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Abstract

Internetworks that connect multiple organizations create potential security
problems that cannot be solved simply by internal administrative
procedures. Organizations would like to restrict inter-organization access to
specific restricted hosts and applications, in order to limit the potential for
damage and to reduce the number of systems that must be secured against
attack. One way to restrict access is to prevent certain packets from entering
or leaving an organization through its gateways.  This paper describes
simple, flexible, and moderately efficient mechanisms for screening the pack-
ets that flow through a Unix-based gateway.
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1. Introduction

Internetworking has greatly improved communication between administratively distinct or-
ganizations, linking businesses, schools, and government agencies to their common benefit. Un-
fortunately, internetworks that connect multiple organizations create potential security problems
that cannot be solved by the mechanisms used within organizations, such as restricting physical
access. In particular, interconnection at the datagram level is an ‘‘all or none’’ mechanism, al-
lowing outsiders access to all the hosts and applications of an organization on the internetwork.
To avoid penetration, every host within an organization must be made secure, no small feat when
it involves tens of thousands of poorly-managed workstations.

We would like to be able to restrict inter-organization access to specific hosts and applica-
tions. Doing so limits the potential for damage, and reduces the number of systems that must be
secured against attack.  One approach is to place an application-level gateway between the or-
ganization and the internetwork, eliminating packet-level access but supporting a small set of
approved and presumably bullet-proof applications.  Typically, these include electronic mail,
name service, and perhaps remote terminal access.

This approach is painful because it requires writing application gateway software for each ap-
proved application, and because it may be too draconian for some organizations. It also sig-
nificantly reduces performance.

A more flexible way to control access is to prevent certain packets from entering or leaving an
organization through its gateways.  This allows greater flexibility than an application-level
gateway, although as with any power tool it also requires greater vigilance.  Various commercial
gateway systems provide such a mechanism [2, 27] and it has also been treated in the
literature [10].

Although it is not a good idea to use a Unix system as an internetwork gateway, the
popularity of 4.2BSD Unix (and its successors and derivatives), coupled with bureaucratic in-
ertia, has led numerous organizations to use Unix-based gateways.  The mechanisms described in
this paper allow users of Unix-based gateways to impose packet-level access controls without
major changes to existing software.  Perhaps more important, by separating mechanism from
policy [17] so that arbitrarily precise access control policies may be developed as ordinary Unix
user processes, these mechanisms support fine-tuning and experimentation that would be dif-
ficult using commercial gateway products.

Section 2 of this paper sets out the background and goals of this project, and describes pre-
vious work in the field.  Section 3 presents the design and implementation of a simple, flexible,
and efficient modification to the Unix kernel.  Sections 4 and 5 then describe two different user-
level daemons that make use of this modified kernel to provide packet-level access control.  Sec-
tion 6 discusses how the new mechanism may be used for purposes besides access control.

2. Background and Goals

The Internet Protocol (IP) suite [15] is today the dominant means of connecting disparate or-
ganizations into an internetwork.  Virtually all of the practical and experimental work on
datagram access controls has been done using IP protocols.  Although the examples in this paper
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do assume the use of IP, much of the mechanism (especially the kernel support) should be ap-
plicable to any similar protocol suite, including OSI [30].

All datagrams in an IP internetwork carry an IP header [24], which includes the source and
destination host addresses.  In general, this is all that an IP gateway may assume about a
datagram, so one might choose to restrict access on a host-by-host basis.  (Since IP network
numbers can be extracted from IP host addresses, and since network numbers can often be iden-
tified with specific organizations, an IP-level mechanism might also restrict datagrams based on
source or destination network number.)

In fact, however, almost all information is carried by transport protocols layered above IP.
Primarily, these include TCP [25] for reliable byte-stream applications (mail, file transfer,
remote terminal access), and UDP [23] for request-response protocols (name service, routing, the
NFS file access protocol [28]). Certain control information is carried by the ICMP protocol [26].
One may wish to require or restrict the use of such higher-level protocols, which can be done
based on information in the IP header.

