for the object. Also a book property used to get the file name of a book.

Value
For buttons, fields, groups, pages, backgrounds, and graphic objects, the value is
a string of up to 32 characters. For books, the value is the valid path name of the
book file. The default value is null.

object Property

Description
An object property used to get the type of object.

Value
This property may have any one of these values:
angledline field picture
arc group pie
background irregularpolygon polygon
book line recordfield
button page rectangle
curve paintobject roundedrectangle
ellipse
Note that all values are returned in lowercase.

objects Property

Description
A field, record field, group, page, or background property used to get the
uniqueNames of hotwords in a field, the uniqueNames of objects in a group, or the
uniqueNames of buttons, fields, and graphic objects on a page or background.
The objects property of a page does not include the uniqueNames of record
fields. This is because record fields exist on the background, not on the page.

Value
The value is a comma-separated list of unique object names.

pageCount Property

Description
A book or background property used to get the number of pages in a book or
sharing a background. You must specify the book or background.

Value
The value is a positive integer indicating the number of pages in a book or sharing
a background.

Examples
get the pageCount of this background

-- Returns the number of pages sharing the current
-- background

get the pageCount of this book

get the pageCount of book "lessons.tbk"

pageNumber Property

Description
A page property used to set or get the page number of a page in a book.
Changing the value of this property changes the order of pages in a book.

Value
The value is a positive integer that gives the page’s ordinal position in its book.

parent Property

Description
A button, hotword, field, record field, group, graphic, page, or background
property used to get the parent of an object. The parent of an object is the object
immediately above it in the object hierarchy. For example, the parent of a hotword
is always a field. For an object in a group, the parent object is the group. If an
object is not a hotword and is not in a group, its parent object is the page or
background on which it lives. For a page, the parent object is a background. For a
background, the parent object is a book.

Value
The value is the uniqueName of the parent object.

pattern Property

Description
A graphic or background property used to set or get the current fill pattern that is
used in draw objects, or the pattern that the background is filled with.
If this property is set while draw objects are selected, the fill patterns of the
selected draw objects are changed.

Value
The value must be none, solidStroke, solidFill, or an integer in the range
from 1 through 128 or 253 through 255. For the values 253 through 255, 253
= none, 254 = solidFill, and 255 = solidStroke. The default value is the
value of the sysPattern property.

position Property

Description
A property of a field, button, graphic, group, palette, or window used to set or get
its location.

Value
The value is a comma-separated pair of numbers that together define the location
of the upper left corner of the object. For windows, the coordinates are measured
in screen coordinates from the top left corner of the screen. For fields, buttons, or
graphic objects, the coordinates are measured in page units relative to the top
left corner of the page.
Scripts that get or set the position of palettes or the Command window will cause
errors in Runtime ToolBook.

printerArrangement Property

Description
A system property used to set or get the number of ToolBook pages printed per
sheet.

Value
The value is two comma-separated numbers that indicate the number of pages
across and down a printed sheet. The allowable values are any two comma-
separated non-zero integers. The default value is 1,1.
Note:

Unlike other system properties, the value of this property is saved with a book
and restored to the book's value when a book is opened.

printerBorders Property

Description
A system property used to set or get whether ToolBook pages are printed with a
border around them. Setting this property is equivalent to choosing the Borders
command in the Preview window.

Value
The value can be true or false. The default value is true.
Note:

Unlike other system properties, the value of this property is saved with a book
and restored to the book's value when a book is opened.

printerBottomMargin Property

Description
A system property used to set or get the bottom margin of printed sheets.

Value
The value is a number that is interpreted in page units. The default value is 1440
(one inch).
Note:

Unlike other system properties, the value of this property is saved with a book
and restored to the book's value when a book is opened.

printerClipText Property

Description
A system property used to set or get whether ToolBook wraps text or clips text
when printing reports. ToolBook wraps text in reports at the right and bottom
column or group boundaries, using the same rules it uses to wrap text in fields.
ToolBook can clip text between any two characters, which allows ToolBook to print
the maximum amount of text. Clipping text is useful for printing mailing labels on
label stock and for printing on pre-printed forms.
Setting this property to true causes ToolBook to clip text.

Value
The value is true or false. The default value is false.
Note:

Unlike other system properties, the value of this property is saved with a book
and restored to the book's value when a book is opened.

printerConditions Property

Description
A system property used to set or get the conditions under which fields or pages
will be printed. Setting this property is equivalent to entering conditions in the
Print Pages or Print Report dialog box, as described in Chapter 9, "Printing," in
Using ToolBook.
You can use any valid OpenScript operators, as well as text, date, and name
comparisons with the operators that include those options.

Value
The value is the expression that appears in the Pages Where text box in the Print
Report or Print Pages dialog box. The expression evaluates to true or false,
and determines which pages are printed or included in a report. The default value
is null.
If this property is set to an invalid expression, an error occurs and ToolBook
displays the Execution Suspended message box.
Note:

Unlike other system properties, the value of this property is saved with a book
and restored to the book's value when a book is opened.

Examples
to handle buttonUp
-- Prints all pages where the first word in field "Name"
-- is Smith

set printerConditions to \
"word 1 of text of field ""Name""" && \
"of this page is ""Smith"""

start spooler
print all pages

end spooler

-- Printer condition is to print pages with a date earlier
-- than current sysDate
set printerConditions to \

"word 1 of text of field ""Date"" < sysDate as date"
end

printerFieldNames Property

Description
A system property used to set or get whether field names are printed in a report.
Setting this property to true is the equivalent of checking Print Field Names in
the Print Report dialog box.

Value
The value is true or false. The default value is true.
Note:

Unlike other system properties, the value of this property is saved with a book
and restored to the book's value when a book is opened.

printerFields Property

Description
A system property used to set or get which record fields are included in a report.   
This property must be set before specifying values for printerFieldWidths.

Value
The value is a comma-separated list of field names. The default value is null.
Note:

Unlike other system properties, the value of this property is saved with a book
and restored to the book's value when a book is opened.

printerFieldWidths Property

Description
A system property used to set or get the column widths in a column report and
the width of groups in a group report.
You must specify a value for the printerFields property before setting the
printerFieldWidths property, or ToolBook may ignore specified widths that
don’t have corresponding field names.

Value
The value is a comma-separated list of numbers which are interpreted in page
units. For column reports, each number in the list represents the width of one
column. For group reports, ToolBook uses the first value in the list to set the width
of all groups. The default value is null, which results in balanced-width columns or
groups.
Note:

Unlike other system properties, the value of this property is saved with a book
and restored to the book's value when a book is opened.

printerGroupsAcross Property

Description
A system property used to set or get the number of groups printed side-by-side in
a group report. Setting this property is the equivalent of choosing an option in the
Groups Across box in the Print Report dialog box.

Value
The value is a positive integer in the range 1 through 4. The default value is 1.
Note:

Unlike other system properties, the value of this property is saved with a book
and restored to the book's value when a book is opened.

printerGutterHeight Property

Description
A system property used to set or get the vertical distance between multiple pages
printed on a single sheet, between rows in a column report, and between groups
in a group report. This property has no effect when the value of the
printerArrangement property is equal to 1,1.

Value
The value is a number that is interpreted in page units. The default value is 360.
Note:

Unlike other system properties, the value of this property is saved with a book
and restored to the book's value when a book is opened.

printerGutters Property

Description
A system property used to set or get the vertical and horizontal distances
between multiple pages printed on a single sheet, between rows in a column
report, and between groups in a group report. This property has no effect when
the value of the printerArrangement property is equal to 1,1.

Value
The value is two numbers, separated by a comma. The first number represents
the printerGutterWidth property. The second represents the
printerGutterHeight property. Both numbers are interpreted in page units. The
default value is 360,360.
Note:

Unlike other system properties, the value of this property is saved with a book
and restored to the book's value when a book is opened.

printerGutterWidth Property

Description
A system property used to set or get the horizontal distance between multiple
pages printed on a single sheet, between rows in a column report, and between
groups in a group report. This property has no effect when the value of the
printerArrangement property is equal to 1,1.

Value
The value is a number that is interpreted in page units. The default value is 360.
Note:

Unlike other system properties, the value of this property is saved with a book
and restored to the book's value when a book is opened.

printerLabelWidth Property

Description
A printer system property that specifies the width of labels in page units. The
default value is 2160.
Note:

Unlike other system properties, the value of this property is saved with a book
and restored to the book's value when a book is opened.

printerLeftMargin Property

Description
A system property used to set or get the left margin used for printing.

Value
The value is a number that is interpreted in page units. The default value is 1440
(one inch).
Note:

Unlike other system properties, the value of this property is saved with a book
and restored to the book's value when a book is opened.

printerMargins Property

Description
A system property used to set or get all four margins used for printing. This
property is used by ToolBook to set or get the printerLeftMargin,
printerRightMargin, printerTopMargin, and printerBottomMargin
properties.

Value
The value is four numbers separated by commas that indicate the left, right, top,
and bottom page margins respectively. The numbers are interpreted in page
units. The default value for all margins is 1440 (one inch).
Note:

Unlike other system properties, the value of this property is saved with a book
and restored to the book's value when a book is opened.

printerName Property

Description
A system property used to set or get the printer to be used for printing. Setting
this property changes the default printer listed in the WIN.INI file.
It is recommended you do not change the value of this property. Because the
format for printer names might vary between different versions of Windows,
setting this property could cause your book to fail when it is run under a different
version of Windows.

Value
The value is a comma-separated list that contains the name of a printer as it
appears in the Printer Setup dialog box, the name of the printer driver, and the
name of the printer port. The default value is the name of the currently selected
printer in the Printer Setup dialog box, the currently selected printer driver, and
the current printer port.
If the default printer is an HP LaserJet, the printer driver is HPPCL.DRV, and the
printer port is LPT1:, then the value of the printerName property is PCL / HP
LaserJet,HPPCL,LPT1:.

printerPageBitmap Property

Description
A printer system property that specifies the printer resolution for printing pages
as a logical value, that is false if ToolBook should print at printer resolution, and
true if it prints at screen resolution. The default value is false, which is the
equivalent of unchecking Print As Bitmap in the Print Pages dialog box.
As with all printer properties, the value set for printerPageBitmap just before
sending the first print command in a script applies for the duration of the print
job.
Note:

Unlike other system properties, the value of this property is saved with a book
and restored to the book's value when a book is opened.

printerRightMargin Property

Description
A system property used to set or get the right margin used for printing.

Value
The value is a number that is interpreted in page units. The default value is 1440.
Note:

Unlike other system properties, the value of this property is saved with a book
and restored to the book's value when a book is opened.

printerSize Property

Description
A printer system property that specifies the width and height of printer groups in
a group report as a pair of positive numbers in page units. If either number is
zero, the size of a printed group is unlimited in that direction. The default value is
0,0.
Note:

Unlike other system properties, the value of this property is saved with a book
and restored to the book's value when a book is opened.

printerStyle Property

Description
A system property used to set or get the style in which data is printed in reports.
For details about report styles, see Chapter 9, "Printing," in Using ToolBook.

Value
The value must be either pages, columns, or groups. The default value is
pages.
Note:

Unlike other system properties, the value of this property is saved with a book
and restored to the book's value when a book is opened.

printerTopMargin Property

Description
A system property used to set or get the top margin used for printing.

Value
The value is a number that is interpreted in page units. The default value is 1440
(one inch).
Note:

Unlike other system properties, the value of this property is saved with a book
and restored to the book's value when a book is opened.

script Property

Description
A property used to set or get the script of an object. All objects, including books,
pages, backgrounds, and hotwords, have this property.
If the script property is set to a value that has incorrect syntax for a script, an
error occurs, ToolBook displays the Execution Suspended message box, and no
changes are made to the value of the script property.
Scripts that get or set the value ofthe script property for any object will cause an
error in Runtime ToolBook.

Value
The value is the text of the object’s script or null if the object has no script.

Example
set the script of button id 1 to \

"to handle buttonUp;go to next page;end"

scroll Property

Description
A field and record field property used to set or get the number of lines that are
hidden above the top of a scrolling field.

Value
The value is a non-negative integer giving the number of lines that are scrolled
above the topmost visible line of the field’s displayed text. The default value is 0.

selectedText Property

Description
A system property used to set or get the text that is currently selected. If text is
selected and you set the value of the selectedText property, ToolBook replaces
the currently selected text with the value of the selectedText property. Setting
this property when no text is selected results in an error and ToolBook displays the
Execution Suspended message box.

Value
The value is a string containing the text that is currently selected. If there is no
selection, the value is null.

selectedTextLines Property

Description
A field property that specifies which textlines are selected in a list box field as a
list of textline numbers. The default is null.

Value
If the value of the fieldType property of a field is not singleSelect or
multiSelect then the value of selectedTextLines is always null.
For singleSelect or multiSelect listbox fields, if no text is selected, the value
of this property is null, If text is selected, the value of this property is a comma
separated list of the lines selected.

Example
get selectedTextLines of field "Topic List"

-- Puts a list of textline numbers into It

set selectedTextLines of field "Topic List" to 1,2,5,6
-- Selects textLines 1, 2, 5, and 6 of a multiSelect
-- listbox field.

The following example shows how to use the selectedTextLines property to
navigate to a page when its name is clicked in a singleSelect listbox:
-- When button is clicked in this field, use the textline
-- identified by the selectedTextLines property as a page
-- name and go to it
to handle buttonUp

if selectedTextLines <> null
go page (textline selectedTextLines of self)

end
end

selectedTextState Property

Description
A system property used to get information about the text selected in a field. The
information includes the location of the selected text relative to the other text in
the field and whether or not the selected text includes hotwords.

Value
If no text is selected, the value of this property is null. If text is selected, the value
of this property is a comma-separated list of five items:
1. Starting character number
2. Ending character number
3. Starting line number
4. Ending line number
5. true or false
The starting and ending character numbers are positive integers that indicate the
ordinal position of the first and last characters of the selection, where 1
represents the first character in the field.
The starting and ending line numbers are positive integers that indicate the
ordinal position of the first and last text line of the selection, where 1 represents
the first text line in the field. The text lines may or may not correspond to lines on
the screen, depending on how lines wrap within the field.
The last item (true or false) indicates whether the selected text contains a
hotword. If the item is true, the selected text contains all or part of a hotword.
Otherwise, the item is false.

Example
With the following handlers, a reader can select text in a field called Workspace,
then click a button labeled Underline to underline the selected text.
-- This handler is in the field's script. When the
-- mouse cursor leaves the field the selectedTextState
-- property is stored in the lastTextState system
-- variable
to handle leaveField

system lastTextState
set lastTextState to selectedTextState

end leaveField

-- This handler is in the button's script. If there
-- is a value in the lastTextState system variable
-- the characters indicated by the first and second
-- items are underlined
to handle buttonUp

system lastTextState
if lastTextState <> null then

set the fontStyle of chars (item 1 of lastTextState) \

to (item 2 of lastTextState)\
of text of field "workspace" to underline

end
end buttonUp

selection Property

Description
A system property used to set or get the object that is currently selected. If an
object is selected, the value of selection is the unique name of the object. If
there is a multiple selection, the value of selection is a comma-separated list of
the unique names of the selected objects. When you create a new object, the
selection property is set to the unique name of the object.
The selection property can only be set to the current page or to objects on the
current page. To select an object on the background, the background must have
the focus (you must send the background message).
To unselect an object you can use the unselect command or the clear
command as in clear selection.
For details about the unique name of an object, see the uniqueName property.

Value
The value is the unique name of the currently selected object or a comma-
separated list of the unique names of the selected objects. If there is no selection,
the value is null.

Example
to handle buttonUp

draw a field from 2088,1440 to 3528,5760
set the borderStyle of the selection to shadowed

-- Set the border style of the new field; it is
-- automatically selected after it is drawn so the
-- value of the selection property will be the ID of
-- the new field

end buttonUp

self Property

Description
A system property used to get the unique name of the object whose script is
currently executing.
For details about the unique name of an object, see uniqueName.

Value
The value is the unique name of the object whose script is currently executing. If
ToolBook is executing a statement in the Command window, the value is the
unique name of the currently displayed page.

singleLine Property

Description
Note:

As of ToolBook version 1.5, this property is obsolete. Instead, you should use the
singleLineWrap value of the fieldType property.

A field and record field property used to set or get whether a field is a single-line
field. For details about single-line fields, see Chapter 6, "Fields," in Using ToolBook.

Value
The value can be true or false. The default value is false.

size Property

Description
A book property used to set or get the size of pages in a book.

Value
The value is a pair of positive numbers separated by a comma. The first number
is the width of the book and the second number is the height of the book. Both
numbers are interpreted in page units. The default value is determined by the
values of the startupWidth and startupHeight properties.

spacing Property

Description
A field and record field property used to set or get the line spacing of text in
fields.

Value
The value can be 1, 1.5, or 2. The default value is the value of the
sysLineSpacing property.

startupBook Property

Description
A system property used to set or get the name of the book that is opened when
ToolBook is started, as defined in the startupBook= line in the [ToolBook] section
of the WIN.INI file. Setting this property modifies the WIN.INI file.

Value
The default value is null.

startupDrawDirect Property

Description
The startup system property that specifies the default value of sysDrawDirect
for new books.

Value
The value can be true or false. The default value is true, and setting this
property also modifies the startupDrawDirect= line in the [ToolBook] section of
the user's WIN.INI file.

Example
set startupDrawDirect to true

startupHeight Property

Description
A system property used to set or get a new book’s default page height as defined
in the startupHeight= line in the [ToolBook] section of the WIN.INI file. Setting
this property modifies the WIN.INI file.

Value
The value must be a number in the range 1 through 12960, and is interpreted in
page units. The default value is 5760.

startupSysBooks Property

Description
A system property used to set or get the default system books as defined in the
startupSysBooks= line in the [ToolBook] section of the WIN.INI file. Setting this
property modifies the WIN.INI file. These system books are loaded when an
instance of ToolBook is opened.
Whenever an instance of ToolBook is opened, ToolBook reads the list of file path
names in the WIN.INI file, and that list becomes the default value of the sysBooks
property. For details about system books, see "Using System Books" in Chapter 6,
"Beyond the Basics.", in Using OpenScript.

Value
The value is a comma-separated list of book names. The default value is null.

startupSysColors Property

Description
A system startup property used to set whether ToolBook displays colors or
displays only monochrome. Whenever an instance of ToolBook is opened,
ToolBook reads the value from the WIN.INI file, and displays colors accordingly.
Unlike other ToolBook WIN.INI settings, startupSysColors is not an OpenScript
property, so you cannot get or set its value with OpenScript.

Value
The value is true or false.

Example
[TOOLBOOK]
.
.
.
startupSysColors=false

startupUnits Property

Description
Note:

This property is obsolete in ToolBook versions 1.5 and later and should not be
used. The default value of the sysUnits property is taken from the IMeasure
setting in the WIN.INI file. If IMeasure is not supplied the default value of
sysUnits is english. For further information on IMeasure see your Windows
documentation.

A system property used to set or get the default units of measure (english or
metric) as defined in the startupUnits= line in the [ToolBook] section of the
WIN.INI file. Setting this property modifies the WIN.INI file.

Value
The value can be english or metric (in ToolBook version 1.0 the values were
inches and millimeters).

startupWidth Property

Description
A system property used to set or get a new book’s default page width as defined
in the startupWidth= line in the [ToolBook] section of the WIN.INI file. Setting
this property modifies the WIN.INI file.

Value
The value must be a number in the range 1 through 12960, and is interpreted in
page units. The default value is 8640.

storeImage Property

Description
The background or page property that specifies whether the offscreen image of
the background or page is stored automatically.
For details about this and other techniques to optimize page display speed, see
Chapter 3, "Tips for ToolBook Authors," in the ToolBook Ideas booklet.

Value
The values are true or false; the default is false. If storeImage is true, a
compressed image of the page or background is saved each time the author
leaves the page or background; the image is not updated when a reader
navigates to another page. If storeImage is set to false, all stored images are
removed for the current page or background. Setting storeImage to true is the
same as checking the Store Image option in the Background Properties or Page
Properties dialog box. See also imageInvalid .

Example
set the storeImage of this background to true

-- causes the image of this background to be saved
-- when switching from Author to Reader level,
-- turning to another page at Author level, or saving
-- the book at Author level..

storedImages Property

Description
The background or page property that contains information about the stored
images available for various devices.

Value
The value is a series of textlines, each of which contains four words: <device>,
<size>, <compression ratio>, and <date stored>. The value for <device> is
the file name of the device driver as recognized in SYSTEM.INI; <size> is the
number of bytes required to store the image, <compression ratio> is the ratio
of size of the compressed image to the original size; and <date> is the date the
image was stored in the format YYMMDDHHMM. This property cannot be set. The
value of this property is the same as the list displayed in the Images Stored
listbox in the Page Properties or Background Properties dialog box.

strokeColor Property

Description
A button, field, record field, draw object, paint object, picture, or background
property used to set or get the stroke color of an object.

Value
The value is a comma-separated list of three non-negative numbers representing
the hue, lightness, and saturation of a single color.
The hue value ranges from 0 to 360, corresponding to the angle in a color wheel
where:
0 is red 60 is yellow 120 is green
180 is cyan 240 is blue 300 is magenta
Intermediate angles represent intermediate colors. 0 and 360 are equivalent.
The lightness value ranges from 0 to 100, with 0 representing 0% lightness
(black) and 100 representing 100% lightness (white).
The saturation value ranges from 0 to 100, with 0 representing 0% saturation
(gray) and 100 representing 100% (pure color).
ToolBook may have to convert the value to the closest value that represents an
available color. The default value is the value of the sysStrokeColor property.

sysAlignment Property

Description
A system property used to set or get the alignment of text lines in fields and
record fields.

Value
The value can be left, right, justify, or center. The default value is left.

sysBooks Property

Description
A system property used to set or get the books to be used as system books.
ToolBook searches for handlers in the scripts of these books in the order given by
the value of the sysBooks property, after ToolBook searches the current book’s
script but before it searches Windows Dynamic Link Libraries. ToolBook executes
the statements in system book handlers in the context of the current page.
For details about system books, see "Using System Books" in Chapter 6, "Beyond
the Basics" of Using OpenScript.

Value
The value is a comma-separated list of zero or more names of ToolBook files, with
DOS path names if necessary. The default value is null.

sysCentered Property

Description
A system property used to set or get the Draw Centered option.

Value
The value can be true or false. The default value is false.

sysChangesDB Property

Description
A system property used to set or get whether ToolBook displays the Save Changes
dialog box when a reader closes a book in which changes have been made. When
the sysChangesDB property is true, ToolBook displays the dialog box.
Important:

When the sysChangesDB property is false, ToolBook does not display the Save
Changes dialog box, and all changes to a book are cancelled without warning
when you close the book.

As for other system properties, the value of sysChangeDB persists through an
instance, even when you open a new book.
A reliable way to reset sysChangesDB for a book is to include the statement set
sysChangesDB to true or restore system in an enterBook handler in the
book's script.
This property is useful in books which contain animation, so that the reader is not
prompted to save changes which result from the animation.

Value
The value can be true or false. The default value of true means ToolBook
displays the Save Changes dialog box when a reader or author closes a book in
which changes have been made.

sysClientHandle Property

Description
A system property used to get the window handle of the ToolBook client window,
which is the portion of the main ToolBook window in which you can create and
display objects. The client window does not include the title bar, menu bar, scroll
bars, or window borders. This property is typically passed to a DLL so that it can
calculate the location of the ToolBook client window. For details about window
handles, see the Microsoft Windows Software Development Kit Programmers
Reference.

Value
The value is the window handle of the client window which is assigned by
Microsoft Windows.

sysCountry Property

Description
A system property that specifies the name of the preferred country for
applications. The default value is the sCountry value in WIN.INI. The value can
contain up to 63 characters.

sysCurrency Property

Description
A system property that specifies the currency symbol you want to use. The
default value is the sCurrency value in WIN.INI. The value can contain up to
three characters.

sysCursor Property

Description
A system property used to set or get the shape of the mouse pointer that appears
on the screen. If you change the value of the sysCursor property, that value
remains in effect until you change the value again or until the end of the ToolBook
session.
The default shape results in normal ToolBook pointer behavior. That is, the cursor
changes automatically to indicate hotwords in activated fields, and so forth.

Value
The value must be an expression that yields none, for no pointer, or an integer
from 1 through 38 indicating a pointer shape.
Pointer Shapes

1 default 11 21

31

2 12
22
32

3 13
23
33

4 14

24
34

5 15

25
35

6 16
26
36

7 17
27
37

8 18
28
38

9 19

29

10 20

30

sysDate Property

Description
A system property used to get the current system date, which is the date set in
your computer.

Value
The value is the current system date in the format specified by the current value
of the sysDateFormat property.

sysDateFormat Property

Description
A system property used to set or get the format for dates. The value defines the
format of the date for the sysDate property, as well as the manner in which
dates are formatted by the format date command.

Value
The value is a string of characters and numbers indicating the format for dates.
The string can be any text and any combination of the formats shown in the
following table. The value must be enclosed in quotation marks. The default value
is determined by the settings of sysShortDate, sysMorning and sysEvening in
the [international] section of the WIN.INI file. When the value of the sysCountry
property is usa, the default value is m/d/yy.
Date Formats
Format Description
M The month’s complete name
MMM The abbreviated month’s name
m The month’s number (1, 2, ...12)
mm The month’s number with a leading 0 for 1 through 9 (01,

02, ...12)
d The day’s number (1, 2, ...31)
dd The day’s number with a leading 0 for 1 through 9 (01,

02, ...31)
y The year’s number as an integer
yy The last two digits of the year’s number
h The hour’s number on a 12-hour clock (1, 2, ...12)
hh The hour’s number on a 12-hour clock with a leading 0 for 1

through 9 (01, 02, ...12)
h24 The hour’s number on a 24-hour clock (0, 1, ...23)
hh24 The hour’s number on a 24-hour clock with a leading 0 for 0

through 9 (00, 01, ...23)
min The minute’s number (00, 01, ...59)
sec The second’s number (00, 01, ...59)
AMPM Suffix to indicate morning or afternoon. Default depends on

settings in the WIN.INI file. If the value of the sysCountry
property is usa, the default is AM if the time is in the
morning and PM if the time is in the afternoon.

seconds The number of seconds that have elapsed since 00:00:00
GMT on January 1, 1970

Examples
In the following examples, if it is 9:54 AM on March 27, 1990:
set sysDateFormat to "MMM dd y hh:min:sec AMPM"
put sysDate

-- Displays MAR 27 1990 09:54:00 AM in the Command window

set sysDateFormat to "yy"
put sysDate

-- Displays 90 in the Command window

set sysDateFormat to "mm/dd/yy"
put sysDate

-- Displays 03/27/90 in the Command window

set sysDateFormat to "seconds"
get sysDate - (24 * 60 * 60)

-- Subtract one day's worth of seconds
format it as "0"

-- Make sure the seconds are not formatted with a
-- trailing decimal point

format date it as "m/d/y"
put it

-- Displays yesterday's date as 3/26/1990 in the
-- Command window

sysDecimal Property

Description
A system property that specifies the punctuation used to separate the fractional
part of a decimal number from the whole number part. The default value is the
sDecimal value in WIN.INI. The value can contain only one character.
The sysDecimal and sysThousand properties change the interpretation of
numeric formats in ToolBook. For example, if field "Total" contains "1234.56", then
format text of field "total" as "#,##" displays 1,234 if sysThousand is a
comma, and 1234,56 if sysDecimal is a comma.

sysDrawDirect Property

Description
The system property that specifies the default value of drawDirect for new
objects.

Value
The value can be true or false. The default is the value of
startupDrawDirect; if no value for startupDrawDirect is defined in the
[ToolBook] section of the author's WIN.INI file, the default is true.

Example
set sysDrawDirect to false

-- New objects will have their drawDirect property
-- set to false

sysError Property

Description
A system property used to set or get the nature of a non-fatal error. A non-fatal
error is an error that, although it may have consequences in script execution,
does not cause ToolBook to display the Execution Suspended message box.
Several commands set the sysError property when they detect an unusual or
exceptional condition. For example, the createFile command sets this property
to read only when an attempt is made to create a file that exists and has the
read-only attribute. ToolBook also sets the sysError property when the
sysSuspend property is set to false and an error occurs that would normally
cause ToolBook to display the Execution Suspended message box. When the value
of sysError is set by ToolBook, a corresponding value for sysErrorNumber is also
set.
You can set this property from within a handler.

Value
The value is a string that describes the cause of the last error. The default value is
null.

sysErrorNumber Property

Description
A system property that specifies what kind of error has occurred as an integer
that represents a corresponding error message, providing a language-
independent method of ascertaining the exact error that has occurred.

value
The default value of sysErrorNumber is 0, which corresponds to a null value for
sysError. Whenever ToolBook sets sysError to null (such as after a
successful search), sysErrorNumber is set to 0. As with sysError,
sysErrorNumber may be set, but must be an integer.
The sysErrorNumber property helps authors writing internationalized books find
out what error has occurred without having to know the local language. An author
can use this property is the same manner as sysError, where sysSuspend is set
to false, sysError is set to null, an action is taken, then sysSuspend is set
to true and sysError is tested. If sysError is not null, an error has
occurred. When you create similar scripts using sysErrorNumber, test to find
whether its value is not 0.
Note:

The sysErrorNumber property is also set to the HIWORD of the long return value
for a DLL function linked as returning a STRING type when the LOWORD is zero.
This is identical to the setting of sysError in this circumstance.

The following table lists the possible numeric values for the sysErrorNumber
property and the text that sysError will assigned. Many of the text values
shown are templates for the actual values, such as a specific filename or object
name.
Values for sysErrorNumber and related error messages

2 The requested page is not in this book.
3 The requested file is not loadable by this application.
10 Not enough room on disk. Delete file(s) and try again.
11 Input or output error reading from or writing to a file.
12 Not enough file memory. Close other applications or save this book and try

again.
13 Not enough memory. Close other applications or save this book and try

again.
15 Not enough local memory. Save this book and open it again.
16 Page or background is full. Try saving this book to a different name, or

deleting some objects.
17 Cannot save a book without a name.
21 There are too many books to continue with this operation.
22 There are too many books to continue with this operation.
23 There are too many books to continue with this operation.
24 There are too many books to continue with this operation.
30 This object is in use and cannot be removed.
33 Call to Windows (GDI) failed. Memory is probably low. Close this book and

try again.

34 This file is a read-only file in DOS. Save under another name.
41 The requested window cannot be identified.
43 That file already exists. Replace it?
49 A printer driver is not installed.    Run the Control Panel to install a printer.
56 Number is outside the valid range for this command.
57 Call to Windows function (MakeProcInstance) failed.
60 Error while reading from the Clipboard. Cannot continue operation.
61 Error while writing to the Clipboard. Cannot continue operation.
64 A problem has occurred during printing. Check the printer and try again.
65 Out of instance memory. Close this book and try again.
66 Object does not exist.
69 The maximum number of hotwords allowed in a field is 255.
72 Not enough Windows GDI memory for this operation.
73 File not found. Try using a complete pathname.
74 Too many files are open. Try increasing the number of FILES in your

CONFIG.SYS.
77 A file with that name is currently in use. Try a different name.
80 Not enough memory to run.
81 The requested Windows application cannot be run.
82 The requested application is not Windows compatible.
83 Cannot remove the only page in a book.
84 Supply some text to search for.
86 Cannot find specified search text.
87 There are too many objects on this page. Delete objects or make a new

page.
88 No fixed field lengths were supplied.
89 No delimiter was supplied.
92 This page contains no record fields.
101 That file is currently in use as a temporary file. Use another name.
102 Unable to create a temporary file. Exit Windows and delete files in your

TEMP directory.
103 No pages match the specified conditions.
105 Cannot merge a book into itself.
106 Groups cannot be nested more than 16 levels deep.
107 Not a valid number format.
109 Object has been deleted.
110 Invalid delimiter: %s
111 Cannot create an object with no size. Specify a positive width and height.
112 This operation cannot be performed on this object.
113 This operation cannot be performed on a hidden object.
114 The maximum number of characters allowed in a field is 32,000.
115 The maximum number of lines allowed in a field is 5,000.
116 This book has been damaged or there is an internal error.
558 File already open.
559 No such file.
560 Read only.
565 End of file.
627 File exists.
641 Not found.
642 OK.
643 File not open.
4003 That password is not correct.
4004 Name contains an invalid character.
8011 Cannot find page number %ld.
8012 Cannot find page "%.100s".

8014 Cannot perform requested operation on a null string.
8015 Not a selectable string specifier: %.100s.
8016 Not a selectable object: %.100s.
8017 Not a valid OpenScript term: %.100s.
8018 Outside the range 0 to 65535: %.100s.
8019 This item does not have properties: %.100s.
8020 Maximum menu length %d exceeded by menu name "%.80s".
8021 Cannot execute this command in runtime version.
8022 %.100s.
8023 Cannot find background "%.100s".
8025 Value not a page.
8026 Cannot find background ID %ld.
8027 Not a valid color: %.100s.
8028 Not a stack: %.100s.
8029 No handler for message %.100s.
8030 Random(%ld) is outside the range of 1 to 32767.
8032 There is no object named %.100s.
8033 No such property for object %.100s.
8034 Cannot set object property as requested.
8035 Cannot get object property as requested.
8040 Not a graphic object: %.100s.
8042 Not a rectangle: %.100s.
8043 Wrong number of vertices for this object.
8044 Cannot set this system property. Check that it is settable.
8045 Cannot get system property.
8047 Value "%.100s" is not valid in this context.
8048 There is no selection to act on.
8049 Not a time: %.100s.
8050 Not a date: %.100s.
8051 Cannot find file %.100s.
8052 Cannot create or write to read-only file %.100s.
8053 Too many files are open. Try closing one or more files.
8057 Not a valid file name: %.100s.
8058 Not enough memory. Try quitting and restarting ToolBook.
8059 File already open.
8060 No such file.
8061 Read only.
8065 File read/write error.
8066 End of file.
8068 Error when starting spooler.
8071 Magnification power must be 1, 2, 4, 8 or 16.
8077 Cannot get argument %d. Handler has only %d arguments.
8079 Not a container: %.100s.
8087 You cannot edit the script of a protected object.
8089 Object "%.100s" is not valid in this context or has been deleted.
8090 Error when compiling script: %.100s
8093 Unable to format date.
8094 Unable to format time.
8095 Value "%.100s" is out of range.
8098 Cannot pop from empty stack.
8099 No menu item named "%.100s".
8100 Not enough memory to change menu as requested. Try closing other

instances or applications.
8103 Cannot have more than 60 menus and 255 items per menu.
8104 Menu already exists: "%.100s".

8105 Menu item already exists: "%.100s".
8106 No menu named "%.100s".
8108 Cannot load DLL "%.100s".
8110 Error: %.100s.
8111 Encountered bad sort key on "%.100s".
8112 No search to repeat.
8116 Too many objects selected for the requested operation.
8118 Calls to handlers are nested too deeply. Try making fewer nested calls.
8120 Print command must be within a Start Spooler control structure.
8123 OK
8124 Failed: Denied
8125 Failed: Busy
8126 Failed: Memory Error
8127 Failed: No Server
8128 Failed: Interrupted
8131 No DDE request to respond to.
8132 Cannot sort while in background. Switch to foreground.
8134 Not a book or background: %.100s.
8135 Not a book or page: %.100s.
8136 Not a logical value (must be True or False): %.100s.
8137 Not a valid type of alignment: %.100s.
8138 Not valid parameter (must be Fixed or Delimited): %.100s.
8139 Not a string: %.100s.
8141 Not a positive integer: %.100s.
8142 Outside the range -32768 to 32767: %.100s.
8143 Outside the range 0 to 32767: %.100s.
8144 Not a number: %.100s.
8145 Not a valid string specifier: %.100s.
8146 Not a valid location: %.100s.
8147 Not a book, page or background: %.100s.
8148 Not a window or movable object: %.100s.
8149 Not a page or background: %.100s.
8150 Not a book: %.100s.
8151 Not an object: %.100s.
8152 The object with this ID is not a(n) %.100s.
8155 Cannot find system book "%.100s".
8156 Cannot create record field.
8159 No record fields found to sort.
8160 Cannot change pages in this book.
8161 Record too large.
8162 Not a valid object reference.
8164 Cannot select text of "%.100s". It is not a field or record field.
8166 Cannot nest Start Spooler commands.
8168 DLL "%.100s" is not loaded.
8169 No function named "%.50s" in DLL "%.100s".
8170 No function at ordinal %d in DLL "%.100s".
8171 Wrong number of arguments for DLL function.
8172 Wrong type of argument for DLL function.
8173 Cannot get printer property.
8174 Cannot set printer property.
8175 Object too small to draw.
8176 Cannot make requested selection.
8177 Cannot save changes to an untitled book. Try using Save As command.
8178 Cannot execute menu command as requested.
8180 Undo is not available in this context.

8181 Group is not selected. Cannot ungroup.
8182 Cannot perform desired Clipboard operation.
8184 Cannot reshape selected object.
8185 DLL function returned 0L.
8186 Cannot find page ID %ld.
8187 Cannot start recording as requested.
8189 Missing or invalid recordfield name.
8190 Outside the range 0 to 32767: %d.
8191 This string is too long: "%.100s".
8193 Error handled.
8194 Menu identifier %.100s is not a valid menu or menu item name.
8196 Not a valid pattern: %.100s.
8197 Search already in progress..
8198 Not a valid search parameter when on the background.
8199 Outside the range 1 to 32767: %.100s.
8200 Not a valid window handle: %d
8201 Not a record field on the current page: %100.s
8202 The valid range for sysCursor is 1 - 38:    %d is outside this range.
8203 Unable to load filter %s.    File does not exist or is not a valid DLL.
8204 %s is not a valid graphics import filter.
8205 Unable to import %s.    File type not supported by available filter.
8206 Unable to import %s.    File type not supported by available filters.
8207 Unable to import %s.    Unsupported Bitmap file format.
8208 Unable to import %s.    File does not contain a picture.
8209 %s is not a Windows 3.0 metafile.
8210 Warning:    The bitmap in this file may be corrupted.
8211 Storage space for large objects is full.    Delete large paintObjects or

pictures and try again.
8212 Width or height of bitmap exceeds maximum.    Cannot be pasted or

imported.
8214 Specified file is not an icon.

sysEvening Property

Description
A system property that specifies the string following time after noon in a 12-hour
format.

Value
The default value is the s2359 value in WIN.INI. The value can contain up to two
characters. The value of this property affects the way values are displayed when
they are formatted as dates.

sysFillColor Property

Description
A system property used to set or get the system default fill color.