Further, the TCP and UDP protocols incorporate the concept of a ‘‘port,’’ identifying an end-
point of a communication path, and these protocols support the concept of ‘‘well-known’’ ports.
For example, a TCP remote terminal access connection will always be addressed to well-known
port 23 at the server host. In some cases, it may be useful to require or restrict access to specific
ports; the access-control mechanism in this case would have to examine the higher-level header,
since the source and destination ports do not appear in the IP header.

2.1. Policy and Mechanism

There is a wide range of access control policies from which to choose.  One goal of an access
control mechanism should be to allow each organization to choose its own policy, and to change
its policy (perhaps quite frequently).  In other words, it pays to separate the mechanism for for-
warding packets from the policy that decides what should be forwarded.  Although the under-
lying concept has been known for a long time, the term policy/mechanism separation was in-
vented by the designers of the Hydra system [17], who established it as a ‘‘basic design principle
... of a kernel composed (almost) entirely of mechanisms.’’  Policies were embodied in user-level
processes, thus improving flexibility while keeping the kernel simpler and presumably more reli-
able.

The Unix kernel, on the other hand, contains most of the policy functions of the operating
system. There are a few exceptions; for example, in 4.2BSD Unix, the disk quota mechanism in
the kernel receives quota information from user-level processes, and the network routing table is
maintained by a user-level process.  Still, in the Unix model the kernel makes the decisions.

The system described in this paper adheres to the Hydra model:  a simple, general mechanism
inside the kernel ‘‘asks’’ a user-level process to pass judgement on every packet that is to be
forwarded. The kernel makes no access control decisions; rather, it provides the packet header to
the user process, which then tells the kernel whether or not to forward the packet.  The kernel
mechanism is simple (it took about one day to code and test) and robust (a failure of the policy
module should not result in a system crash, or indeed in any consequential failure save a tem-
porary suspension of packet forwarding).  Further details on the kernel mechanism are given in
section 3.
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Once this kernel mechanism is in place, it is easy to experiment with policy modules imple-
mented as normal Unix user processes.  Section 4 describes an implementation based on a
daemon process that checks each packet against the criteria specified in a configuration file.
This program is able to filter based on arbitrary criteria, including transport-level header infor-
mation.

An alternative design is sketched in section 5. In this design, a user-level process would im-
plement a visa protocol [10]. In visa protocols, there is no configuration file at the gateway;
rather, the source host is required to attach a cryptographically-secured mark to the datagram
header, proving to the gateway that this datagram is authorized to be forwarded.  Authorization is
done by an ‘‘access control server’’ distinct from the gateway; thus, visa protocols employ an
additional level of policy/mechanism separation.

One subtle (but explicit) aspect of the IP architecture is that gateways are stateless packet
switches, not required to maintain any history of previous packets [4]. The policy modules
described in this paper can accommodate a certain amount of gateway state (see section 4.3), but
may not support a protocol requiring significant gateway state.  This is because so little infor-
mation is passed between the gateway function in the Unix kernel and the decision-making func-
tion in the user process; neither function has access to the history of the other.  This is not a
serious problem for the IP protocol.

2.2. Related Work

It has long been recognized that an organization may protect itself against unwanted network
connections by blocking them in its gateways.  One simple approach is to remove from a
gateway’s routing tables routes to specific networks, thus making it impossible for a ‘‘local’’
host to send packets to them.  (Most protocols require at least some bidirectional packet flow
even for unidirectional data flow, so breaking the route in only one direction is usually
sufficient.) This approach, of course, does not work when the point is to permit access to some
local hosts but not others.

Most (perhaps all) commercially-available gateway systems now provide the ability to screen
packets based not only on destinations, but on sources or source-destination pairs.  For example,
the Proteon p4200 gateway [27] allows the manager to specify access based on pairs of IP ad-
dresses; each address is combined with a specified mask before comparison, so that the pairs
may refer to networks or subnets instead of specific hosts.

Gateway products from cisco Systems [2] support a more complicated screening scheme, al-
lowing finer control over source or destination addresses.  For example, one could deny access to
all but one host on a particular network.  The cisco gateways also allow discrimination based on
IP protocol type, and TCP or UDP port numbers.