Value
The value is a comma-separated list of three non-negative numbers representing
the hue, lightness, and saturation of a single color.
The hue value ranges from 0 to 360, corresponding to the angle in a color wheel
where:
0 is red 60 is yellow 120 is green
180 is cyan 240 is blue 300 is magenta
Intermediate angles represent intermediate colors. 0    and 360    are equivalent.
The lightness value ranges from 0 to 100, with 0 representing 0% lightness
(black) and 100 representing 100% lightness (white).
The saturation value ranges from 0 to 100, with 0 representing 0% saturation
(gray) and 100 representing 100% (pure color).
ToolBook may have to convert the value to the closest value that represents an
available color. The default value is 0,100,0 (white).

sysFontFace Property

Description
A system property used to set or get the default typeface for text typed in fields.
If this property is set to a value that specifies a typeface not available in the
Character dialog box, the font typeface in effect before the sysFontFace
property is set remains the object’s default typeface. If, at a later time, the
typeface specified as the value for the property becomes available, that typeface
is used.

Value
The value is the name of the typeface for the button label or the field text as
shown in the Character dialog box. The default value is system.

sysFontSize Property

Description
A system property used to set or get the default type size for text typed in fields.
The number value is interpreted as the point size for text.
If this property is set and the value specifies a point size that is not available for
the system typing font, the next smaller value is used.

Value
The value must be a positive integer that defines the point size of the current
system typing font as shown in the Character dialog box. The default value is 9.

sysFontStyle Property

Description
A system property used to set or get the default type style for text typed in fields.

Value
The value must be null or a comma-separated list of one or more of the values
bold, italic, underline, and strikeout. The combination of these values
describes the style of the object’s default font. A null value is equivalent to the
plain style. The default value is null.

sysGrid Property

Description
A system property used to set or get whether the grid is visible.

Value
The value can be true or false. The default value is false.

sysGridSnap Property

Description
A system property used to set or get whether objects snap to the grid lines when
objects are created, moved, or sized.

Value
The value can be true or false. The default value is false.

sysGridSpacing Property

Description
A system property that indicates the horizontal and vertical distance between grid
lines.

Value
The value must be a positive integer in the range 30 through 4320. The number
is interpreted in page units. The default value is 180.

sysHistory Property

Description
A system property used to set or get the items in the history stack, which is a
comma-separated list of the unique names of up to the last 100 pages visited
during the current ToolBook instance. As ToolBook displays each page, it pushes
the unique name of the page onto the value of this property. Only expressions
that evaluate to the unique name of a page can be pushed onto the value of the
sysHistory property.
For details about pushing and popping items, see the push and pop commands.
Also see the sysHistoryRecord property.

Value
The value is a comma-separated list of the unique names of the last 100 pages
visited in the current ToolBook session. ToolBook uses the value of this property to
determine the content of the History dialog box.

sysHistoryRecord Property

Description
A system property used to determine whether ToolBook adds pages to the history
stack of the sysHistory property. The default value true allows pages to be
added to the history.
The history of an instance is a comma-separated list of up to the last 100 unique
pages in the order of how recently they were displayed. While sysHistoryRecord
is set to false, any pages viewed or accessed are not added to the history of the
instance, but the History dialog box can still be displayed.
One way this property can be used is to create a custom history that ToolBook
can’t modify. This property can also be useful for hiding information from a reader.
For example, you can set sysHistoryRecord to false to keep a reader from
finding out which pages are accessed by a script. Setting sysHistoryRecord to
false also speeds up animated sequences that involve flipping pages.
A side effect of setting sysHistoryRecord to false is that, because the Back
command on the Page menu always goes to the last page added to the history, a
reader may find that choosing Back does not always go back to the previous page
accessed. If you set sysHistoryRecord to false, it might be a good idea to
deactivate the Back command.

Value
The value can be true or false. The default value is true which allows pages
to be added to the history.

sysHotwordsShown Property

Description
A system property used to get or set whether hotwords in fields are outlined so
that a reader can identify them.

Value
The value can be true or false. The default value is false.

sysICountry Property

Description
A system property that specifies the country code.

Value
This is the same as the country's international telephone code, except for Canada,
which is 2. The default value is the iCountry value in WIN.INI.

sysICurrDigits Property

Description
A system property that specifies the preferred number of digits after the decimal
separator in currency.

Value
The default value is the iCurrDigits value in WIN.INI.

sysICurrency Property

Description
A system property that specifies the preferred format for the currency symbol.

Value
The value can be an integer from 0 through 3, where:
0 =    $2 1 =    2$ 2 =    $ 2 3 =    2 $
The default value is the iCurrency value in WIN.INI. The currency symbol is
specified by the value of sysCurrency.

sysIDate Property

Description
A system property that specifies the order of items formatted as dates.

Value
The value can be an integer from 0 through 2:
0 specifies the order month, day, year (as in 12/31/90)
1 specifies the order day, month, year (as in 31/12/90)
2 specifies the order year, month, day (as in 90/12/31)
The default value is the iDate value in WIN.INI. The character used to divide the
items in dates is specified by the value of sysShortDate. This setting is not used
by Windows 3.0 and exists only for compatibility with Windows 2.x.

sysIDigits Property

Description
A system property that specifies the number of digits displayed after the decimal
separator.

Value
The default value is the iDigits value in WIN.INI.

sysILZero Property

Description
A system property that specifies whether decimal numbers should include a
leading zero.

Value
The value can be 0 or 1:
0    Omit leading zero (such as .7)
1    Include leading zero (such as 0.7)
The default value is the iLZero value in WIN.INI. The actual decimal separator is
specified by the sysDecimal setting.

sysIMeasure Property

Description
A system property that specifies the preferred measurement system, where 0 is
metric (centimeters) and 1 is english (inches).

Value
The default value is the iMeasure value in WIN.INI.

sysIndents Property

Description
A system property used to set or get the paragraph indents for fields.

Value
The value is three non-negative integers separated by commas. The first number
is the first line indent, the second is the left indent for a paragraph (or textline),
and the last is the right indent for a paragraph. The numbers are interpreted in
page units. The default value is 0,0,0.

sysINegCurr Property

Description
A system property that specifies the preferred negative number format for the
currency symbol.

Value
The value can be an integer from 0 through 7, representing these formats:
0 = ($1) 2 = $-1 4 = (1$) 6 = 1-$
1 = -$1 3 = $1- 5 = -1$ 7 = 1$-
The default value is the iNegCurr value in WIN.INI. The currency symbol is
specified by the value of sysCurrency.

sysITime Property

Description
A system property that specifies whether a 12-hour or 24-hour clock is preferred.
Setting this property in ToolBook has no effect. It simply reports what was in the
WIN.INI file for the iTime setting.

Value
An integer:
0    12-hour clock (as in 1:00)
1    24-hour clock (as in 13:00).
The default value is the iTime value in WIN.INI.

sysITLZero Property

Description
A system property that specifies whether to put leading zeros in time.

Value
An integer:
0    Omit a leading zero in the time (e.g. 9:15)
1    Put a leading zero in the time (e.g. 09:15)
The default value is the iTLZero value in WIN.INI.

sysLanguage Property

Description
A system property that specifies the language used by Windows.

Value
The default value is the sLanguage value in WIN.INI, which is used by Windows
applications for language-specific tasks, such as sorting or spell-checking. The
following values are allowed:
dan =    Danish ice    =    Icelandic
dut =    Dutch itn =    Italian
eng =    International English nor =    Norwegian
fcf =    French Canadian por =    Portuguese
fin =    Finnish spa =    Spanish
frn =    French swe =    Swedish
ger =    German usa =    U.S. English

sysLevel Property

Description
A system property used to set or get the working level.

Value
The value can be author or reader. The default value is the current working
level.
Scripts that set sysLevel to author will cause an error in Runtime ToolBook.

sysLineSpacing Property

Description
A system property used to set or get the line spacing of newly typed text in fields.

Value
The value can be 1, 1.5, or 2. The default value is 1.

sysLineStyle Property

Description
A system property used to set or get the style of borders of newly created
rectangles, ellipses, lines, curves, arcs, angled lines, polygons, irregular polygons,
paint objects, pictures, pies, and rounded rectangles.

Value
The value can be none, for no visible line; 0, 1, 2, 3, 4, 6, or 8, representing
the width of the line in pixels; dashed for a dashed line style; or dotted for a
dotted line style. The default value is 1.

sysList Property

Description
A system property that specifies the character used to separate record items for
data files imported into ToolBook. This property does not affect lists in OpenScript
statements.

Value
The default value is the sList value in WIN.INI. The value can contain only one
character.

sysLockScreen Property

Description
A system property used to set or get whether to allow screen updates during the
execution of the current handler. The default value of false allows normal
screen updates.
By setting sysLockScreen to true in a script, you can have the script make
several changes to the screen and then show all the changes at once, instead
having ToolBook update the screen after each change. For example, to have an
application neatly set up the screen when a reader opens a book, you can write
statements in the book’s enterBook handler to set sysLockScreen to true,
prepare the screen, then set sysLockScreen to false.
You can also use this property to force ToolBook to update the screen. To update
the screen, set sysLockScreen first to true, then to false.
If you set sysLockScreen to true in a handler, ToolBook automatically resets
sysLockScreen to false when it exits the top-most calling handler.
The sysLockScreen property does not affect the Command window or the
palettes.

Value
The value can be true or false. The default value is false.

Example
to handle buttonUp

-- This script is for a button that adds a shrub to a landscape
set sysLockScreen to true

-- Freeze the screen
set sysSuspendMessages to true

-- Prevent ToolBook from sending leave and enter messages
go to page 1 of book "images.tbk"

-- Go to a book of clip art
select group "shrub"

-- Select the desired image
send copy

-- Copy the image
send back

-- Return to the original page
set sysSuspendMessages to false

-- Restore normal message behavior
set sysLockScreen to false

-- Unfreeze the screen
send paste

-- Paste the desired image
end buttonUp

sysLongDate Property

Description
A system property that specifies the preferred long date format.

Value
The value can contain up to 31 characters, including the following character
combinations which specify the formats indicated here:
M    =    1-12 dd    =    01-31
MM    =    01-12 ddd =    Abbreviated weekday name
MMM    =    Abbreviated month name dddd =    Weekday name
MMMM =    Month name yy    =    00-99
d    =    1-31 yyyy    =    1900-2040
The default value is the sLongDate value in WIN.INI.

sysMagnification Property

Description
A system property used to get whether the view of the main ToolBook window has
been zoomed. To change the magnification, use the magnify command.

Value
The value can be 1, 2, 4, 8, or 16, indicating the power of magnification of the
main window.

Example
if sysMagnification <>1

-- Check whether view is zoomed
magnify 1

-- Restore view to normal magnification
end if

sysMorning Property

Description
A system property that specifies the string following times before noon in a 12-
hour time format.

Value
The default value is the s1159 value in WIN.INI. The value can contain at most
two characters. The value of this property affects the way values are displayed
when they are formatted as dates.

sysMousePosition Property

Description
A system property used to set or get the position of the pointer.

Value
The value is a pair of comma-separated integers that gives the coordinates of the
location of the pointer on the page. The first number is the horizontal coordinate,
and the second number is the vertical coordinate, measured from the top left
corner of the page. The numbers are interpreted in page units.

sysNumberFormat Property

Description
A system property that describes the manner in which numbers are formatted by
the format number command.
When ToolBook tries to read a formatted number, it strips out dollar signs ($) and
percent signs (%) in the number and ignores spaces. If any other characters are
included in the formatted number, ToolBook does not recognize the string as a
number.

Value
You can define the number format you want by building a string containing any of
the following symbols. The string must be enclosed in quotes. The default value is
based on local values for sysThousand, sysDecimal, sysDigits, and
sysILZero. If the value of the sysCountry property is usa, the default is null.
Number format characters
Symbol Meaning
null Default format. ToolBook displays the number as precisely as

possible, using a period as the decimal separator, and using
scientific notation when necessary.

? General precision format. If used as <new format>,
ToolBook displays the number as precisely as possible using
the value of sysDecimal as the decimal separator. If used
as <old format>, ToolBook will discard characters matching
sysCurrency and sysThousand, and replace the
sysDecimal character with a period before interpreting the
number.

0 Digit placeholder. If the number has fewer digits on either
side of the decimal point than there are zeros on either side
of the decimal point, ToolBook displays the extra zeros. If the
number has more digits to the right of the decimal point
than there are zeros to the right of the decimal point in the
format, ToolBook rounds the number to as many decimal
places as there are zeros to the right of the decimal point in
the format. If the number has more digits to the left of the
decimal point than there are zeros to the left of the decimal
point in the format, ToolBook displays the extra digits.

Digit placeholder. Similar to 0 above, except that ToolBook
does not display extra zeros if the number has fewer digits
on either side of the decimal point than there are #s on
either side of the decimal point in the format.

. or , Decimal separator depending on the value of the
sysDecimal property. If the format contains only #s to the
left of this symbol, ToolBook begins numbers smaller than 1
with the decimal separator. To avoid this, use 0 as the first
digit placeholder to the left of a decimal separator.

, or . Thousands separator depending on the value of the
sysThousand property. ToolBook separates thousands by
the thousands separator if the format contains the separator
surrounded by #s or 0s.

E- E+ e- e+ Scientific notation. If a format contains one 0 or # to the
right of an E-, E+, e-, or e+, ToolBook displays the number in
scientific notation and inserts an E or e. The number of 0s or
#s to the right determines the number of digits in the
exponent. Use E- or e- to place a minus sign by negative
exponents. Use E+ or e+ to place a minus sign by negative
exponents and a plus sign by positive exponents.

<character> Literal text. Any printable character besides the above
symbols is displayed literally. For example, if you want a
dollar sign to precede all numbers, you can specify a format
like "$###.00". These characters cannot be imbedded in
the number format; literal text must be before or after the
group of format characters.

Example (sysCountry is set to USA)
Format Number typed and resulting display

2 -2 .2
"" 2 -2 0.2
"0" 2 -2 0
"0.00" 2.00 -2.00 0.20
"#,##0" 2 -2 0
"#,##0.00" 2.00 -2.00 0.20
"0.00E+00" 2.00E+00 -2.00E+00 2.00E-01
"$##.00" $ 2.00 $- 2.00 $    .20
"It is 0" It is 2 It is -2 It is 0

Use decimal tabs or a monospace font to ensure alignment of numbers in
columns. Proportionally spaced fonts, such as the one used in the preceding table,
can result in uneven space padding for numeric formats.
set sysNumberFormat to "000.##"

-- Means that 34.6639 would be formatted as
-- 034.66 if formatted as sysNumberFormat

sysOperatingSystem Property

Description
A system property that specifies the current operating system, graphical
environment, and version number. This property is gettable but not settable.

Value
"OS/2 PM 1.20" Presentation Manager
"DOS Windows 3.0" Windows

sysPageScroll Property

Description
A system property used to set or get the offset of the main window from the
upper left corner of a page.

Value
The value is a comma-separated pair of numbers that gives the coordinates of the
upper left corner of the window on the page. The first number is the horizontal
coordinate and the second number is the vertical coordinate of that point,
measured from the top left corner of the page. The numbers are interpreted in
page units. The coordinates must be positive and the value must be set so that
the window only displays the area inside a page.

Example
to handle enterPage

set sysPageScroll to 1440,1440
-- Results in top and left 1" of page being
-- outside of the display area of the window

end enterPage

sysPasswords Property

Description
A system property used to set or get a list of encrypted passwords for ToolBook to
check before requesting a password from the user. If ToolBook is looking for an
Author, Open, or Save password and the encrypted form of the password appears
in the value of the sysPasswords property, ToolBook continues without asking for
a password. Otherwise, ToolBook displays the Ask Password dialog box.
By setting this property, you can avoid having to enter a password every time you
want to open or save a password-protected book or switch to Author level in a
password-protected book.
The encypted form of a string is placed in the special variable, It, as a result of
the the ask password command.

Value
The value is up to ten encrypted passwords, each on a separate text line. The
default value is null.

Example
This example shows how an author can establish a set of passwords for several
books when a reader correctly enters a password. This saves the reader from
having to repeat the passwords for each book.
to handle enterBook

if "retlaw" is not in sysPasswords
-- "retlaw" is an encrypted password
ask password "Enter your password."
if it is "nitram"

-- "nitram" is another encrypted password
set sysPasswords to passwordList of this book

-- passwordList is a user-defined property
-- of the book, created by the author, which
-- contains a set of encrypted passwords,
-- each on its own line

else
request "Wrong password. Exiting ToolBook."
send exit

end if
end if

end enterBook

sysPattern Property

Description
A system property used to set or get the default pattern when graphic objects are
created.

Value
The value must be none, solidStroke, solidFill, or an integer in the range
from 1 through 128 or 253 through 255. For the values 253 through 255, 253
= none, 254 = solidFill, and 255 = solidStroke. The default value is
solidFill.

sysPolygonShape Property

Description
A system property used to set or get the number of sides created when a regular
polygon is drawn.

Value
The value must be a non-negative integer equal to the number of sides for a
regular polygon. The value can be in the range from 3 through 99. The default
value is 4.

sysRuler Property

Description
A system property used to set or get whether the rulers are displayed.
Scripts that set this property will cause an error in Runtime ToolBook.

Value
The value can be true or false. The default value is false.

sysRuntime Property

Description
A system property used to get whether a reader is using the runtime version of
ToolBook.

Value
The value can be true or false. The value is true if the reader is using the
runtime version of ToolBook.

sysShortDate Property

Description
A system property that specifies the preferred short date format.

Value
The value can contain up to 15 characters and can include the special character
combinations described under the entry for sysLongDate. The default value of
sysShortDate is the sShortDate value in WIN.INI. The sysShortDate property
sets the value for sysDateFormat.

sysStrokeColor Property

Description
A system property used to set or get the system default stroke color.

Value
The value is a comma-separated list of three non-negative numbers representing
the hue, lightness, and saturation of a single color.
The hue value ranges from 0 to 360, corresponding to the angle in a color wheel
where:
0 is red 60 is yellow 120 is green
180 is cyan 240 is blue 300 is magenta
Intermediate angles represent intermediate colors. 0    and 360    are equivalent.
The lightness value ranges from 0 to 100, with 0 representing 0% lightness
(black) and 100 representing 100% lightness (white).
The saturation value ranges from 0 to 100, with 0 representing 0% saturation
(gray) and 100 representing 100% (pure color).
ToolBook may have to convert the value to the closest value that represents an
available color. The default value is 0,0,0 (black).

sysSuspend Property

Description
A system property used to set or get whether ToolBook displays the Execution
Suspended message box when an error occurs using a script. When the
sysSuspend property is true, ToolBook suspends script execution in the event of
an error. When the sysSuspend property is false, ToolBook does not suspend
script execution if an error occurs, but sets the sysError property to indicate the
nature of the error. You can define your own error handling by setting sysSuspend
to false, then writing handlers to check the value of sysError and respond
appropriately.
Note:

When the sysSuspend property is set to false, script execution will continue
even if an error occurs. This could cause unpredictable behavior in a book.

Value
The value can be true or false. The default value of true means ToolBook
displays the Execution Suspended message box when an error occurs during
script execution.

sysSuspendMessages Property

Description
A system property used to set or get whether ToolBook sends messages
automatically. When this property is false, ToolBook sends messages normally.
When this property is true, ToolBook does not send system-generated messages.
System-generated messages include all built-in event messages, such as
leavePage and make, and all menu messages.
By setting this property to true within a handler, you can prevent ToolBook from
sending event messages such as leavePage, enterBook, leaveBook, and
enterPage when the handler (or other handlers it calls) navigates to other pages
or books.
ToolBook resets the sysSuspendMessages property to false when the top-most
calling handler finishes executing.

Value
The value can be true or false. The default value is false.

Example
to handle buttonUp

-- This script is for a button that adds a shrub to a landscape
set sysLockScreen to true

-- Freeze the screen
set sysSuspendMessages to true

-- Prevent ToolBook from sending leave and enter messages
go to page 1 of book "images.tbk"

-- Go to a book of clip art
select group "shrub"

-- Select the desired image
send copy

-- Copy the image
send back

-- Return to the original page
set sysSuspendMessages to false

-- Restore normal message behavior
set sysLockScreen to false

-- Unfreeze the screen
send paste

-- Paste the desired image
end buttonUp

sysTabSpacing Property

Description
A system property used to set or get the default tab stop settings for fields.

Value
The value is a positive number that gives the interval for tab stops in fields. The
number is interpreted in page units. The default value is 720.

sysTabType Property

Description
A system property used to set or get the default tab type for fields. Tabs can be
left-aligned or decimal-aligned.

Value
The value is either left or decimal. The default value is left.

sysThousand Property

Description
A system property that specifies the symbol used to separate thousands in a
number with more than three digits.

Value
A single character (For example, if the value is "," (comma), 3000 is displayed as
3,000.) The default value is the sThousand value in WIN.INI. A blank can be
specified as the separator.
The sysThousand and sysDecimal properties change the interpretation of numeric
formats in ToolBook. For example, if field "Total" contains "1234.56", then format
text of field "total" as "#,##" displays 1,234 if sysThousand is a comma,
and 1234,56 if sysDecimal is a comma.

sysTime Property

Description
A system property used to get the current system time. The system time is the
same as the DOS system time.

Value
The value is the current system time in the format specified by the value of the
sysTimeFormat property.

sysTimeChar Property

Description
A system property that specifies the preferred character used to separate the
hours, minutes, and seconds in time.

Value
A single character. If the value is a ":" (colon), 15:29:31 is displayed. The default
value is the sTime value in WIN.INI.

sysTimeFormat Property

Description
A system property used to set or get the format for times. The value defines the
format of the value of the sysTime property, as well as the manner in which the
time is formatted by the format time command.

Value
The value is a string of characters and numbers indicating the format for time.
The string can be any combination of the formats shown in the following table.
The default format is determined by the settings of sysITime and sysTimeChar
in the international section of the WIN.INI file. If the value of the sysCountry
property is set to usa, the default format is h:min:sec.
Time formats
Format Description
h The hour’s number on a 12-hour clock (1, 2, ...12)
hh The hour’s number on a 12-hour clock with a leading 0 if it is

1 through 9 (01, 02, ...12)
h24 The hour’s number on a 24-hour clock (0, 1, ...23)
hh24 The hour’s number on a 24-hour clock with a leading 0 if it is

0 through 9 (00, 01, ...23)
min The minute’s number (00, 01, ...59)
sec The second’s number (00, 01, ...59)
AMPM Suffix to indicate morning or afternoon. Default depends on

settings in the WIN.INI file. If the value of the sysCountry
property is set to usa, the default is AM if the time is in the
morning and PM if the time is in the afternoon.

seconds The number of seconds that have elapsed since 00:00:00
GMT on January 1, 1970

Examples
In the following examples, if the time is 9:54 in the evening:
set sysTimeFormat to "h:min:sec AMPM"
put sysTime

-- Displays 9:54:00 PM in the Command window

set sysTimeFormat to "min"
put sysTime

-- Displays 54 in the Command window

sysTransparent Property

Description
A system property used to set or get the default for the transparent property of
new objects.

Value
The value must be true or false. The default value is false.

sysUnits Property

Description
A system property used to set or get the units of measure used in the page rulers.

Value
The value must be english or metric. The default value is based on the the
value of the iMeasure setting in the [International] section of WIN.INI.
Note:

The values inches and millimeters are obsolete in ToolBook versions 1.5 and
later and should not be used.

sysVersion Property

Description
A system property that specifies the currently running version of ToolBook. This
property is gettable but not settable.

sysWindowHandle Property

Description
A system property used to get the window handle of the ToolBook main window.
For details about window handles, see the Microsoft Windows Software
Development Kit Programmers Reference.

Value
The value is the window handle of the main ToolBook window as assigned by
Microsoft Windows.

tabSpacing Property

Description
A field and record field property used to set or get the tab stop settings in a field
or record field. Setting the value of this property is the equivalent of entering a
value in the Interval box in the Paragraph dialog box when a field or record field is
selected.

Value
The value is a positive integer that gives the interval for tab stops in a field. The
number is interpreted in page units. The default value is the value of the
sysTabSpacing property.

tabType Property

Description
A field and record field property used to set or get whether left or decimal tabs
are used in a field or record field. Setting the value of this property is the
equivalent of choosing Left Tabs or Decimal Tabs in the Paragraph dialog box
when a field or record field is selected.

Value
The value is either left or decimal. The default value is the value of the
sysTabType property.

target Property

Description
A system property used to get the object that received the current message.

Value
The value is the unique name of the object that received the current message.

text Property

Description
A field or record field property used to set, get, or manipulate the text in a field or
record field. Also a hotword property used to get the text of a hotword.
For details about selecting text, see the select command.

Value
The value is a string consisting of the text in a specified field, record field, or
hotword.

Examples
set text of field "Response" to "That's correct."

-- Puts "That's correct." in the Response field on
-- the current page

clear textLine 1 of text of field "Names" of page "Contacts"
-- Deletes the first line of text from the Names
-- field on the Contacts page

textAlignment Property

Description
A field and record field property used to set or get the alignment of text in a field
or record field.

Value
The value can be left, right, justify, or center. The default value is left.

textOverflow Property

Description
A button, field, and record field property used to get the number of characters
clipped by the bottom boundary of a field or the bottom or right boundry of a
button, including characters only partially visible. This property is useful if you
need to find out if all of the text of a field or button fits in its display area.

Value
The value is an integer that equals the number of characters of a field's or
button's text that are partially or completely clipped. The default value is null.

transparent Property

Description
A button, field, or graphic property used to set or get whether an object is
transparent. Unlike invisible and hidden objects, a transparent object can receive
keyboard and mouse messages.

Value
The value can be true or false. The default value is false.

uniqueName Property

Description
An object property used to get the unique name of an object. For details about the
unique names of objects, see "Referring to Objects" in Chapter 2, "Script Basics"
of Using OpenScript.

Value
The value is a string containing the unique name for the object. For example, if a
button is the first object created on the first page of book CONTACTS.TBK, then
the uniqueName of the button is button id 0 of page id 0 of book "C:\
CONTACTS.TBK".

userProperties Property

Description
A button, field, group, hotword, page, background, book, and graphic object
property used to get the names of an object’s user-defined properties that don’t
have corresponding to set handlers. For details about the use of this property,
see "Defining Your Own Properties" in Chapter 6, "Beyond the Basics" of Using
OpenScript.

Value
The value is a comma-separated list of the names of an object’s user-defined
properties that don’t have corresponding to set handlers. The default value is
null.

Example
put the userProperties of this page into the commandWindow

-- Displays a list of the user-defined properties for
-- the current page

vertices Property

Description
A button, field, group, window, and graphic object property used to set or get the
locations of the vertices of an object. This property can also be used to get the
locations of the vertices of the Command window and the palettes.

Value
For buttons, fields, groups, windows, and graphic objects other than angled lines,
curves, and irregular polygons, the value is four comma-separated numbers
representing the coordinates for the upper left and lower right corners of the
object. For angled lines and irregular polygons, the vertices are comma-separated
numbers that give the locations of endpoints of the.line segments in the object.
For curves, the vertices are a comma-separated list of the locations of the
reshape handles. All values for objects are expressed in page units. All values for
windows and palettes are expressed as screen coordinates.
This property can be used to reshape graphic objects. For example, changing the
vertices of an irregular polygon will reshape the polygon.

Example
set items 3 to 4 of the vertices of irregularpolygon id 6 \

to 2463, 3546
-- Sets the second angle of the polygon

visible Property

Description
A button, field, graphic, group, palette, and Command window property used to
indicate whether a window or an object is shown on the screen. An object whose
visible property is set to false does not receive keyboard or mouse
messages, nor can it be selected or included in a search.
Also see the hide and show commands in this chapter.
Scripts that set the visible property to true for palettes or the Command
window will cause an error in Runtime ToolBook.

Value
The value can be true or false. The default value is true.

Special Terms Quick reference
Alphabetical List
Working Levels
author both reader
Special Variables
argCount argList It
Style values for object properties
black multiSelect singleLineWrap
bold none singleSelect
checkbox noWrap solidFill
columns pushButton solidStroke
dashed radioButton strikeout
decimal rectangle underline
dotted rounded white
groups scrolling wordWrap
italic shadowed
Object type names and tool names
angledLine field picture
arc group pie
background hotword polygon
book irregularPolygon recordField
button line rectangle
curve page roundedRectangle
ellipse paintObject
Window and palette names
colorTray menuBar spectrumPalette
commandWindow patternPalette statusBox
linePalette polygonPalette toolPalette
mainWindow scrollBar
Ordinal numbers
first fifth ninth
second sixth tenth
third seventh
fourth eighth
Relational terms
first mid next
last middle previous
Units of measure
english metric
Alignment and direction
ascending horizontal top
bottom justify vertical
center left
descending right

Text and string specifiers
char[s] item[s] textLine[s]
character[s] text word[s]
Articles and prepositions
a by onto
after for the
an from this
at into to
before of with
Logical Values
false true
Miscellaneous
again id page
alias locateOnly pages
all my system
date name time
end none
excluding number

Special Terms - Alphabetical list Quick reference
a first polygonPalette
after for previous
again fourth pushbutton
alias from radiobutton
all gray reader
an group recordField
angledLine groups rectangle
arc horizontal right
ascending hotword rounded
at id roundedRectangle
author into scrollBar
background irregularPolygon scrolling
before italic second
black item seventh
bold items shadowed
book justify singleLineWrap
both last singleSelect
bottom left sixth
button line solidFill
by linePalette solidStroke
center locateOnly spectrumPalette
char mainWindow statusBox
character menuBar strikeout
characters metric system
chars mid tenth
checkbox middle text
colorTray multiSelect textLine
columns my textLines
commandWindow name the
curve next third
dashed ninth this
date none time
decimal noWrap to
descending number toolPalette
dotted of top
eighth onto true
ellipse page underline
end pages vertical
english paintObject white
excluding patternPalette with
false picture word
field pie words
fifth polygon wordWrap

a, an Special term

Description
Used with the draw command to make statements easier to read. These terms are
optional in every context in which they can be used.

Example
draw an arc from 2000,2500 to 4500,4500 to 3440,4000

after Special term

Description
Used with the following OpenScript commands to indicate that a value should
follow other values:
pop
put

Example
put sysDate after text of field "Contacts"

-- Appends the current date to the field "Contact"

again Special term

Description
Used with the search command to indicate that ToolBook should search again
for specified text.

Example
search again

alias Special Term

Description
Optionally used with the add menuItem command to specify the message to be
sent when a user chooses a user-defined menu command.

Example
add menuItem "Addresses" alias "myAddress" to menu "File"

-- adds a menu item, "Addresses", to the file menu. When
-- the item is selected the message, "myAddress", will be
-- sent to the current page.

all Special term

Description
Indicates everything of a particular type or everything within a particular scope.

Examples
flip all
print all pages
select all recordField

angledLine Special term

Description
The object type name of objects created with the angled line tool, the name of the
tool itself, or the term for more than one angled line. You can use angledLine in
any context in which it is appropriate as part of an object identifier.

Examples
draw with angledLine tool from 1000, 1000 to\

2050, 2000 to 3050, 3000

hide angledLine "xy"

select all angledLine

arc Special term

Description
The object type name of objects created with the arc tool, the name of the tool
itself, or the term for more than one arc. You can use arc in any context in which
it is appropriate as part of an object identifier.

Examples
draw an arc from 2000,2500 to 2000,4500 to 3440,4000

show arc "xyz"

select all arc

ascending Special term

Description
Used with the sort command to indicate that ToolBook should sort values from
the lowest ANSI value to the highest ANSI value.

Example
sort pages 1 to 3 by ascending text \

text of recordField "Name"
-- sorts pages 1 to 3 in ascending order according
-- to the "Name" field

at Special term

Description
A preposition that precedes terms that indicate a working level or a screen or
page location.

Examples
activate menuItem "Books" at author

-- Activates the Books command at Author level

add menu "&Lessons" at both

magnify 2 at 2400,3650
-- Magnifies an area whose center is at 2400,3650

show the patternPalette at 1000,1400

author Special term

Description
Used with the following OpenScript keywords to indicate the Author working level:
activate menuItem
add menu
add menuItem
check menuItem
deactivate menuItem
menuState
remove menu
remove menuItem
restore menuBar
sysLevel
uncheck menuItem
Scripts that set sysLevel to author will cause an error in Runtime ToolBook.

Examples
activate menuItem "Books" at author

-- Activates the Books command at Author level

uncheck menuItem "Introduction" at author
-- Unchecks the Introduction command at Author level

background Special term

Description
The object type name of a background. You can use background in any context
in which it is appropriate as part of an object identifier.

Example
send buttonDoubleClick to background id 1

before Special term

Description
Used with the following OpenScript commands to indicate that one value should
precede other values:
pop
put

Examples
put sysDate before it

-- Prepends the current date to the text in It

put "not" before word 5 of text of field id 3 of page 7
-- Puts the word not into the text of field id 3
-- preceding the fifth word

black Special term

Description
Used with the following commands to indicate the color black:
fxDissolve
fxWipe
fxZoom
Unlike the constant black, the special term black does not evaluate to 0,0,0.
Also see the constant black.

Example
fxDissolve fast to black

bold Special term

Description
Used with the following properties to indicate bold type style:
fontStyle
sysFontStyle

Example
set sysFontStyle to bold

book Special term

Description
The object type name of a book. You can use book in any context in which it is
required or acceptable as part of an object identifier. You can also use book with
the following commands to indicate a book:
edit script
forward
go
save changes
send

Examples
get the pageCount of this book

go to book "c:\mybooks\contacts.tbk"
-- Puts the focus in the first page of contacts.tbk

save changes to book "c:\toolbook\newbook.tbk"

both Special term

Description
Used with the following OpenScript keywords to indicate Author and Reader
working levels:
activate menuItem
add menu
add menuItem
check menuItem
deactivate menuItem
menuState
remove menu
remove menuItem
restore menuBar
uncheck menuItem

Example
add menuItem "List" to menu "Books" at both

bottom Special term

Description
Used to indicate the lower edge of an object on a page or the lower edge of a
page.
Use of bottom in scripts
Used with the... To indicate...
align The lower edge of objects on a page
fxWipe The lower edge of a page

Examples
align bottom

button Special term

Description
The object type name of objects created with the button tool, the name of the tool
itself, or the term for more than one button. You can use button in any context
in which it is appropriate as part of an object identifier.

Examples
edit script of button "Next"
move button "Index" by 1440,1440

by Special term

Description
Precedes terms that indicate amounts or other specifications.
Use of by in scripts
Used with ... To precede...
decrement An amount by which to decrement
increment An amount by which to increment
move An amount by which to move
search The term case, which indicates to search by

the case of the letters in the search screen
sort The sort keys by which to search
step An amount by which a variable should be

incremented or decremented

Example
sort pages 1 to 3 by \

descending text text of recordField id 0
-- Does a text-based descending sort of pages 1 through 3
-- based on the contents of record field id 0 on the
-- current page

center Special term

Description
Used with the following properties to indicate centered text alignment:
sysAlignment
textAlignment

Example
set textAlignment of the selection to center

char, character, characters, chars Special term

Description
The special terms char and character indicate one character of text. The
special terms chars and characters indicate one or more characters of text.
You can use these special terms in any context in which a string specifier
expression is appropriate. For details, see "Expressions with String Specifiers" in
Chapter 2, "Script Basics," in Using OpenScript.

Example
get chars 10 to 12 of textLine 3 of text of field "Address"

checkbox Special term

Description
Used with the borderStyle property to indicate the checkbox button style.

Example
set borderStyle of button "Edit" to checkbox

-- Sets the borderStyle for a selected button

colorTray Special term

Description
Used with the following commands to indicate the color tray palette:
hide
move
show

Examples
show colorTray

move colorTray to 7200,0

columns Special term

Description
Used with the printerStyle property to indicate ToolBook should print a column
report.

Example
set printerStyle to columns

commandWindow Special term

Description
Used with the following commands to indicate the Command window:
clear
hide
move
put
set
show

Examples
hide the commandWindow

put it into the commandWindow
-- Puts the value in It into the Command window

curve Special term

Description
The object type name of objects created with the curve tool, the name of the tool
itself, or the term for more than one curve. You can use curve in any context in
which it is appropriate as part of an object identifier.

Example
edit script of curve id 3

dashed Special term

Description
Used with the following properties to indicate a dashed line:
lineStyle
sysLineStyle

Examples
set the sysLineStyle to dashed

put dashed into lineStyle

date Special term

Description
Indicates that ToolBook should interpret a value as a date.
Use of date in scripts
Used with ... To indicate...
< Operands should be compared as dates
<=
<>
=
>
>=
is
is not
format To format dates
sort To sort by dates

Examples
if textLine 1 of text of field "Last Date" <=\

sysDate as date
format date textline 1 of text of field id 1 as \

"y mmm dd" from "mm/yy"
end

decimal Special term

Description
Used with the following properties to indicate decimal aligned tabs:
sysTabType
tabType

Example
set sysTabType to decimal

descending Special term

Description
Used with the sort command to indicate that ToolBook should sort values from
the highest ANSI value to the lowest ANSI value.

Example
sort pages 1 to 3 by \

descending text text of recordField "Topic"

dotted Special term

Description
Used with the following properties to indicate a dotted line style:
lineStyle
sysLineStyle

Example
set the sysLineStyle to dotted

eighth Special term

Description
Used in string specifier expressions to indicate the eighth character, word, item,
or text line, and in object identifiers to indicate the eighth page of a book. For
details, see "Expressions with String Specifiers" and "Referring to Objects" in
Chapter 2, "Script Basics", of Using OpenScript.

Example
put the eighth word of text of field "Topics" into it

ellipse Special term

Description
The object type name of objects created with the ellipse tool, the name of the tool
itself, or the term for more than one ellipse. You can use ellipse in any context
in which it is appropriate as part of an object identifier.

Examples
draw an ellipse from 600,1500 to 2100,2100

select all ellipse

end Special term

Description
Used to end control structures and handlers.
Use of end in scripts
Used with ... To...
to get End the handler structure
to handle
to set
conditions/when/else End the control structure
if/then/else
linkDLL
while
start spooler
step

To end a handler, you can use end by itself as a statement, or you can use end
followed by the message, user-defined property, or user-defined function used in
the first statement in the handler. For example, to end a handler that starts with
to handle buttonUp, you can use end or end buttonUp.
To end a control structure, you can use end by itself or end followed by the term
that starts the control structure. For example, to end an if/then/else control
structure, you can use end or end if.
The do/until control structure ends with the until statement, not an end
statement.

Example
to handle enterBook

system testScore
set testScore to 0

end enterBook

english Special Term

Description
Used with the sysUnits property to indicate inches as the unit of measure for
grid size, page size, tabs, and indents.

Example
set sysUnits to english

-- sets unit of measure to inches

excluding Special Term

Description
Precedes the background keyword when used with the search command to
indicate that the background fields will not be searched.

Example
search excluding background for "Sarah"

-- searches for "Sarah" excluding background fields

false Special term

Description
The logical value false. The opposite of true.

Examples
set visible of button "Help" to false

-- Makes the Help button invisible

set the sysGrid to false
-- ToolBook hides the grid

field Special term

Description
The object type name of objects created with the field tool, the name of the tool
itself, or the term for more than one field. You can use field in any context in
which it is appropriate as part of an object identifier.

Examples
get the text of field id 12; put it into the text of\

field id 13

set the borderStyle of field "Help" to shadowed

fifth Special term

Description
Used in string specifier expressions to indicate the fifth character, word, item, or
text line, and in object identifiers to indicate the fifth page of a book. For details,
see "Expressions with String Specifiers " and "Referring to Objects" in Chapter 2,
"Script Basics," in Using OpenScript.