Unlike access controls based on gateway-resident configuration tables, Visa protocols [10]
control the path between specific pairs of hosts.  Moreover, visa protocols provide some protec-
tion against forged datagram headers, by proving that the source address of a packet is genuine.
Visas thus protect against malefactors within the local organization, as well as those outside, and
because policy decisions are made by a server distinct from the gateway, one can employ an
arbitrarily complex policy without fear of overwhelming the gateway.  In spite of the advantages
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of visa protocols, they require explicit support from host implementations and increase the per-
packet effort at gateways, so they are only in experimental use [9].

The kernel-resident mechanism described in section 3 owes an intellectual debt to the ‘‘packet
filter’’ mechanism [21] used to give user processes efficient access to arbitrary datagrams.  In the
packet filter, the kernel applies user-specified criteria to received packets before demultiplexing
the packets to the appropriate process. This is the reverse of the situation described in this paper,
where decisions are made in user processes and consumed by the kernel, but the principle of
doing the more complex job at user level remains the same.

3. Kernel support

The mechanism described in this section is called the gateway screen. It has been experimen-
tally implemented in the context of the Ultrix 3.0 operating system. Since the IP forwarding
code in Ultrix is nearly identical to that in 4.3BSD Unix, this mechanism should port to nearly
any 4.2BSD-derived kernel with only minor modifications.  Porting it to unrelated Unix kernels,
or to other operating systems, may require changes in various details.  The presentation in this
section assumes the use of a 4.2BSD-derived kernel.

3.1. Overview

When an IP packet is received by the kernel, it is first processed by the ip_intr() procedure,
which determines if the packet is meant for ‘‘this host.’’ If not, then the packet is passed to the
ip_forward() procedure, which determines whether and how to forward the packet to its ultimate
destination. The ip_intr() procedure runs as an interrupt handler, not in the context of a specific
process.

The gateway screen intercepts packets just before they are passed to ip_forward(). These
potentially-forwardable packets are placed on a queue, and any processes waiting for this queue
are awakened.  (A process waits for this event by executing a particular system call.) When any
such process wakes up, it removes a pending packet from this queue. The kernel extracts the
datagram header from the packet, wraps this with some control information, and passes the result
out to the user-level process.  The system call then completes, allowing the user process to run
and decide if the packet in question should be forwarded.  The user process, through a sub-
sequent system call, informs the kernel of its decision, and the kernel either drops the packet, or
passes it on to ip_forward().

The kernel effectively acts as the ‘‘client’’ of a ‘‘server process’’ implemented at user level.
The user process, however, makes the calls into the kernel, not vice-versa.  One may view this as
a relationship structured entirely of ‘‘up-calls’’ [3], with no ‘‘down-calls’’ at all.  This structure
requires the solution to certain problems (starvation, matching of requests with responses) not
present in a more conventional client-server interaction, but it makes use of the synchronization,
protection, and control mechanisms already provided by the normal system call implementation.

We can now look at the implementation in greater detail.
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3.2. Interrupt-level functions

Not much processing is required at interrupt level.  The ip_intr() procedure is modified to pass
packets to the gw_forwardscreen() procedure, instead of directly to ip_forward(). The
gw_forwardscreen() procedure allocates a small control block to contain information about the
packet, records the address of the packet buffer (‘‘mbuf chain’’) in this control block, puts the
control block on a queue of ‘‘pending’’ packets, and issues a wakeup() call. The control block
includes fields for the packet arrival time and a unique transaction identifier, which are set in this
procedure.

Since the kernel has little control over how fast the user-level process responds to requests, it
would be unwise to allocate control blocks directly out of kernel dynamic memory, for fear of
using it up.  Instead, the gateway screen maintains a limited pool (currently 32 items) of preal-
located control blocks; this not only avoids using up memory, but makes allocation much faster.

Since this limits the number of pending packets, we must have some policy to apply to packets
arriving when our private free list is empty. Two policies suggest themselves: accept the new
packet and drop an old one, or drop all new packets until some old ones have been processed.
The former policy is more expensive to implement, and the latter policy conforms to the assump-

1tions of various congestion-avoidance and congestion-control mechanisms . Since dropping the
incoming packet is both easier and ‘‘better,’’ that is what is done.  (Even when a packet is
dropped, a wakeup() is still done, in case there are server processes sleeping.)

3.3. Programming interface

Before we look at the implementation of the system call interface, it is helpful to examine the
alternatives for communicating information across the user-kernel boundary.  There are two
ways to do this in Unix: either the information is moved as the parameter (by-value or by-
reference) of a system call, or it is moved via the I/O mechanisms over a file descriptor (I/O is
done with system calls, of course, but these calls leave little room for improvisation).

Note that for each packet, we need to communicate information out of the kernel, let the user
process run, and then communicate the decision back into the kernel.  We do not necessarily
have to make two system calls per packet; the trick is to pass one decision into the kernel on the
same system call that passes the following packet’s information out of the kernel.  If we want to
use this trick, then we cannot use the normal I/O mechanisms (e.g., read/write or send/recv).

Perhaps the cleanest approach would be to invent a new system call with one ‘‘in’’ parameter
and one ‘‘out’’ parameter.  Adding a new system call to the Unix kernel, however, requires
changing a number of files within the kernel, as well as the system call interface library, and this
seemed too painful.

1Nagle implies as much with his statement that, when facing buffer exhaustion, a gateway should ‘‘drop the
packet at the end of the longest queue, since it is the one that would be transmitted last.’’ [22] Jacobson’s work [12]
implies that gateways should give preference to the earlier packets in a multiple-packet window, since they are more
likely to be retransmitted immediately once congestion is detected.
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The approach actually taken was to define a few new ioctl requests. Since an ioctl parameter
can be ‘‘value-result’’ (both ‘‘in’’ and ‘‘out’’), we can use the ‘‘one system-call’’ trick, and
since adding a new ioctl request requires no new code aside from where the request is dis-
patched, it is easy to make this change.  The disadvantages are that an ioctl parameter can carry
at most 127 bytes of data, and that the entire parameter is copied in both directions.  The size
limit is not actually a problem (the largest possible IP header is 60 bytes, and the largest reason-
able TCP header is 24 bytes).  The extra data copying is a slight disadvantage (compared to the
‘‘new system call’’ approach) but is less costly than having to do twice as many system calls.

The screen_data structure passed between kernel and user space for the SIOCSCREEN ioctl
request contains a prefix of the packet (including at least the packet headers), a timestamp in-
dicating when the packet was received, and a transaction identifier to be used in matching re-
quests with responses.  This is necessary because there is no ‘‘connection’’ (such as a file
descriptor) established between the kernel and the server process, so there is no other way for the
kernel to associate the decision passed in on one system call with the information passed out on a
previous one.  Figure 1 shows the layout of the screen_data structure.

/*
* Some fields of this struct are "OUT" fields (kernel write,
* user read), and some are "IN" (user write, kernel read).
*/

struct screen_data_hdr {
short sdh_count; /* length of entire record */ /* OUT */
short sdh_dlen; /* bytes of packet header */ /* OUT */
u_long sdh_xid; /* transaction ID */ /* OUT */
struct timeval

sdh_arrival; /* time this pkt arrived */ /* OUT */
short sdh_family; /* address family */ /* OUT */
int sdh_action; /* disposition for this pkt */  /* IN */

/* see defs below */
};

/* Possible dispositions of the packet */
#define SCREEN_ACCEPT 0x0001 /* Accept this packet */
#define SCREEN_DROP 0x0000 /* Don’t accept this packet */
#define SCREEN_NOTIFY 0x0002 /* Notify the sender of failure */
#define SCREEN_NONOTIFY 0x0000  /* Don’t notify the sender */

/* Screening information + the actual packet  */

#define SCREEN_MAXLEN 120 /* length of struct screen_data */
#define SCREEN_DLEN (SCREEN_MAXLEN - sizeof(struct screen_data_hdr))

struct screen_data {
struct screen_data_hdr sd_hdr; /* IN/OUT */
char sd_data[SCREEN_DLEN];  /* pkt headers */ /* OUT */

};

Figure 1: Layout of the screen_data structure
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The lack of a connection creates some complexity in the kernel implementation, but it avoids
the greater complexity of creating and managing connections, and in particular avoids the need
to garbage-collect connections belonging to dead processes.