Example
select the fifth word of the text of field "Essay"

first Special term

Description
Used in string specifier expressions to indicate the first character, word, item, or
text line, and in object identifiers to indicate the first page of a book. For details,
see "Expressions with String Specifiers" and "Referring to Objects" in Chapter 2,
"Script Basics," in Using OpenScript.

Example
get the first word of the text of field "name"

for Special term

Description
Precedes a search string or the number of characters to read from a file.
Use of for in scripts
Used with ... To precede...
readFile The number of characters that ToolBook

should read
search The characters for which ToolBook should

search

Example
search records for "the" by case as word

-- Finds and selects the first occurrence of the word
-- "the" in lowercase in a record field

fourth Special term

Description
Used in string specifier expressions to indicate the fourth character, word, item, or
text line, and in object identifiers to indicate the fourth page of a book. For
details, see "Expressions with String Specifiers" and "Referring to Objects" in
Chapter 2, "Script Basics," in Using OpenScript.

Example
get the fourth item of my userProperties

from Special term

Description
Precedes a starting value.
Use of from in scripts
Used with ... To precede...
draw The location from which to draw
format The old format to reformat
select all The location from which to select
step The value from which to step

Examples
draw a rectangle from 1440,2000 to 3000,3000

format date textline 1 of text of field id 1 as "y mmm dd" \
from "mm/yy"

select all from Beginning to Finish

step i from 1 to pageCount of this book
put name of page i

end

gray Special term

Description
Used with the following commands to indicate the color gray:
fxDissolve
fxWipe
fxZoom

Example
fxDissolve to gray

group Special term

Description
The object type name for a group or the term for more than one group. You can
use group in any context in which it is appropriate as part of an object identifier.

Examples
hide group "answers"

select all group

groups Special term

Description
Used with the printerStyle property to indicate ToolBook should print a group
report.

Example
set printerStyle to groups

horizontal Special term

Description
Used with the align command to indicate ToolBook should align objects on a
page along their horizontal center.

Example
align horizontal

hotword Special term

Description
The object type name for a hotword. You can use hotword in any context in
which an object identifier for a hotword is applicable.

Example
get the text of hotword id 10

id Special term

Description
Used in an object identifier to precede the ID number.

Examples
put text of hotword id 3 into the commandWindow

move irregularPolygon id 5 to 1440,1440

inches Special term

Description
This term is obsolete in ToolBook version 1.5. See english

into Special term

Description
Used with the following commands to precede a reference to a destination stack
or container:
put
pop

Examples
In the following example, if field Test Question 4 contains the expression
average(20,30,40):
put text of field "Test Question 4" into it

-- Puts average(20,30,40) into It

put sysTime into text of field "Current Time"

-- Puts the system time into the field "Current Time"

irregularPolygon Special term

Description
The object type name of objects created with the irregular polygon tool, the name
of the tool itself, and the term for more than one irregular polygon. You can use
irregularPolygon in any context in which it is appropriate as part of an object
identifier.

Examples
edit script of irregularpolygon id 3

select all irregularPolygon

italic Special term

Description
Used with the following properties to indicate italic type style:
fontStyle
sysFontStyle

Example
set my fontStyle to italic

item, items Special term

Description
The special term item means one value in a comma-separated list. If there is a
space before the value, it is included as part of the value. The comma is not
included. The special term items means more than one value in a comma-
separated list. You can use these special terms in any context in which a string
specifier expression is appropriate. For details, see "Expressions with String
Specifiers" in Chapter 2 of Using Openscript, "Script Basics."

Example
put item 1 of varList into the commandWindow

justify Special term

Description
Used with the following properties to indicate ToolBook should align text along the
left and right margins:
sysAlignment
textAlignment

Example
set my textAlignment to justify

last Special term

Description
The last page of a book, the last character in a word or item, the last item in a list,
the last word in a text line, or the last text line in a field. You can use last in any
context in which a string specifier expression is appropriate, and in object
identifiers to indicate the last page of a book. For details, see "Expressions with
String Specifiers" and "Referring to Objects" in Chapter 2, "Script Basics," in Using
OpenScript.

Examples
format time last textline of footer of this book

-- Formats the last line of the footer as sysTimeFormat

go to last page

put yourName into the last word of textline 4 of the \
script of hotword id 7

left Special term

Description
The left edge of an object on a page, the left edge of a page, or the left margin of
a field.
Use of left in scripts
Used with ... To indicate...
sysAlignment The left margin of a field
textAlignment
sysTabType
tabType
align The left edge of object on a page
fxWipe The left edge of a page

Examples
align left

-- Aligns the selected objects along their left edges

fxWipe left fast to next page
-- Moves the next page onto the screen from the right

line Special term

Description
The object type name of objects created with the line tool, the name of the tool
itself, and the term for more than one line. You can use line in any context in
which it is appropriate as part of an object identifier.

Example
draw a line from 233,1500 to 233,2450

linePalette Special term

Description
Used with the following OpenScript keywords to indicate the line palette:
bounds
hide
move
position
show

Examples
set the position of the linePalette to 0,0

move the linePalette by 1440,1440

get the bounds of the linePalette

locateOnly Special term

Description
Used with the search command to search for text without selecting it or
navigating to the page that contains the text. Instead, the content of It is set to a
list of three items: the name of the field or record field where the text was found,
followed by two integers that indicate the character range of the matching text in
that field.

Example
search for "WA" locateOnly

-- searches for "WA" and returns location of found string
-- in It

mainWindow Special term

Description
Used with the following OpenScript keywords to indicate the main ToolBook
window:
bounds
hide
move
position
show

Examples
get the bounds of the mainWindow

hide the mainWindow

menuBar Special term

Description
Used with the following commands to indicate the main ToolBook window menu
bar:
hide
restore menuBar
show

Examples
hide the menuBar

show menuBar

metric Special term

Description
Used with and sysUnits property to indicate centimeters as the unit of measure
for grid and size, tabs, and indents.

Example
set sysUnits to metric

-- sets unit of measure to centimeters

mid, middle Special term

Description
The middle character, word, item, or text line. You can use mid and middle in
any context in which a string specifier expression is appropriate.    If there are an
even number of items (characters, words, list items, or textLines) then middle
will return the item just to the left of middle (e.g. the result of middle of "1, 2,
3, 4" will be 2.)
For details on expressions, see "Expressions with String Specifiers" in Chapter 2,
"Script Basics," in Using OpenScript.

Example
get the middle textLine of text of \

field "Donations by Calendar Date"

millimeters Special term

Description
This term is obsolete in ToolBook version 1.5. See metric.

multiSelect Special term

Description
A value of the fieldType field and recordField property. If fieldType has the
value, multiSelect, the field or recordField will behave as a multiple-choice list
box. After setting a field's fieldType property to multiSelect, when a reader
clicks a textline in the field, the textline will be selected. Clicking additional
textlines will cause them to be selected without unselecting previous lines. The
value of the field's selectedTextLines property will be a list of textline numbers
of the selected textlines.

Examples
set fieldType of field "field list" to multiSelect

-- makes field "file list" a multiSelect list box

my Special term

Description
Used in statements that refer to properties to indicate that the properties belong
to the object whose script is currently executing.

Examples
get my header

-- Gets the value of the header property for the book
-- whose script is currently executing

set my position to 1500,3000

name Special term

Description
Indicates that ToolBook should interpret a value as a name. When ToolBook
compares values as names, ToolBook uses only the first paragraph of a string in a
container in the comparison. First, ToolBook compares last names by looking for
the third word of the string in each container. If there is not a third word, ToolBook
looks for the second word. If there is not a second word, ToolBook looks for the
first word. In this way, ToolBook compares last names first. If a container is empty,
the string is compared as a null string, which has a greater value than any other
string.
After comparing last names, ToolBook compares first names by comparing the
first word of the string in each container. If there is only one word in the string,
first names are not compared. If there are three words in each string, ToolBook
compares the second word of each string as middle names.
Use of name in scripts
Used with ... To indicate...
< Operands should be compared as names
<=
<>
=
>
>=
is
is not
sort To sort as names, as opposed to numbers,

text, or dates

Example
if text of field "Test 1" > text of field "Test 2" as name

send switch field "Test 1", field "Test 2"
end if

next Special term

Description
Used in object identifiers to refer to the page after the current page.

Example
go to next page

ninth Special term

Description
Used in string specifier expressions to indicate the ninth character, word, item, or
text line, and in object identifiers to indicate the ninth page of a book. For details,
see "Expressions with String Specifiers" in Chapter 2, "Script Basics," in Using
OpenScript.

Example
go to the ninth page of this book

none Special term

Description
Used with the following properties to indicate the absence of other values for the
property:
borderStyle
lineStyle
pattern
sysCursor
sysLineStyle

Example
-- If there is no visible line around the graphic
if my lineStyle is none

set my lineStyle to 4
end if

noWrap Special term

Description
Used with the fieldType property to indicate that the field displays multiple
textlines without word wrap.

Example
set fieldType of field "Choices" to noWrap

number Special term

Description
Indicates that ToolBook should interpret a value as a number.
Use of number in scripts
Used with ... To indicate...
< Operands should be compared as numbers
<=
<>
=
>
>=
is
is not
format To format numbers
sort To sort by numbers

Examples
format number text of field "Tax" of page 2

if text of field "Contacts" is 25 as number
go to page "Bonus Points"

end if

of Special term

Description
Indicates hierarchical relationships in string specifier expressions and object
identifiers. The special term of can be used in any context in which a string
specifier expression or object identifier is appropriate. For details, see
"Expressions with String Specifiers" in Chapter 2 in Using OpenScript, "Script
Basics."
This special term is also used to indicate that a property belongs to a particular
object.

Example
get the first textLine of text of recordField\

"Definition" of page 5
-- The first of is part of a string specifier, the second
-- of indicates that the text property belongs to a
-- particular record field, and the third of is part of
-- the object identifier for that record field

onto Special term

Description
Precedes a reference to a destination stack in a push statement.

Example
push sysDate onto textLine 1 of text of field "Access_dates"

page Special term

Description
Used with the following commands as the object type name for a page:
edit script
forward
fxDissolve
fxWipe
fxZoom
go
send
You can use page in any context in which it is appropriate as part of an object
identifier.

Example
set text of field "trees" of page 7 to "evergreens"

pages Special term

Description
Used with the following OpenScript keywords to indicate pages in a ToolBook
book:
flip
print
sort
printerStyle

Examples
flip 5 pages

print all pages

sort pages 1 to 3 by \

descending text text of recordField "Name"
-- Does a text-based descending sort of
-- pages 1 through 3 based on the contents of
-- recordfield "Name"

paintObject Special term

Description
The object type name for paint objects, and the term for more than one paint
object. You can use paintObject in any context in which it is appropriate as part
of an object identifier.

Example
move paintObject "Palm Tree" to 5000,1000

patternPalette Special term

Description
Used with the following OpenScript keywords to indicate the pattern palette:
bounds
hide
move
position
show

Examples
show the patternPalette

move the patternPalette to 3000,0

picture Special term

Description
The object type name of an object created by pasting a Windows metafile or
importing files that have the    file name extensions .WMF, .DRW, .EPS, .CGM,
or .TIF. You can use picture in any context for which it is appropriate as part of an
object identifier.

Example
set the position of picture "Globe" to 10,10

pie Special term

Description
The object type name for objects created with the pie tool, the name of the tool
itself, or a term for more than one pie. You can use pie in any context in which it
is appropriate as part of an object identifier.

Examples
send buttonUp to pie id 8

move pie id 8 to 4000,4000

polygon Special term

Description
The object type name of objects created with the polygon tool, the name of the
tool itself, or the term for more than one polygon. You can use polygon in any
context in which it is appropriate as part of an object identifier.

Examples
select polygon "Box"

edit script of polygon id 3

polygonPalette Special term

Description
Used with the following OpenScript keywords to indicate the polygon palette:
bounds
hide
move
position
show

Examples
hide the polygonPalette

get the position of the polygonPalette

previous Special term

Description
Used in object identifiers to indicate the page before the current page.

Example
go to previous page

pushButton Special term

Description
Used with the button borderStyle property to indicate that the buttons appears
three-dimensional, like Windows 3.0 dialog box buttons. When the value of a
button's borderStyle property is pushButton, you can also set the button's
invert property to true to make the button appear as though it is being pushed.

Example
set borderStyle of button "stop" to pushButton

radioButton Special term

Description
Used with the borderStyle property to indicate the radio button style for a
button.

Example
set my borderStyle to radioButton

reader Special term

Description
Used with the following OpenScript keywords to indicate the Reader working level:
activate menuItem
add menu
add menuItem
check menuItem
deactivate menuItem
menuState
remove menu
remove menuItem
restore menuBar
sysLevel
uncheck menuItem

Examples
set sysLevel to reader

check menuItem "Lessons" at reader

recordField Special term

Description
The object type name for objects created with the record field tool, the name of
the tool itself, or the term for more than one record field. You can use
recordField in any context in which it is appropriate as part of an object
identifier.

Examples
draw a recordField from 2560,2560 to 5000,5000

set the name of recordField id 6 to "Address"

rectangle Special term

Description
The object type name of objects created with the rectangle tool, the name of the
tool itself, the term for more than one rectangle, or the term for the rectangle
button or field style. You can use rectangle in any context in which it is
appropriate as part of an object identifier.

Examples
show rectangle "Picture"

select all rectangle

right Special term

Description
Used to indicate right edge of objects on a page, the right edge of a page, or the
right margin of a field.
Use of right in scripts
Used with ... To indicate...
sysAlignment The right margin of a field
textAlignment
sysTabType
tabType
align The right edge of objects on a page
fxWipe The right edge of a page

Examples
align right

-- Aligns the selected objects along their right edges

fxWipe right fast to next page
-- Moves the next page onto the screen from the right

rounded Special term

Description
Used with the borderStyle property to indicate the rounded rectangle button
style.

Example
set my borderStyle to rounded

roundedRectangle Special term

Description
The object type name of objects created with the rounded rectangle tool, the
name of the tool itself, or the term for more than one rounded rectangle. You can
use roundedRectangle in any context in which it is appropriate as part of an
object identifier.

Example
draw a roundedRectangle from 3000,3000 to 4440,4440

scrollBar Special term

Description
Used with the following commands to indicate the scroll bar:
hide
show

Example
hide the scrollBar

scrolling Special term

Description
Used with the borderStyle property to indicate the scrolling field style.

Example
set my borderStyle to scrolling

second Special term

Description
Used in string specifier expressions to indicate the second character, word, item,
or text line, and in object identifiers to indicate the second page of a book. For
details, see "Expressions with String Specifiers" in Chapter 2, "Script Basics," in
Using OpenScript.

Example
go to the second page of book "c:\ToolBook\datebook.tbk"

seventh Special term

Description
Used in string specifier expressions to indicate the seventh character, word, item,
or text line, and in object identifiers to indicate the seventh page of a book. For
details, see "Expressions with String Specifiers" in Chapter 2, "Script Basics," in
Using OpenScript.

Example
select seventh textLine of text of field "Booklist"

shadowed Special term

Description
Used with the borderStyle property to indicate the shadowed button style.

Example
set the borderStyle of button "Index" to shadowed

singleLineWrap Special term

Description
Used with the fieldType property to indicate that the field displays only a single
line of text without word wrap.

Example
set the fieldType of field "Name" to singleLineWrap

-- only allows a single line in field "Name"

singleSelect Special term

Description
Used with the fieldType property to indicate that the field behaves as a
singleSelect list box. After setting a field's fieldType property to singleSelect,
when a reader clicks a textline in the field, the textline will be selected and the
value of the field's selectedTextLines property will be the textline number.

Example
set the fieldType of field "Name List" to singleSelect

-- Causes field "Name List" to behave as a single-choice
-- listbox.

sixth Special term

Description
Used in string specifier expressions to indicate the sixth character, word, item, or
text line, and in object identifiers to indicate the sixth page of a book. For details,
see "Expressions with String Specifiers" and "Referring to Objects" in Chapter 2,
"Script Basics," in Using OpenScript.

Example
get the sixth char of the text of field "Grades"

solidFill Special term

Description
Used with the following properties to indicate that an object’s pattern is the solid
fill color:
pattern
sysPattern

Example
set sysPattern to solidFill

solidStroke Special term

Description
Used with the following properties to indicate that an object’s pattern is the solid
stroke color:
pattern
sysPattern

Example
set pattern of rectangle "Costs" to solidStroke

spectrumPalette Special term

Description
Used with the following commands to indicate the spectrum palette:
hide
move
show

Examples
show spectrumPalette

move spectrumPalette to 0,4320

statusBox Special term

Description
Used with the following commands to indicate the status box:
hide
show

Example
show statusBox

strikeout Special term

Description
Used with the following properties to indicate strikeout type style:
fontStyle
sysFontStyle

Example
set the fontStyle of selectedText to strikeout

system Special term

Description
Used to indicate the ToolBook system, the system font typeface, or any instance
of a particular Windows application.
Use of system in scripts
Used with ... To indicate...
forward The ToolBook system
break
send
executeRemote Any instance of a particular Windows

application
getRemote
sysFontFace The system font typeface

Examples
break to system

send open to system

forward to system

tenth Special term

Description
Used in string specifier expressions to indicate the tenth character, word, item, or
text line, and in object identifiers to indicate the tenth page of a book. For details,
see "Expressions with String Specifiers" in Chapter 2, "Script Basics," in Using
OpenScript.

Example
get the tenth item of sysHistory

text Special term

Description
Indicates that ToolBook should read particular values as text.
Use of text in scripts
Used with ... To indicate...
< Operands should be compared as text
<=
=
>
>=
is
is not
sort To sort by text

Example
if text of field "Name" > "K" as text

go page "L through Z"
end if

textLine, textLines Special term

Description
The special term textLine refers to a string that ends with a Carriage
Return/Line Feed (crlf) character. The special term textLines refers to one or
more strings that end with crlf.
Note that the end of a text line in a field is not necessarily where word wrap
occurs, but where a crlf is entered.
You can use these special terms in any context in which a string specifier
expression is appropriate. For details, see "Expressions with String Specifiers" in
Chapter 2, "Script Basics," in Using OpenScript.

Example
get the first textLine of the text of field "Booklist"

the Special term

Description
Used in statements to make them easier to read. It is optional in every context in
which it is used.

Example
set the highlight of button "Next" to true

third Special term

Description
Used in string specifier expressions to indicate the third character, word, item, or
text line, and in object identifiers to indicate the third page of a book. For details,
see "Expressions with String Specifiers" and "Referring to Objects" in Chapter 2,
"Script Basics," in Using OpenScript.

Examples
go to the third page of this book

put the third textLine of my script into commandWindow

this Special term

Description
Used with the object identifier for a page, background, or book to indicate the
current page, background, or book.

Examples
get the customColors of this book
get the objects of this background

time Special term

Description
Used with the format command to indicate ToolBook should format a string to
the specified time format.

Example
Format time text of field "AccessTime" as "hh:mm" from\

"seconds"

to Special term

Description
Used to precede a location, container, or desired value.
Use of to in scripts
Used with ... To precede the...
add menuItem Menu to add a command to
draw Location to draw to
break ToolBook system
forward
fxDissolve Result that the ToolBook display dissolves to
fxWipe Result that the ToolBook display wipes to
fxZoom Result that the ToolBook display zooms to
go Object to go to
move Location to move an object, window, or

palette to
readFile Character to read a file to
save changes Book to save changes to
select all Location to select to
send Object to send a message to
set Value to set a container to
sort Page to sort values to
step Value to step a variable to
writeFile File to write text to

Examples
draw from 1025,1025 to 2422,2021

fxWipe left fast to next page
-- Moves the next page onto the screen from right to
-- left

go to book "c:\mybooks\contacts.tbk"
-- Puts the focus in the first page of contacts.tbk

go to page 5 of book "lessons.tbk"

step i from 1 to pageCount of this book
put name of page

end

writeFile text of field "Name" of page 1 of this book to\
"newdata.dat"
-- Writes text to the file

toolPalette Special term

Description
Used with the following OpenScript keywords to indicate the tool palette:
bounds
hide
move
position
show

Examples
get the bounds of the toolPalette

hide the toolPalette

top Special term

Description
Used to indicate the upper edge of an object on a page or the upper edge of a
page.
Use of top in scripts
Used with ... To indicate...
align The upper edge of objects on a page
fxWipe The upper edge of a page

Examples
align top

fxWipe top fast to the next page

true Special term

Description
The logical value true. The opposite of false.

Examples
set my highlight to true

send buttonUp 3000,3000,true,false

underline Special term

Description
Used with the following properties to indicate underline type style:
fontStyle
sysFontStyle

Examples
set fontStyle of recordField "Title" of book "articles.tbk"\

to underline

set the sysFontStyle to underline

vertical Special term

Description
Used with the align command to indicate the vertical center of objects on a
page.

Example
align vertical

white Special term

Description
Used with the following commands to indicate the color white:
fxDissolve
fxWipe
fxZoom
Unlike the constant white, the special term white does not evaluate to
0,100,0. Also see the constant white in this chapter.

Examples
fxDissolve fast to white

fxWipe left fast to white

with Special term

Description
Precedes replies to questions in ask and request statements, and precedes a tool
name in draw statements.
Use of with in scripts
Used with ... To precede...
ask The default answer
draw The tool with which to draw
request The replies to a request

Examples
ask "Who was the first Roman emperor?" with "Julius Caesar"

draw with line from 300,3500 to 6000,4000

word, words Special term

Description
The special term word is used to refer to one word in a expression. The special
term words means one or more words in an expression. A word is defined as:
o A sequence of printable, non-space characters delimited by the beginning

of the expression and by the last character in the expression or by a space
or non-printable character

o A sequence of printable, non-space characters immediately preceded by a
space or non-printable character and terminated by the last character of
the expression or by a space or non-printable character

You can use these special terms in any context in which a string specifier is
appropriate. For details, see "Expressions with String Specifiers" in Chapter 2,
"Script Basics" of Using OpenScript.

Examples
select word 3 of text of field "Names"

get words 3 to 4 of text of field "Address"

wordWrap Special term

Description
Used with the field fieldType property to indicate that the field text wraps at
the right margin.

Example
set the fieldType of field "Information" to wordWrap

Special Variables Quick reference
argCount
argList
it

argCount Special variable

Description
A special local variable that contains the number of parameters passed to the
currently executing handler.
The argCount variable is most often used to process arguments passed with
userdefined functions, properties, and messages. The value of argCount is not
necessarily the same as the value returned by itemCount(argList) because a
parameter can contain more than one item, such as the comma-separated list of
coordinates that can make up a <location> parameter.

Value
The value is a non-negative integer equal to the number of parameters passed to
the current handler. This integer defines the valid range of operands to the
argument operator.

Example
to handle checkit num1, num2, num3, num4

-- Handles a user-defined message
if argCount < 4 then

-- Check to make sure four arguments
-- are passed.; if not, request numbers
-- and exit the handler
request "Please enter four numbers in the field."
break

else
-- If there are the correct number of arguments,
-- verify the numbers
request "Are these numbers correct?" & crlf & argList \

with "Yes" or "No"
if "Yes" is in It

send process argList to page 1
-- Sends a user-defined process
-- message with the argument list

else
-- If reader doesn't like the displayed numbers,
-- request new numbers and exit the handler
request "Please enter four numbers separated by commas"
break

end if
end if

end checkit

argList Special variable

Description
A special local variable that contains a comma-separated list of the parameters of
the currently executing handler.

Value
The value is a list of all the parameters passed to the current handler, with a
comma between each parameter. If ToolBook didn’t pass any parameters to the
current handler, the value is null.

Example
to handle checkit num1, num2, num3, num4

-- Handles a user-defined message
if argCount < 4 then

-- Check to make sure four arguments
-- are passed; if not, request numbers
-- and exit the handler
request "Please enter four numbers in the field."
break

else
-- If there are the correct number of arguments,
-- verify the numbers
request "Are these numbers correct?" & crlf & argList \

with "Yes" or "No"
if "Yes" is in It

send process argList to page 1
-- Sends a user-defined process
-- message with the argument list

else
-- If reader doesn't like the displayed numbers,
-- request new numbers and exit the handler
request "Please enter four numbers separated by commas"
break

end if
end if

end checkit

It Special variable

Description
It is a special local variable. You don’t have to declare this variable, and it is
available as a local variable in all handlers. Like a local variable, the value of It
does not persist between handlers. However, the value of It does persist
between statements executed in the Command window.    ToolBook automatically
puts the value returned by a get, ask, or request command into It.
Keep in mind that the data put into It by one command will be overwritten by
the data put into It by another command. As a rule, if you need a value that is
returned in It for more than just the next statement in a handler, you should put
the value of It into another variable where the value will not be overwritten. For
details about variables, see "Variables" in Chapter 2, "Script Basics," in Using
OpenScript.

Examples
get text of field "Washington"

-- Gets the contents of field Washington and
-- puts the contents into It

put it into commandWindow
-- Puts the contents of It into the Command window

ask "What is your answer?"
put it into Answer

-- Stores the answer in the Answer variable for use
-- later in the handler

Commands Quick reference
Alphabetical List

Menu control
activate menuItem check menuItem remove menuItem
add menu deactivate menuItem restore menuBar
add menuItem remove menu uncheck menuItem
User interface and navigation
ask flip all go
ask password fxDissolve magnify
beep fxWipe request
flip fxZoom search
Image Control
remove backgroundImage
remove pageImage
store backgroundImage
store pageImage

Variable declaration
local system
Data and object manipulation
align hide seed
clear increment select
decrement move set
draw pop show
extend select push sort
format put unselect
get return
File manipulation and print commands
closeFile print save as
createFile print eject save changes
openFile readFile writeFile
Script control
break execute restore system
break to system forward return
continue pause send
edit script
DDE, DLL, and data exchange
closeRemote respondRemote
executeRemote run
export setRemote
getRemote unlinkDLL
import untranslateAllWindowMessages
importGraphic untranslateWindowMessage
keepRemote

Commands: Alphabetical list Quick reference

activate menuItem <menu item> [at <level>]
add menu <menu name> [position <position>] [at <level>]
add menuItem <menu item> alias <message> to menu <menu name>

[position <position>] [at <level>]
align <type>
ask <question> [with <default answer>]
ask password <question>

beep <number>
break [<handler name>]
break <control structure>
break to system

check menuItem <menu item> [at <level>]
clear <container>
clear <object>
closeFile <file name>
closeRemote [applicaton <server name>] [topic <topic name>]
continue [<control structure>]
createFile <file name>

deactivate menuItem <menu item> [at <level>]
decrement <expression> [by <amount>]
draw [with | a | an] <tool> [tool] from <location> to <location>

[to <location>...]

edit [the] script of <object>
execute <source>
executeRemote <command> [application <server name>] [topic

<topic>]
export <file name> as <type> using <fields>

flip [<number> [pages]]
flip all [pages]
format [number] <container> [as <new format>] [from <old format>]
format date <container> [as <new format>] [from <old format>]
format time <container> [as <new format>] [from <old format>]
forward <message> [<parameters>]
forward to system
fxDissolve [<speed>] [to <result>]
fxWipe <direction> [<speed>] [to <result>]
fxZoom [<speed>] [to <result>] [at <location>]

get<expression>
getRemote <data> [application <server name>] [topic <topic>]
go [to] <expression>

hide [<object>]

import <file name> as <type> using <fields>
importGraphic <file Name>
increment <expression> [by <amount>]

keepRemote [applicaton <server name>] [topic <topic name>]

local [variable[s]] <variable list>

magnify <power> [at <location>]
move [<object>] by <amount>
move [<object>] to <location>

openFile <file name>

pause <time> seconds
pause <time> [ticks]
pop [<stack>] [into | before | after] [<destination>]
print [<pages> [pages]]
print eject
push [<expression>] [onto <stack>]
put <expression>
put <expression> after <destination>
put <expression> before <destination>
put <expression> into <destination>

readFile <file name> for <number of characters>
readFile <file name> to <character>
remove backgroundImage | pageImage
remove menu <menu name> [at <level>]
remove menuItem <menu item> [at <level>]
request <question> [with <reply> [or <reply2> [or <reply3>]]]
respondRemote <response>
restore menuBar [at <level>]
restore system
return <expression>
run <application> [minimized]
run <file name> [minimized]

save as <file name>,<overwrite>
save changes to book <book name>
search again
search [page] for <string> [by case] [as word] [locateOnly]
search [page] excluding background for <string> [by case] [as

word] [locateOnly]
search [page] records for <string> [by case] [as word]

[locateOnly]
search [page] in <rfield> [, <rfield>] ... for <string> [by

case] [as word] [locateOnly]
search [page] for <string> [by case] [as word]
seed <number>
[extend] select <objects>
select <string specifier>
select all [<object type>]
select all from <location> to <location>
send <message> [<parameters>] [to <object>]
set [the] <container> [of <object>] to <value>
setRemote <item> to <value> [application <server name>] [topic

<topic>]
show [<object>] [at <location>]
sort [pages <number> to <number>] [by <sort key> [,<sort key>...]]
store backgroundImage | pageImage

system [variable[s]] <variable list>

uncheck menuItem <menu item> [at <level>]
unselect [<object>]
untranslateAllWindowMessages [for <winHandle>]
untranslateWindowMessage <winMsg> [for <winHandle>]

writefile <string> to <file name>

activate menuItem Command
Syntax

activate menuItem <menu item> [at <level>]

Description
Reactivates a specified menu command if it was previously deactivated
(dimmed). If a level is specified, the command is activated only at that working
level (Reader, Author, or both). If a level is not specified, the command is
activated at the current working level.
Changing the state of a default ToolBook menu command has no effect on the
command.

Parameters
The <menu item> parameter is the name of a command as it appears on a
menu. If you want, you can omit leading numerals and any non-alphanumeric
characters (such as the ampersand, spaces and punctuation, but not underscores)
so that the name matches the message that ToolBook sends when a user chooses
the menu item. If you have defined the menu item with an alias using the add
menuItem command, you can also use the alias name.
The <level> parameter must be author, reader, or both; the default is the
working level in effect when the command is executed.

Examples
activate menuItem "Books" at author

-- Activates the Books command at Author level

activate menuItem "advanced topics..."
-- Activates the "Advanced Topics..." command at
-- the current working level

add menu Command

Syntax
add menu <menu name> [position <position>] [at <level>]

Description
Adds a menu to the menu bar. If a position is given, the menu appears in that
position on the menu bar. If a position is not given, ToolBook adds the menu to the
right of all other menus except the Help menu. If a level is specified, the menu is
added at that working level (Reader, Author, or both). If a level is not specified,
the menu is added at the current working level when ToolBook executes the
handler containing the add menu command.

Parameters
The <menu name> parameter is the name of a menu as you want it to appear on
the menu bar. You must enclose the menu name in quotation marks if it contains
spaces or punctuation. Also, the menu name must include at least one alphabetic
character or underscore character (_). The menu name can be up to 60
characters long; however, good user-interface design should govern the lengths of
the menu names you use.
To add a shortcut key, put an ampersand (&) in the menu name immediately
preceding the character you want to use as the shortcut.    If a shortcut key is
defined, a user can choose the menu by pressing Alt plus the underlined
character in the menu name, then choose a menu command from the menu by
pressing the underlined character in the menu command name.
The <position> parameter is a positive integer that indicates the placement of
the menu on the menu bar. For example, position 3 means the third menu
from the left on the menu bar. If there is already a menu in that position on the
menu bar, that menu and all menus to its right shift to the right to accommodate
the new menu.
The <level> parameter can be author, reader, or both. The default is the
working level in effect when the command is executed.

Examples
add menu "Books" position 3

-- Puts a menu called Books in the
-- third position on the menu bar

add menu "&Books" position 3 at reader
-- Puts a menu called Books in the third
-- position on the menu bar at Reader level,
-- with the B underlined as a shortcut key

add menuItem Command

Syntax
add menuItem <menu item> [alias <message>] to menu <menu

name>[position <position>][at level>]

Description
Adds a menu command to a menu. If a position is given, the command appears in
that position on the menu. Otherwise, the command is added to the bottom of the
menu. If a level is specified, the command is added at that working level (Reader,
Author, or both). If a level is not specified, the command is added at the current
working level. To add a separator bar to a menu, add a menu item that is a null
string.
ToolBook sends a message to the current page when the command is chosen from
the menu. For example, if you add a Functions command to the Edit menu,
ToolBook sends a "functions" message to the current page when a user chooses
that command. In order for anything to happen when a user selects the
command, you must write a handler for the message and put it at the page level
or higher in the object hierarchy.
Leading numerals and all non-alphanumeric characters other than the underscore
(such as spaces and punctuation) are omitted from the message that is generated
by choosing a command. For example, choosing the command "Enter Costs..."
would send the message "entercosts".
If you include an alias, it specifies the message sent when the menuItem is
selected in place of the menu item name. The fact that you can change the menu
item without changing the message it sends (and therefore the name of the
handler that responds to it) makes it easier to translate an application to work
under versions of ToolBook localized for different languages (for example
translating a book from English to French). When you remove a menu item with
either the restore menubar command or the remove menuItem command, the
alias for that menu item is also removed automatically.

Parameters
The <menu item> parameter is an expression that evaluates to a string that is
the name of the menu command you want to add, including an ellipsis (...) if you
want one. The name must include at least one alphabetic character or underscore
character (_). You must enclose the command name in quotation marks if it
contains spaces or punctuation. The command can be up to 60 characters long;
however, good user-interface design should govern the lengths of the names of
commands you add to menus.
The <message> parameter is any valid built-in or user-defined message. Valid
messages are strings that begin with a letter and contain no spaces or
punctuation marks except the underscore character.
The <menu name> parameter is an expression that evaluates to a string that is
the name of a menu exactly as it appears on the menu bar. The menu name must
be enclosed in quotation marks if it contains spaces or punctuation.
To add a shortcut key, put an ampersand (&) in the menu command name
immediately preceding the character you want to use as the shortcut. The

shortcut key indicators look and act like the underlined characters on the
standard ToolBook menus and menu commands.
The <position> parameter is a positive integer that indicates the placement of
the command on the menu. For example, position 3 means the third item in
the menu. If there is already a command at that position in the menu, that
command and all others below it shift down to accommodate the new command.
If an invalid position is specified, ToolBook places the menu item either first or last
on the menu, depending on which location is closer to the specified position.
The <level> parameter can be author, reader, or both; the default is the
working level in effect when the command is executed.

Examples
add menuItem "List" to menu "Books" position 1

-- Adds a List command to the top of a Books menu

add menuItem "&Calendar..." to menu "Books" at both
-- Adds a "Calendar..." command with a shortcut key, C,
-- to the bottom of the Books menu at Reader and Author
-- levels

add menuItem "Search" alias "Find" to menu "Tools"
-- Adds a "Search" command to the bottom of a Tools menu.
-- When the menu item is chosen the message "Find" is
-- sent to the current page.

align Command

Syntax
align <type>

Description
Aligns selected objects on their left, right, top, bottom, horizontal centers, or
vertical centers, according to the type of alignment specified. Only one type of
alignment can be specified. This command is equivalent to choosing Align from
the Draw menu.
For left, right, top, or bottom alignment, the selected objects are aligned along
their left, right, top, or bottom edges, respectively. For horizontal alignment, the
selected objects are aligned on their horizontal centers. For vertical alignment,
the objects are aligned on their vertical centers.
If no objects are selected, an error occurs and ToolBook displays the Execution
Suspended message box.

Parameter
The <type> parameter must be left, right, top, bottom, horizontal, or
vertical, or an expression that yields one of these values.

Examples
align top

-- Aligns the selected objects along their top edges

In the following example, if field Align contains horizontal:
align text of field "Align"

-- Aligns the selected objects horizontally

ask Command

Syntax
ask <question> [with <default answer>]
ask password <question>

Description
Displays a dialog box containing a question, along with a text box into which the
reader can type an answer. The dialog box contains OK and Cancel buttons. The
optional <default answer> parameter specifies a string that appears initially in
the text box, highlighted so that the reader can easily replace it. The answer goes
into It, either when the reader clicks the OK button or presses Enter. If the
reader clicks the Cancel button or presses Alt+F4 or Esc, ToolBook sets the
sysError property to Cancel and the sysErrorNumber property to 566.
The ask password form of the command encrypts the answer.
Also see the request command.

Parameters
The <question> and <default answer> parameters are any expressions that
yield strings.

Examples
ask "How many countries did the Romans conquer?"

ask "Who was the first Roman emperor?" with "Julius Caesar"

ask password "Please enter your password."

to handle buttonUp
ask "Who is the most influential economist of this" &&\

"century?"
if sysError contains "cancel"

go to page "Menu"
end if

conditions -- Branch according to reader's response
when it contains "Keynes"

go to page "simple_keynesian_model"
when it contains "Say"

go to page "19th_century" of book "econrev.tbk"
when it contains "Friedman"

request "That's an interesting choice. Would" &&\
"you like to read about him?" with "Yes" or "No"

if it contains "Yes" then
go to page "Late 20th century"

else
break

end if
else

go to page "schools_of_thought"
end conditions

end buttonUp

beep Command

Syntax
beep <number>

Description
Causes the computer to beep. The number of times it beeps is determined by the
value of the <number> parameter.

Parameter
The <number> parameter is any expression that yields a positive integer.

Example
conditions

when answer is 3
beep 30

when answer is 4
beep 40

else
beep 10

end conditions

break Command

Syntax
break [<handler name>]
break <control structure>
break to system

Description
Causes script execution to jump to the end of the current handler or control
structure. The handler ends in the normal way, passing control back to the caller.
The break to system form of the command causes control to pass directly to
ToolBook, bypassing any other handlers.
Within a to get handler, you can use the break to system and break
<control structure> forms, but you cannot use the break or break
[handler] forms. This is because control can be passed from a to get handler
to a calling handler only by means of the return statement.
Using break within an if/then/else control structure causes execution to jump
to the end of the currently executing handler.

Parameters
The <handler name> parameter is the name of the current handler from which
to exit.
The <control structure> parameter must be do, step, conditions, or while.

Example
to handle enterBook

conditions
when pageCount of this book is 1

-- Exit the control structure when there is
-- only one page in the book
break conditions

when pageCount of this book >1 and pageCount of \
this book <= 4
-- Tell the reader how many pages are in the book
request "There are" && pageCount of this book && \

"pages in this book."
else

request "There are enough pages in this book."
end conditions

end enterBook

check menuItem Command

Syntax
check menuItem <menu item> [at <level>]

Description
Puts a check to the left of a user-defined command name on a menu. If a level is
specified, the command is checked at that working level (Reader, Author, or
both).    If a level is not specified, the menu item is checked at the working level in
effect when the command is executed.
To remove a check from a menu command, use the uncheck menuItem
command.
Changing the state of a default ToolBook menu command has no effect on the
command.

Parameters
The <menu item> parameter is the name of a command as it appears on a
menu. If you want, you can omit leading numerals and any non-alphanumeric
characters (such as spaces and punctuation, but not underscores) so that the
name matches the message that ToolBook sends when a user chooses the menu
item.
The <level> parameter must be author, reader, or both.

Examples
check menuItem "Introduction"

-- Puts a checkmark beside the Introduction command

check menuItem "Book List" at reader
-- Puts a checkmark beside the Book List command at
-- Reader level

clear Command

Syntax
clear <object>
clear <container>

Description
Deletes an object or the contents of a container. The specified container can be a
field on a page in the current book or any other container, such as a property or
variable. If you clear the contents of a container on another page or on another
background in a book, the current page does not change.
Using clear is not always the same as using put null into with the same
string specifier. For example, if you use clear to clear the first line in a field, you
remove the crlf as well as the text, and what was previously the second line
becomes the first. If you use put null into to clear the first line in a field, the
line retains its crlf, and all lines in the field retain their relative position.

Parameters
The <object> parameter is any expression that evaluates to a valid reference to
an object.
The <container> parameter is any expression that evaluates to a valid
container. Valid containers include properties, variables, and the Command
window.

Examples
-- Clears the contents of the sysError property

clear sysError

clear text of field id 4 of page 7
-- Clears the contents of a field in
-- the current book. The focus stays on the
-- current page

clear textLine 3 of text of field id 2
-- Clears line 3 of field id 2 on the current
-- page, and line 4 becomes line 3

clear field "Data"
-- Removes field Data and its contents

clear commandWindow
-- Clears the contents of the Command window

closeFile Command

Syntax
closeFile <file name>

Description
Closes a file previously opened with the openFile or createFile command.

Parameter
The <file name> parameter is any expression that evaluates to a valid file name
or a container that contains a valid file name, including the path name if
necessary.

Example
-- Makes a copy of NEWDATA.TXT
set Original to "newdata.txt"
set Backup to "newdata.bak"
openFile Original
createFile Backup
readFile Original for 32767
while sysError <> "end of file"

writeFile it to Backup
readFile Original for 32767

end while
writeFile it to Backup
closeFile Original
closeFile Backup

closeRemote Command

Syntax
closeRemote [application <server name>] [topic <topic name>]

Description
The DDE command that closes the DDE channel between ToolBook and a server
application. After ToolBook successfully executes a getRemote, setRemote, or
executeRemote command, the DDE conversation that was opened for that
command is left open until ToolBook returns to the top level. Open conversations
are continued by subsequent DDE commands in which matching <server name>
and <topic name> parameters are specified. A DDE conversation can be kept
open after ToolBook returns to the top level by using the keepRemote command.
A DDE conversation can be explicitly closed at any time with the closeRemote
command. A conversation kept open with keepRemote remains open until the
instance is closed unless you explicitly close it with closeRemote.

Parameters
The <server name> parameter is any expression that evaluates to the DDE
name of a Windows application. For instance, the DDE name of Microsoft Excel is
Excel. If there is more than one instance of the application, only the first
response is processed. If the <server name> parameter is omitted, any
application that understands DDE protocol can respond.
The <topic name> parameter is any expression that evaluates to a topic
recognized by the remote instance. The topic is usually a file name. See the DDE
documentation for the appropriate application for the valid topics for that
application. If there is more than one instance of the specified application with the
specified topic, only the first response is processed. ToolBook recognizes
(Untitled) or a file name as a valid topic. You can also omit the topic altogether
or use the generic topic system, in which case any instance of the specified
application can respond.

Example
closeRemote application "ToolBook" topic "Chart"

-- Closes a DDE channel to a ToolBook application
-- called "Chart"

continue Command

Syntax
continue
continue do
continue while
continue step [<variable>]

Description
Proceeds to the next iteration of a do/until, while, or step control structure.
When no control structure is specified, the innermost control structure is
assumed.

Parameter
The <variable> parameter in the continue step form of the command is the
name of a variable in the enclosing step control structure. This variable indicates
the step control structure on which continue is to operate (the control structure
with that variable). If the <variable> parameter is omitted from the continue
step form, the innermost step control structure is assumed. If a <variable>
parameter is supplied, ToolBook executes the next iteration of the innermost
enclosing step statement whose step variable is named by <variable>. For more
details see the use of variables with the step control structure.

Examples
The following handlers generate numeric progressions.
to handle buttonUp

local a,b
put 0 into a
put 0 into b
while a < 10

increment a
put a after text of field "Value_1"
if a mod 2 = 0

continue while
-- Proceed to next iteration if a is evenly
-- divisible by 2, otherwise proceed

end if
increment b
put b after text of field "Value_2"

end while
end buttonUp

to handle buttonUp
put 0 into a
put 0 into b
step i from 1 to 10

increment a
put a after text of field "A1"
step j from 1 to a

increment b
put b after text of field "B1"

if b > 5
continue step i

-- Go to the next iteration of the outermost
-- step control structure

end if
increment a
put a after text of field "A2"

end step
end step

end buttonUp

createFile Command

Syntax
createFile <file name>

Description
Creates a DOS file. If a file with the specified file name already exists, the
contents of that file are deleted.
If a file with the specified file name exists and is a read-only file, ToolBook sets the
sysError property to read only and the sysErrorNumber property to 560. The
contents of the file are not deleted and no file is created.
For details about writing to a file, see the writeFile command.

Parameter
The <file name> parameter is any expression that evaluates to a valid DOS file
name, including the path name if necessary.

Example
-- The following creates a new file called newdata.dat
createFile "newdata.dat"
writeFile "Hello world" to "newdata.dat"
closeFile "newdata.dat"

deactivate menuItem Command

Syntax
deactivate menuItem <menu item> [at <level>]

Description
Deactivates a user-defined menu command and dims the command name on a
menu. A dimmed command cannot be chosen by a user. If a level is specified, the
command is deactivated at that working level (Reader, Author, or both). If the
level is not specified, the menu item deactivated at the working level in effect
when the command is executed.
This command affects only user-defined commands, and does not affect the
default ToolBook commands.

Parameters
The <menu item> parameter is the name of a command as it appears on a
menu. If you want, you can omit leading numerals and any non-alphanumeric
characters (such as spaces and punctuation, but not underscores) so that the
name matches the message that ToolBook sends when a user chooses the menu
item.
The <level> parameter must be an expression that evaluates to author,
reader, or both.

Example
deactivate menuItem "Chapter One"

-- Dims the Chapter One command at the
-- current working level

decrement Command

Syntax
decrement <container> [by <amount>]

Description
Subtracts an amount from the value of an expression. This command is usually
used in the context of a control structure. If the command does not specify an
amount, the variable is decremented by 1.
If the value of the expression or amount is not numeric, an error occurs and
ToolBook displays the Execution Suspended message box.

Parameters
The <expression> and <amount> parameters are expressions that yield a
number.

Example
to get otherDistrictTotal

local OtherDistricts,NumberOfDistricts
set OtherDistricts to 135
set NumberOfDistricts to the pageCount of this book
step i from NumberOfDistricts to 0

if text of field "ZipCode" contains 98001
decrement OtherDistricts

-- Subtracts 1 from OtherDistricts
end if
go to the next page

end step
return OtherDistricts

end otherDistrictTotal

draw Command

Syntax
draw <tool> from <location> to <location> [to <location>...]

Description
This command is used to create objects. Draw causes the same action that occurs
when an author selects a tool, presses the mouse button at a location on the
screen, and drags the mouse to another location on the screen before releasing
the mouse button.
ToolBook puts the unique name of a newly drawn object into the selection
property, which, among other things, allows you to set the name of the object so
it can be referenced later.

Parameters
The <tool> parameter can be field, button, recordField, or any of the
drawing tools:
angledLine irregularPolygon polygon
arc line rectangle
curve pie roundedRectangle
ellipse

The <location> parameter specifies a point on the screen represented by two
numbers separated by a comma. The first number is the distance from the left
edge of the screen. The second number is the distance from the top of the screen.
The <location> parameter can be any two expressions that are separated by a
comma and that each yield a number, or any single expression that yields two
numbers separated by a comma. The locations are interpreted in page units.
To draw an arc or pie, you must supply three points for each object. The first point
is the starting point for the graphic. The second point is the sweep point, which
indicates the direction of the arc or pie. The sweep point can be any of the points
the mouse might move through if the arc or pie were being drawn with the
mouse. The third point is the end point of the graphic.
To draw a curve, irregular polygon or angled line, you normally supply three or
more points. Supplying only two points for an irregular polygon or angled line
results in a straight line. For a curve, every other point starting with the first one
is an anchor point. Every other point starting with the second, is a control point
that determines the sharpness of the curve between the anchor points. When
drawing with any of these tools, you can supply a maximum of 512 points.

Examples
draw rectangle from 1440,1440 to 6000,6000

-- Draws a square from 1440,1440
-- to 6000,6000 and sets its name so
-- it can be referred to later in the script

set name of selection to "rect_1"
draw a line from 233,1500 to 233,2450

draw with line tool from 233,1500 to 233,2450
-- Does the same thing as the previous example

draw an ellipse from 3440,1500 to 5440,7700

draw a field from 2006,2006 to 4000,4000

draw an arc from 2000,2500 to 2000,4000 to 3440,4000
-- Draws an arc defined by the lower left quadrant of
-- an ellipse

draw an irregularPolygon from 1000,1200 to 2000,1200 to \
3505,1500 to 4000,4800 to 1000,1200

-- The following draws a checkerboard on a page and names
-- the squares A1 through H8
to handle buttonUp

set sysStrokeColor to black
set sysPattern to solidStroke
set sysLineStyle to 1
set sysFillColor to red
step row from 1 to 8

step column from 1 to 8
draw rectangle from column*500, row*500 to \

(column+1)*500, (row+1)*500
set the name of the selection to\

ansiToChar(row+64) & column
if (row+column) mod 2 = 0 then

set pattern of the selection to solidFill
-- Makes a red square

end if
end step

end step
end buttonUp

edit script Command

Syntax
edit [the] script of <object>

Description
Opens the Script window and shows the script of a specified object. If this
command is issued from a script, execution of the script is suspended until the
Script window is closed. This command can be used to allow a reader to edit a
script in the Script window.
Scripts that include the edit script command will cause an error in Runtime
ToolBook.

Parameter
The <object> parameter is an expression that evaluates to the name or ID of an
object.

Example
edit script of button "More"

-- Displays the Script window with the script of
-- button More

edit script of this background
-- Edits script of current background

execute Command

Syntax
execute <source>

Description
Gets whatever is in <source> and executes it as one or more OpenScript
statements. The statements are executed in the context of the current handler.

Parameter
The <source> parameter is an expression that evaluates to one or more
OpenScript statements or to any container that contains OpenScript statements.

Example
execute text of field "MyScript"

-- If field MyScript contains OpenScript
-- statements, those statements are executed

executeRemote Command

Syntax
executeRemote <command> [application <server name>] [topic

<topic>]

Description
Sends a command to the current page in another instance of ToolBook or to
another Windows application, using Windows Dynamic Data Exchange (DDE)
protocol. For details about DDE, see "Using Windows Dynamic Data Exchange" in
Chapter 6, "Beyond the Basics," of Using OpenScript.
Immediately after ToolBook executes an executeRemote command, the value of
the sysError property is set to a comma-separated list of nine items. The first
item indicates the status of the remote request. The last eight items describe the
LOBYTE of the WM_DDE_ACK DDE message, which does not have any meaning to
ToolBook but may have meaning to the application you are exchanging data with.
For details about the meaning of these items, see the DDE documentation for the
appropriate application. The sysErrorNumber and sysError properties are set
to a value corresponding to the status of the remote request as described in the
following table.
SysErrorNumber and sysError values for the executeRemote command
sysErrorNumber/ sysError Meaning
8123
OK. The application responded to the request
8124
Failed: Denied. The application responded but could not or

would not satisfy the request
8125
Failed: Busy. The application responded but is doing

something else and failed to perform the
requested action

8126
Failed: Memory Error. ToolBook did not have enough global or local

memory to generate the request or accept a
response

8127
Failed: No Server. No applications responded to the request
8128
Failed: Interrupted. The application responded, but the connection

was broken before the application
acknowledged the command

The executeRemote command does not bypass normal password protections.

Parameters
The <command> parameter is any expression that evaluates to one or more

OpenScript statements or to a valid command string for an application. If the
commands are sent to another application, see the documentation for that
application for the format of the command string.
The <application> parameter is any expression that evaluates to the DDE
name of a Windows application. For instance, the DDE name of Microsoft Excel is
Excel. If there is more than one instance of the application, only the first
response is processed. If the <application> parameter is omitted, any
application that understands DDE protocol can respond.
The <topic> parameter is any expression that evaluates to a topic recognized by
the remote instance. The topic is usually a file name. See the DDE documentation
for the appropriate application for the valid topics for that application. If there is
more than one instance of the specified application with the specified topic, only
the first response is processed. ToolBook recognizes (Untitled) or a file name
as a valid topic. You can also omit the topic altogether or use the generic topic
system, in which case any instance of the specified application can respond.

Examples
executeRemote "text of field id 1" \

application ToolBook topic "Workbook.tbk"
-- If field id 1 contains OpenScript statements,
-- those statements are executed

executeRemote "send reader; go to page 5 of book" \
&& quote & "Book2.tbk" & quote application ToolBook

executeRemote "[select(""r1c1:r3c3"")][new(2)]" \
application Excel topic "Sheet1"
-- Excel selects the range and creates a bar chart for it

export Command

Syntax
export <file name> as <type> using <fields>

Description
Exports the text from all record fields of the current background of the current
book into an ASCII text file, inserting quotation marks to surround the exported
contents of each record field and inserting crlf to delimit each record. If the file
does not exist, ToolBook creates it. If the file exists and is a read-only file, an error
occurs and ToolBook displays the Execution Suspended message box. If the file
exists and ToolBook can write to it, any existing contents of the file are lost. For
details about exporting files, see Chapter 10, "Managing ToolBook Files," in Using
ToolBook.
If you try to export a file when there are 10 files already open, an error occurs and
ToolBook displays the Execution Suspended message box.

Parameters
The <file name> parameter is any expression that evaluates to a valid file
name, including the path name if necessary.
The <type> parameter is fixed or delimited. If <type> is fixed, the
<fields> parameter must be an expression that evaluates to a comma-
separated list of integers indicating the field lengths and justification. Field length
specifiers can be positive or negative. If a field length is positive, text in the field
is exported left-justified and any spaces needed to fill the field are inserted on the
right. If the field length is negative, the text in the field is exported right-justified
and any spaces needed to fill the field are inserted on the left. If the length of text
in a field is larger than the specified size, the field is truncated on the right.
If <type> is delimited, then <fields> must be an expression that evaluates to
the field separator. The field separator can be a single character, such as a
semicolon, or a constant that represents a single character, such as space.
However, the field separator cannot be a quotation mark ("). To use tab
characters as the field separator, specify the constant, Tab, as the <fields>
parameter.

Example
export "mybook.dat" as delimited using ";"

extend select Command

Syntax
extend select <objects>

Description
Extends the current selection to include specified objects. You can select only the
current page or objects on the current page or background.
Also see the select command.

Parameter
The <objects> parameter is an expression that evaluates to a comma-separated
list of one or more object identifiers. The following types of objects can be
selected:
angledLine group pie
arc irregularPolygon polygon
button line recordField
curve page rectangle
ellipse paintObject roundedRectangle
field picture

Examples
-- Adds the object clicked to the current selection
-- if the shift key is pressed during the click. Otherwise,
-- makes the clicked object the selection.
to handle buttonUp location,is_shift,is_ctrl

if is_shift is true and the selection is not null
extend select target

else
select target

end if
end buttonUp

flip Command

Syntax
flip
flip <number> [pages]
flip all [pages]

Description
Displays a specified number of pages in the current book in turn, beginning with
the current page. If the specified number of pages is greater than the number of
pages from the current page to the last page, flipping continues from the
beginning of the book. The flip form flips one page. The flip all form flips
all pages, starting and ending at the current page.

Parameter
The <number> parameter is any expression that yields a positive integer.

Examples
to handle buttonUp

flip all
-- Flips through all pages in a book

end buttonUp

to handle buttonUp
flip 5

end buttonUp

to handle buttonUp
flip 5 pages

end buttonUp

-- The following handler flips all the pages in a book
-- without displaying them. This "caches" the pages in
-- memory if there is room and makes subsequent page
-- flipping faster (this technique is useful for page
-- animation).
to handle buttonUp

set sysLockScreen to true
flip all

end

format Command

Syntax
format [<type>] <container> [as <new format>] [from <old format>]

Description
Converts the contents of a container to a specified format.
If you specify both <old format> and <new format>, the container's value is
converted from the format specified by <old format> to the format specified by
<new format>.
If <new format> is specified but <old format> is not, the value in the container
is assumed to be formatted according to the current value of the appropriate
system property (sysDateFormat, sysNumberFormat, or sysTimeFormat).
 If <old format> is specified but <new format> is not, the value in the
container is assumed to be formatted as specified by <old format> and are
converted to the format specified by the appropriate sysFormat property.
If both <new format> and <old format> are omitted, the value in the container
is assumed to be formatted according to the current value of the appropriate
sysformat property and is converted to the default format of null.
For details about how ToolBook reads numeric values, see "Values and
Expressions of Values" in Chapter 2, "Script Basics", of Using OpenScript.

Parameters
The <type> parameter is number, date, or time. The default value is number.
The <container> parameter is an expression that evaluates to the name of a
container that contains the value you want to format. If the <type> parameter is
number, the contents of the container must be numeric. The <new format> and
<old format> parameters are valid numeric, date, or time formats as described
in the following tables.

Numeric formats
You can define the number format you want by building a string containing any of
the following symbols. The string must be enclosed in quotes.
Number format symbols
Symbol Meaning
null Default format. ToolBook displays the number as precisely as

possible, using a period as the decimal separator, and using
scientific notation when necessary.

? General precision format. If used as <new format>,
ToolBook displays the number as precisely as possible using
the value of sysDecimal as the decimal separator. If used
as <old format>, ToolBook will discard characters matching
sysCurrency and sysThousand, and replace the
sysDecimal character with a period before interpreting the

number.
0 Digit placeholder. If the number has fewer digits on either

side of the decimal point than there are zeros on either side
of the decimal point, ToolBook displays the extra zeros. If the
number has more digits to the right of the decimal point
than there are zeros to the right of the decimal point in the
format, ToolBook rounds the number to as many decimal
places as there are zeros to the right of the decimal point in
the format. If the number has more digits to the left of the
decimal point than there are zeros to the left of the decimal
point in the format, ToolBook displays the extra digits.

Digit placeholder. Similar to 0 above, except that ToolBook
uses space padding instead of extra zeros if the number has
fewer digits on either side of the decimal point than there
are #s on either side of the decimal point in the format.

. Decimal point. If the format contains only # characters to
the left of this symbol, ToolBook begins numbers smaller
than 1 with a decimal point. To avoid this, use 0 as the first
digit placeholder to the left of a decimal point.

, Thousands separator. ToolBook separates thousands by
commas if the format contains a comma surrounded by #s
or 0s.

E- E+ e- e+ Scientific notation. If a format contains one 0 or # to the
right of an E-, E+, e-, or e+, ToolBook displays the number
in scientific notation and inserts an E or e. The number of
0s or #s to the right determines the number of digits in the
exponent. Use E- or e- to place a minus sign by negative
exponents. Use E+ or e+ to place a minus sign by negative
exponents and a plus sign by positive exponents.

Any other character Literal text. Any printable character besides the above
symbols is displayed literally. For example, if you want a
dollar sign to precede all numbers, you can specify a format
like "$###.00".    Embedding literal text within a number
format may give unexpected results. For example, if a word
containing a d is used in a number format, the d is
interpreted as a date format as described in the following
table.

Date formats
A date format is a string of characters and numbers. The string can be any text
and any combination of the formats shown in the following table. The default
value is m/d/yy.
Date Format Symbols
Format Description
M The month's complete name.
MMM The month's name abbreviation.

m The month's number (1, 2, ...12)
mm The month's number with a leading 0 for 1 through 9 (01,

02, ...12)
d The day's number (1, 2, ...31)
dd The day's number with a leading 0 for 1 through 9 (01,

02, ...31)
y The year's number as an integer
yy The last two digits of the year's number
yyyy The year's number as four digits
h The hour's number on a 12-hour clock (1, 2, ...12)
hh The hour's number on a 12-hour clock with a leading 0 for 1

through 9 (01, 02, ...12)
h24 The hour's number on a 24-hour clock (0, 1, ...23)
hh24 The hour's number on a 24-hour clock with a leading 0 for 0

through 9 (00, 01, ...23)
min The minute's number (00, 01, ...59)
sec The second's number (00, 01, ...59)
AMPM The local language equivalent for AM if the date is in the

morning and PM if the date is in the afternoon as defined by
S1159 and S2359 settings in WIN.INI.

seconds The number of seconds elapsed since 00:00:00 GMT on
January 1, 1970

Time formats
A time format is a string of characters and numbers. The string can be any
combination of the formats shown in the following table. The default format is
h:min:sec.
Time Format Symbols
Format Description
h The hour's number on a 12-hour clock (1, 2, ...12)
hh The hour's number on a 12-hour clock with a leading 0 for 1

through 9 (01, 02, ...12)
h24 The hour's number on a 24-hour clock (0, 1, ...23)
hh24 The hour's number on a 24-hour clock with a leading 0 for 0

through 9 (00, 01, ...23)
min The minute's number (00, 01, ...59)

sec The second's number (00, 01, ...59)
AMPM The local language equivalent for AM if the date is in the

morning and PM if the date is in the afternoon as defined by
S1159 and S2359 settings in WIN.INI.

seconds The number of seconds elapsed since 00:00:00 GMT on
January 1, 1970

Examples

format date textline 1 of text of field "Date" as\
"y MMM dd" from "mm/dd/yy"
-- Formats line 1 of field Date as a date

format text of field "Quantity" as "#.00"
-- Formats the contents of field
-- Quantity as a number

format time last textline of footer from "hh24:min:sec"
-- Formats the last line of the
-- footer as sysTimeFormat

forward Command

Syntax
forward
forward <message> [<parameters>]
forward to system

Description
Passes a message up the object hierarchy. If no parameters are provided, the
message that is currently being handled is forwarded to the next object up the
hierarchy, with the current handler parameters as the parameters of the
message. If the forward to system form of the command is used, the message
that is currently being handled is forwarded directly to ToolBook (the system),
with the current handler parameters as the parameters of the message. After the
message is processed, script execution continues at the statement following the
forward command.
The forward command can be used to send a message up the hierarchy and
override the default behavior for a message, as shown in the following examples.
The forward command is different from the send command in that the send
command is usually used to make a procedural call to perform a task for the
handler sending the message.
Also see the send command.

Parameters
The <message> parameter is an expression that evaluates to any valid built-in or
user-defined message. Valid messages are strings that begin with a letter and
contain no spaces or punctuation marks except the underscore character. The
optional <parameters> parameter is one or more expressions, separated by
commas if there is more than one.

Example
to handle buttonDown location

system clickSpot
push location onto clickSpot
forward

-- Forward the message in case it also needs to be
-- handled at another level in the hierarchy

end buttonDown

fxDissolve Command

Syntax
fxDissolve [<speed>] [to <result>]

Description
A visual effect that causes the current page to dissolve to black, gray, white, or
another page. The dissolve can be slow, medium, or fast.

Parameters
The <speed> parameter must be slow, normal, or fast; the default value is
normal. The <result> parameter is an expression that evaluates to a page in a
book or the word black, gray, or white; the default value is black.

Examples
-- When the Next command is chosen from the menu,
-- do a fast dissolve to the next page
to handle Next

fxDissolve fast to next page
end Next

-- When the Next command is chosen from the menu,
-- do a slow dissolve to white then go to then next page
to handle Next

fxDissolve slow to white
go to next page

end Next

fxWipe Command

Syntax
fxWipe <direction> [<speed>] [to <result>]

Description
A visual effect that causes the current page to appear as if it is being wiped off
the screen by another page or by solid black, gray, or white. The wipe can be
slow, medium, or fast. If a result is not specified, the page is wiped to black.

Parameters
The <direction> parameter must be top, bottom, left, or right, indicating
which edge of the screen the wipe will move toward. The <speed> parameter
must be slow, normal, or fast; the default value is normal. The <result>
parameter is an expression that evaluates to a page identifier or the word black,
gray, or white; the default value is black.

Example
-- When the Next command is chosen from the menu, wipe the
-- current page off to the left leaving black. Then, wipe
-- the next page onto the screen from right to left.
to handle Next

fxWipe left fast
fxWipe left fast to next page

end Next

fxZoom Command

Syntax
fxZoom [<speed>] [to <result>] [at <location>]

Description
Causes the visual effect of a circular wipe from the center of a page or from a
specified point on a page to another page or a screen. The zoom can be slow,
medium, or fast. If a result is specified, the screen is zoomed to black, gray, white,
or a specified page.

Parameters
The <speed> parameter must be slow, normal, or fast; the default value is
normal.
The <result> parameter is an expression that evaluates to a page identifier or
the word black, gray, or white; the default value is black.
The <location> parameter specifies a point on the screen, represented by two
numbers separated by a comma. The first number is the distance from the left
edge of the window (measured in page units). The second number is the distance
from the top of the window (measured in page units). The <location>
parameter can be any two expressions that are separated by a comma and each
yield a number, or any single expression that yields two numbers separated by a
comma.

Example
-- When the Next command is selected from the menu, zoom
-- to the next page from location 2035, 1500
to handle Next

put "2034,1500" into It
fxZoom slow to next page at it

end Next

get Command

Syntax
get <expression>

Description
Evaluates an expression and places the result in the local variable It. For
details about the variable It, see "Variables" in Chapter 2, "Script Basics,"
of Using OpenScript.

Parameter
The <expression> parameter is any expression that yields a value.

Examples
get my bounds

-- Gets value of the bounds property for object whose
-- script is currently executing and puts the value into
-- It

get the sysDate
-- Gets the system date and puts the value into It

getRemote Command

Syntax
getRemote <data> [application <server name>] [topic <topic>]

Description
Gets the value of any property or expression in another instance of ToolBook or in
another Windows application, using Windows Dynamic Data Exchange (DDE)
protocol. The data that is returned is put into It. For details about DDE, see
"Using Windows Dynamic Data Exchange" in Chapter 6, "Beyond the Basics," of
Using OpenScript.
After ToolBook successfully executes a getRemote command, the DDE
conversation that was opened for that command is left open until ToolBook
returns to the top level. Open conversations are continued by subsequent DDE
commands in which matching <server name> and <topic name> parameters are
specified. A DDE conversation can be kept open after ToolBook returns to the top
level by using the keepRemote command.
Immediately after ToolBook executes the getRemote command, the value of the
sysError property is set to a list of nine items. The first item indicates the status
of the remote request. The last eight items describe the LOBYTE of the
WM_DDE_ACK DDE message, which does not have any meaning to ToolBook but
may have meaning to the application you are exchanging data with. For details
about the meaning of these items, see the DDE documentation for the
appropriate application. The sysErrorNumber property is set to a number
corresponding to the status of the remote request as shown in the following table.
SysErrorNumber values for the getRemote command
sysErrorNumber/ sysError Meaning
8123
OK. The application responded to the request
8124
Failed: Denied. The application responded but could not or

would not satisfy the request
8125
Failed: Busy. The application responded but is doing

something else and failed to perform the
requested action

8126
Failed: Memory Error. ToolBook did not have enough global or local

memory to generate the request or accept a
response

8127
Failed: No Server. No applications responded to the request
8128
Failed: Interrupted. The application responded, but the connection

was broken before the application
acknowledged the command

The getRemote command does not bypass normal password protections.

Parameters
The <data> parameter is any expression that yields a value that identifies the
data you want to get. If you're getting data from another instance of ToolBook, the
expression can yield the name of any valid container in that instance.
The <application> parameter is an expression that evaluates to the DDE name
of a Windows application. For instance, the DDE name of Microsoft Excel is Excel.
If there is more than one instance of the application, only the first response is
processed. If the <application> parameter is omitted, any application that
understands DDE protocol can respond.
The <topic> parameter is any expression that evaluates to a topic recognized by
the remote instance. The topic is usually a file name. See the DDE documentation
for the appropriate application for the valid topics for that application. If there is
more than one instance of the specified application with the specified topic, only
the first response is processed. ToolBook recognizes (Untitled) as a valid topic
if the currently displayed book is untitled. Otherwise, ToolBook recognizes the file
name of the currently open book. You can also omit the topic altogether or use
the generic topic system, in which case any instance of a specified application
can respond.

Examples
getRemote "target" application ToolBook

-- Gets the value of the target property from
-- the next instance of ToolBook and puts
-- the value into It

getRemote "pageCount of this book" application ToolBook \
topic "Mariposa.tbk"
-- Gets the number of pages in the book
-- "Mariposa.tbk" that is running in
-- another instance of ToolBook, and puts
-- the value into It

getRemote "r1c1:r3c3" application Excel topic "Revenue.xls"
-- Gets the values of the nine cells of the
-- range r1c1:r3c3 and puts them into It

go Command

Syntax
go [to] <expression>

Description
Goes to any page in the currently open book, or any page in any other book. If the
destination is a book and a page is not specified, ToolBook goes to the first page
in the book.
If the statement go next page is encountered on the last page of a book,
ToolBook goes to the first page in the book. If the statement go previous page
is encountered on the first page of a book, ToolBook goes to the last page of the
book.

Parameter
The <expression> parameter is any expression that evaluates to a valid
identifier for a page or book. For details about valid page and book identifiers, see
"Referring to Objects" in Chapter 2, "Script Basics," of Using OpenScript.

Examples
go to book "c:\mybooks\contacts.tbk"

-- Goes to the first page of the book, contacts.tbk

go to page 5 of book "lessons.tbk"

go to page 10 of this book

go next page

hide Command

Syntax
hide [<object>]

Description
Removes a specified object from view. The result of this command is the same as
setting the visible property for the object to false. Hidden objects do not
receive mouse or keyboard event messages, and hidden fields and buttons are
not included in the tabbing order.
Also see the show command.

Parameter
The <object> parameter can be any expression that evaluates to an object,
palette, or window that has a visible property.
Hideable objects are:

angledLine irregularPolygon polygon
arc line polygonPalette
button linePalette recordField
colorTray mainWindow rectangle
commandWindow menuBar roundedRectangle
curve paintObject scrollBar
ellipse patternPalette spectrumPalette
field picture statusBox
group pie toolPalette

If no <object> parameter is given, the current selection is hidden.

Examples
hide the commandWindow

-- Hides the Command window

hide field id 1 of this background
-- Hides field id 1 on the current background

hide recordField "Security level"
-- Hides the record field called "Security level"

import Command

Syntax
import <file name> as <type> using <fields>

Description
Imports a text file into the current book. The file can have fixed-length or
delimited text fields. If the file does not exist, ToolBook sets the sysError
propterty to no such file and the sysErrorNumber property to 559. For
details about importing files, see Chapter 10, "Managing ToolBook Files," in Using
ToolBook.
If you try to import a file and there are 10 files already open, an error occurs and
ToolBook displays the Execution Suspended message box.
You can import quoted regions of delimited files. Quoted regions are text strings
enclosed in quotation marks. All field delimiters and record delimiters are ignored
in quoted regions. To preserve quotation marks within a quoted region, a second
quotation mark must immediately follow the quotation mark to be preserved. For
example, the field must contain "this is a ""quoted"" region" to get this
is a "quoted" region.

Parameters
The <file name> parameter is any expression that evaluates to a valid file
name, including the path name if necessary. The <type> parameter is fixed or
delimited. If <type> is fixed, the <fields> parameter must be an expression
that evaluates to a comma-separated list of positive integers indicating the field
lengths. If a field is larger than the specified size, the field is truncated on the
right. If <type> is delimited, the <fields> parameter must be an expression
that evaluates to the field separator.
The field separator can be a single character, such as a semicolon, or a constant
that represents a single character, such as space. However, the field separator
cannot be a quotation mark ("). To use tab characters as the field separator, use
the constant, Tab, as the <fields> parameter.

Examples
import "maillist.dbs" as delimited using ","

-- Imports a delimited-field file that
-- has comma field separators

import "titles.dbs" as delimited using space
-- Imports a delimited-field file that
-- has a space character as the field separator

import "cashflow.xls" as fixed using "10,5,7,9,14"
-- Imports a fixed-field file
-- that has field lengths of 10, 5, 7, 9, and 14

importGraphic Command

Syntax
importGraphic <file name>

Description
Used to import a specifed file as a picture object or paint object.

Parameters
The <file name> parameter is any expression that evaluates to a valid graphics
file name, including the path name if necessary. For file formats other
than .BMP, .DIB, or.WMF, an import filter for that file format must be installed in
the user's path; otherwise, ToolBook cannot import the file. If the imported file has
the extension .BMP or .DIB, ToolBook creates a paint object. For other file name
extensions, ToolBook creates a picture.

Examples
importGraphic "ram.dib"

-- imports a ".dib" file called "ram.dib" as a paint
-- object

increment Command

Syntax
increment <container> [by <amount>]

Description
Adds an amount to the value of an expression. The increment command is
normally used in the context of a control structure.
The values of the expression and the amount must be numeric, or an error occurs
and ToolBook displays the Execution Suspended message box.

Parameters
The <expression> and <amount> parameters are any expressions that yield a
number. The default value for the <amount> parameter is 1.

Example
conditions
when ZipCode is 98001

increment NorthDistrict
when ZipCode is 98002

increment EastDistrict
when ZipCode is 98003

increment WestDistrict
when ZipCode is 98004

increment SouthDistrict
else

increment Uncategorized
end conditions

keepRemote Command

Syntax
keepRemote [application <server name>] [topic <topic name>]

Description
The DDE command that keeps the DDE channel between ToolBook and a server
application open. After ToolBook successfully executes a getRemote, setRemote,
or executeRemote command, the DDE conversation that was opened for
that command is left open until ToolBook returns to the top level.
Open conversations are continued by subsequent DDE commands in which
matching <server name> and <topic name> parameters are specified. A DDE
conversation can be kept open after ToolBook returns to the top level by using the
keepRemote command.
A DDE conversation can be explicitly closed at any time with the closeRemote
command. A conversation kept open with keepRemote remains open until the
instance is closed unless you explicitly close it with closeRemote.

Parameters
The <server name> parameter is any expression that evaluates to the DDE
name of a Windows application. For instance, the DDE name of Microsoft Excel is
Excel. If there is more than one instance of the application, only the first
response is processed. If the <server name> parameter is omitted, any
application that understands DDE protocol can respond.
The <topic name> parameter is any expression that evaluates to a topic
recognized by the remote instance. The topic is usually a file name. See the DDE
documentation for the appropriate application for the valid topics for that
application. If there is more than one instance of the specified application with the
specified topic, only the first response is processed. ToolBook recognizes
(Untitled) or a file name as a valid topic. You can also omit the topic altogether
or use the generic topic system, in which case any instance of the specified
application can respond.

Example
keepRemote application "ToolBook" topic "Chart"

-- Opens a DDE channel to a ToolBook application
-- called "Chart"

local Command

Syntax
local [variable[s]] <variable list>

Description
Makes a variable name known and its contents available within the context of the
current handler. The value of a local variable is known to ToolBook only within the
handler in which the local variable is defined. ToolBook considers all undeclared
variables to be local variables. The value of a local variable persists only during
execution of the handler in which it is defined. ToolBook initializes the value of a
local variable to null when the local variable is declared.
For details about variables, see "Variables" in Chapter 2, "Script Basics," of Using
OpenScript. Also see the system command.

Parameter
The <variable list> parameter contains one or more variable names,
separated by commas if there is more than one.

Example
-- This handler counts the number of objects
-- in a book and puts the number into the Command window.
-- The variables, objCnt and i are declared as local
-- variables.
to handle buttonUp

local objCnt, i
set objCnt to 0
set i to 0
step i from 1 to pageCount of this book

set objCnt to objCnt + itemCount(objects of page i)
end step
put objCnt into the commandWindow

end buttonUp

magnify Command

Syntax
magnify [<power>] [at <location>]

Description
Magnifies the view of the current page. The <location> parameter defines the
center of the area to be magnified. This command is equivalent to clicking the
Zoom tool.

Parameters
The <power> parameter must be 1, 2, 4, 8, or 16, and indicates the
magnification level. If the <power> parameter is omitted, the default value is 2.
The <location> parameter specifies a point on the screen represented by two
numbers separated by a comma. The first number is the distance from the left
edge of the screen. The second number is the distance from the top of the screen.
The <location> parameter can be any two expressions separated by a comma
which each yield a number, or any single expression that yields two numbers
separated by a comma. The locations are interpreted in page units. If the
<location> parameter is omitted, the default is the center of the current page.

Examples
magnify 4

-- Magnifies the current page 4x at the center of the
-- page

magnify 1
-- Returns the page to normal view

magnify 2 at 2400,3650
-- Magnifies an area whose center is at 2400,3650

move Command

Syntax
move [<object>] by <amount>
move [<object>] to <location>

Description
Moves one or more objects, a window, the selection, or a multiple selection either
to a location or by a specified amount.

Parameters
The <object> parameter is an expression that evaluates to the name or ID of an
object on a page or background, or to a comma-separated list of object names or
IDs. The default is the current selection.
The <amount> parameter specifies an offset from the object's current position.
The offset is represented by two numbers separated by a comma. The first
number represents the horizontal offset from left to right, and the second number
represents the vertical offset from top to bottom. If the specified object is a
window or palette, both offsets are measured in screen units (pixels). Otherwise,
both offsets are measured in page units.
The <location> parameter specifies a point on the screen. The point is
represented by two numbers separated by a comma. If the specified object is a
window or palette, the first number represents the distance from the left edge of
the screen, and the second number represents the distance from the top edge of
the screen, both distances measured in screen units (pixels). Otherwise, the first
number represents the distance from the left edge of the page, and the second
number represents the distance from the top of the page, both distances
measured in page units.
The <amount> or <location> parameter is any two expressions that are
separated by commas and each yield a number, or any single expression that
yields two numbers separated by a comma.

Examples
move the commandWindow to 1,1

-- Moves the Command window to the top left corner of
-- the screen

move button "Next" by 1440,-1440
-- Moves button Next down and to the left one inch

openFile Command

Syntax
openFile <file name>

Description
Opens a DOS file. You can open a file to read in text using the readFile
command or to append information to the file using the writeFile command. If
the specified file doesn't exist, ToolBook sets the sysError property to no such
file and the sysErrorNumber property to 559.
If you try to open a file and there are already 10 files open, an error occurs and
ToolBook displays the Execution Suspended message box. The same error occurs
if there are 10 files open and you try to import or export a file.

Parameter
The <file name> parameter is any expression that evaluates to a valid file
name, including the path name if necessary.

Example
if text of field "Choice" = "Yes" then

openFile "a:\romans.dat"
if sysErrorNumber is 559 then

request "Please insert the disk containing the file"
-- Displays a message if the file
-- romans.dat does not exist

end if
else

go to last page
end if

pause Command

Syntax
pause <time> [ticks]
pause <time> seconds

Description
Causes ToolBook to wait for a specified length of time before executing the rest of
the script. If seconds is not specified, ticks are used. A tick is approximately
1/100th of a second.