The structure passed between kernel and user space also contains one field that is set by the
user process, to indicate whether or not the packet should be forwarded, and if the packet is
rejected, whether or not to notify the source host.  (The ICMP protocol provides a means for a
gateway to notify a host that a packet has been dropped; unfortunately, there is no ‘‘Access
Violation’’ message, so we must make do with an approximation such as ‘‘Host

2Unreachable.’’ )

In addition to SIOCSCREEN, new ioctls are defined to turn screening on or off
(SIOCSCREENON) and to get statistics information (SIOCSCREENSTATS).  Only the
SIOCSCREENSTATS request is available to unprivileged processes; processes must be running
as the super-user to execute the other requests.

Figure 2 shows the complete source of an simple daemon program that ‘‘decides’’ to reject all
packets.

3.4. Process-context functions

When the user process issues the SIOCSCREEN request (over a file descriptor returned by the
socket() system call), control in the kernel passes to the ifioctl() procedure.  This is the only
place besides ip_intr() that must be modified to support the gateway screen.  This procedure
simply transfers control to a procedure called screen_control() if any of the gateway screen ioctl
requests are made.

When viewed as a complete system call, the SIOCSCREEN request starts by copying a deci-
sion into the kernel, sleeps waiting for a new packet, and then copies new information out of the
kernel. Since there is no connection between what happens before and after the sleep, it is easier
to describe a complete cycle starting with the sleep rather than starting with the system call.

Each packet in the pending queue is either ‘‘claimed’’ or ‘‘unclaimed.’’  A claimed packet is
marked with the process ID of a process that has been given this packet to act on.  When the
process awakens from its sleep, it checks the queue of pending packets to see if there are any that
have not yet been claimed.  The pending-packet queue is managed first-in, first-out to avoid
unfairly delaying any packet.  If no unclaimed packets exist, the process returns to sleep. Other-
wise, the packet is marked with the current process ID.  A prefix of the packet, and other infor-
mation from the control block, is copied into a screen_data structure, and the ioctl request com-
pletes in the normal way; since the kernel ‘‘knows’’ that the ioctl parameter is value-result, the
screen_data structure is copied out to the user process.

2The ‘‘Blacker’’ system [6], which provides military-style security by interposing cryptographic hardware be-
tween secure hosts and an insecure backbone network, does define an appropriate ICMP code, but no commonly-
used host software recognizes it.
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#include <sys/types.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <net/ip_screen.h>

main()
{

int s;
struct screen_data scdata;

if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
perror("socket");
exit(1);

}

scdata.sdh_xid = 0; /* start with garbage transaction id */
while (1) {

if (ioctl(s, SIOCSCREEN, (caddr_t)&scdata) < 0) {
perror("ioctl (SIOCSCREEN)");
exit(1);

}
printf("dropping pkt, transaction %d\n", scdata.sdh_xid);
scdata.sdh_action = SCREEN_DROP;

}
}

Figure 2: Example program that rejects all packets

Once the user process has made its decision, it sets the appropriate bits in the screen_data
structure and reissues the SIOCSCREEN request.  Again, the kernel knows to copy the
screen_data structure into the kernel, and control is passed to the screen_control() procedure.
At this point, the kernel must match the decision in this SIOSCREEN request to one of the pack-
ets on the pending-packet queue.

Since the screen_data structure contains the unique transaction identifier stored in the packet
control block, the kernel simply searches the pending queue for a packet with the right trans-
action identifier.  If none are found, then the user process has made a mistake (or is making its
first system call) and no further action is taken.  If, during the search, packets are found that are
claimed by the current process, but that do not have the right transaction identifier, then the user
process has failed to follow first-in, first-out order; these packets are removed from the queue
and simply dropped.

Assuming that a matching packet is found, if the decision encoded in the screen_data struc-
ture is positive, then the packet is passed to ip_forward(), as if it had come directly from

3ip_intr() . The ip_forward() procedure may of course decide not to forward the packet (for
example, because no route exists) but this decision is made independent of access control.

3There is a subtle difference: normally, when ip_intr() calls ip_forward() it does so at an elevated interrupt
priority level (IPL), but the gateway screen calls ip_forward() at low IPL.  This does not seem to be a problem, but
one must be careful to ensure that ip_forward() does not assume it is called at any particular IPL.
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If the user process instead decided against forwarding the packet, it is simply dropped.  If the
user process requested that the sender be notified, the icmp_error() procedure is called with the
appropriate arguments, causing an ICMP Host Unreachable message to be sent.

At this point, the cycle is complete.  The packet control block is put back on the private free
list, and the user process is put back to sleep (after checking the pending-packet queue to make
sure that no additional packets are waiting).

Earlier it was pointed out that there are a limited number of packet control blocks.  Since it is
possible for a user process to claim a packet and then die without providing a decision, the
pending-packet queue could fill up with junk.  Therefore, if when the pending-packet queue is
searched and no unclaimed packets are found, and if the private free list is empty, we make the
assumption that something is wrong.  All packets older than a threshold age (for example, 5
seconds) are simply removed from the queue and dropped.  If their ‘‘owning’’ processes are
actually still alive and subsequently do render a decision, this causes no further problems.  Thus,
if a large number of processes do fail, the worst outcome is that the gateway stops forwarding
packets for several seconds (provided that additional screening processes exist or are restarted).

3.5. Protocol-independence

None of the code within the kernel implementation of the screening module makes any as-
sumption about the content of the packets being handled (including the layout of the packet
headers). The only protocol-dependent actions required are the calls to either forward a packet
or to send an error notification.  These procedures are called indirectly, through pointers stored in
the control block that were provided by the protocol-specific code that called
gw_forwardscreen(). To add screening for a new protocol family, one need only supply
protocol-specific forwarding and error functions, and insert a call to gw_forwardscreen() in the
appropriate place.

Since it is necessary for the user process to know which kind of packet it is processing, the
protocol-specific module also provides a type code (the ‘‘address family’’: AF_INET for IP
packets) that is stored in the protocol control block and passed to the user process (see figure 1).
A process can ‘‘request’’ to receive packets of only one family by setting the sdh_family
field when it passes a screen_data structure to the kernel.

3.6. Performance

In order to get an idea of the performance of the kernel portion of the implementation, we can
look at the limiting case of a minimal user-level daemon: for example, the program in figure 2,
changed to accept all packets without examining them.

The most interesting characterization of performance is the increment in delay over an un-
modified Unix-based gateway.  (It is much easier to measure round-trip delays rather than one-
way delays; we must assume that the underlying one-way delay is about half of the total.)  This
increment is easily measured using the ICMP Echo protocol, which is especially convenient be-
cause all the processing in the ‘‘echo server’’ host is done in the Ultrix kernel, reducing the
variance in delay.
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The performance in this case depends mostly on the cost of transferring data and control be-
tween kernel and user contexts; that is, system call overhead dominates the cost of code within
the gateway screen implementation. The entire pending-packet queue is searched once per sys-
tem call, so to some extent the length of that queue affects performance.  Thus, since the cost of
that search is linear in the queue length, two measurements suffice to define the performance of
the kernel implementation: the incremental delay when the pending-packet queue is empty, and
the incremental delay when that queue is artificially kept nearly full.

Table 1 shows the measured round-trip and calculated one-way delays for several gateway
implementations: an unmodified Ultrix kernel, the gateway screen with an empty queue, and the
gateway screen with artificial garbage entries in the queue.  The experimental setup consisted of
a gateway, based on a MicroVax 3500 (about 2.7 times as fast as a Vax -11/780), connecting
two Ethernets [8], with an echo client host on one Ethernet and an echo server host on the other
Ethernet. Packets contained 56 bytes of data, in addition to 42 bytes of Ethernet, IP, and ICMP
headers. The measurements reflect average delays over a large number of trials.