Parameter
The <time> parameter is any expression that yields a number. The number may
be in the range 0 through 2^31.

Example
-- The following draws a triangle, pausing after each
-- line segment
draw with line from 1025,1025 to 2422,2021
pause 2 seconds
draw with line from 2422,2021 to 1025,2021
pause 2 seconds
draw with line from 1025,2021 to 1025,1025

pop Command

Syntax
pop [<stack>] [into | before | after] [<destination>]

Description
Retrieves the first item of a stack. A stack is any list of comma-separated items.
If a stack is not specified, the item is popped from the sysHistory property. An
item popped from sysHistory consists of the full identifier for a page. If no
destination is given, the popped item goes into It. After the item has been
popped, the item, and the comma following it if there is more than one item in the
stack, is removed from the stack and the number of items in the stack is reduced
by one. If you attempt to pop an item from an empty stack, an error occurs and
ToolBook displays the Execution Suspended message box.
The pop...into form of the command replaces the contents of the destination
with the value of the popped item. The pop...before form of the command
inserts the value of the popped item before the contents of the destination. The
pop...after form of the command appends the value of the popped item after
the contents of the destination.
Also see the push command and the sysHistory property.

Parameters
The <stack> parameter is any expression that evaluates to a comma-separated
list of items. The <destination> parameter is any expression that evaluates to
the name of a container.

Examples
pop into text of field 1

-- Moves the uniqueName of the first page from
-- sysHistory into field 1 of the current page

pop sysHistory into it
go to it

-- Goes to the first page in the system history

to get onPage obj
-- Checks if an object is within boundaries of a page
local verts, height, width
put item 1 of the size of this book into width
put item 2 of the size of this book into height
put vertices of obj into verts
while verts <> null

pop verts -- Pop the X coordinates into It
if (it < 0) or (it > width) then

return false
end if
pop verts -- Pop the Y coordinates into It
if (it < 0) or (it > height) then

return false

end if
end while
return true

end onPage

print Command

Syntax
print [<number> [pages]]

Description
Prints a book starting at the current page. You can print all the pages in a book or
a selection of pages.
If a number of pages is specified, ToolBook uses that number to set a range of
pages to be printed. If the printerConditions property is set to conditions that
some pages in the range do not satisfy, ToolBook will print fewer than the
specified number of pages.
If the number of pages specified is larger than the number of pages from the
current page to the last page, ToolBook stops printing after printing the last page
of the book. If all the pages are to be printed, printing begins with the current
page through the last page and then continues from the first page to the current
page.
This command can be used only within a start spooler control structure. If you
want printing to begin from a particular page of a book, specify the starting page
for printing using a go command within the start spooler control structure.
You can set printer properties to customize printing. For details about the different
printer properties, see the entries for:
printerArrangement

printerFieldWidths printerLeftMargin
printerBorders printerGroupsAcross printerMargins
printerBottomMargin printerGutterHeight printerName
printerClipText printerGutters printerRightMargin
printerConditions printerGutterWidth printerStyle
printerFieldNames printerLabelWidth printerTopMargin
printerFields
To print a report, you must set the printerStyle property to columns or
groups.

Parameter
The <number> parameter is the word all or a non-negative integer indicating
the number of pages to be printed, beginning with the current page. If you want
to make sure that you print all of the pages from the current page to the end of
the book, you can use a large number for the <number> parameter.

Examples
-- The following prints all pages where there is text in
-- field Name
set printerConditions to "text of field" &&\

 quote & "Name" & quote && "of this page is not null"
start spooler

go to first page
print all pages

end spooler

-- The following prints a group report consisting of 15
-- pages in the current background, including only the
-- pages where 9 is the first character in field id 5,
-- perhaps to print only addresses with zip codes beginning
-- with a 9
set printerStyle to "groups"
set printerConditions to \

"char 1 of word 1 of text of field id 5 = 9"

start spooler

print 15
end spooler

print eject Command

Syntax
print eject

Description
Advances the printer to the top of the next sheet. This command can be used only
within a start spooler control structure.

Example
-- Use the print eject command to eject a blank page
-- after each page printed
start spooler

print 1 pages
print eject
print 1 pages
print eject

end spooler

push Command

Syntax
push [<expression>] [onto <stack>]

Description
Adds an item to a stack. A stack is any list of comma-separated items. The items
can be any value. If a stack is not specified and the item is the unique name of a
page, the item is pushed onto the sysHistory property. If the item is not the
uniqueName of a page, a stack must be specified.
The push command adds the item to the beginning of the list. In other words, the
item is pushed onto the top of the stack. If you prefer, you can push an item
elsewhere on the stack, as illustrated in the last example in this entry.
Items pushed onto a stack can be retrieved using the pop command. The push
and pop commands are useful, for example, when you have a summary page in a
book that you want the reader to return to at the end of each of several sections.
Instead of using the command go to page 1, you can use the statement push
page "Summary" onto bookmarks (where bookmarks is the name of a system
variable used as a stack). When it's time for the reader to return to the summary,
you can use the statement pop bookmarks to pop the page into It and then
use a go to it statement to display the page with the summary. That way, the
Summary page will still be displayed even if its page number has changed.
You can use a stack like a one-dimensional array and access items in the stack
using string specifier expressions. Note that pushing and popping numbers is
much faster than building or accessing a stack using the put and get commands.
For more details see the pop entry.

Parameters
The <expression> parameter is any expression that yields a value.
The <stack> parameter is an expression that evaluates to anything that can
contain a list, such as a variable or a text line in the text of a field. The default
value is sysHistory. Note that if you try to push an item other than the unique
name of a page onto sysHistory, an error occurs and ToolBook displays the
Execution Suspended message box. To see what items are in the system history
stack, look at the value of the sysHistory property. It contains a list of the
uniqueNames of the items in the system history.
To avoid unpredictable results when pushing items onto a variable, declare the
variable before pushing items onto it.

Examples
-- This handler is for the script of a button on page
-- "Summary" to go to the next page
to handle buttonUp

system Bookmarks
push page "Summary" onto Bookmarks

-- Push the uniqueName of the Summary page onto
-- a stack

go to next page
end buttonUp

-- You could put this handler in a page script to respond
-- to a user-defined menu command called Go To Summary
to handle goToSummary -- Handles a user-defined message

system Bookmarks
pop bookmarks

-- Put the last item pushed into Bookmarks onto It
go to it

-- Go to the page pushed onto It
end goToSummary

-- This user-defined function reverses the order of items
-- in a stack
to get reverseList stack

local tempStack
put null into tempStack
while stack <> null

pop stack
-- Pops the first item in the stack into It

push it onto tempStack
end while
return tempStack

end reverseList

-- This example shows how you can push an item to a specific
-- place in a stack
push "cat" onto animals
push "dog" onto item 5 of animals
put animals
-- Displays "cat, , , , dog" if no other items have been
-- pushed onto this stack

put Command

Syntax
put <expression>
put <expression> into <container>
put <expression> before <container>
put <expression> after <container>

Description
Copies the value of an expression into, before, or after the contents of a
container. If a container is not specified, the value of the expression is copied into
the Command window and ToolBook shows the Command window. If ToolBook
doesn't recognize the specified container, ToolBook creates a new local variable
with that name and puts the value into that variable.
The put...into form of the command replaces the contents of <container>
with the value of <expression>. The put...before form of the command
includes the value of <expression> at the beginning of the previous contents of
<container>. The put...after form of the command appends the value of
<expression> at the end of the contents of <container>.
If the expression evaluates to a container holding an expression, the expression in
the container is not evaluated but copied literally into the container.
The contents of a container can be deleted by putting the constant null into the
container.

Parameters
The <expression> parameter is any expression that yields a value. The
<container> parameter is any expression that evaluates to a container.

Examples
In the following example, if field "Data" contains the expression
average(20,30,40), then:

put the text of field "Data" into it
-- Puts average(20,30,40) into It (not 30)

put " not" after word 5 of text of field "Description" of\
page 7
-- Puts the word " not" into the text of field
-- Description following the fifth word

readFile Command

Syntax
readFile <file name> to <character>
readFile <file name> for <number of characters>

Description
Reads from a specified ASCII file, starting at the beginning and continuing until
ToolBook encounters the specified character or until ToolBook reads a specified
number of characters. The file must have been opened with the openFile
command. The characters that are read from the file are put into It. End-of-line
characters, spaces, and tabs are included as characters.
When a file is first opened, its file position is the first character in the file. As
ToolBook reads each character in the file, the file position advances to the next
character. Therefore, if you perform additional operations on the file, the
operations take place at the position just after the last character read. When
ToolBook reads to a specified character, that character is discarded and not
included in the text that ToolBook puts into It.
When ToolBook reaches the end of a file, ToolBook sets It to null, sets the
sysError property to end of file and sets the sysErrorNumber property to
565. To avoid an infinite loop, you must check It, sysError or sysErrorNumber
for these values after every execution of the readFile command.
After ToolBook reads from a file, the file must be explicitly closed with the
closeFile command if it is to be read again from the beginning of the file or
written to in the same session.

Parameters
The <file name> parameter is an expression that evaluates to the name of any
text-only ASCII file. The <character> parameter is a character specified literally
or as a constant such as quote or cr. The <number of characters> parameter
is an expression that yields a non-negative integer.

Example
to handle buttonUp

openFile "donors.txt"
while true

readFile "donors.txt" to lf
-- Read to first LF or CRLF

if it is null
-- Null value indicates end of file
break while

end
put it after text of field "Name"

end
closeFile "donors.txt"

end buttonUp

remove (image) Command

Syntax
remove backgroundImage
remove pageImage

Description
Removes stored images for the current background or current page. If images
have been stored for more than one display device, all stored images are
removed. After issuing this command, when a copy of the book is saved using
saveAs, the book's file size will decrease.
Storing a background or page image in the file can cause complex pages to
display more quickly. For details about other techniques to optimize page display
speed, see Chapter 3, "Tips for ToolBook Authors," in the ToolBook Ideas booklet.
See also the store command.

Example
remove backgroundImage

-- removes stored image for the current background

remove menu Command

Syntax
remove menu <menu name> [at <level>]

Description
Removes a specified menu name from the menu bar and shifts other menus to
the left. The shortcut keys for the menu and the menu commands on the menu
are not active. If a level is specified, the menu is removed at that working level
(Reader, Author, or both). If a level is not specified, the menu is removed at the
working level in effect when the command is executed.
The remove menu command is useful in applications where you need to replace
the standard ToolBook menus with custom menus.
For details about removing menus and menu items, see "Customizing the Menu
Bar," in Chapter 6, "Beyond the Basics," of Using OpenScript.

Parameters
The <menu name> parameter is the name of a menu as it appears on the menu
bar. If you want, you can omit leading numerals and any non-alphanumeric
characters (such as spaces and punctuation, but not underscores).
The <level> parameter can be author, reader, or both; the default is the
current working level.

Example
remove menu "Text"

-- Removes the Text menu from the menu bar

remove menuItem Command

Syntax
remove menuItem <menu item> [at <level>]

Description
Removes a menu command from a menu. If a working level is specified, the
command is removed only at that level (Reader, Author, or both). If a level is
not specified, the command is removed only at the current working level.
Removing a command from a menu does not affect the default handler for that
menu command.
After you remove a menu item that had accelerator keys, pressing those keys
once again sends corresponding event messages, such as keyDown.
To put removed commands back in a menu, use the restore menuBar
command.
For details about removing menus and menu items, see "Customizing the Menu
Bar," in Chapter 6, "Beyond the Basics," of Using OpenScript.

Parameters
The <menu item> parameter is the name of a command as it appears in a menu.
If you want, you can omit leading numerals and any non-alphanumeric characters
(such as spaces and punctuation, but not underscores) so that the name matches
the message that ToolBook sends when a user chooses the menu command. If the
menu command to be removed is one whose name changes depending on the
context (for example, the Properties and Reshape commands), <menu item>
must be the name of the menu as it appears in the current context.
The <level> parameter must be author, reader, or both.

Examples
remove menuItem "Author"

-- Removes the Author command at the current level

remove menuItem "clearall" at reader
-- Removes the Clear All command at Reader level

request Command

Syntax
request <question> [with <reply> [or <reply2> [or <reply3>]]]

Description
Displays a dialog box with a question and up to three buttons, each representing
a different reply. When one of the buttons is clicked, the text of that button's label
goes into It. If the reader pressesAlt+F4 or Esc, ToolBook puts cancel into It
and sysError and puts 566 into sysErrorNumber. The button labels are
specified by the reply parameters (<reply>, <reply2>, and <reply3>). The
replies can be up to approximately 8 characters long, depending on the width of
the characters you specify. If a reply is not specified, ToolBook puts a button
labeled OK into the dialog box. The first reply parameter appears on the left as
the default button. The reader cannot continue to work in the current instance of
ToolBook until one of the buttons is chosen.
Also see the ask command.

Parameters
The <question> and <reply> parameters are any expressions that yield
strings. The expressions must be enclosed in quotation marks if they contain
spaces or special characters. Each <reply> string can be up to 8 characters
long.

Example
-- This handler is in the script for a Continue button.
-- Choosing More adds a page to the book; choosing
-- Print prints a page; and choosing Quit exits ToolBook
to handle buttonUp

request "What do you want to do next?" with \
"More" or "Print" or "Quit"

conditions
when it is "more"

send newPage
when it is "print"

send printReport
when it is "quit"

send exit
end

end

respondRemote Command

Syntax
respondRemote <response>

Description
This command is used by ToolBook or an object to respond to a remoteGet or
remoteCommand message. This command is used for transfer of response
information in Windows Dynamic Data Exchange (DDE). For details about DDE,
see "Using Windows Dynamic Data Exchange" in Chapter 6, "Beyond the Basics,"
of Using OpenScript.
You do not need to use the respondRemote command unless you are explicitly
handling a remoteGet or remoteExecute message. ToolBook automatically
issues the respondRemote command when ToolBook handles these messages at
the system level. Once a respondRemote command has been executed in a
handler, ToolBook ignores any other respondRemote commands in the handler.

Parameter
The <response> parameter consists of up to nine items. The first item of the
<response> parameter is set to one of the values described in the following
table.
Parameter values passed with the respondRemote command
This value... Means...
OK ToolBook accepted the request
Failed: Busy ToolBook was too busy to satisfy the request
Failed: Denied ToolBook refused the request

The remaining eight items in the response comprise the LOBYTE of the
acknowledgement status of the WM_DDE_ACK DDE message and can only have a
value of 0 or 1. The meaning of the items is described in the following table. See
the DDE documentation for the appropriate application for the meaning of these
items.
Meaning of respondRemote parameter items
This value... Means...
Item 2 Bit 7 of the LOBYTE of WM_DDE_ACK
Item 3 Bit 6 of the LOBYTE of WM_DDE_ACK
Item 4 Bit 5 of the LOBYTE of WM_DDE_ACK
Item 5 Bit 4 of the LOBYTE of WM_DDE_ACK
Item 6 Bit 3 of the LOBYTE of WM_DDE_ACK
Item 7 Bit 2 of the LOBYTE of WM_DDE_ACK
Item 8 Bit 1 of the LOBYTE of WM_DDE_ACK
Item 9 Bit 0 of the LOBYTE of WM_DDE_ACK

restore menuBar Command

Syntax
restore menuBar [at <level>]

Description
Restores the menu bar and menus to their ToolBook defaults. All user-defined
menus and menu commands are removed from the menu bar. If a level is
specified, the menu bar is restored at that working level (Reader, Author, or
both). If a level is not specified, the menu bar is restored at the working level in
effect when the command is executed.

Parameter
The <level> parameter can be author, reader, or both. The default is the
current working level.

Example
to handle buttonUp

restore menuBar
end buttonUp

restore system Command

Syntax
restore system

Description
Destroys all system variables, unlinks all DLLs, and restores most system
properties to their default values. The restore system command is useful for
restoring ToolBook to a known configuration and for reclaiming memory from
system variables you no longer need.
The system properties not affected by this command are:
selectedText selection sysLevel
selectedTextLines sysHistory sysMousePosition
All printer properties
The restore system command restores all startup properties to the startup
values specified in the WIN.INI file. For example, restore system sets sysBooks
to the value of startupSysBooks. If a script sets startupSysBooks to a new
value, that value is remains if the system is restored.
You can protect the system variables in a book from the restore system
command by writing enterBook and leaveBook handlers that store system
variables in user-defined properties. This technique is illustrated in the second
example.

Examples
This first example is a handler you might put in a book script to restore ToolBook
to a known configuration:
to handle leaveBook -- When a reader closes this book

restore system -- Restore ToolBook to default
end leaveBook -- configuration

This second example shows how to save the values of system variables as book
properties when leaving a book and how to restore them when entering a book.
-- This handler restores three system variables when
-- the book is opened
to handle enterBook

system important1, important2, important3
set important1 to important1 of this book
set important2 to important2 of this book
set important3 to important3 of this book

end enterBook

-- This handler saves the values of three system variables
-- then restores the system for any new book that is opened
to handle leaveBook

system important1, important2, important3
set important1 of this book to important1
set important2 of this book to important2
set important3 of this book to important3

restore system
end leaveBook

return Command

Syntax
return <expression>

Description
Returns the result of the evaluation of a user-defined function. The return
command can only be used within a to get handler that defines a function. You
can also use this command to exit a to get handler because ToolBook does not
execute any statements following the return command.
For details about defining your own functions, see the to get handler structure,
or "Defining Your Own Functions" in Chapter 6, "Beyond the Basics," of Using
OpenScript.

Parameter
The <expression> parameter is any expression.

Examples
-- This handler defines a function called probability
-- that calculates and returns a result based on the
-- two input parameters.
to get probability occurred,observations

return occurred/observations
end probability

-- This handler defines a procedure for calculating the
-- value of the user-defined property, myPages, and returns
-- the value as the result
to get mypages

local pageList
set pageList to text of field "Page Name" of page 1 \

of book "c:\ToolBook\mybook.tbk"
return mypages

end mypages

run Command

Syntax
run <application> [minimized]
run <file name> [minimized]

Description
Launches a specified application or opens a specified file with the appropriate
application. If the application cannot be found or is not a Windows-executable file,
the sysError property is set to no such file, sysErrorNumber is set to 559
and no application is launched. If you include minimized, the application or file is
minimized.
Using this command is similar to using the Run command from the File menu of
the MS-DOS Executive, or choosing the Run command from the ToolBook File
menu. Note that ToolBook launches the specified application asynchronously. That
is, the application might not be completely launched before ToolBook finishes
executing the current handler.

Parameters
The <application> parameter is any expression that evaluates to the name of
any Windows application, optionally combined with the name of any file and any
other parameters to be passed to the application.
The <file name> parameter is the name of any file that runs with a Windows
application. If you don't use an extension with the file name, ToolBook tries to run
the file as a ToolBook book. If you have defined file extensions in your WIN.INI file,
you can just specify the name and extension of the file you want to run to launch
the application. For details about the WIN.INI file, see Appendix A, "Installation
Reference," in Getting Started. The path name must be included with the
application or file name if the path has not already been specified with the DOS
PATH command and the application or file is not in the current directory.

Examples
run "c:\windows\clock.exe" minimized

-- Runs and minimizes the Windows clock

run "mynotes.wri"
-- Runs Windows Write (if installed) with the file mynotes.wri

run "notepad.exe win.ini"
-- Runs Windows Notepad with the file WIN.INI

save as Command

Syntax
save as <file name>,<overwrite>

Description
Saves the current book as a new file with a specified file name. The current book
is closed without saving any changes, and the new book is opened at the same
page the current book had open.
Normally, the contents of the current book replace the contents of any existing
file with the specified name. If an error occurs while saving the file, the sysError
and sysErrorNumber properties are set and the file is not saved.
If the specified file is currently open as a book, the sysError property is set to
file open as a book, and the sysErrorNumber property is set to 558. If the
specified file is a read-only file, the sysError property is set to Read only, and
the sysErrorNumber property is set to 560. If the <overwrite> parameter is
false and a file with the specified name already exists, then the sysError
property is set to File exists, and the sysErrorNumber property is set to 627.
Save As compacts a book as it saves it. If you are making many changes or
cutting and pasting large objects, using the save as command may significantly
reduce your file size.

Parameters
The <file name> parameter is any expression that evaluates to a valid file name
or a container that contains a valid file name, including the path name if
necessary. The <overwrite> parameter must be an expression that evaluates to
true or false, indicating whether an existing file should be overwritten.

Example
save as "c:\mybooks\oldbook.tbk",true

-- Saves the current file using the name specified
-- between quotes and overwrites any existing file with
-- that name

save changes Command

Syntax
save changes to book <book name>

Description
Saves any changes made to a book. The book must be open and must be named;
save changes does not work on an untitled book.

Parameter
The <book name> parameter is any expression that yields the name of a
currently open book.

Examples
save changes to this book
-- Saves changes to the current book

set text of field "OutOfDate" of page 1 of book \
"mailabel.tbk" to true

save changes to book "mailabel.tbk"
-- Modifies a field in a book open in another instance
-- of ToolBook then saves the change

search Command

Syntax
search [page] for <string> [by case] [as word] [locateOnly]

search [page] excluding background for <string> [by case] [as
word] [locateOnly]

search [page] records for <string> [by case] [as word]
[locateOnly]

search [page] in <rfield> [, <rfield>] ... for <string> [by
case] [as word] [locateOnly]

search again

Description
Searches for a string in the text of fields. ToolBook looks for any occurrence of the
characters in the search string. The different forms of the command effect which
pages and fields ToolBook will search.
The search for ... form of the command    will search all pages and fields. The
search excluding background for ... form of the command will not search
background fields (but page and record fields will be searched). The search
records for ... form of the command will search record fields only. Finally, the
search in <rfield>, <rfield>, ... form of the command will search only the
specified recordFields. Hidden fields are never included in a search.
 Normally, when a string is found ToolBook selects the string and navigates to the
page containing it. You can use the locateOnly keyword to search for the string
without selecting it or navigating to the page that contains the string. Instead, the
contents of It is set to a comma separated list of three items: the name of the
field or record field where the string was found, followed by two integers that
indicate the starting and ending characters of the matching text in that field.
If the page option is included, the search is restricted to the current page. If the
by case option is included, ToolBook only finds occurrences that match the case
of the search string. If the as word option is included, ToolBook looks only for the
characters in the search string occurring as a whole word.
The search again command repeats the last search. If the search again
command is executed before a search has been made, ToolBook sets the
sysError property to no search to repeat and the sysErrorNumber property
to 8112.
If ToolBook cannot find the search string, ToolBook sets the sysError property to
not found and the sysErrorNumber property to 641.
The search string can contain spaces, so you can search for more than one word.
The search string can also include quotation marks, and you can search for
special characters such as tab spaces and paragraph endings, as shown in the
following table.
Searching for special characters

To find... Use...
A tab space ^t
The end of a paragraph ^p
A new-line ending created with Shift+Enter ^n
A caret, or circumflex symbol (^) ^^
A question mark ^?
An asterisk ^*
A non-breaking space Alt+0160
Extended characters from Appendix A
in "Using ToolBook" Alt+0+code

The search string must include a caret (^) in front of a question mark or an
asterisk if you want to search for either of these characters. This is because the
question mark and asterisk can be used as wildcards in searches. Wildcards are
used to represent other characters in a text string.
You can use the wildcards in the search string to help you find words spelled two
different ways or to find various words with the same root. For example:
Use a question mark (?) to represent any single unknown or variable character
in the search string. For example, the search string ?ffect finds both "affect"
and "effect," and the search string compl?ment finds both "compliment"
and "complement."
Use an asterisk (*) to represent zero or more characters in a single word in the
search text. For example, the string a*ct finds words such as "act,"
"affect," "abject," and "character" as well as any misspelled words that
include the specified characters.

Parameter
The <string> parameter is a string or any expression that yields a string.

Examples
search for "the"

-- Finds and selects the first consecutive
-- occurrence of the letters the, as in
-- Theater or together

search page records for "the" by case as word locateOnly
-- Finds the first occurrence of the word 'the' in
-- lowercase in a record field on the current page.
-- If the search is successful the location of the

 -- string found is returned in the variable, It.

-- The following finds all occurrences of the word "None"
-- and change their fontStyle to bold
set sysError to null
go to the first page
search for "None" by case as word
while sysErrorNumber is not 641 -- 641 is "not found"

send bold
search again

end while

seed Command

Syntax
seed <number>

Description
Sets the starting point for the random-number generator. Seeding to the same
number will always generate the same random sequence.
For details about random numbers, see the random function.
A good source of a number to seed the random number generator is the sysTime
property.

Parameter
The <number> parameter is any expression that yields a positive integer in the
range 0 to 32767.

Example
set sysTimeFormat to "seconds"

-- Change format so sysTime yields a number
seed sysTime mod 32767

-- Re-initialize the random number generator

select Command

Syntax
select <objects>
select <string specifier>

Description
Changes the current selection to include specified objects. The select
<objects> form of the command is used to select a single object. You can select
only the current page or objects on the current page or background.
The select <string specifier> form of the command is used to select text in
a field or record field. The text that is selected becomes the value of the
selectedText property.

Parameter
The <objects> parameter is an expression that evaluates to a comma-separated
list of one or more object identifiers. The following types of objects can be
selected:
angledLine group pie
arc irregularPolygon polygon
button line recordField
curve page rectangle
ellipse paintObject roundedRectangle
field picture
The <string specifier> parameter is an expression that evaluates to a chunk
of text in a field or record field. For details about specifying chunks of text, see
"Expressions with String Specifiers" in Chapter 2, "Script Basics," of Using
OpenScript.

Examples
select button id 3

select text of field "Names"
-- Selects all text in the field Names

select word 1 of textline 3 of text of recordField "Address"
-- Selects the first word of the third line in the
-- record field Address

select rectangle "box", ellipse "circle"
send cut

-- Cuts a rectangle and an ellipse to the Clipboard

select all Command

Syntax
select all [<object type>]
select all from <location> to <location>

Description
Selects all objects or all objects of a particular type on either a page or
background. The result becomes the value of the selection property.

Parameters
The <object type> parameter is an expression that evaluates to one of the
following:
angledLine group pie
arc irregularPolygon polygon
button line recordField
curve paintObject rectangle
ellipse picture roundedRectangle
field
The <location> parameters each specify a point on the page, represented by
two numbers separated by a comma. The numbers are interpreted in page units.
The first number is the distance from the left edge of the screen; the second
number is the distance from the top of the screen. Each <location> parameter
can be any two expressions, separated by a comma, that each yield a number, or
any single expression that yields two numbers separated by a comma.
The two points defined by the <location> parameters specify the top left and
bottom right corners of an imaginary bounding rectangle. Any object completely
inside this rectangle is included in the selection.

Examples
select all polygon
move selection by 1440,1440

--The following two handlers allow you to do a net selection
to handle buttonDown location

system startLoc
set startLoc to location

end buttonDown

to handle buttonUp location
system startLoc
select all from startLoc to location

end buttonUp

send Command

Syntax
send <message> [<parameters>] [to <object>]

Description
Sends a message to an object. If an object is not specified, the message goes to
the object sending the message and then up the object hierarchy until ToolBook
finds a handler for the message. The send command is usually used to call
another handler to perform a task for the handler sending the message, similar to
calling a subroutine.
The send command is different from the forward command in that the forward
command is usually used to pass a message that has been intercepted by a
handler up the object hierarchy.

Parameters
The <message> parameter is any valid built-in or user-defined message. Valid
messages are strings that begin with a letter and contain no spaces or
punctuation marks except the underscore character. The optional <parameters>
parameter is one or more expressions, separated by commas if there is more than
one, which are sent along with the message. The <object> parameter is an
expression that evaluates to a valid reference to an object or to system.

Example
send buttonUp to button "Next Page"

-- Sends a buttonUp message to the button, "Next Page"

set Command

Syntax
set [the] <container> [of <object>] to <value>

Description
Changes the value of a specified property or other container.

Parameters
The <container> parameter is any expression that evaluates to a reference to a
valid container. Examples of containers include variables, settable properties, and
the Command window. For details about containers, see "Values and Expressions
of Values" in Chapter 2, "Script Basics," of Using OpenScript.
The <object> parameter is any expression that evaluates to an object or window
name. The <value> parameter is any expression or comma-separated list of
expressions that evaluates to valid contents for a particular container or to a valid
setting for a particular property.

Examples
set BowlingPins to 10

-- Puts 10 into the variable BowlingPins

set the fontFace of field id 1 to "Tms Rmn"
-- Sets the object's fontFace property

set the caption of the target to item 1 of argList
-- Sets the caption property of the target to the first
-- argument to the handler

set the script of this page to text of field \
"Script Sample" of page "Try it yourself"
-- Sets the script property to whatever is in the field,
-- "Script Sample"

setRemote Command

Syntax
setRemote <item> to <value> [application <server name>] [topic

<topic>]

Description
Sets the value of an item in another instance of ToolBook or in another Windows
application, using Windows Dynamic Data Exchange (DDE) protocol. When you
use this command to set the value of an item in another instance of ToolBook,
that instance receives the remoteSet message. For details about DDE, see
"Using Windows Dynamic Data Exchange" in Chapter 6, "Beyond the Basics," of
Using OpenScript.
Immediately after ToolBook executes the setRemote command, the values of the
sysError and sysErrorNumber properties are set to indicate the status of the
command. The sysErrorNumber property is set to a number indicating the
status. The sysError property is set to a list of nine items. The first item
indicates the status of the remote request, as described in the following table.
The last eight items describe the LOBYTE of the WM_DDE_ACK DDE message,
which does not have any meaning to ToolBook but may have meaning to the
application you are exchanging data with. For details about the meaning of these
items, see the DDE documentation for the appropriate application.
SysErrorNumber and sysError values for the setRemote command
sysErrorNumber/ sysError Means
8123
OK The application responded and the requested

data was put into It
8125
Failed: Busy The application responded but is doing

something else and failed to perform the
requested action

8124
Failed: Denied The application responded but could not or

would not satisfy the request
8126
Failed: Memory Error ToolBook did not have enough global or local

memory to generate the request or accept a
response

8128
Failed: Interrupted The application responded, but the connection

was broken before the application
acknowledged the command

8127
Failed: No Server No applications responded to the request

The setRemote command does not bypass normal password protections.

Parameters
The <item> parameter is any expression that evaluates to a settable item
recognized by the responding application. If the responding application is
ToolBook, the item is typically a settable property. The <value> parameter is any
expression.
The <application> parameter is any expression that evaluates to the DDE
name of a Windows application. For instance, the DDE name of Microsoft Excel is
Excel. If there is more than one instance of the application, only the first
response is processed. If the <application> parameter is omitted, any
application that understands DDE protocol can respond.
The <topic> parameter is any expression that evaluates to a topic recognized by
the remote instance. The topic is usually a file name. See the DDE documentation
for the appropriate application for the valid topics for that application. If there is
more than one instance of the specified application with the specified topic, only
the first response is processed. ToolBook recognizes (Untitled) as a valid topic if
the currently displayed book is untitled. Otherwise, ToolBook recognizes the file
name of the currently open book. You can also omit the topic altogether or use
the generic topic system, in which case any instance of a specified application
can respond.

Examples
The following handler updates the date in the DateApproved field in another
book.
to handle buttonUp

setRemote "text of field DateApproved" to sysDate\
application toolbook

end buttonUp

The following handler updates a phone number in an Excel spreadsheet after a
reader edits the phone number in a ToolBook field named Phone. The handler is in
the field's script.
to handle leaveField

setRemote "R10:35" to text of field "Phone" \
application "excel" topic "personnel.xls"

end leaveField

show Command

Syntax
show [<object>] [at <location>]

Description
Shows the specified object if it was previously hidden. The result of this command
is the same as setting the object's visible property to true. Showing an object
that is already visible has no effect.
Also see the hide command.

Parameters
The <object> parameter is an expression that evaluates to a valid identifier for
one of the following objects, windows, or palettes:
Showable objects are:

angledLine irregularPolygon polygon
arc line polygonPalette
button linePalette recordField
colorTray mainWindow rectangle
commandWindow menuBar roundedRectangle
curve paintObject scrollBar
ellipse patternPalette spectrumPalette
field picture statusBox
group pie toolPalette

The <location> parameter is any two expressions separated by a comma and
that each yield a number, or any single expression that yields two numbers
separated by a comma. For objects, the numbers are in page units and specify
the horizontal and vertical coordinates of the upper left corner of the object
relative to the upper left corner of the main ToolBook window. For palettes and
windows, the numbers are in screen coordinates and indicate the horizontal and
vertical coordinates of the upper left corner of the window or palette in relation to
the upper left corner of the screen.
Scripts that show the Command window will cause an error in Runtime ToolBook.

Examples
-- This handler displays a different hint field depending
-- on which incorrect answer is being reviewed
to handle wrongAnswer whichPage

conditions
when whichPage is 2

show field "Hint1" of page "Review"
when whichPage is 3

show field "Hint2" of page "Review"
when whichPage is 5

show field "Hint3" of page "Review"
when whichPage is 7

show field "Hint4" of page "Review"
end conditions

end

sort Command

Syntax
sort [pages <number> to <number>] [by <sort key> [,<sort key>...]]

Description
Sorts specified pages that share the current background. The sorted pages are
reordered based on the specified sort keys.
Unlike the Sort command on the Page menu, which sorts pages only by the
content of their record fields, the sort command can sort pages by any
expression that can be evaluated in the context of a page. For example, you can
use the sort command to sort pages based on page name or the sum of several
numbers on the page.
Characters are sorted according to their ANSI values. For details about the ANSI
character set, see Appendix A, "ANSI and Other Character Sets," in Using
ToolBook.

Parameters
The <number> parameter is an expression that evaluates to a positive integer
which specifies the pages to be sorted. The default is all pages that share the
current background.
Each <sort key> parameter consists of:
[<order>] <type> <sort expression>
The <order> parameter can be either ascending or descending. The default
value is ascending. The <type> parameter specifies the type of sort and can be
date, name, text, or number. For details about name comparison, see the name
special term.
The <sort expression> parameter is any expression that can be evaluated in
the context of a page; for example, the page name or ID. The default is the text of
the record field with the lowest layer number on the current background. To see
how ToolBook evaluates a particular sort expression, go to any page that will be
included in the sort, enter the sort expression in the Command window, and press
Enter.
The <sort key> parameter can be repeated any number of times, resulting in
multiple sort keys.

Examples
-- This example sorts pages 1 to 10 alphabetically
-- by the content of one record field:
sort pages 1 to 10 by ascending text text of recordfield "zipcode"

-- This example shows a sort based on the content of
-- two record fields:
sort pages 10 to 20 by ascending text text of\

recordField id 1, descending number word 2 of text of\
recordField id 2

store (image) Command

Syntax
store backgroundImage
store pageImage

Description
Commands used to store a compressed image of the current background or the
current page. The stored image is a device-dependent bitmap that is saved with
the book. Images can be stored for different display devices by running the book
on different systems and issuing this command after the page is displayed. When
the background or page is displayed, ToolBook will automatically display the
correct stored image for the current system.
The image will not include any objects that are drawn directly to the screen, and
will increase the book's file size. Issuing this command will replace any currently
stored image of the background or page for the current display device.
Storing a background or page image in the file can cause complex pages to
display more quickly. For details about other techniques to optimize page display
speed, see Chapter 3, "Tips for ToolBook Authors," in the ToolBook Ideas booklet.
See also the remove command.

Example
store foregroundImage

-- Stores image for the current foreground in the
-- ToolBook file

system Command

Syntax
system [variable[s]] <variable list>

Description
Makes a variable name known and its contents available to any script in the
current instance of ToolBook. Changing the value of a system variable in any
script changes its value in every script that uses the variable. You must use the
system command in each handler in which a system variable is used, or ToolBook
treats the variable as a local variable that is valid only within that particular
handler. ToolBook initializes system variables to null when they are created.
A system variable is available to any script in the ToolBook instance in which it is
defined. However, a system variable defined in one instance of a book is not
available to another instance of the same book. Also, a handler cannot contain
both a system variable and a local variable with the same name.
For details about system variables, see "Variables" in Chapter 2, "Script Basics," of
Using OpenScript. Also see the local and restore system commands.

Parameter
The <variable list> parameter contains one or more variable names,
separated by commas if there is more than one.

Example
The following handlers are in the script for a book. The handlers save the text of a
field in a system variable when a reader enters the field, then checks to see if the
text has changed when the reader leaves the field.
to handle enterField

system fieldText
put the text of the target into fieldText
forward

end enterField

to handle leaveField
system fieldText
if fieldText is not the text of the target

-- Check to see if the text of the field
-- has changed
send update

-- Send a user-defined message
end if
forward

end leaveField

uncheck menuItem Command

Syntax
uncheck menuItem <menu item> [at <level>]

Description
Removes a check from beside a specified user-defined menu item if it was
checked. If a level is specified, the check is removed from the menu item at that
working level (Reader, Author, or both). If a level is not specified, the check is
removed only at the working level in effect when the command is executed. You
cannot check and uncheck ToolBook's default menu items. For details about
checking and unchecking menu items, see "Customizing the Menu Bar" in Chapter
6, "Beyond the Basics," of Using OpenScript.

Parameters
The <menu item> parameter is the name of a command as it appears on a
menu. If you want, you can omit leading numerals and any non-alphanumeric
characters (such as spaces and punctuation, but not underscores) so that the
name matches the message that ToolBook sends when a user chooses the menu
item.
The <level> parameter must be author, reader, or both.

Example
uncheck menuItem "Start Animation"

-- Removes the check beside a Start Animation
-- menu item at the current working level

unlinkDLL Command

Syntax
unlinkDLL <dll name>

Description
Unlinks the specified DLL and frees a reference to the DLL. When all references for
a DLL are freed, the DLL and the resources it uses are freed.

Parameter
The <dll name> parameter is the name of the DLL that you want to unlink and is
any expression which evaluates to a string.

Example
unlinkDLL "music.dll"

-- Unlinks the DLL music.dll

unselect Command

Syntax
unselect <object>

Description
Unselects a specified object and removes the object's name from the value of the
selection property.

Parameters
The <object> parameter is any expression that yields a valid reference to an
object.

Example
unselect irregularpolygon id 6

-- Unselects an irregular polygon whose idNumber is 6

untranslateAllWindowMessages Command

Syntax
untranslateAllWindowMessages [for <winHandle>]

Description
Removes Windows-to-OpenScript message translation for the specified window.

Parameters
<winHandle> Specifies the window handle of the window to have translation
removed. The default value is the handle of the main ToolBook window.

Example
-- Disables all Windows-to-OpenScript translation for
-- the main window
to handle leaveBackground

untranslateAllWindowMessages
end

untranslateWindowMessages Command

Syntax
untranslateWindowMessage <winMsg> [for <winHandle>]

Description
Disables Windows-to-OpenScript message translation for the specified message
and window.

Parameters
<winMsg> The decimal number of the Windows message whose translation is to
be removed.
<winHandle> Specifies the window handle of the window to have translation
removed. The default value is the handle of the main ToolBook window.

Example
-- Disables Windows-to-OpenScript message translation
-- of Windows message 23 for the main ToolBook window
untranslateWindowMessage 23

writeFile Command

Syntax
writeFile <text> to <file name>

Description
Writes text to an open file specified by the <file name> parameter. The file
must have been explicitly created with the createFile command or opened
with the openFile command. The file remains open until a closeFile
command is executed.
After ToolBook writes to a file, the file must be explicitly closed with the
closeFile command then reopened using the openFile command if it is to be
read from in the same session.

Parameters
The <text> parameter is any expression that yields a string. The <file name>
parameter is any expression that evaluates to a valid file name, including the
path name if necessary. If you don't provide a path name, ToolBook writes the file
to the current directory.

Example
createFile "newdata.dat"

-- Creates and opens a file
writeFile text of field "Name" of page 1 of \

this book to "newdata.dat"
-- Writes text to the file

closeFile "newdata.dat"
-- Closes the file

Functions Quick reference
Alphabetical List
Arithmetic functions
abs floor sqrt
ceiling random truncate
evaluate round
Trigonometric functions
acos cos sinh
asin cosh tan
atan hypotenuse tanh
atan2 sin
Logarithmic functions
exp ln log
Statistical functions
average min sum
max
Financial functions
annuityFactor compoundFactor
String functions
ansiToChar lowercase uppercase
charCount offset wordCount
charToAnsi textLineCount
Special functions
itemCount menuState pointer<type>
keyState objectFromPoint textFromPoint

Functions: Alphabetical list Quick reference
abs(<number>)
acos(<number>)
annuityFactor(<rate>,<periods>)
ansiToChar(<number>)
asin(<number>)
atan(<number>)
atan2(<number1>,<number2>)
average(<list>)

ceiling(<number>)
charCount(<string>)
charToAnsi(<character>)
compoundFactor(<rate>,<periods>)
cos(<angle>)
cosh(<angle>)

evaluate(<expression>)
exp(<number>)

floor(<number>)

hypotenuse(<length>,<length>)

itemCount(<expression>)

keyState(<key>)

ln(<number>)
log(<number>,<base>)
lowercase(<string>)

max(<list>)
menuState(<menu name>) [at <level>]
min(<list>)

objectFromPoint(<location>)
offset(<string1>,<string2>)

pointer<type> (<offset>, <pointer>[,<new value>])

random(<integer>)
round(<number>)

sin(<angle>)
sinh(<angle>)
sqrt(<number>)
sum(<list>)

tan(<angle>)
tanh(<angle>)
textFromPoint(<location>)
textLineCount(<string>)
truncate(<number>)

uppercase(<string>)

wordCount(<string>)

abs Function

Syntax
abs(<number>)

Description
Returns the absolute value of a number. If the number is negative, the abs
function returns a positive value.

Parameter
The <number> parameter is any expression that yields a number.

Example
In the following example, if field Change contains the value -465:
put abs(text of field "Change") into it

-- Puts 465 into It

acos Function

Syntax
acos(<number>)

Description
Returns the arccosine of a number. The returned value is in radians.

Parameter
The <number> parameter is any expression that yields a number in the range -1
to 1.

Example
put acos(.34) into it

-- Puts 1.223879429267735 into It

annuityFactor Function

Syntax
annuityFactor(<rate>,<periods>)

Description
Returns a factor of the present value of an ordinary annuity to the annuity
payment. The <rate> parameter is the interest rate per period expressed as a
decimal fraction and <periods> is the number of periods over which the value is
calculated and compounded. The formula used for the calculation is:
(1 - (1 + <rate>) ^ - <periods>) / <rate>

Parameters
The <rate> and <periods> parameters are any expressions that yield numbers.

Example
put 2000 into carLoanAmount
put .10/12 into periodRate

-- A 10% interest rate divided by 12 months
put 36 into periods

-- Number of months for the loan
-- Calculate payments on loan

put carLoanAmount/annuityFactor(periodRate,periods) into\
Payments
-- Puts 64.53437438767517 into Payments

ansiToChar Function

Syntax
ansiToChar(<number>)

Description
Returns the character represented by the ANSI decimal numeric value of a
number. For details about the ANSI character set, see Appendix A, "ANSI and
Other Character Sets," in Using ToolBook.    Also see the charToAnsi function.

Parameter
The <number> parameter is any expression that yields an integer from
0 to 255, inclusive.

Example
put ansiToChar(90) into It

-- Puts Z into It

asin Function

Syntax
asin(<number>)

Description
Returns the arcsine of a number. The returned value is in radians.

Parameter
The <number> parameter is any expression that yields a number in the range -1
to 1.

Example
put asin(.34) into it -- Puts .3469168975271617 into It

atan Function

Syntax
atan(<number>)

Description
Returns the arctangent of a number. The returned value is in radians.

Parameter
The <number> parameter is any expression that yields a number.

Example
put atan(30) into it

-- Puts 1.53745330916649 into It

atan2 Function

Syntax
atan2(<number1>,<number2>)

Description
Returns the arctangent of <number1> divided by <number2>. The signs of both
arguments are used to determine the quadrant of the returned value. The
returned value is in radians.

Parameters
The <number1> and <number2> parameters are any expressions that yield
numbers.

Example
put atan2(45,30) into It

-- Puts .9827937232473292 into It

average Function

Syntax
average(<list>)

Description
Returns the average value of a list of numbers by dividing the sum of the
numbers by the item count of the list.

Parameter
The <list> parameter is any expression or group of expressions that yields a
sequence of numbers that are separated by commas.

Examples
put average(10.275,9.875,10.75) into Average_Rate

-- Puts 10.3 into a variable

put average(text of field "Input_Data") into text of field\
"Average"
-- Puts the average of the contents of the Input_Data
-- field into the Average field

put average(3,4,text of field "Data",7,12) into myData
-- Puts the average of 3,4,7,12, and the contents
-- of field Data into the variable myData

ceiling Function

Syntax
ceiling(<number>)

Description
Returns the smallest integer that is greater than or equal to <number>.
Also see the floor function.

Parameter
The <number> parameter is any expression that yields a number.

Examples
put ceiling(-35.7) into It

-- Puts -35 into It

put ceiling(543.93) into Approximate
-- Puts 544 into Approximate

charCount Function

Syntax
charCount(<string>)

Description
Returns the number of characters, including spaces, in a string. A crlf (carriage
return/linefeed) is counted as two characters.

Parameter
The <string> parameter is any expression that yields a string.

Example
In the following example, if field Name contains the name John Brown, followed by a
carriage return/linefeed:
put charCount(text of field "Name") into NameLength

-- Puts 12 into NameLength

charToAnsi Function

Syntax
charToAnsi(<character>)

Description
Returns an integer representing the ANSI numeric value of a character. For details
about the ANSI character set, see Appendix A, "ANSI and Other Character Sets," in
Using ToolBook.    Also see the ansiToChar function.

Parameter
The <character> parameter is any expression that evaluates to an ANSI
character.

Examples
put charToAnsi("Z") into the commandWindow

-- Displays 90 in the Command window

put charToAnsi(cr) into it
-- Puts 13 into It

compoundFactor Function

Syntax
compoundFactor(<rate>,<periods>)

Description
Returns the future value of a compound-interest-bearing account. The <rate>
parameter is the rate per period expressed as a decimal fraction, and <periods>
is the number of periods over which the value is calculated and compounded.

Parameters
The <rate> and <periods> parameters are any expressions that yield numbers.

Example
To calculate the compound factor for an account at 10.375% for 12 months:
put the compoundFactor(.10375/12, 12) into text of\

field Future_value_factor
-- Returns 1.108828514726201

cos Function

Syntax
cos(<angle>)

Description
Returns the cosine of an angle. The angle is measured in radians. The formula for
converting degrees to radians is radians = degrees * (PI/180).

Parameter
The <angle> parameter is any expression that yields a number.

Example
To calculate the cosine of a 30-degree angle:
set radians to 30 * (pi/180)

-- Radians is a variable
put cos(radians) into it

-- Puts 0.8660253999169214 into It

cosh Function

Syntax
cosh(<angle>)

Description
Returns the hyperbolic cosine of an angle. The angle is measured in radians. The
formula for converting degrees to radians is
radians = degrees * (PI/180)

Parameter
The <angle> parameter is any expression that yields a number.

Example
To calculate the hyperbolic cosine of a 30-degree angle:
set radians to 30 * (pi/180)

-- Radians is a variable
put cosh(radians) into it

-- Puts 1.140238321076429 into It

evaluate Function

Syntax
evaluate (<expression>)

Description
Evaluates an expression and returns the value of the expression.

Parameter
The <expression> parameter is any expression.

Examples
put evaluate (1 + 3) into it

-- Adds 1 to 3 and puts 4 into It

For the following example, assume that:
1) Field "Expression" contains the text:

text of field "Data_1" + text of field "Data_2"
2) Field "Data_1 contains 450
3) Field "Data_2 contains 25.

put evaluate (text of field "Data_1") into it
-- Adds field Data_1 to field Data_2 and puts the
-- result into It

exp Function

Syntax
exp(<number>)

Description
Returns the result of the constant e (2.7182818) raised to the power of the
specified number. In other words, this function returns e^<number>.
Also see the ln function.

Parameter
The <number> parameter is any expression that yields a number.

Example
put exp(3) into it

-- Puts 20.08553692318767 into It

floor Function

Syntax
floor(<number>)

Description
Returns the largest integer that is less than or equal to <number>.
Also see the ceiling function.

Parameter
The <number> parameter is any expression that yields a number.

Examples
put floor(-35.7) into it

-- Puts -36 into It

put floor(543.93) into Approximate
-- Puts 543 into Approximate

hypotenuse Function

Syntax
hypotenuse(<length>,<length>)

Description
Returns the length of the hypotenuse of a right triangle given the length of the
other two sides.

Parameter
The <length> parameter is any expression that yields a number.

Example
put hypotenuse(3,4) into it

-- Puts 5 into It

itemCount Function

Syntax
itemCount(<expression>)

Description
Returns the number of items in a comma-separated list. Literal expressions must
be enclosed in quotation marks.

Parameter
The <expression> parameter is any expression that yields a list of zero or more
items.

Examples
put itemCount("19,24,and,for,3") into Count

-- Puts 5 into Count
send selectAll

-- Select all objects on the page
step i from 1 to itemCount(selection)

-- Repeat the loop for each item in the selection
move item i of selection by 1440,1440

-- Moves each item on the page
end step

keyState Function

Syntax
keyState(<key>)

Description
Returns whether the specified key is pressed. The returned value is either down,
meaning that the key is pressed, or up, meaning that the key is not pressed. For
details about built-in messages, see Chapter 3, "Messages and Properties," in
Using OpenScript.

Parameter
The <key> parameter is a key constant or integer value that represents a key.
Several of the key constants are for use with international versions of Windows;
they are keyKana, keyRomanji, keyZenkaku, keyHiraGana, keyKanji,
keyConvert, keyNonConvert, keyAccept, and keyModeChange. Other key
constants may change for some keys from country to country so care should be
taken in using this function in applications that may be used in more than one
country. The Keychar message provides another way to intercept keystrokes and
refers to characters by their ANSI code which is more consistent in different
countries.
See Key constants for a list of the key constants and their integer values.

Example
if keyState(keyPrior) is down then

go to previous page
-- Go to the previous page if PgUp is pressed

end if

The following handler tests whether the Num Lock key is on when the focus
moves to a field.
to handle enterField

system numLock
-- Create a system variable called numLock

if keyState(keyNumLock) is "down"
set numLock to true

-- Set numLock to indicate state of Num Lock key
else

set numLock to false
end

end enterField

ln Function

Syntax
ln(<number>)

Description
Returns the natural logarithm, or base e logarithm, of a number.
Also see the exp function.

Parameter
The <number> parameter is any expression that yields a number.

Example
put ln(5) into it

-- Puts 1.6094379124341 into It

log Function

Syntax
log(<number>,<base>)

Description
Returns the logarithm of a number in a specified base.

Parameters
The <number> and <base> parameters are expressions that yield numbers.

Example
put log(5,2) into it

-- Puts the base 2 logarithm of 5, or 2.321928094887362,\
-- into It

lowercase Function

Syntax
lowercase(<string>)

Description
Returns a string consisting of the lowercase equivalent of the <string>
parameter. This function only acts on characters that have a lowercase equivalent
in the ANSI character set.

Parameter
The <string> parameter is any expression that yields a string.

Example
In the following example, if field Text contains the string "Give Me a 5-letter
Word:"

put lowercase(text of field "Text") into text of\
field "Text"
-- Puts "give me a 5-letter word:" into the field

max Function

Syntax
max(<list>)

Description
Returns the highest value from a list of numbers.

Parameter
The <list> parameter is any expression that yields a list of numbers separated
by commas.

Example
get max(23.7,16,45,89,-32) -- Puts 89 into It

menuState Function

Syntax
menuState(<menu item> [at <level>])

Description
Returns a string indicating whether a menu item is active and checked. The
possible returned values are shown in the following table.
Values returned by the menuState function
This value... Means...
active,checked The menu item is active (not dimmed or

removed) and is checked
inactive,checked The menu item is inactive (dimmed or

removed) and is checked
active,unchecked The menu item is active (not dimmed or

removed) and is not checked
inactive,unchecked The menu item is inactive (dimmed or

removed) and is not checked

If a level is specified, the menuState function returns the state of the menu item
at that working level. If a level is not specified, the state is returned for the
current working level.    If the specified menu item is not on a menu, the
menuState function returns null.

Parameters
The <menu item> parameter is the name of a command as it appears on a
menu. If you want, you can omit leading numerals and any non-alphanumeric
characters (such as spaces and punctuation, but not underscores) so that the
name matches the message that ToolBook sends when a user chooses the menu
item.
The <level> parameter must be author, reader, or both.

Example
to handle Introduction

-- Handles a message for a user-defined menu command
if menuState(Introduction) is "active,unchecked"

-- Check the menu command and go to the appropriate
-- lesson book
check menuItem "Introduction" at both
save changes to this book
go to book "c:\lessons\intro.tbk"

else
uncheck menuItem "Introduction" at both

end if
end Introduction

min Function

Syntax
min(<list>)

Description
Returns the lowest value from a list of numbers.

Parameter
The <list> parameter is a group of zero or more numbers separated by
commas.

Example
put min(2.5,4,12,1,-3,8) into it

-- Puts -3 into It

objectFromPoint Function

Syntax
objectFromPoint(<location>)
Returns the unique name of the object at a specified location on the current page
or background. If more than one object occupies the specified location,
objectFromPoint returns the unique name of the object on the top-most layer. If
there is no object at the specified location on the page or background,
objectFromPoint returns null.

Parameter
The <location> parameter defines a location in page coordinates (1440/inch). It
can be any two numbers separated by a comma, or any expression that yields
two numbers separated by a comma.

Example
If you put the following handler in a button script, the speaker will sound only
when the mouse button is pressed and released over that button. If the mouse
button is pressed over that button, but released elsewhere, ToolBook instead
displays a message.
to handle buttonUp location

-- Location is a parameter for the buttonUp message
if objectFromPoint(location) = target

-- Target is the button if and only if the mouse
-- button was pressed over that button

beep 1 -- Beep once
else

request "You released the mouse button" &&\
"somewhere else."

end if
end buttonUp

offset Function

Syntax
offset(<string1>,<string2>)

Description
Returns the character position of the first occurrance of <string1> in
<string2>. The returned value is 0 if the <string1> is not found in the
<string2>.

Parameters
The <string1> and <string2> parameters are both expressions that yield
strings.

Examples
put offset(space,"John Brown") into FirstName

-- Puts 5 into FirstName
put offset("*", text of field "Definitions") into it

-- Puts the number of characters from the beginning of
-- the text of the field through the first * into It

pointer<type> Function

Syntax
pointer<type> (<offset>, <pointer>[,<new value>])

Description
Puts the value specified by <new value> into the location that is offset by
<offset> bytes from the beginning of the data referenced by the <pointer>
parameter. This function can also be used to get the value of data offset by
<offset> bytes from the location being referenced by the <pointer>
parameter.

Parameters
The <type> parameter is the literal data type that is being referenced. This
parameter can have the value BYTE, INT, WORD, LONG, DWORD, FLOAT, DOUBLE,
STRING, or POINTER.
The <offset> parameter is an expression that evaluates to the number of bytes
offset from the beginning of the data being referenced.    The <pointer>
parameter is an expression that evaluates to the pointer.    The <new value>
parameter is an expression that evaluates to the new value for the value at the
location that is offset by <offset> bytes from the beginning of the data
referenced by the <pointer> parameter.

Example
set fileName to pointerSTRING(9,fileNamePointer)

-- Sets the container fileName to the value of the data
-- at the location offset 9 bytes from the location being
-- pointed to by the pointer fileNamePointer

set oldValue to pointerCHAR(3,p,charToANSI("A"))
-- Sets oldValue to the value of the data at the location
-- that is offset 3 bytes from the location pointed to by
-- pointer p, then assigns the value 65 to that location

random Function

Syntax
random(<integer>)

Description
Returns a random integer between 1 and a specified integer, inclusive. For details
about initializing the random-number generator, see the seed command.    The
random function is useful for applications such as games that need to behave
randomly.

Parameters
The <integer> parameter is any positive integer from 1 to 32767, inclusive.

Example
put random(22456) into it

-- Puts a random number between 1 and 22,456 into It

round Function

Syntax
round(<number>)

Description
Returns a number rounded to the nearest integer. To truncate the decimal portion
of a number without rounding, see the truncate function.

Parameter
The <number> parameter is any expression that yields a number.

Examples
In the following example, if field Data contains the value 10998.67:
put round(text of field "Data") into it

-- Puts 10999 into It

put round(1.5) into it
-- Puts 2 into It

put round(1.4) into it
-- Puts 1 into It

put round(-1.4) into it
-- Puts -1 into It

sin Function

Syntax
sin(<angle>)

Description
Returns the sine of an angle that is measured in radians. The formula for
converting degrees to radians is radians = degrees * (PI/180).

Parameter
The <angle> parameter is any expression that yields a number.

Example
To calculate the sine of a 30-degree angle:
set radians to 30 * (pi/180)

-- Radians is a variable
put sin(radians) into it

-- Puts 0.4999999999999999 into It

sinh Function

Syntax
sinh(<angle>)

Description
Returns the hyperbolic sine of an angle that is measured in radians. The formula
for converting degrees to radians is radians = degrees * (PI/180).

Parameter
The <angle> parameter is any expression that yields a number.

Example
To calculate the hyperbolic sine of a 30-degree angle:
set radians to 30 * (pi/180)

-- Radians is a variable
put sinh(radians) into it

-- Puts 0.5478534738880397 into It

sqrt Function

Syntax
sqrt(<number>)

Description
Returns the square root of a number.

Parameter
The <number> parameter is any expression that yields a non-negative number.

Example
put sqrt(144) into it

-- Puts 12 into It

sum Function

Syntax
sum(<list>)

Description
Returns the sum of a list of numbers.

Parameter
The <list> parameter is any expression that yields a group of one or more
numbers separated by commas or end-of-line characters.

Examples
put sum(1,2,3,4) into BowlingPins

-- Puts 10 into the variable BowlingPins

get sum(1,2,3,4,5)
-- Puts 15 into It

tan Function

Syntax
tan(<angle>)

Description
Returns the tangent of an angle measured in radians. The formula for converting
degrees to radians is radians = degrees * (PI/180).

Parameters
The <angle> parameter is any expression that yields a number.

Example
To calculate the tangent of a 30-degree angle:
set radians to 30 * (pi/180)

-- Radians is a variable
put tan(radians) into it

-- Puts 0.5773502691896256 into It

tanh Function

Syntax
tanh(<angle>)

Description
Returns the hyperbolic tangent of an angle that is measured in radians. The
formula for converting degrees to radians is radians = degrees * (PI/180).

Parameters
The <angle> parameter is any expression that yields a number.

Example
To calculate the hyperbolic tangent of a 30-degree angle:
set radians to 30 * (pi/180)

-- Radians is a variable
put tanh(radians) into it

-- Puts 0.4804727781564516 into It

textFromPoint Function

Syntax
textFromPoint(<location>)

Description
Returns two numbers separated by a comma, indicating the text line number and
character number in a field or record field at a specified location. The first number
is equal to the number of text lines from the beginning of a field’s text to the
character at the specified location. The second number is equal to the number of
characters between the character at the specified location and the first character
of the text line containing the character at the specified location. For example, if a
reader clicks the second character in the third text line of a field, the
textFromPoint function returns 3,2. If <location> falls on a field's border
textFromPoint will return -1,-1.
ToolBook always evaluates this function in the context of a specific field. When
ToolBook evaluates this function in a field’s script, ToolBook returns a character
from that field. If you use this function in the script for a field or other object to
return a character from a different field, you must specify which field you want
the character to come from; this is illustrated in the second example.

Parameter
The <location> parameter is any two expressions, separated by a comma, that
each yield a number, or any single expression that yields two numbers separated
by a comma, that define a location in page coordinates (1440/inch).

Examples
-- Put this handler in a field's script to select the
-- paragraph a reader clicks on. The field must be activated
-- for this script to work.
to handle buttonUp loc

get item 1 of textFromPoint(loc)
if it > 0 then

select textLine it of my text
end

end buttonUp

-- By putting this handler in a page's script, you can cause
-- ToolBook to delete any character the reader clicks on in
-- any activated field on that page
to handle buttonUp loc

-- Check the reader clicked on a field
if object of target = field

get textFromPoint(loc) of target
if item 1 of it > 0 then

clear character (item 2 of it) of\
textLine (item 1 of it) of text of target

end
end

end buttonUp

textLineCount Function

Syntax
textLineCount(<string>)

Description
Returns the number of text lines in an expression. For details about text lines, see
the textLine special term.

Parameter
The <expression> parameter is any expression that yields a string.

Example
In the following example, if field List 1 contains six text lines:
get textLineCount(text of field "List 1")

-- Puts 6 into It

truncate Function

Syntax
truncate(<number>)

Description
Returns a truncated number. Everything to the right of the decimal point is
removed, leaving only the integer portion to the left of the decimal point. The
returned value is not rounded. To round a number, see the round function.

Parameter
The <number> parameter is any expression that yields a number.

Example
put truncate(468.97) into commandWindow

-- Displays 468 in the Command window

uppercase Function

Syntax
uppercase(<string>)

Description
Returns a string consisting of the uppercase equivalent of the <string>
parameter. Characters that lack an uppercase equivalent in the ANSI character
set are returned unchanged.

Parameters
The <string> parameter is any expression that yields a string.

Example
set text of field "Name" to uppercase(text of field "Name")

-- Makes all of the characters in field Name uppercase

wordCount Function

Syntax
wordCount(<string>)

Description
Returns the number of words in an expression.

Parameter
The <expression> parameter is any expression that yields a string.

Example
put wordCount("The Rise and Fall of the Roman Empire") into it

-- Puts 8 into It

Using DLLs with ToolBook Quick reference
Overview
Linking a DLL and declaring its functions
Unlinking a DLL
Calling a DLL’s functions from a script
Working with OpenScript, DLLs, and pointers
Executing OpenScript commands from a DLL
Standard ToolBook DLLs:

TBKDB3.DLL
TBKFILE.DLL
TBKWIN.DLL

Using DLLs with ToolBook

Overview
By using DLLs (Windows Dynamic Link Libraries) with ToolBook, you can extend
ToolBook’s capabilities so that external code and resources can be shared by
several books. Once a DLL is linked to ToolBook, you can call the DLL’s functions
from a script.
This appendix contains an overview of how to link a DLL to ToolBook and then call
its functions from a script. In addition, this appendix contains an alphabetical
reference of OpenScript DLL commands and pointer functions.
Note: This discussion is intended for advanced users with experience
programming for Microsoft Windows.
Dynamic Link Libraries are separate programs that Windows applications can
dynamically link to and call to perform useful tasks. You can write your own DLLs,
and you can call functions from the DLLs included with ToolBook and Windows.
The DLLs included with ToolBook are separate files. The DLLs included with
Windows are modules that are part of the Windows executable files. For details
about writing your own DLLs, see the documentation for the Microsoft Windows
Software Developer’s Kit.
The general steps to call a DLL’s functions from OpenScript are:
1. Link the DLL to ToolBook with a handler containing the linkDLL Definition

control structure. This declares each function you want to call in the DLL.
Once the DLL is linked, you can simply call the functions in the DLL from a
script in the same way you call OpenScript functions.

2. Include statements in a script to call the functions in the DLL.
3. When you no longer need to call the DLL’s functions, unlink the DLL to free

system resources with the unlinkDLL command.

For details about calling specific routines from one of the DLLs included with
ToolBook, see the on-line documentation for the DLL.

Linking a DLL and declaring its functions
You link a DLL and declare its functions with a linkDLL control structure.
When you declare the functions, you also declare their return types and
parameter types. Typically, you link the DLL and declare its functions in a
book’s enterBook handler so the functions are available to the scripts in the
book immediately after the book is opened. For example, the following
linkDLL control structure links a DLL named stat.dll with a book and
declares the function amort. This function has a word return type and has
one float and two word parameter types.
linkDLL "stat.dll"

word amort(float, word, word)
end linkDLL

Unlinking a DLL
When you no longer need the routines from a DLL, it’s a good idea to unlink the
DLL to free system resources. You use the unlinkDLL command to unlink a DLL.
Placing this command in a leaveBook handler ensures that system resources are
freed when you close the book. For example, the following unlinkDLL command
unlinks the DLL named STAT.DLL:
unlinkDLL "stat.dll"

Calling a DLL’s functions from a script
After you have included a linkDLL control structure in a handler, and after
ToolBook executes that handler, you can call the DLL’s functions from a script. To
call a DLL’s function from a script, you use the function in a statement exactly as
you would use any OpenScript function.
For example, the following statement calls the amort function located in the DLL
named STAT.DLL, which was declared in a previous example. This statement
passes the parameters 0.12, 15000, and 36 to the amort function, gets the
returned value, and places the returned value into the variable monthPmt.
set monthPmt to amort(0.12, 15000, 36)

Some DLL functions look like commands, but you cannot use the functions as you
use OpenScript commands. You must always use DLL functions as you use
OpenScript functions. For example, assume you want to set the current directory
with the setCurrentDirectory function in the DLL named TBKFILE.DLL. You
cannot use this function as follows, because it is not valid syntax for an
OpenScript function:
to handle buttonUp

setCurrentDirectory("c:\bin")
-- This statement is incorrect

end buttonUp

Instead, you must use the function like this:
to handle buttonUp

get setCurrentDirectory("c:\bin")
-- This statement is correct

end buttonUp

Alternatively, you could use setCurrentDirectory with put or set or in any
other context that is valid for an OpenScript function. This example uses get
because it conveniently places the value returned by setCurrentDirectory into
It.

Working with OpenScript, DLLs, and pointers
OpenScript includes several functions to work with pointers for various data
types. A pointer specifies the location of a structure in global memory. You can
dereference a pointer to get or set a member of the structure.
For example, the following linkDLL structure links the DLL named KERNEL,
which is available with Microsoft Windows. This linkDLL structure declares the
functions openFile, globalAlloc, globalFree, globalLock, and
globalUnlock as well as the return data types and parameter types for these
functions.
Note that ToolBook will not substitute Windows constants. For details about these
Windows functions, see the Microsoft Windows Software Developer’s Kit.
linkDLL kernel

word fileOpen=openFile(string, pointer, word)
-- Declare the function openFile so that the alias
-- fileOpen can be used in scripts because openFile
-- is a keyword in OpenScript

word globalAlloc(word, dword)
word globalFree(word)
pointer globalLock(word)
word globalUnlock(word)

end linkDLL

The functions declared in the previous handler give you the ability to dynamically
allocate global memory from ToolBook, open the specified file, and get the file’s
complete path name. You could include the following statements in a script to call
functions from the DLL named KERNEL:
set gmem to globalAlloc(0,256)

-- Sets the value of the container gmem to the file handle
-- returned by globalAlloc when allocating global memory as
-- 256 bytes of fixed memory (GMEM_FIXED)

set lpofstruct to globalLock(gmem)
-- Sets the value of the container lpofstruct to the long
-- pointer to the memory object returned by locking global
-- memory at location gmem

set hfile to fileOpen("filename.tbk", lpofstruct, 0)
-- Sets the container hfile to the file handle of
-- FILENAME.TBK. The lpofstruct parameter is a long pointer
-- to the data structure OFSTRUCT (open file structure),
-- which represents the open file, and 0 indicates the file
-- is being opened to be read (OF_READ).

set xopenFile to pointerString(8, lpofstruct)
-- Sets the container xopenFile to the complete path name of
-- the opened file which is offset 8 bytes from the beginning
-- of OFSTRUCT. lpofstruct is a pointer to the data structure
-- OFSTRUCT for the file FILENAME.TBK.
-- The path name is a zero-terminated string.
-- pointerString is a built-in OpenScript function

Executing OpenScript Commands from a DLL
You can write DLLs that send messages to access OpenScript commands directly
from other Windows applications. When the DLL is linked, the application can
send Windows messages to the ToolBook main window to execute statements
with OpenScript execute and evaluate commands. With the execute form of the
message, the main window interprets lParam as a long pointer to a zero-
terminated string and executes it as a set of OpenScript statements. The evaluate
form of the message is similar except that the string is evaluated as an
expression with the result returned to the caller.
To use this feature in a DLL, you must first register two Windows messages (the
following examples are in C):
WORD wExecute = RegisterWindowMessage ("TBM_EXECUTE")
WORD wEvaluate = RegisterWindowMessage ("TBM_EVALUATE")

Also, the code must have obtained the handle for the window of each ToolBook
instance that is to receive these messages.
The execute message is used as follows:
SendMessage (winHandleMain,wExecute,bNoErrBox,(LONG)lpCommands)

where winHandleMain indicates the window handle, bNoErrBox is true if
sysSuspend should be set to false during command execution, and lpCommands
points to a zero-terminated string containing the OpenScript statements to be
executed. The message result is true if the statements execute successfully, or
false if there is an error.
The evaluate message is used as follows:
SendMessage (winHandleMain,wEvaluate,bNoErrBox,(LONG)lpEvalBuff)

where bNoErrBox is true if sysSuspend should be set to false during command
execution. The message result is true if the statements execute successfully or
false if there is an error. The lpEvalBuff pointer must point to an instance of the
following structure:
struct {

LPSTR lpExpression;
WORD wRetType;
LPSTR lpRetValue;
int nRetValueLength;

};

In this structure, lpExpression must point to a zero-terminated string containing
the OpenScript expression to evaluate, wRetType identifies the type of the
expected return value, lpRetValue points to a memory block where the return
value should be stored, and nRetValueLength contains the length of the return
value memory block if the type is a STRING. Note that if the return type is STRING
and nRetValueLength is zero, lpRetValue is not used.
The value types of the wRetType field are:
0    CHAR 2    INT 4    LONG 6    FLOAT 8    POINTER
1    BYTE 3    WORD 5    DWORD 7    DOUBLE 9    STRING
STRING specifies a zero-terminated string.

When the OpenScript statements are executed or evaluated, self and target are
bound to the current page and the value of It is null.
The following example uses both the execute and evaluate Windows messages.
This C code first determines the number of pages in the book displayed in an
instance whose main window handle is winHandleMain and then constructs a
command that goes to each page.
typedef struct {

LPSTR lpExpression;
WORD wRetType;
LPSTR lpRetValue;
int nRetValueLength;

} EGMEVAL;

#define EVALTYPE_WORD 3
#define COMMAND "step i from 1 to %u; go to page i; end"
void foo (WINHANDLE winHandleMain)

{
WORD wExecute = RegisterWindowMessage("TBM_EXECUTE");
WORD wEvaluate = RegisterWindowMessage("TBM_EVALUATE");
WORD wPages;
EGMEVAL Eval;
CHAR Command[64];

Eval.lpExpression = "pageCount of this book";
Eval.wRetType = EVALTYPE_WORD;
Eval.lpRetValue = (LPSTR)&wPages;

if (!SendMessage(winHandleMain,wEvaluate,TRUE,
(LONG)(LPSTR)&Eval))

{
return

}

wspwintf(Command,COMMAND,wPages);

SendMessage(winHandleMain,wExecute,TRUE,
(LONG)(LPSTR)Command);

}

Standard ToolBook DLL extensions to OpenScript
The Dynamic Link Libraries described below are provided with ToolBook.
Before you can call the functions in a DLL from a script, you must first link the DLL
to ToolBook and declare the functions you want to use with the linkDLL control
structure. For details, see also Appendix B, "Using DLLs with ToolBook," in the
Using OpenScript manual.

TBKDB3.DLL
The functions in TBKDB3.DLL allow you to work with dBASE IIITM and dBASEIII+TM
files from a ToolBook script. You should have some familiarity with dBASE
programming in order to use the functions in these DLLs. These functions cannot
be used by any Windows or OS/2 application other than ToolBook.

TBKFILE.DLL
The functions in TBKFILE.DLL allow you to copy and delete files as well as perform
other file actions from a script.

TBKWIN.DLL
The functions in TBKWIN.DLL allow you to determine the characteristics of a
display device, determine which fonts are available for display and printing, and
set as well as get variable values in the WIN.INI file from a script.

TBKDB3.DLL function index
Files
closeAllDBFiles deleteDBFile packDBFile
closeDBFile getDBFileName selectDBFile
createDBFile openDBFile
Records
firstDBRecord lastDBRecord previousDBRecord
gotoDBRecord nextDBRecord
getDBNavigateToDeleted getDBRecordNumber setDBRecordDeleted
getDBRecordCount removeDBRecords writeDBRecord
getDBRecordDeleted setDBNavigateToDeleted
Field
getDBFieldCount getDBFieldType getDBFieldWidth
getDBFieldName getDBFieldValue setDBFieldValue
getDBFieldPrecision
Index
checkDBIndex deselectDBIndexFile openDBIndexFile
closeDBIndexFile getDBIndexExpression reindexDBFile
createDBIndexFile getDBIndexFileName selectDBIndexFile
Key
findDBKey getDBKeyValue nextDBKey
firstDBKey lastDBKey previousDBKey
getDBKeyType
Tag
createDBFieldTag freeDBFieldTag setDBFieldTag
Error
getDBErrorString
Date
getDBDateFormat setDBDateFormat

TBKFILE.DLL function index
Directory
createDirectory removeDirectory setCurrentDirectory
getCurrentDirectory
File
copyFile getFileDate moveFile
fileExists getFileList removeFile
getFileAttributes getFileSize setFileAttributes
Drive
getCurrentDrive getFreeDiskSpace setCurrentDrive
getDriveList
DOS environment
getDOSEnvironmentString

TBKWIN.DLL function index
Color model conversions
RGBtoHLS HLStoRGB
Display capabilities
displayBitsPerPixel horizontalDisplayRes verticalDisplayRes
displayColorPlanes horizontalDisplaySize verticalDisplaySize
Coordinate conversions
clientFromPage screenFromClient xUnitsFromPixels
clientFromScreen screenFromPage yPixelsFromUnits
pageFromClient xPixelsFromUnits yUnitsFromPixels
pageFromScreen
Other display information
displayAspectX displayAspectY displayLogPixelsY
displayAspectXY displayLogPixelsX
Fonts
displayFonts printerFonts
Popup menu
popMenu
User Profile (WIN.INI file)
getWinIniVar setWinIniVar
Application control
yieldApp

checkDBIndex Function in TBKDB3.DLL

Syntax
checkDBIndex(<file name>)

Description
Checks the specified index file for accuracy against the current dBASE file.
To declare this function, include the following statement in the linkDLL control
structure:
INT checkDBIndex(STRING)

Parameters
<file name> The index file to check and is any expression that evaluates

to a valid index file name.
Returns

1 the index file is accurate
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-1 if there were too many records to check
-18 if a bad key reference was found
-19 if multiple keys refer to same record
-25 if there is a record newer than the corresponding key
-26 if a key was not sorted
-22 if there was no key for a record
-53 if there is no index file with the specified name
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

Example
to handle buttonUp

get checkDBIndex("c:\egypt\hiero.???")
if it <= -3

local newFileName
ask "Index file not accurate. Try new index file?"
if sysError <> cancel and it <> null

put it into newFileName
get checkDBIndex(newFileName)

end
else

request "Accurate Index file"
end if

end buttonUp

clientFromPage Function in TBKWIN.DLL

Syntax
clientFromPage(<PageScroll>, <Magnification>, <point|rectangle>)

Description
Converts a set of coordinates in ToolBook page units into coordinates in pixels
relative to the top left corner of the client area of the ToolBook window      The
client area is defined as the working area below the menu bar, but not including
the scroll bars.
To declare this function, include the following statement in the linkDLL control
structure:
STRING clientFromPage(STRING, INT, STRING)

Parameters
<PageScroll> always the value of sysPageScroll
<Magnification> always the value of sysMagnification
<point|rectangle> either a string or an expression that evaluates to a point or a

rectangle. A point is a string containing two numbers (x and
y coordinates) separated by a comma. A rectangle is a string
containing four numbers (coordinates of top left and bottom
right of the rectangle) separated by commas.

Returns
If no error occurs, this function returns the coordinates of either a point or a
rectangle, depending on the last parameter.
If an error occurs, the function returns null and sysError is set to a negative
value:
-20 if there was not enough memory to execute the function
-99 if the first or last parameter is invalid

Example
get clientFromPage(sysPageScroll, sysMagnification,\

bounds of rectangle "frame" of this page)
-- Find the location of rectangle "frame", in pixels,
-- relative to the top left corner of the working area of
-- the ToolBook window.
show CommandWindow at clientFromPage(sysPageScroll, \

sysMagnification, "1200,5675")
-- Show the command window in a specific position
-- relative to items on the page

clientFromScreen Function in TBKWIN.DLL

Syntax
clientFromScreen(<windowHandle>, <point|rectangle>)

Description
Converts a point or rectangle in pixels relative to the top left corner of the screen
into a point or rectangle in pixels relative to the top left corner of the client area.
The client area is defined as the working area below the menu bar, but not
including the scroll bars.
To declare this function, include the following statement in the linkDLL control
structure:
STRING clientFromScreen(WORD, STRING)

Parameters
<windowHandle> always the value of sysWindowHandle.
<point|rectangle> either a string or an expression that evaluates to a point or a

rectangle. A point is a string containing two numbers (x and
y coordinates) separated by a comma. A rectangle is a string
containing four numbers (coordinates of top left and bottom
right of the rectangle) separated by commas.