Time in milliseconds

Version Round One Added
trip way delay

No screen 8 4

Empty queue 10 5 1

Full queue 14 7 3

Table 1: Performance with minimal user-level daemon

One measurement was also made with the client and server on the same Ethernet, with no
intervening gateway; this gave a round-trip time of 3 milliseconds, or a one-way time of 1.5
milliseconds.

The ‘‘Added delay’’ column in table 1 shows the increment in one-way delay over an un-
modified Ultrix-based gateway.  For this hardware, the gateway screen delays each packet by
about 1 millisecond, which is consistent with the cost of doing a system call.

The ‘‘Full queue’’ case in the table reflects a situation where the length of the pending-packet
queue is artificially maintained at 500 packets.  The additional delay imposed by this queue was
about 2 milliseconds, or about 4 microseconds per entry.  Normally, this queue is limited to 32
packets, but at that length the effect (estimated to be 160 microseconds per packet) is too small
to be measured.  Note that as long as the packet rate remains below overload (about 200
packets/second) the queue will remain nearly empty.

One other measure of an implementation is its size.  Aside from a few lines of code added for
linkage from other modules, the gateway screen implementation consists of 436 lines of heavily
commented code (and 140 lines of header file).  Compiled for the Vax, this results in 1512 bytes
of object code, and less than 1 Kbyte of data storage is required at run time.
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3.7. Further work

Although the ioctl-based programming interface makes it quite easy to integrate the gateway
screen into the Unix kernel, it is not as efficient as one might like.  The screening function could
be embodied in a new system call that copied the packet header information only in one direc-
tion.

It is also possible to reduce the system call count even further, by batching several packets and
decisions together for one system call.  Batching has been shown to be profitable in a similar
application [21]. When the load is low, the pending-packet queue will seldom hold more than
one packet, and the batch size will be 1, but at high loads, several packets may arrive before the
user-level daemon process can be scheduled (packet interrupts having higher priority than user
processes). Thus, as the system approaches overload, batch size increases, and the system call
overhead per packet decreases; this is precisely the behavior one wants.

gateway_screen(packet_data, packet_count, decision, decision_count)
struct screen_data *packet_data; /* pointer to buffer */
int *packet_count; /* result returned by reference */
struct screen_data_hdr *decision; /* pointer to buffer */
int decision_count;

Figure 3: Proposed new system call

Figure 3 shows how the programming interface might appear for a new system call supporting
batched operation.  The packet_data and decision parameters are vectors of one or more
screen_data and screen_data_hdr structures, respectively, with their lengths specified by the
packet_count and decision_count arguments, respectively.

Since for most access control policies, the forwarding decision for a packet is independent of
any previously received packets, the gateway screen is a natural application for parallel process-
ing. On a multiprocessor, one could run several copies of the user-level daemon process, each
on its own processor. The current kernel implementation, since it uses raised interrupt priority
level for synchronization, would have to be modified for use in a symmetric multiprocessing
kernel; explicit locks would be needed for the pending-packet queue and the private free list.
Contention should be relatively low, especially if the items on the pending-packet queue are in-
dividually locked when being manipulated, since locked items can simply be ignored when
searching that list.

If the kernel kept a cache of recent decisions, as is done in the user-level program described in
section 4.2, it could potentially avoid most of the transfers to user-level code, and so sig-
nificantly improve performance. The trick is to choose a cache-match function; an incoming
packet will almost never match a previously received packet in its entirety, so only a few
selected fields can be used in the matching function.  Not only would the choice of these fields
be protocol-specific (and would probably involve several layers of protocol header), but it might
also be policy-specific; the user-level policy process would want to specify the matching func-
tion. It does not appear feasible to implement a general-purpose mechanism in the kernel, al-
though it might pay to provide a caching function for a few heavily used protocols, such as TCP.
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4. A table-driven policy daemon

This section describes the design and implementation of screend, a table-driven policy
daemon to make datagram access control decisions, to be used with the kernel mechanism
described in section 3. This program uses only the most vanilla features of Unix (besides the
gateway screen mechanism, of course) and so should be portable to any Unix-like system.