Returns
If no error occurs, this function returns the coordinates of either a point or a
rectangle, depending on the last parameter.
If an error occurs, it returns null and sysError is set to a negative value:
-20 if there was not enough memory to execute the function
-30 if the <windowHandle> parameter is invalid
-99 if the <point|rectangle> parameter is invalid

Example
get clientFromScreen(sysWindowHandle, "0,0")
put "The top left corner of the screen is at" && it \

&& "(in pixels) relative to the top left corner of" \
& "the client area." into the commandWindow

closeAllDBFiles Function in TBKDB3.DLL

Syntax
closeAllDBFiles()

Description
Closes all open dBASE files and index files.
To declare this function, include the following statement in the linkDLL control
structure:
INT closeAllDBFiles()

Parameters
None

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-30 if the function failed to close all files for any other reason
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

Example
to handle exit

-- Advances the record pointer to the first record
-- before closing all files
get firstDBRecord()
get closeAllDBFiles()

end exit

closeDBFile Function in TBKDB3.DLL

Syntax
closeDBFile(<file name>)

Description
Closes the specified dBASE file and all related index files.
To declare this function, include the following statement in the linkDLL control
structure:
INT closeDBFile(STRING)

Parameters
<file name> any expression that evaluates to the name of the dBASE file

to close.

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-28 if there is no dBASE file with the specified name
-29 if the index file could not be closed
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

Example
to handle error value, string

request "Error (" & val & ") " & string
get closeDBFile(fileName)

end error

closeDBIndexFile Function in TBKDB3.DLL

Syntax
closeDBIndexFile(<file name>)

Description
Closes the specified dBASE index file.
To declare this function, include the following statement in the linkDLL control
structure:
INT closeDBIndexFile(STRING)

Parameters
<file name> any expression that evaluates to the name of the dBASE

index file to close.

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-53 if there is no index file with the specified name
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

Example
to handle error value, string

request "Error (" & val & ") " & string
get closeDBIndexFile(fileName)

end error

copyFile Function in TBKFILE.DLL

Syntax
copyFile(<source file>, <destination>)

Description
Copies the specified file and names the copied file with the specified name. You
can use copyFile to copy files from one disk to another.
To declare this function, include the following statement in the linkDLL control
structure:
INT copyFile(STRING, STRING)

Parameters
<source file> any expression that evaluates to the path and file name of

the file to copy. If there is no match for the specified source
file, copyFile will copy nothing to the specified destination
file.

<destination> either a valid path, or the name for the copy of the source
file. If a file name is specified, it may be prefixed with a
path. This parameter is any expression that evaluates to a
valid path or to a valid file name.

Returns
1 if the function was successful
0 if a undetermined error occured
-1 if there was a file I/O error
-8 if the source file could not be opened
-9 if the destination file could not be opened

Examples
get copyFile("taxhlp.tbk", "c:\finance\tax\taxhlp1.tbk")

-- copies the file taxhlp.tbk and renames it taxhlp1.tbk

get copyFile(fileName1, fileName2)
-- copies the file specified by fileName1 to the file
-- specified by fileName2

createDBFieldTag Function in TBKDB3.DLL

Syntax
createDBFieldTag(<number of fields>)

Description
Creates a field tag that specifies the number of fields in a dBASE file to be created
with the createDBFile function. For details about creating a dBASE file, see
createDBFile.
To declare this function, include the following statement in the
linkDLL control structure:
INT createDBFieldTag(WORD)

Parameters
<number of fields> the number of fields the tag can contain. It can be any

expression that evaluates to a valid number of fields for a
dBASE file.

Returns
If no error occurs, createDBFieldTag returns a number that is the <field tag
number> parameter to reference the tag in the setDBFieldTag function, the
createDBFile function, and the freeDBFieldTag function. If an error occurs,
such as not enough memory, createDBFieldTag returns 0.

Example
to handle newDBFile

local dbFileName, noFields, fieldNames, fieldType,\
tagNumber, fieldWidth, i

ask "What is the name of the new DB file?"
put it into dbFileName
ask "How many fields do you want in the new DB file?"
put it into noFields
ask "Type the field names you want separated by a comma"
put it into fieldNames

if itemCount(fieldNames) <> noFields
do

request "The number of field names and the" &&\
"number of fields do not agree"

ask "How many fields do you want for the" &&\
"new DB file?"

put it into noFields
ask "Type the field names you want" &&\

"separated by a comma"
put it into fieldNames

until itemCount(fieldNames) = noFields
end if
-- iterate through each field name and ask for field
-- information
step i from 1 to itemCount(fieldNames)

put item i of fieldNames into it
ask "What is field type for field " & it & "?"
put it && ", " into item i of fieldType
put item i of fieldNames into it
ask "What is field width for field " & it & "?"
put it && ", " into item i of fieldWidth

end step
set sysError to 1
-- get return value for tag number
put createDBFieldTag(noFields) into tagNumber

if tagNumber = 0
request "Error creating field tag"
break newDBFile

end if
step i from 1 to itemCount(fieldNames)

get setDBFieldTag(tagNumber,i,item i of\
fieldNames, item i of fieldType, item i of\
fieldWidth, 0)

if it <= 0
request "Error setting field tag"
break newDBFile

end if
end step
get createDBFile(dbFileName, itemCount(fieldNames),\

tagNumber, 1)
if it <= 0

request "Error creating file"
break newDBFile

end if
get freeDBFieldTag(tagNumber)

if it <= 0
request "Error freeing field tag"
break newDBFile

end if
end newDBFile

createDBFile Function in TBKDB3.DLL

Syntax
createDBFile(<file name>, <field tag number>, <preserve existing>)

Description
Creates and opens a dBASE file with the specified name and number of fields
using the contents of the field tag data structure. The number of fields and their
potential values depend on parameters passed with the createDBFieldTag and
setDBFieldTag functions.
The procedure for creating a dBASE file with the dBASE DLL is as follows:
1. Create a field tag of the appropriate size with the createDBFieldTag

function. This function's parameter indicates the number of fields the tag
can contain. The return value from this function is a number used to
reference the field tag when calling the createDBFile function and the
freeDBFieldTag function.
A field tag is an array of data structures used to create a dBASE file.

2. Set the contents of the field tag with the setDBFieldTag function. This
function's parameters indicate for each field the tag number, the name,
the type and the decimal precision (numeric fields only).

3. Call the createDBFile function with the appropriate parameters to create
the dBASE file based on the contents of the field tag.

4. Free the field tag with the freeDBFieldTag function.

To declare this function, include the following statement in the linkDLL control
structure:
INT createDBFile(STRING,WORD, WORD)

Parameters
<file name> any expression that evaluates to the name of the dBASE

file to be created.
<field tag number> the return value from the createDBFieldTag function,

which must be called before calling the createDBFile
function.

<preserve existing> if the dBASE file, <file name> exists then if this
parameter is 1, ToolBook will not create the new file nor
delete the existing one. If this paremeter is 0, ToolBook
will delete the existing file and create a new one.

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-27 if the dBASE file could not be created

If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

Example
to handle newDBFile

local dbFileName, noFields, fieldNames, fieldType
local tagNumber, fieldWidth, i
ask "What is the name of the new DB file?"
put it into dbFileName
ask "How many fields do you want in the new DB file?"
put it into noFields
ask "Type the field names you want separated by a comma"
put it into fieldNames

if itemCount(fieldNames) <> noFields
do

request "The number of field names and the" &&\
"number of fields do not agree"

ask "How many fields do you want for the" &&\
"new DB file?"

put it into noFields
ask "Type the field names you want" &&\

"separated by a comma"
put it into fieldNames

until itemCount(fieldNames) = noFields
end if
--iterate through each field name and ask for field
--information
step i from 1 to itemCount(fieldNames)

put item i of fieldNames into it
request "What is field type for field " & it & "?"
put it && ", " into item i of fieldType
put item i of fieldNames into it
request "What is field width for field " & it & "?"
put it && ", " into item i of fieldWidth

end step
set sysError to 1
-- get return value for tag number
put CreateDBFieldTag(noFields) into tagNumber

if tagNumber = 0
request "Error creating field tag"
break newDBFile

end if
step i from 1 to itemCount(fieldNames)

get setDBFieldTag(tagNumber,i,item i of\
fieldNames, item i of fieldType, item i of\
fieldWidth, 0)

if it <= 0
request "Error setting field tag"
break newDBFile

end if
end step
get createDBFile(dbFileName, tagNumber, 1)

if it <= 0
request "Error creating file"
break newDBFile

end if
get freeDBFieldTag(tagNumber)

if it <= 0
request "Error freeing field tag"
break newDBFile

end if
end newDBFile

createDBIndexFile Function in TBKDB3.DLL

Syntax
createDBIndexFile(<file name>, <sort expression>, <unique key>,

<preserve existing>)

Description
Creates and opens a dBASE index file with the specified name and sort
expression. In addition, defines whether each key in the index file must be unique
and whether to delete an existing index file with the same name.
To declare this function, include the following statement in the linkDLL control
structure:
INT createDBIndexFile(STRING, STRING, WORD, WORD)

Parameters
<file name> any expression that evaluates to the name of the index

file to create.
<sort expression> any expression that evaluates to the expression that

defines the index file's sort criteria. The <sort
expression> parameter can include literal field names,
constants, and operators. The result of the sort
expression must be of the type numeric, logical, date, or
character.

Sort expression syntax elements
Type Values
Numeric operators +      -      *      /      **      ^
Character operators +
Relational operators =      <>      #      <      >      <=      >=      $
Logical operators .NOT.    .OR.    .AND.
Functions CTOD;    DATE;    DELETED;    DTOC;    IIF;    RECCOUNT

RECNO;    STR;    TIME;    UPPER;    VAL
Constants .T.    .F.
<unique key> determines whether each key in the index file must be

unique and is any expression that evaluates to an
integer. If the <unique key> parameter has a value of
1, then the uniqueness of each key in the index file will
be maintained. If the <unique key> parameter has a
value of 0, the keys will not be checked for uniqueness.

<preserve existing> if the index file, <file name> exists then if this
parameter is 1, ToolBook will not create the new file nor
delete the existing one. If this paremeter is 0, ToolBook
will delete the existing file and create a new one.

Returns
1 if the function was successful

-3 if there are too many clients for this DLL, or not enough memory
-8 if there is an error in the sort expression, or if the file, the index or the

system got corrupted
-12 if there is no current dBASE file; you must use openDBFile first
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

Example
if createDBIndexFile\

("temp.ndx", "LASTNAME + FIRSTN", 1, 0) = 1then
-- You can now use this index to browse through the
-- records in the order defined by the sort expression

else
-- Handle error

end

createDirectory Function in TBKFILE.DLL

Syntax
createDirectory(<directory name>)

Description
Creates a new directory with the specified name.
To declare this function, include the following statement in the linkDLL control
structure:
INT createDirectory(STRING)

Parameters
<directory name> the name of the directory to be created.

Returns
1 if the function was successful
-3 if the specified path was invalid
-5 if access was denied (for instance, if the current path name was specified)

Examples
get createDirectory("c:\training")
-- Creates a new directory named TRAINING

get createDirectory(dirName)
-- Creates a new directory whose name is the value of
-- the dirName container

deleteDBFile Function in TBKDB3.DLL

Syntax
deleteDBFile(<file name>)

Description
Deletes the specified file and any currently open index files associated with it.
To declare this function, include the following statement in the linkDLL control
structure:
INT deleteDBFile(STRING)

Parameters
<file name> any expression that evaluates to the name of the dBASE file

to be deleted.

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-20 if the function failed because of an out of memory condition
-28 if there is no dBASE file with the specified name
-29 if the index file could not be closed

deselectDBIndexFile Function in TBKDB3.DLL

Syntax
selectDBIndexFile()

Description
If there is a currently selected index file, deselects this file so that it no longer the
current index file. The current index file determines the order in which to navigate
in the current dBASE file. The index file must have been opened previously with
the openDBIndexFile function.
To declare this function, include the following statement in the linkDLL control
structure:
INT deselectDBIndexFile()

Parameters
None

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-12 if there is no current dBASE file; you must use openDBFile first
-13 if there is no current index file; you must use use openDBIndexFile first
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

displayAspectX Function in TBKWIN.DLL

Syntax
displayAspectX()

Description
Returns the relative width of a display device pixel.
To declare this function, include the following statement in the linkDLL control
structure:
INT displayAspectX()

Parameters
None

Returns
If no error occurs, the displayAspectX function returns the relative width of a
device pixel.

displayAspectXY Function in TBKWIN.DLL

Syntax
displayAspectXY()

Description
Returns the relative diagonal width of a display device pixel.
To declare this function, include the following statement in the linkDLL control
structure:
INT displayAspectXY()

Parameters
None

Returns
If no error occurs, the displayAspectXY function returns the relative diagonal
width of a device pixel.

displayAspectY Function in TBKWIN.DLL

Syntax
displayAspectY()

Description
Returns the relative height of a display device pixel.
To declare this function, include the following statement in the linkDLL control
structure:
INT displayAspectY()

Parameters
None

Returns
If no error occurs, the displayAspectY function returns the relative width of a
device pixel.

displayBitsPerPixel Function in TBKWIN.DLL

Syntax
displayBitsPerPixel()

Description
Returns the number of color bits for each pixel.
To declare this function, include the following statement in the linkDLL control
structure:
INT displayBitsPerPixel()

Parameters
None

Returns
If no errors occur, the displayBitsPerPixel function returns the number of
color bits for each pixel.

displayColorPlanes Function in TBKWIN.DLL

Syntax
displayColorPlanes()

Description
Returns the number of color planes for the display device.
To declare this function, include the following statement in the linkDLL control
structure:
INT displayColorPlanes()

Parameters
None

Returns
If no errors occur, the displayColorPlanes function returns the number of color
planes for the display device.

Example
if displayColorPlanes() = 1 then

set s_colorScheme to BlackAndWhite
end

displayFonts Function in TBKWIN.DLL

Syntax
displayFonts(<typeface name>)

Description
Returns the sizes of characters available for display for the specified typeface or
for all the available typefaces.
To declare this function, include the following statement in the linkDLL control
structure:
STRING displayFonts(STRING)

Parameters
<typeface name> null, if you want a list for all the fonts, or the name of the

typeface for which you want the available sizes and styles.
This parameter can be any expression that evaluates to a
null or to a valid typeface name.

Returns
If no error occurs, the returned value depends on the parameter:
o If the parameter is null, the displayFonts function returns a string

composed of textlines. Each textline is a comma-separated list containing
the name of a typeface and the character sizes available for that typeface.

o If the parameter is the name of a typeface, the displayFonts function
returns a comma-separated list containing the typeface name and the
character sizes available for that typeface. However, if the named
typeface is not available, it returns just the name of the typeface.

If an error occurs, the returned value is null and sysError is set to a negative
value.

Example
if displayFonts(null) contains "Terminal" then

set fontFace of field "viewer" to Terminal
else

request "Terminal font not found."
end if
get displayFonts("Tms Rmn")
if it contains ",18" then

request "OK to use a larger size?" with "Yes" or "No"
end if

displayLogPixelsX Function in TBKWIN.DLL

Syntax
displayLogPixelsX()

Description
Returns the number of pixels per logical inch along the width of the display.
To declare this function, include the following statement in the linkDLL control
structure:
INT displayLogPixelsX()

Parameters
None

Returns
If no error occurs, displayLogPixelsX returns the number of pixels per inch
along the width of the display.

Example
put displayLogPixelsX() into commandWindow

displayLogPixelsY Function in TBKWIN.DLL

Syntax
displayLogPixelsY()

Description
Returns the number of pixels per logical inch along the height of the display.
To declare this function, include the following statement in the linkDLL control
structure:
INT displayLogPixelsY()

Parameters
None

Returns
If no error occurs, displayLogPixelsY returns the number of pixels per inch
along the height of the display.

Example
put displayLogPixelsY() into commandWindow

fileExists Function in TBKFILE.DLL

Syntax
fileExists(<file name>)

Description
Determines if the specified file exists.
To declare this function, include the following statement in the linkDLL control
structure:
INT fileExists(STRING)

Parameters
<file name> the name of the file to check for existence and is any

expression that evaluates to a valid path and file name. The
expression cannot contain the wildcard characters ? and *.
If no path is specified for the file the current directory will be
searched followed by directories listed in the PATH
environment variable (in order).

Returns
1 if the file exists
0 if the operation failed
-3 if the specified path name was invalid or specified file was not found.
-15 if the specified drive is invalid
-18 if wildcard characters were used in the specification.
-20 if the function failed due to an out of memory condition

Examples
get fileExists("c:\toolbook\help\help.tbk")
-- Determine if the file HELP.TBK exists in the
-- \TOOLBOOK\HELP directory on drive C:

get fileExists(fileName)
-- Determine if the file whose name is the value of the
-- container fileName exists

findDBKey Function in TBKDB3.DLL

Syntax
findDBKey(<search string>)

Description
Searches the current index file to find the first key that matches the specified
string. If ToolBook finds a match, the matching key becomes the current key and
the record referenced by the key becomes the current record.
When the file is already indexed, this is the fastest way to search for a record.
To declare this function, include the following statement in the linkDLL control
structure:
INT findDBKey(STRING)

Parameters
<search string> the search string that ToolBook searches for a match in the

index file.

Returns
If a matching string in the current index file was found, the findDBKey function
returns 1 (exact find). This function can also return 2 (inexact find), 3 (on next
key after next largest value), or 4 (search value larger than all other values).
If an error occurs, this function returns:
0 if there was an internal error
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-10 if there is no such record, or the record was marked as deleted and the

navigate to deleted records switch is off (see function
getDBNavigateToDeleted)

-12 if there is no current dBASE file; you must use openDBFile first
-13 if there is no current index file; you must use use openDBIndexFile first
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

firstDBKey Function in TBKDB3.DLL

Syntax
firstDBKey()

Description
Makes the first record that uses the first key in the current index file the current
record.    If the navigate to deleted switch is off, this function will skip records
marked as deleted.
To declare this function, include the following statement in the linkDLL control
structure:
INT firstDBKey()

Parameters
None

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-12 if there is no current dBASE file; you must use openDBFile first
-13 if there is no current index file; you must use use openDBIndexFile first
-15 if the database is empty
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

firstDBRecord Function in TBKDB3.DLL

Syntax
firstDBRecord()

Description
Makes the first record in the current dBASE file the current record. If the navigate
to deleted switch is off, this function skips records marked as deleted until an
undeleted record is found.
To declare this function, include the following statement in the linkDLL control
structure:
INT firstDBRecord()

Parameters
None

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-10 if there is no such record (the database is empty or all records are deleted

and the navigate to deleted switch is off)
-12 if there is no current dBASE file; you must use openDBFile first
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

Example
-- do lead read before looping through records
set recordcount to 0
set it to null
get firstDBRecord()

if it <= 0
send error it, "getting first record in dBASE file"
break buttonUp

end if

freeDBFieldTag Function in TBKDB3.DLL

Syntax
freeDBFieldTag(<field tag number>)

Description
Frees the memory used by the field tag created with the createDBFieldTag
function.
To declare this function, include the following statement in the linkDLL control
structure:
INT freeDBFieldTag(WORD)

Parameters
<field tag number> the number returned when creating the tag with the

createDBFieldTag function and is any expression that
evaluates to an existing field tag number.

Returns
1 if the function was successful
-7 if the field tag is invalid
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

Example
to handle newDBFile

local dbFileName, noFields, fieldNames, fieldType
local tagNumber, fieldWidth, i
ask "What is the name of the new DB file?"
put it into dbFileName
ask "How many fields do you want in the new DB file?"
put it into noFields
ask "Type the field names you want separated by a comma"
put it into fieldNames

if itemCount(fieldNames) <> noFields
do

request "The number of field names and the" &&\
"number of fields do not agree"

ask "How many fields do you want for the new"&&\
"DB file?"

put it into noFields
ask "Type the field names you want separated"&&\

"by a comma"
put it into fieldNames

until itemCount(fieldNames) = noFields
end if
-- iterate through each field name and ask for field
-- information
step i from 1 to itemCount(fieldNames)

put item i of fieldNames into it
request "What is field type for field " & it & "?"
put it && ", " into item i of fieldType
put item i of fieldNames into it
request "What is field width for field " & it & "?"
put it && ", " into item i of fieldWidth

end step
set sysError to 1
-- get return value for tag number
put createDBFieldTag(noFields) into tagNumber

if tagNumber = 0
request "Error creating field tag"
break newDBFile

end if
step i from 1 to itemCount(fieldNames)

get setDBFieldTag(tagNumber,i,\
item i of fieldNames, item i of fieldType,\
item i of fieldWidth, 0)

if it <= 0
request "Error setting field tag"
break newDBFile

end if
end step
get createDBFile(dbFileName, itemCount(fieldNames), \

tagNumber, 1)
if it <= 0

request "Error creating file"
break newDBFile

end if
get freeDBFieldTag(tagNumber)

if it <= 0
request "Error freeing field tag"
break newDBFile

end if
end newDBFile

getCurrentDirectory Function in TBKFILE.DLL

Syntax
getCurrentDirectory(<drive letter>)

Description
Gets the current working directory for the specified disk drive.
To declare this function, include the following statement in the linkDLL control
structure:
STRING getCurrentDirectory(STRING)

Parameters
<drive letter> a one-character string containing the letter that designates

the drive.

Returns
If no error occurs, the getCurrentDirectory function returns a string that
contains the path to the current working directory, otherwise sysError is set to:
-1 if an internal error occured
-20 if the function failed due to an out of memory condition

Examples
get getCurrentDrive()
request "The current path is" && it & ":" &
getCurrentDirectory(it) & "."

getCurrentDrive Function in TBKFILE.DLL

Syntax
getCurrentDrive()

Description
Gets the the current disk drive letter.
To declare this function, include the following statement in the linkDLL control
structure:
STRING getCurrentDrive()

Parameters
None

Returns
If no error occurs, the getCurrentDrive function returns a one-character string
containing the current disk drive letter, otherwise it returns null and sets
sysError to a negative value.

Example
request "The current drive is" && getCurrentDrive() & ":"
-- pops up a dialog box showing the current drive.

getDBDateFormat Function in TBKDB3.DLL

Syntax
getDBDateFormat()

Description
Gets the date format currently in use by this DLL.
To declare this function, include the following statement in the linkDLL control
structure:
STRING getDBDateFormat()

Parameters
None

Returns
If this function is successful, it returns a string containing the current date format.
If an error occurs,this function returns null and sysError is set to one of the
following values:
-3 if there are too many clients for this DLL, or not enough memory
-20 if there was not enough memory to execute the function
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

getDBErrorString Function in TBKDB3.DLL

Syntax
getDBErrorString(<error code>)

Description
Returns a string describing the error corresponding to a numeric error code.
To declare this function, include the following statement in the linkDLL control
structure:
STRING getDBErrorString(INT)

Parameters
<error code> any numeric error code returned by a function in this DLL.

Returns
This function returns a string describing the error. If an error occurs in this
function the function returns null and SysError is set to one of the following
values:
-8 if the file, the index or the system got corrupted
-20 if the function failed due to an out of memory condition
-72 if there is no string corresponding to that code
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

getDBFieldCount Function in TBKDB3.DLL

Syntax
getDBFieldCount()

Description
Returns the number of fields in the current dBASE file.
To declare this function, include the following statement in the linkDLL control
structure:
INT getDBFieldCount()

Parameters
None

Returns
If no error occurs, the getDBFieldCount function returns the number of fields in
the current dBASE file. If an error occurs, this function returns:
-3 if there are too many clients for this DLL, or not enough memory
-12 if there is no current dBASE file; you must use openDBFile first
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

Example
if getDBFieldCount() <= 0

send error it, "getting count of fields in dBASE file"
end if

getDBFieldName Function in TBKDB3.DLL

Syntax
getDBFieldName(<field position>)

Description
Returns the name of the field whose column number is specified.
To declare this function, include the following statement in the linkDLL control
structure:
STRING getDBFieldName(WORD)

Parameters
<field position> any expression that evaluates to the column number of

the field in the current dBASE file.

Returns
If no error occurs, getDBFieldName returns the name of the field in the current
dBASE file. If an error occurs, this function returns null and sysError is set to one
of the following:
-3 if there are too many clients for this DLL, or not enough memory
-11 if there is no such field
-12 if there is no current dBASE file; you must use openDBFile first
-20 if the function failed because of an out of memory condition
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

Example
-- loop through the fields in the dBASE file,
-- building background of book
step i from 1 to numFields
get getDBFieldName(i)

if sysError is not null
send error \

sysError, "getting field name in dBASE file"
break buttonUp

end if
-- build list of field names for this file
put it & "," after fldnames
-- draw and insert text into label field
if labels is true

draw field from 0,y to 1500, y + 300
put it into text of the selection

end if
-- draw and name record field
draw recordField from x,y to 9180, y+360
set name of selection to it

increment y by adv
end step

getDBFieldPrecision Function in TBKDB3.DLL

Syntax
getDBFieldPrecision(<field name>)

Description
Returns the number of decimal places for the specified numeric field.
To declare this function, include the following statement in the linkDLL control
structure:
INT getDBFieldPrecision(STRING)

Parameters
<field name> any expression that evaluates to the name of the numeric

field.

Returns
If no error occurs, the getDBFieldPrecision function returns the number of
decimal places for the specified numeric field. If an error occurs, this function
returns:
-3 if there are too many clients for this DLL, or not enough memory
-4 if the field name is invalid
-8 if the file, the index or the system got corrupted
-12 if there is no current dBASE file; you must use openDBFile first
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

getDBFieldType Function in TBKDB3.DLL

Syntax
getDBFieldType(<field name>)

Description
Returns the field type for the specified field name in the current dBASE file.
To declare this function, include the following statement in the linkDLL control
structure:
INT getDBFieldType(STRING)

Parameters
<field name> any expression that evaluates to the name of the field for

which you want the field type.

Returns
If no error occurs, the getDBFieldType function returns:
1 if the field type is character
2 if the field type is logical
3 if the field type is date
4 if the field type is numeric
5 if the field type is memo
If an error occurs, this function returns:
-3 if there are too many clients for this DLL, or not enough memory
-4 if the field name is invalid
-6 if the field type is invalid
-12 if there is no current dBASE file; you must use openDBFile first
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

getDBFieldValue Function in TBKDB3.DLL

Syntax
getDBFieldValue(<field name>)

Description
Returns the value of the specified field for the current dBASE record and current
dBASE file. This is the value as it exists in the record buffer; in other words, if you
made changes to the field with setDBFieldValue, but did not use
writeDBRecor d , this function returns the value stored in the buffer, not the value
in the file.
To declare this function, include the following statement in the linkDLL control
structure:
STRING getDBFieldValue(STRING)

Parameters
<field name> any expression that evaluates to the name of the field

whose value you want.

Returns
If no error occurs, the getDBFieldValue function returns the value of the
specified field. If an error occurs, this function returns null and sysError is set to
one of the following:
-3 if there are too many clients for this DLL, or not enough memory
-4 if the field name is invalid
-6 if the field type is invalid
-12 if there is no current dBASE file; you must use openDBFile first
-23 is there was an error while reading a memo file
-20 if the function failed because of an out of memory condition
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

Example
while true

increment recordCount
step i from 1 to totalField

set sysError to null
get getDBFieldValue(item i of fieldNames)
if sysError is not null

send error sysError, "getting value of field."
break buttonup

end if
put it into text of recordField (item i of fieldNames)
end step

-- read next
get nextDBRecord()
if it <= 0

break while
end if
send newPage

end while

getDBFieldWidth Function in TBKDB3.DLL

Syntax
getDBFieldWidth(<field name>)

Description
Returns the width of the specified field in the current dBASE record and file.
To declare this function, include the following statement in the linkDLL control
structure:
INT getDBFieldWidth(STRING)

Parameters
<field name> the name of the field whose width you want and is any

expression that evaluates to a valid field name in the current
dBASE record and file.

Returns
If no error occurs, the getDBFieldWidth function returns the width in character
positions for the current dBASE record and file. If an error occurs, this function
returns:
-3 if there are too many clients for this DLL, or not enough memory
-4 if the field name is invalid
-8 if the file, the index or the system got corrupted
-12 if there is no current dBASE file; you must use openDBFile first
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

getDBFileName Function in TBKDB3.DLL

Syntax
getDBFileName()

Description
Returns the name of the current dBASE file.
To declare this function, include the following statement in the linkDLL control
structure:
STRING getDBFileName()

Parameters
None

Returns
If no error occurs, the getDBFileName function returns the path and file name of
the current dBASE file. If an error occurs, this function returns null and sysError is
set to one of the following:
-3 if there are too many clients for this DLL, or not enough memory
-12 if there is no current dBASE file; you must use openDBFile first
-20 if the function failed because of an out of memory condition
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

getDBIndexExpression Function in TBKDB3.DLL

Syntax
getDBIndexExpression()

Description
Returns the expression used to form the keys of the current index file for the
current dBASE file.
To declare this function, include the following statement in the linkDLL control
structure:
STRING getDBIndexExpression()

Parameters
None

Returns
If no error occurs, the getDBIndexExpression returns the expression used to
form the keys of the current index file for the current dBASE file. If an error occurs,
this function returns null and sysError is set to one of the following values:
-3 if there are too many clients for this DLL, or not enough memory
-12 if there is no current dBASE file; you must use openDBFile first
-13 if there is no current index file; you must use use openDBIndexFile first
-16 if there is no expression
-20 if the function failed because of an out of memory condition
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

getDBIndexFileName Function in TBKDB3.DLL

Syntax
getDBIndexFileName()

Description
Returns the name of the currently selected index file.
To declare this function, include the following statement in the linkDLL control
structure:
STRING getDBIndexFileName()

Parameters
None

Returns
If no error occurs, the getDBIndexFileName function returns the name of the
current index file. If an error occurs, the function returns null and sysError is
set to one of the following values:
-3 if there are too many clients for this DLL, or not enough memory
-12 if there is no current dBASE file; you must use openDBFile first
-13 if there is no current index file; you must use use openDBIndexFile first
-20 if the function failed because of an out of memory condition
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

getDBKeyType Function in TBKDB3.DLL

Syntax
getDBKeyType()

Description
Returns the type of the current key in the current index file.
To declare this function, include the following statement in the linkDLL control
structure:
INT getDBKeyType()

Parameters
None

Returns
If no error occurs, the getDBKeyType function returns one of three possible
values for the type of the current key:
1 if the current key type is character
3 if the current key type is date
4 if the current key type is numeric
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-12 if there is no current dBASE file; you must use openDBFile first
-13 if there is no current index file; you must use use openDBIndexFile first
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

getDBKeyValue Function in TBKDB3.DLL

Syntax
getDBKeyValue()

Description
Returns the value of the current key for the current index file.
To declare this function, include the following statement in the linkDLL control
structure:
STRING getDBKeyValue()

Parameters
None

Returns
If no error occurs, the getDBKeyValue function returns the value of the current
key for the current index file. If an error occurs, this function returns null and
sysError is set to one of the following values:
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-12 if there is no current dBASE file; you must use openDBFile first
-13 if there is no current index file; you must use use openDBIndexFile first
-14 if there is no current key; you must use a function such as firstDBKey

first
-20 if the function failed because of an out of memory condition
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

getDBNavigateToDeleted Function in TBKDB3.DLL

Syntax
getDBNavigateToDeleted()

Description
Returns the state of the switch that controls navigation to records marked as
deleted. By default, this switch is off, which means that normal navigation from
record to record will skip over the deleted records. The records are not actually
removed from the file until it is compacted with packDBFile. To set the switch,
use setDBNavigateToDeleted.
To declare this function, include the following statement in the
linkDLL control structure:
INT getDBNavigateToDeleted()

Parameters
None

Returns
0 if the navigate to deleted records switch is off
1 if the navigate to deleted records switch is on
-3 if there are too many clients for this DLL, or not enough memory
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

Example
if getDBNavigateToDeleted is 1

set it to "allowed"
else

set it to "not allowed"
end
request "Allow navigation to deleted records? It is now" &&\

it & "." with "No" or "Yes"
if it is "Yes"

get setDBNavigateToDeleted(1)
else

get setDBNavigateToDeleted(0)
end

getDBRecordCount Function in TBKDB3.DLL

Syntax
getDBRecordCount()

Description
Returns the number of records in the current dBASE file.
To declare this function, include the following statement in the linkDLL control
structure:
LONG getDBRecordCount()

Parameters
None

Returns
If no error occurs, the getDBRecordCount function returns the number of records
in the current dBASE file. If an error occurs, this function returns:
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-12 if there is no current dBASE file; you must use openDBFile first

If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

Example
to handle recordCount

get getDBRecordCount()
if it <= 0

send error it, "getting record count in dBASE file"
break recordCount

end if
put it into totalRecords
while true

increment recordCount
step i from 1 to totalFields

set sysError to null
get getDBFieldValue(item i of fieldNames)
if sysError is not null

send error sysError, "getting value of field"
break recordCount

end if
put it into \

text of recordField(item i of fieldNames)
end step

-- Read the next record

set it to null
get nextDBRecord()
if it <= 0

if recordCount < totalRecords
request "Only processed " & recordCount & \

" out of " & totalRecords
end if
break while

end if
end while

end recordCount

getDBRecordDeleted Function in TBKDB3.DLL

Syntax
getDBRecordDeleted()

Description
Determines if the current record has been marked for deletion.
To declare this function, include the following statement in the linkDLL control
structure:
INT getDBRecordDeleted()

Parameters
None

Returns
1 if the current record is marked for deletion
0 if the current record is not marked for deletion
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-12 if there is no current dBASE file; you must use openDBFile first
-32 if there is no current record
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

getDBRecordNumber Function in TBKDB3.DLL

Syntax
getDBRecordNumber()

Description
Returns the number of the current record.
To declare this function, include the following statement in the linkDLL control
structure:
LONG getDBRecordNumber()

Parameters
None

Returns
If no error occurs, the getDBRecordNumber function returns the number of the
current record. If an error occurs, this function returns:
0 if there is no current record
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-12 if there is no current dBASE file; you must use openDBFile first

If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

getDOSEnvironmentString Function in TBKFILE.DLL

Syntax
getDOSEnvironmentString(<tag name>)

Description
Returns the DOS environment value for the tag name, or returns the entire DOS
environment string if no tag name is specified.
To declare this function, include the following statement in the linkDLL control
structure:
STRING getDOSEnvironmentString(STRING)

Parameters
<tag name> the name of an environment variable, or null. It is not

case-sensitive.

Returns
If no error occurs, the getDOSEnvironmentString function returns a string,
otherwise it returns null and sysError is set to one of the following values:
null if the function was successful
-1 if a <tag name> was specified, but the tag does not exist
-20 if there was insufficient memory to execute the function

Examples
--get the current path
set DOSPath to getDOSEnvironmentString("path")

-- get the entire environment string
set DOSEnvironment to getDOSEnvironmentString(null)

getDriveList Function in TBKFILE.DLL

Syntax
getDriveList()

Description
Gets a list of valid drives on the current machine.
To declare this function, include the following statement in the linkDLL control
structure:
STRING getDriveList()

Parameters
None

Returns
If no error occurs, the getDriveList function returns a CRLF separated list of
drives for the current machine. If not enough memory is available to build the list,
it returns null and sets sysError to -20.

Example
get getDriveList()

-- Sets special variable it to a list of the valid
-- drives on the current machine.

getFileAttributes Function in TBKFILE.DLL

Syntax
getFileAttributes(<filename>)

Description
Gets the file attributes of the specified file
To declare this function, include the following statement in the linkDLL control
structure:
STRING getFileAttributes(STRING)

Parameters
<filename> any expression that evaluates to the name of the file whose

attributes you want.

Returns
The getFileAttributes function returns a string containing a character for each
attribute that is true. If the returned value contains:
R the Read only attribute is true
H the Hidden attribute is true
S the System attribute is true
D the Directory attribute is true
V the Volume label attribute is true
A the Archive attribute is true
If an error occurs, the function returns null and sysError is set to one of the
following values:
-2 if the specified file was not found
-3 if the specified path name was invalid
-5 if access to the file was denied.

Examples
put getFileAttributes("c:\windows\msdos.exe") into\

the commandWindow
-- Returns "RHS" : This file's attributes are
-- read only, hidden, and system

to get FileIsLocked fileName
set sysError to null
get getFileAttributes(fileName)

-- file not found or access denied
if sysError <> null then

request "Can't get attributes of file" &&\
 filename & "."

return false

else
return (it contains "R")

end
end

getFileDate Function in TBKFILE.DLL

Syntax
getFileDate(<filename>)

Description
Gets the date and time for the specified file.
To declare this function, include the following statement in the linkDLL control
structure:
STRING getFileDate(STRING)

Parameters
<filename> the name of the file for which you want the date and is any

expression that evaluates to a valid path and file name.

Returns
If no error occurs, the getFileDate function returns a string containing the file's
date and time. If there is an error, sysError is set to one of the following values:
-2 if the file was not found
-3 if the path was not found
-20 if the function failed due to an out of memory condition

Examples
get getFileDate("c:\toolbook\toolbook.exe")

-- Sets if to the date of the file TOOLBOOK.EXE

get getFileDate(fileName)
-- Sets it to the date of the file whose name is
-- the value of fileName

getFileList Function in TBKFILE.DLL

Syntax
getFileList(<file name>)

Description
Returns a list of files matching a file path and name specification.
To declare this function, include the following statement in the linkDLL control
structure:
STRING getFileList(STRING)

Parameters
<file name> any expression that evaluates to the name of the file to find.

The expression can contain the wildcard characters ? and
*.

Returns
If no error occurs and if ToolBook finds files that match the <file name>
parameter, the getFileList function returns a CRLF separated list of matching
files. If an error occurs, the function returns null and sysError is set to one of
the following values:
-2 if the file name was invalid
-3 if the path was not found
-18 if there was no matching file
-20 the function failed due to an out of memory condition

Examples
get getFileList("c:\toolbook\dbms*.tbk")
-- Sets it to a list of matching files

get getFileList(fileName)
-- Sets it to a CRLF separated list of matching files

getFileSize Function in TBKFILE.DLL

Syntax
getFileSize(<file name>)

Description
Gets the size of the specified file.
To declare this function, include the following statement in the linkDLL control
structure:
LONG getFileSize(STRING)

Parameters
<file name> any expression that evaluates to the name of the file for

which you want the size.

Returns
If no error occurs, the getFileSize function returns the file's size in bytes.
Otherwise it returns:
-2 if the specified file was not found
-3 if the specified path was not found
-20 if the function failed due to an out of memory condition.

Examples
get getFileSize("c:\maps\egypt.tbk")
-- Sets it to the file size in bytes of the file EGYPT.TBK

get getFileSize(fileName)
-- Sets it to the file size in bytes of the file whose
-- name is the value of fileName

getFreeDiskSpace Function in TBKFILE.DLL

Syntax
getFreeDiskSpace(<disk drive>)

Description
Gets the number of free bytes on the specified disk drive.
To declare this function, include the following statement in the linkDLL control
structure:
LONG getFreeDiskSpace(STRING)

Parameters
<disk drive> any expression that evaluates to the letter designating the

disk drive for which you want the number of free bytes.

Returns
If no error occurs, the getFreeDiskSpace function returns the number of free
bytes on the specified disk. Otherwise, this function returns a negative number.