4.1. User interface

To use screend, one starts by generating a configuration file.  This is a text file that describes
the kinds of packets that should be accepted or rejected.  The daemon program is then started,
parses the configuration file, and then enters an infinite loop making packet-forwarding decisions
according to the criteria in the configuration-file.  If one wishes to change the criteria, one
simply edits the configuration file and restarts the daemon process. (In principle, the daemon
could notice that the file has been changed, but this might add unnecessary code to the
performance-critical inner loop).

The complete grammar for the configuration file is rather involved, and is given in appendix I.
To understand this section, one must understand some of the concepts that may be expressed by
this grammar.

The main purpose of the configuration file is to specify the action (accept or reject) taken
when a particular kind of packet arrives.  Packets are identified by their IP source and destination
address, the next level protocols they use (for example, TCP or UDP), and the source and des-

4tination ports, or ICMP type codes, if these apply .

A packet can thus be precisely specified by listing its source and destination addresses, its
protocol type, and if applicable, its source and destination ports or ICMP type code.  One can
also leave any of these fields unspecified, or partially specified.  For example, one may specify
that packets from a particular host to any host at all, using any protocol at all, should be be
rejected; this is one way to isolate that host from the internetwork.  One may also partially
specify an address by specifying not a host address but a network number, or perhaps a subnet-
work number.  Finally, one can specify that certain fields should not match for the entire
specification to match.  Most fields can be specified either numerically or symbolically.

Specifications are evaluated in the order that they appear in the configuration file.  Thus,
specific exceptions to a more general rule should appear earlier in the file.  Also, note that to
specify both directions on a path, one needs two rules. The actions taken, in addition to accept-
ing or rejecting a packet, can include notifying the sender upon rejection, and logging the packet
(useful for detecting breakins).  Figure 4 shows some examples (these examples would not make
sense for any single gateway, since the host names are chosen at random).

4ICMP type codes are interesting because some ICMP messages can be harmful (for example, routing Redirect
packets) while others are harmless (for example, Echo packets).  Well, mostly harmless: a villain could use
‘‘harmless’’ packets to flood a victim’s host.
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from host xx.lcs.mit.edu tcp port 3
to host score.stanford.edu tcp port telnet reject;

between host sri-nic.arpa and any accept;

from net milnet to subnet 36.48.0.0 proto vmtp reject;

from net-not cmu-net tcp port reserved
to net cmu-net tcp port rlogin reject notify;

from any icmp type echo to any accept log;

Figure 4: Example configuration file

There are two other kinds of rules that can be in the configuration file.  First, one can specify a
default action (normally rejection).  Second, one can specify the network masks for arbitrary
networks. This allows subnet specifications for non-local networks.  Normally, a gateway is not
supposed to know about the subnet structure of a distant network [20], but this information might
be useful in deciding whether to forward a packet that originates someplace in an organization
with multiple network numbers.

4.2. Implementation

Most of the complexity in the implementation screend is in the code that parses the configura-
tion file and builds the internal data structures.  The parser itself is a straightforward application
of lex [16] and yacc [13]. All translations of symbolic values (such as host names) to numeric
values are done during parsing; this is necessary for performance, although it means that if a host
changes its address, the internal databases may reflect stale specifications.

The main loop of the daemon accepts a packet header from the kernel, extracts certain fields
from the header, and matches the extracted fields against the internal representation of the con-
figuration file.  Since matching is the most time-consuming part of the inner loop, the choice of
internal representation clearly affects performance.

Several different representations were examined, including hash tables, decision trees, and
various combinations. The most difficult problem is that while the incoming packets contain
specific addresses, the specifications in the configuration file may contain partially specified ad-
dresses, and several specifications may match various fields of the packet. Moreover, it is im-
portant to provide a deterministic way of selecting between possibly several specifications that
all match the packet (the ‘‘in order of appearance rule’’ is arbitrary but easy to comprehend).
None of the complicated data structures seemed to have much of an advantage, and all involve
complicated implementations.

A simple array of specifications, searched linearly, is easy to implement and provides a deter-
ministic evaluation order.  On the other hand, if the configuration file contains many rules, this
array may be quite long, and since the individual match evaluations are rather costly, the perfor-
mance of this approach could be quite bad.
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