Example
get getFreeDiskSpace("C")
-- Sets it to the number of free bytes on disk C.

getWinIniVar Function in TBKWIN.DLL

Syntax
getWinIniVar(<section name>, <item name>)

Description
Returns the value of the specified item in the specified section of the WIN.INI
file.
To declare this function, include the following statement in the linkDLL control
structure:
STRING getWinIniVar(STRING, STRING)

Parameters
<section name> the name of the section in the WIN.INI file that contains

the item whose value you want. The <section name>
parameter is any expression that evaluates to a valid
WIN.INI section name.

<item name> the name of the item whose value you want and is any
expression that evaluates to a valid item name for the
specified section name.

Returns
If no error occurs, the getWinIniVar function returns the value of the specified
item in the specified section in the WIN.INI file, otherwise:
-20 if there was an out of memory condition error while trying to execute the

function.

Example
set s_NoColors to \

getWinIniVar("ToolBook", "startUpSysColors") is "false"

gotoDBRecord Function in TBKDB3.DLL

Syntax
gotoDBRecord(<record number>)

Description
Makes the specified record the current record. In other words, navigates to the
specified record number in the data file.
To declare this function, include the following statement in the linkDLL control
structure:
INT gotoDBRecord(DWORD)

Parameters
<record number> the record number of the record you want to make the

current record. If the value of the <record number>
parameter is greater than the number of records in the
dBASE file, then the last record becomes the current record.
If the value of the <record number> parameter is less than
or equal to 0, then the first record becomes the current
record.

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-10 if there is no such record
-12 if there is no current dBASE file; you must use openDBFile first
-87 the record was marked as deleted and the navigate to deleted records

switch is off (see function getDBNavigateToDeleted)
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

HLStoRGB Function in TBKWIN.DLL

Syntax
HLStoRGB(<hue>, <lightness>, <saturation>)

Description
Converts the specified HLS color value into an RGB color value.
To declare this function, include the following statement in the linkDLL control
structure:
STRING HLStoRGB(DOUBLE,DOUBLE,DOUBLE)

Parameters
<hue> any expression that evaluates to a hue value in the range 0

to 360.
<lightness> any expression that evaluates to a lightness value in the

range 0 to 100.
<saturation> any expression that evaluates to a saturation value in the

range 0 to 100.
Note: If any parameter is out of range, the function will assume a value of 0 for
it. Parameters do not have to be integer numbers.

Returns
If no error occurs, the HLStoRGB function returns a string of three values that
represent the red, green, and blue values, otherwise:
-20 if there was an out of memory condition error while trying to execute the

function.

Example
set Rgb to HSLtoRGB(275.95, 75.21, 23)

horizontalDisplayRes Function in TBKWIN.DLL

Syntax
horizontalDisplayRes()

Description
Returns the physical display's horizontal size in pixels.
To declare this function, include the following statement in the linkDLL control
structure:
INT horizontalDisplayRes()

Parameters
None

Returns
The horizontalDisplayRes function returns the horizontal display size in pixels.

Example
if horizontalDisplayRes() is 640 and \

verticalDisplayRes() is 480 then
set s_CRT to "Standard VGA"

end if

horizontalDisplaySize Function in TBKWIN.DLL

Syntax
horizontalDisplaySize()

Description
Returns the physical display's horizontal size in millimeters.
To declare this function, include the following statement in the linkDLL control
structure:
INT horizontalDisplaySize()

Parameters
None

Returns
The horizontalDisplaySize function returns the horizontal display size in
millimeters.

lastDBKey Function in TBKDB3.DLL

Syntax
lastDBKey()

Description
Makes the last key in the current index file the current key and makes the record
referenced by the last key the current record. Unless the navigate to deleted
switch is on, this function will skip records marked as deleted.
To declare this function, include the following statement in the linkDLL control
structure:
INT lastDBKey()

Parameters
None

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-12 if there is no current dBASE file; you must use openDBFile first
-13 if there is no current index file; you must use use openDBIndexFile first
-15 if the database is empty
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

lastDBRecord Function in TBKDB3.DLL

Syntax
lastDBRecord()

Description
Makes the last record in the current dBASE file the current record.    If the last
record is marked as deleted and the navigate to deleted switch is off, the last
undeleted record becomes the current record.
To declare this function, include the following statement in the linkDLL control
structure:
INT lastDBRecord()

Parameters
None

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-10 if there is no such record (the database is empty or all records are deleted

and the navigate to deleted switch is off.)
-12 if there is no current dBASE file; you must use openDBFile first
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

moveFile Function in TBKFILE.DLL

Syntax
moveFile(<file spec>, <destination>)

Description
Move the specified file and optionally rename the moved file. With the moveFile
function, you cannot move a file from one disk drive to another.
To declare this function, include the following statement in the linkDLL control
structure:
INT moveFile(STRING, STRING)

Parameters
<file spec> any expression that evaluates to the name of the file to be

moved.
<destination> any expression that evaluates to the path and, optionally,

the file name where you want to move the file. If no file
name is supplied, the file is named the same as <file
spec>.

Returns
1 if no error occurred
-2 if the specified file was not found
-3 if the specified path name was invalid
-5 if access to the file was denied
-17 if the specified paths for the source and destination files refer to different

disk drives.

Example
get moveFile("c:\toolbook\train1.tbk", \

"c:\archive\traingh.tbk")
-- Moves the file TRAIN1.TBK to the ARCHIVE directory
-- and renames the file to TRAINGH.TBK

nextDBKey Function in TBKDB3.DLL

Syntax
nextDBKey()

Description
Makes the next key in the current index file the current key and makes the record
referenced by the next key the current record. If the current key is the last key,
then the current key will remain the current key. Unless the navigate to deleted
switch is on, this function will skip records marked as deleted.
To declare this function, include the following statement in the linkDLL control
structure:
INT nextDBKey()

Parameters
None

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-12 if there is no current dBASE file; use openDBFile
-13 no current index file; use openDBIndexFile
-70 if the key was already the last key
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

nextDBRecord Function in TBKDB3.DLL

Syntax
nextDBRecord()

Description
Makes the next record in the current dBASE file the current record. Unless the
navigate to deleted switch is on, this function skips records marked as deleted.
To declare this function, include the following statement in the linkDLL control
structure:
INT nextDBRecord()

Parameters
None

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-10 if there is no such record (current record is last record)
-12 if there is no current dBASE file; you must use openDBFile first
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

Example
to handle recordCount

get getDBRecordCount()
if it <= 0

send error it, "getting record count in dBASE file"
break recordCount

end
put it into totalRecords
while true

increment recordCount
step i from 1 to totalFields

set sysError to null
get getDBFieldValue(item i of fieldNames)
if sysError is not null

send error sysError, "getting value of field"
break recordCount

end
end
put it into text of recordField(item i of fieldNames)
-- Read the next record
set it to null
get nextDBRecord()

if it <= 0
if recordCount < totalRecords

request "Only processed" && recordCount &&\
"out of" && totalRecords

end
end
break while

end while
end recordCount

openDBFile Function in TBKDB3.DLL

Syntax
openDBFile(<file name>)

Description
Open and initialize the specified file and make it the current dBASE file.
To declare this function, include the following statement in the linkDLL control
structure:
INT openDBFile(STRING)

Parameters
<file name> any expression that evaluates to the name of the dBASE file

to be opened.

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-28 if there is no dBASE file with the specified name
-88 if there is a memo field but the memo file could not be opened.
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

Example
ask "Name of dBASE file to open?"
put it into text of field "dBASEFileName"
get openDBFile(text of field "dBASEFileName")
if it <> 1

send error it, "Opening dBASE file"
break

end if

openDBIndexFile Function in TBKDB3.DLL

Syntax
openDBIndexFile(<file name>)

Description
Opens the specified index file and makes it the current index file for the current
dBASE file. The first logical record in the order defined by the index becomes the
current record.
To declare this function, include the following statement in the linkDLL control
structure:
INT openDBIndexFile(STRING)

Parameters
<file name> any expression that evaluates to the name of the index file

to be opened for the current dBASE file.

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-12 if there is no current dBASE file; you must use openDBFile first
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

packDBFile Function in TBKDB3.DLL

Syntax
packDBFile()

Description
Packs the current dBASE file by reclaiming space occupied by records marked for
deletion. After packing, the current record is the last record in the data file.
To declare this function, include the following statement in the linkDLL control
structure:
INT packDBFile()

Parameters
None

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-12 if there is no current dBASE file; you must use openDBFile first
-31 if the data packing operation failed for any other reason
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

pageFromClient Function in TBKWIN.DLL

Syntax
pageFromClient(<PageScroll>, <Magnification>, <point|rectangle>)

Description
Converts a set of coordinates in pixels relative to the top left corner of the client
area of the ToolBook window into coordinates in ToolBook page units. The client
area is defined as the working area below the menu bar, but not including the
scroll bars.
To declare this function, include the following statement in the linkDLL control
structure:
STRING pageFromClient(STRING, INT, STRING)

Parameters
<PageScroll> is always the value of sysPageScroll.
<Magnification> is always the value of sysMagnification.
<point|rectangle> is either a string or an expression that evaluates to a point

or a rectangle. A point is a string containing two numbers (x
and y coordinates) separated by a comma. A rectangle is a
string containing four numbers (coordinates of top left and
bottom right of the rectangle) separated by commas.

Returns
If no error occurs, this function returns the coordinates of either a point or a
rectangle, depending on the last parameter.
If an error occurs, it returns null and sysError is set to a negative value:
-20 if there was not enough memory to execute the function
-99 if the first or last parameter is invalid

Example
get PageFromClient(sysPageScroll, sysMagnification, \

bounds of mainWindow)
-- Find where the actual boundaries of the ToolBook
-- windows are, expressed in page units relative to
-- to the page currently displayed.

pageFromScreen Function in TBKWIN.DLL

Syntax
pageFromScreen(<WindowHandle>, <PageScroll>, <Magnification>,

<point|rectangle>)

Description
Converts a set of coordinates in pixels relative to the the top left corner of display
screen into coordinates in ToolBook page units.
To declare this function, include the following statement in the linkDLL control
structure:
STRING pageFromScreen(WORD, STRING, INT, STRING)

Parameters
<WindowHandle> is always the value of sysWindowHandle.
<PageScroll> is always the value of sysPageScroll.
<Magnification> is always the value of sysMagnification.
<point|rectangle> is either a string or an expression that evaluates to a point

or a rectangle. A point is a string containing two numbers (x
and y coordinates) separated by a comma. A rectangle is a
string containing four numbers (coordinates of top left and
bottom right of the rectangle) separated by commas.

Returns
If no error occurs, this function returns the coordinates of either a point or a
rectangle, depending on the last parameter.
If an error occurs, it returns null and sysError is set to a negative value:
-20 if there was not enough memory to execute the function
-30 if the <windowHandle> parameter is invalid
-99 if the second or last parameter is invalid

Example
get pageFromScreen(sysWindowHandle, sysPageScroll, \

sysMagnification, bounds of mainWindow)
-- Find where the actual boundaries of the ToolBook
-- windows are, expressed in page units relative to
-- the display screen

popMenu Function in TBKWIN.DLL

Syntax
popMenu(<WindowHandle>, <PageScroll>, <Magnification>,

<position>,<MenuItems>,<spare>)

Description
Displays a popup menu and returns the number of the item chosen, or zero if the
user dismissed the menu without choosing an item. This menu can be activated
only with the mouse.
To declare this function, include the following statement in the linkDLL control
structure:
INT popMenu(WORD, STRING, INT, STRING, STRING, STRING)

Parameters
<WindowHandle> is always the value of sysWindowHandle.
<PageScroll> is always the value of sysPageScroll
<Magnification> is always the value of sysMagnification
<position> is a string or an expression that evaluates to a point. A point

is a string containing two numbers (x and y coordinates)
separated by a comma. This argument defines the position
of the top left corner of the menu. If position is such that
part of the menu would be off the screen, Windows will
adjust this position to attempt to keep the menu visible on
the screen.

<MenuItems> is a comma-separated or CRLF- separated list of the items
that should appear in the menu. The following symbols and
characters have special meaning:

Special symbols for menu items
Symbol meaning
tab (the single character with the openScript value tab) causes

the rest of the item to be tabbed to the right of the menu
& causes the next character to be underlined
| as leading character of the menu item or immediately

following {, causes the item to be displayed in a new
column separated by a vertical line; cannot be used with \

\ as leading character of the menu item or immediately
following {, causes the item to be displayed in a new
column without a vertical line; cannot be used with |

(as leading character of the menu item or immediately
following |, \, or {, disables the item; may be followed
by * to check the item as well

* as leading character of the menu item or immediately
following {, |, \ or (, checks the item

{ as leading character of the menu item, makes the item the
parent of a submenu;    subsequent items will be displayed in
a submenu; use } to indicate the end of the submenu

} as the only character in an item, marks the end of a
submenu

null a null menu item shows as a separator

The order in which you can use |,\,(,* or { is as follows:
["{"]["|" | "\"]["("]["*"]

To include one of the special characters in the text of the item, double
the character. For instance, "*Test" will show as "Test" with a
checkmark, but "**Test" will show as "*Test".

<spare> is always null in version 1.0 of this DLL.

Returns
If no error occurs, this function returns the number of the chosen item, or 0 if no
item was chosen. Every item in <MenuItems> is assigned a number in sequence;
however, the function will never return the number of items that cannot actually
be chosen. For instance, a separator gets a number, but this number will never be
returned by the function.
If an error occurs, popMenu returns a negative number. Errors can be caused by
an error in the syntax of MenuItems parameter, by an error in any of the other
parameters, or by a system condition that prevents the creation or display of the
menu.

Example
-- Display a popup menu with 2 standard items, one
-- separator, a disabled item, a checked item, and a
-- disabled as well as checked item. Put the text of the
-- chosen item in the command window.
to handle buttonDown
 set menuList to \
 "Choice 1," & \
 "Choice 2," & \
 "," & \
 "(Disabled Choice," & \
 "*Checked Choice," & \
 "(*Disabled And Checked Choice"
 get popMenu(sysWindowHandle,\

sysPageScroll,sysMagnification, \
position of rectangle "MenuMark", menuList, null)

 if it <> 0
 put item it of menuList
 else
 put "Nothing chosen"
 end

end

-- Display a hiearchical menu
to handle buttonDown
 set menuList to \
 "{Level 1 Choice 1," & \
 "SubMenu 1 Level 2 Choice 1," & \
 "SubMenu 1 Level 2 Choice 2," & \
 "}," & \
 "{Level 1 Choice 2," & \
 "SubMenu 2 Level 2 Choice 1," & \
 "SubMenu 2 Level 2 Choice 2," & \
 "}"
 put popMenu(sysWindowHandle,\

sysPageScroll,sysMagnification, \
 position of rectangle "MenuMark", menuList,null)
end

-- Display a menu for which the description is stored in a
--field with each item on a separate line
to handle buttonDown
 put popMenu(sysWindowHandle, \
 sysPageScroll,sysMagnification, \
 position of rectangle "MenuMark", \
 text of field "menuList", null)
end

previousDBKey Function in TBKDB3.DLL

Syntax
previousDBKey()

Description
Makes the key before the current key in the current index file the current key.
Unless the navigate to deleted switch is on, this function will skip records marked
as deleted.
To declare this function, include the following statement in the linkDLL control
structure:
INT previousDBKey()

Parameters
None

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-12 if there is no current dBASE file; you must use openDABFile first
-13 if there is no current index file; you must use use openDBIndexFile first
-71 if the key was already the first key
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

previousDBRecord Function in TBKDB3.DLL

Syntax
previousDBRecord()

Description
Makes the record before the current record in the current dBASE file the current
record. If the current record is the first record, then it will remain the current
record. Unless the navigate to deleted switch is on, this function skips records
marked as deleted.
To declare this function, include the following statement in the linkDLL control
structure:
INT previousDBRecord()

Parameters
None

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-10 if there is no such record (the current record is the first record)
-12 if there is no current dBASE file; you must use openDBFile first
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

Example
to handle buttonUp

local i
set sysCursor to 4
-- step control structure advances the record pointer
step i from 1 to 100

get previousDBRecord()
end step
send displayRecord

end buttonUp

printerFonts Function in TBKWIN.DLL

Syntax
printerFonts(<typeface name>)

Description
Returns the sizes of characters available for printing for the specified typeface.
To declare this function, include the following statement in the linkDLL control
structure:
STRING printerFonts(STRING)

Parameters
<typeface name> parameter is either null or the name of the typeface for

which you want the available sizes and styles. This
parameter is any expression that evaluates to null or to a
valid typeface name.

Returns
If no error occurs, the returned value depends on the parameter:
If the parameter is null, printerFonts returns a string composed of textlines.
Each textline is a comma-separated list containing the name of a typeface and
the character sizes available for that typeface.
If the parameter is the name of a typeface, displayFonts returns a comma-
separated list containing the typeface name and the character sizes available for
that typeface. However, if the named typeface is not available, it returns just the
name of the typeface.
If an error occurs, the returned value is null and sysError is set to a negative
value.

Example
if not (PrinterFonts(null) contains "Roman") then

request "The Roman font is not available for" &&\
"printing. Substituting Times Roman"

end

reindexDBFile Function in TBKDB3.DLL

Syntax
reindexDBFile(<file name>)

Description
Reindexes the specified index file. The data file associated with the index file
must be open before calling the function.
On completion of the reindexing, the specified index file becomes the current
index.
To declare this function, include the following statement in the linkDLL control
structure:
INT reindexDBFile(STRING)

Parameters
<file name> any expression that evaluates to the name of the index file

to be reindexed.

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-53 if there is no index file with the specified name
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

removeDBRecords Function in TBKDB3.DLL

Syntax
removeDBRecords(<start number>, <end number>)

Description
Removes the records in the specified range, inclusive, from the current dBASE file.
To declare this function, include the following statement in the linkDLL control
structure:
INT removeDBRecords(DWORD, DWORD)

Parameters
<start number> any expression that evaluates to the beginning of the range

of records you want to delete.
<end number> any expression that evaluates to the end of the range of the

records you want to delete. To delete only one record,
specify that record number for both the <start number>
and <end number> parameters.

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-12 if there is no current dBASE file; you must use openDBFile first
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

removeDirectory Function in TBKFILE.DLL

Syntax
removeDirectory(<path name>)

Description
Deletes the specified directory.
To declare this function, include the following statement in the linkDLL control
structure:
INT removeDirectory(STRING)

Parameters
<path name> any expression that evaluates to the path of the directory to

be deleted.

Returns
1 if the directory was successfully deleted
-3 if the specified path name was invalid or if there are files in the directory
-5 if access to the directory was denied
-16 if the current directory was specified

Examples
get removeDirectory("c:\temp")

-- Delete the directory named TEMP in the root directory
-- of drive C:

get removeDirectory(dirName)
-- Delete the directory whose name is the value of
--the container dirName

removeFile Function in TBKFILE.DLL

Syntax
removeFile(<filename>)

Description
Deletes the specified file.
To declare this function, include the following statement in the linkDLL control
structure:
INT removeFile(STRING)

Parameters
<filename> any expression that evaluates to the name of the file to

delete.

Returns
1 if the specified file was successfully deleted
-2 if the specified file was not found
-3 if the specified path name was invalid
-5 if access to the file was denied

Examples
get removeFile("d:\salary.tbk")

-- Delete the file named SALARY.TBK in the root directory
-- of drive D:

get removeFile(fileName)
-- Delete the file whose name is the value of the
-- container fileName

RGBtoHLS Function in TBKWIN.DLL

Syntax
RGBtoHLS(<red>, <green>, <blue>)

Description
Converts the specified RGB color value into an HLS color value.
To declare this function, include the following statement in the linkDLL control
structure:
STRING RGBtoHLS(WORD,WORD,WORD)

Parameters
<red> any expression that evaluates to the numeric value of the

red component.
<green> any expression that evaluates to the numeric value of the

green component.
<blue> any expression that evaluates to the numeric value of the

blue component.

Returns
If no error occurs, the RGBtoHLS function returns a string of three values that
represent the hue, lightness, and saturation values, otherwise:
-20 if there was an out of memory condition error while trying to execute the
function.

screenFromClient Function in TBKWIN.DLL

Syntax
screenFromClient(<windowHandle>, <point|rectangle>

Description
Converts a point or rectangle in pixels relative to the top left corner of the
ToolBook client area into a point or rectangle in pixels relative to the top left
corner of the screen. The client area is defined as the working area below the
menu bar, but not including the scroll bars.
To declare this function, include the following statement in the linkDLL control
structure:
STRING screenFromClient(WORD, STRING)

Parameters
<windowHandle> is always the value of sysWindowHandle.
<point|rectangle> is either a string or an expression that evaluates to a point

or a rectangle. A point is a string containing two numbers (x
and y coordinates) separated by a comma. A rectangle is a
string containing four numbers (coordinates of top left and
bottom right of the rectangle) separated by commas.

Returns
If no error occurs, this function returns the coordinates of either a point or a
rectangle, depending on the last parameter.
If an error occurs, it returns null and sysError is set to a negative value:
-20 if there was not enough memory to execute the function
-30 if the <windowHandle> parameter is invalid
-99 if the <point|rectangle> parameter is invalid

Example
get screenFromClient(sysWindowHandle, "0,0")
request "The top left corner of the client area is at" && \

it && "(in pixels) relative to the top left corner " && \
" of the screen."

screenFromPage Function in TBKWIN.DLL

Syntax
screenFromPage(<WindowHandle>, <PageScroll>, <Magnification>,

<point|rectangle>)

Description
Converts a set of coordinates in ToolBook page units into coordinates in pixels
relative to the top left corner of the display screen.
To declare this function, include the following statement in the linkDLL control
structure:
STRING screenFromPage(WORD, STRING, INT, STRING)

Parameters
<WindowHandle> is always the value of sysWindowHandle.
<PageScroll> is always the value of sysPageScroll.
<Magnification> is always the value of sysMagnification.
<point|rectangle> is either a string or an expression that evaluates to a point

or a rectangle. A point is a string containing two numbers (x
and y coordinates) separated by a comma. A rectangle is a
string containing four numbers (coordinates of top left and
bottom right of the rectangle) separated by commas.

Returns
If no error occurs, this function returns the coordinates of either a point or a
rectangle, depending on the last parameter.
If an error occurs, it returns null and sysError is set to a negative value:
-20 if there was not enough memory to execute the function
-30 if the window handle was invalid
-99 if the second or last parameter is invalid

Example
-- Sets the screen location of another ToolBook instance to
-- match a graphic in this instance.
get screenFromPage(sysWindowHandle, sysPageScroll, \

sysMagnification, bounds of rectangle "placeHolder")
executeRemote "Set bounds of mainWindow to" && it \

application "ToolBook" topic "Inset.tbk"

selectDBFile Function in TBKDB3.DLL

Syntax
selectDBFile(<file name>)

Description
Makes the specified file the current dBASE file. This function opens the file if it is
not already open. If the dBASE file is already open and has an associated index
file, this file will become the current index file.
To declare this function, include the following statement in the linkDLL control
structure:
INT selectDBFile(STRING)

Parameters
<file name> the name of the file you want to make the current dBASE file

and is any expression that evaluates to a valid dBASE file
name.

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-28 if there is no dBASE file with the specified name
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

selectDBIndexFile Function in TBKDB3.DLL

Syntax
selectDBIndexFile(<file name>)

Description
Makes the specified index file the current index file used to navigate in the current
dBASE file.
To declare this function, include the following statement in the linkDLL control
structure:
INT selectDBIndexFile(STRING)

Parameters
<file name> any expression that evaluates to the name of the index file

to select.

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-53 if there is no index file with the specified name
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

setCurrentDirectory Function in TBKFILE.DLL

Syntax
setCurrentDirectory(<directory name>)

Description
Makes the specified directory the current working directory on a drive. Each drive
maintains its own current directory.
To declare this function, include the following statement in the linkDLL control
structure:
INT setCurrentDirectory(STRING)

Parameters
<directory name> the name of the directory to make the current working

directory.

Returns
1 the function was successful
-3 specified path name was invalid.

Examples
get setCurrentDirectory("c:\toolbook\training")

-- Sets the current working directory to
-- \TOOLBOOK\TRAINING.

get setCurrentDirectory(dirName)
-- Sets the current working directory to the value
-- of dirName

setCurrentDrive Function in TBKFILE.DLL

Syntax
setCurrentDrive(<drive letter>)

Description
Makes the specified disk drive the current working drive.
To declare this function, include the following statement in the linkDLL control
structure:
INT setCurrentDrive(STRING)

Parameters
<drive letter> the letter designating the disk drive or any expression

evaluating to a single letter.

Returns
1 if successful
-1 if there was an error

Examples
get setCurrentDrive("D")

-- Makes drive D the current drive

get setCurrentDrive(driveLet)
-- Makes the drive whose name is the value of the
-- container driveLet the current drive

setDBDateFormat Function in TBKDB3.DLL

Syntax
setDBDateFormat(<format string>)

Description
Sets the date format to be used in transactions through this DLL.
To declare this function, include the following statement in the linkDLL control
structure:
INT setDBDateFormat(STRING)

Parameters
<format string> any string that specifies a valid dBASE date format. The date

format is specified as a "picture" of the date. The default
date format is "MM/DD/YY" (month/day/year).
Examples:
YY.MM.DD
CCYY.MM.DD
MM/DD/YY
DD-MM/YY
DD-MM/CCYY
MMM DD/YY

The "Y", "M" and "D" characters specify the year, month and day respectively. If
there are more than 2 "M" characters, a character representation of the month
will be used.

Returns
1 if the function was successful (even if the date format string itself was

invalid)
-3 if there are too many clients for this DLL, or not enough memory
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

setDBFieldTag Function in TBKDB3.DLL

Syntax
setDBFieldTag(<field tag number>, <field item>, <field name>,

<field type>, <field width>, <field decimals>)

Description
Sets the specified field in the specified field tag to the specified field name, type,
width, and decimal precision. You can use this function to specify this information
for more than one field by calling it again for different fields with the same tag
number.
To declare this function, include the following statement in the linkDLL control
structure:
INT setDBFieldTag(WORD, WORD, STRING, STRING, WORD, WORD)

Parameters
<field tag number> the number returned by the createDBFieldTag function.
<field item> any expression that evaluates to number of the field to

set. For details about setting the number of fields in a
field tag, see the createDBFieldTag function.

<field name> any expression that evaluates to the name of the field.
The field name cannot be more than 10 characters long.

<field type> any expression that evaluates to the field type which is
one of the following strings:
"1" or "c" or "C" (character)
"2" or "l" or "L" (logical),
"3" or "d" or "D" (date)
"4" or "n" or "N" (numeric)
"5" or "m" or "N" (memo).
These are dBASE field types. If the <field type>
parameter evaluates to character, you must specify a
field width with the <field width> parameter. If the
<field type> parameter evaluates to date or memo, you
do not need to specify a field width with the <field
width> parameter. If the <field type> parameter
evaluates to numeric, you must specify a field width with
the <field width> parameter and you must specify the
decimal precision with the <field decimals> parameter.

<field width> an expression that evaluates to an integer indicating the
width of the field. If this parameter is <=0 for a
character field, then the <field width> parameter
defaults to 254. If this parameter is <=0 for a numeric
field, then the <field width> parameter defaults to 10.
The maximum width for a numeric field is 19. If the field

type is memo, date or logical, this parameter is ignored.
<field decimals> an expression that evaluates to the number of decimal

places in a numeric field. It is ignored for other field
types. If <field decimals> is 0 for a numeric field,
then the contents of the field is treated as an integer. If it
is more than 0, it must be smaller than, or equal to
<field width> - 2. if <field decimals> is negative,
larger than 15 or larger than <field width> - 2, the
function will return an error.

Returns
1 if the function was successful
-6 if the field type is invalid
-7 if the field tag is invalid
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

Example
to handle newDBFile

local dbFileName, noFields, fieldNames, fieldType
local tagNumber, fieldWidth, i
ask "What is the name of the new DB file?"
put it into dbFileName
ask "How many fields do you want in the new DB file?"
put it into noFields
ask "Type the field names you want separated by a comma"
put it into fieldNames

if itemCount(fieldNames) <> noFields
do

request "The number of field names and the" &&\
"number of fields do not agree"

ask "How many fields do you want for the" &&\
"new DB file?"

put it into noFields
ask "Type the field names you want" &&\

"separated by a comma"
put it into fieldNames

until itemCount(fieldNames) = noFields
end if
--iterate through each field name and ask for field
--information
step i from 1 to itemCount(fieldNames)

put item i of fieldNames into it
request "What is field type for field " & it & "?"
put it && ", " into item i of fieldType
put item i of fieldNames into it
request "What is field width for field " & it & "?"
put it && ", " into item i of fieldWidth

end step
set sysError to 1
-- get return value for tag number

put CreateDBFieldTag(noFields) into tagNumber
if sysError = 0

request "Error creating field tag"
break newDBFile

end if
step i from 1 to itemCount(fieldNames)

get setDBFieldTag(tagNumber,i,\
item i of fieldNames, item i of fieldType,\
item i of fieldWidth, 0)

if sysError <= 0
request "Error setting field tag"
break newDBFile

end if
end step
get createDBFile(dbFileName, itemCount(fieldNames), \

tagNumber, 1)
if sysError <= 0

request "Error creating file"
break newDBFile

end if
get freeDBFieldTag(tagNumber)

if sysError <= 0
request "Error freeing field tag"
break newDBFile

end if
end newDBFile

setDBFieldValue Function in TBKDB3.DLL

Syntax
setDBFieldValue(<field name>, <new value>)

Description
Sets the contents of the specified field in the current record to the specified new
value. Changes to field values made by this function are stored in the record
buffer until you call the writeDBRecord function.
To declare this function, include the following statement in the linkDLL control
structure:
INT setDBFieldValue(STRING, STRING)

Parameters
<field name> any expression that evaluates to the name of the field

whose value you want to change.
<new value> any expression that evaluates to the new value for the

specified field.

Returns
If no error occurs, the setDBFieldValue function returns 1. If an error occurs,
this function returns:
-3 if there are too many clients for this DLL, or not enough memory
-4 if the field name is invalid
-8 if the file, the index or the system got corrupted
-12 if there is no current dBASE file; you must use openDBFile first
-26 if a memo field could not be written
-32 no current record
-60 if trying to set a date field to an invalid date
-62 if the data is invalid for the field type
-73 if the text is too long to fit in the field
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

Example
-- loop through pages of book and build dBASE records from
-- a ToolBook book containing record fields
step i from 1 to pagecount of book tb

-- bypass pages not on the correct background
if parent of page i of book tb is not bg

continue step

end if
--loop through chosen recordFields of this background
step j from 1 to fldct

-- make local reference to data in recordField
set src to "recordField" && textline j of \

text of field "stbfn of page" && i && "of book" &&\
quote & tb & quote

set l to text of evaluate(src)
-- check for truncation of data if occurs
set k to textline j of text of field "swidth"
if k is not null and charCount(l) > k

set l to characters 1 to k of l
increment totTrunc

end if
if setDBFieldValue(textline j of \

text of field "sname", l) <> 1
increment totInval

end if
get writeDBRecord(totRecs + 1)
if it <> 1

send error it, "writing dBASE record"
break step

end if
increment totRecs

end step
end step

setDBNavigateToDeleted Function in TBKDB3.DLL

Syntax
setDBNavigateToDeleted(<option>)

Description
Sets a switch to allow navigation to records marked for deletion. The default is
off.
To declare this function, include the following statement in the linkDLL control
structure:
INT setDBNavigateToDeleted(INT)

Parameters
<option> 0 to turn the navigation to deleted record off, or 1 to turn it

on.

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

setDBRecordDeleted Function in TBKDB3.DLL

Syntax
setDBRecordDeleted(<delete value>)

Description
Marks the current record for deletion.
To declare this function, include the following statement in the linkDLL control
structure:
INT setDBRecordDeleted(WORD)

Parameters
<delete value> determines if the current record is marked for deletion. If the

value of the <delete value> parameter is greater than or
equal to 1, then the record will be marked for deletion. If the
value is less than or equal to 0, then this function will
remove the record's mark that indicates it is to be deleted.

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-12 if there is no current dBASE file; you must use openDBFile first
-32 if there is no current record; you must use a function such as

firstDBRecord first
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

setFileAttributes Function in TBKFILE.DLL

Syntax
setFileAttributes(<file name>, <attributes>)

Description
Set the file attributes for the specified file.
To declare this function, include the following statement in the linkDLL control
structure:
INT setFileAttributes(STRING, STRING)

Parameters
<file name> the name of the file whose attributes you want to set.
<attributes> a string containing one letter for each of the attributes you

want to set:
R to set the Read only attribute to true
H to set the Hidden attribute to true
S to set the System attribute to true
A to set the Archive attribute to true

Returns
1 if the function was successful
-2 if the specified file was not found
-3 if the specified path name was invalid
-5 if access to the file was denied.

Examples
get setFileAttributes("c:\TBKHelp\help1.tbk", "RHA")

-- Sets the attributes for the file HELP1.TBK to
-- read only, hidden, and archive

put setFileAttributes(fileName, fileAttr) into the commandWindow
-- Sets the attributes of the file whose name is
-- the value of fileName to the attributes
-- represented by the value of fileAttr.

get setFileAttributes("c:\config.sys", null)
-- Sets all four attributes of config.sys to false

setWinIniVar Function in TBKWIN.DLL

Syntax
setWinIniVar(<section name>, <item name>, <new value>)

Description
Sets the value of the specified item in the specified section of the WIN.INI file to
the specified new value.
To declare this function, include the following statement in the linkDLL control
structure:
WORD setWinIniVar(STRING, STRING, STRING)

Parameters
<section name> the name of the section in the WIN.INI file that contains the

item whose value you want to set. This parameter is any
expression that evaluates to a valid WIN.INI section name. If
that section does not exist, it is added to WIN.INI.

<item name> any expression that evaluates to the name of the item
whose value you want to set.

<new value> any expression that evaluates to the new value you want to
set for the specified item.

Returns
If no error occurs, the setWinIniVar function returns 1.

Example
if setWinIniVar("GameBook","GreetingMessage","false")<1 then

request \
"Oops! Won't remember to turn off the greeting message!"

end if

verticalDisplayRes Function in TBKWIN.DLL

Syntax
verticalDisplayRes()

Description
Returns the physical display's vertical size in pixels.
To declare this function, include the following statement in the linkDLL control
structure:
INT verticalDisplayRes()

Parameters
None

Returns
If no error occurs, the verticalDisplayRes function returns the vertical display
size in pixels.

Example
put "Screen dimensions in pixels:" &&\

horizontalDisplayRes() & "," & verticalDisplayRes() \
into commandWindow

verticalDisplaySize Function in TBKWIN.DLL

Syntax
verticalDisplaySize()

Description
Returns the physical display's vertical size in millimeters.
To declare this function, include the following statement in the linkDLL control
structure:
INT verticalDisplaySize()

Parameters
None

Returns
If no error occurs, the verticalDisplaySize function returns true.

writeDBRecord Function in TBKDB3.DLL

Syntax
writeDBRecord(<record number>)

Description
Writes the contents of the record buffer into the specified record and updates all
open index files. The contents of the record buffer is set with the
setDBFieldValue function.
To declare this function, include the following statement in the linkDLL control
structure:
INT writeDBRecord(DWORD)

Parameters
<record number> the number of the record to which you want to write the

contents of the record buffer. If the value of the parameter is
0, then the current record is updated with the contents of
the record buffer. If the <record number> parameter
indicates a higher record number than is in the dBASE file,
ToolBook will append a new record that contains the
contents of the record buffer. If the <record number>
parameter specifies a record with contents, the
writeDBRecord function will overwrite the contents of that
record.

Returns
1 if the function was successful
-3 if there are too many clients for this DLL, or not enough memory
-8 if the file, the index or the system got corrupted
-9 if the function failed because of a duplicate key
-12 if there is no current dBASE file
-79 if the record was marked as deleted, write operation was denied.
If an error occurs, this function may return another negative number; use
getDBErrorString to get an explanation of the error.

Example
-- loop through pages of book and build dBASE records from
-- a ToolBook book containing record fields
step i from 1 to pagecount of book tb

-- bypass pages not on the correct background
if parent of page i of book tb is not bg

continue step
end if
--loop through chosen recordFields of this background

step j from 1 to fldct
-- make local reference to data in recordField
set src to "recordField" && textline j of \

text of field "stbfn of page" && i && "of book" &&\
quote & tb & quote

set l to text of evaluate(src)
-- check for truncation of data if occurs
set k to textline j of text of field "swidth"
if k is not null and charCount(l) > k

set l to characters 1 to k of l
increment totTrunc

end if
if setDBFieldValue(textline j of \

text of field "sname", l) <> 1
increment totInval

end if
get writeDBRecord(totRecs + 1)
if it <> 1

send error it, "writing dBASE record"
break step

end if
increment totRecs

end step
end step

xPixelsFromUnits Function in TBKWIN.DLL

Syntax
xPixelsFromUnits(<xdimension>)

Description
Converts a horizontal dimension in ToolBook page units into a dimension in screen
pixels.    This function can be useful because the number of page units per pixel
may vary with the display device.
To declare this function, include the following statement in the linkDLL control
structure:
INT xPixelsFromUnits(INT)

Parameters
<xdimension> an integer number or an expression that evaluates to an

integer number in the range -32768 to 32767.

Returns
This function returns a number of pixels.

xUnitsFromPixels Function in TBKWIN.DLL

Syntax
xUnitsFromPixels(<xdimension>)

Description
Converts a horizontal dimension in screen pixels into a dimension in ToolBook
page units. This function can be useful because the number of page units per
pixel may vary with the display device.
To declare this function, include the following statement in the linkDLL control
structure:
INT xUnitsFromPixels(INT)

Parameters
<xdimension> an integer number or an expression that evaluates to an

integer number in the range -32768 to 32767.

Returns
This function returns a number of ToolBook page units.

yieldApp Function in TBKWIN.DLL

Syntax
yieldApp()

Description
Halts the current task and starts any waiting task.
To declare this function, include the following statement in the linkDLL control
structure:
INT yieldApp()

Parameters
None

Returns
If no error occurs, the yieldApp function returns a non-zero integer.

Example
-- "well-behaved" long pause
while sysTime - startTime < 1000

set dummyVar to yieldApp()
end while

yPixelsFromUnits Function in TBKWIN.DLL

Syntax
yPixelsFromUnits(<ydimension>)

Description
Converts a vertical dimension in ToolBook page units into a dimension in screen
pixels.    This function can be useful because the number of page units per pixel
may vary with the display device.
To declare this function, include the following statement in the linkDLL control
structure:
INT yPixelsFromUnits(INT)

Parameters
<ydimension> an integer number or an expression that evaluates to an

integer number in the range -32768 to 32767.

Returns
This function returns a number of pixels.

yUnitsFromPixels Function in TBKWIN.DLL

Syntax
yUnitsFromPixels(<ydimension>)

Description
Converts a vertical dimension in screen pixels into a dimension in ToolBook page
units. This function can be useful because the number of page units per pixel may
vary with the display device.
To declare this function, include the following statement in the linkDLL control
structure:
INT yUnitsFromPixels(INT)

Parameters
<ydimension> an integer number or an expression that evaluates to an

integer number in the range -32768 to 32767.

Returns
This function returns a number of ToolBook page units.

