
Packets Found on an Internet

Steven M. Bellovin

�

August 23, 1993

Abstract

As part of our security measures, we spend a fair amount of time and e�ort looking for things that

might otherwise be ignored. Apart from assorted attempted penetrations, we have also discovered

many examples of anomalous behavior. These range from excessive ICMPmessages to nominally-local

broadcast packets that have reached us from around the world.

1 Introduction

For security reasons, AT&T's connection to the Internet is via a pair of application gateways[Che90]. To

maintain the security of the gateways, we monitor them for attempted intrusions[Che92]. Recently, we

have also started looking for more inventive penetration attempts[Bel92b]. We have indeed found such

behavior. While looking, though, we noticed a surprising amount of other anomalous behavior, packets

that do not appear to indicate an attempted break-in, but are worthy of attention nevertheless.

We are currently running three types of broad-spectrum monitors. First, a workstation with an

Ethernet controller in \promiscuous mode" looks for packets not destined for any legal machine. Second,

we run \packet suckers" on a variety of potentially-interesting ports. Third, we have recently deployed

an ICMP[Pos81] monitor; it logs most ICMP messages received by the machine. Each of these has detected

odd behavior. Currently, we cannot detect attempts to connect to random TCP or UDP ports, though we

are contemplating adding that ability.

2 Address Space Oddities

Our setup for monitoring address space probes is fairly awkward. The monitoring machine is located in

a part of the Murray Hill complex far removed from the live Internet cable. Accordingly, the link we are

using includes a bridge, which �lters out some packets. (This may be just as well, as it reduces the load.)

Furthermore, since the monitor is not armored the way research.att.com is, we cannot allow it to talk

to the Internet. Accordingly, we had a wire cutter introduce itself to the transmit leads on the drop

cable. But this created a problem for ARP entries[Plu82]: the router will not transmit the packets until

it has a valid Ethernet

1

address, and the monitoring machine is too crippled to supply one. The next

obvious choice is to have research.att.com answer; unfortunately, it has no \raw" driver that would

let an application program �eld ARP requests. We resorted to populating its kernel's tables as best

we could; unfortunately, these tables are not large enough to permit complete coverage. Our selections,

though adequate to detect security incidents, will likely miss attempts to reach random addresses. In

the future, we hope to use a Plan 9 machine[PPTT90] to act as our ARP agent.

�

AT&T Bell Laboratories. smb@ulysses.att.com

1

Ethernet is a registered trademark of Xerox Corporation.

Reprinted from Computer Communications Review, July 1993, Vol. 23, No. 3, pp. 26{31.

1

2.1 Anomalous Broadcasts

None of this was necessary to detect the strangest packets we have seen: those addressed to host

255.255.255.255, the IP broadcast address. That in itself would be quite ordinary, were they locally

generated. They were not. On at least three occasions, we have received broadcast name server packets

from other companies; more recently, we received a series of broadcasts intended for an local application.

The �rst instance was from another company connected to the same regional network as our gateway;

the other three involved traversals of the NSFnet backbone on the way to us.

We cannot explain why such packets would reach us. If router bugs permit such things to happen,

we should see more broadcast packets, and for a wider range of ports. But all four incidents involved

several packets, over a period ranging from minutes to hours. In one case where we were able to contact

the site's administrator, we were told that their primary name server had crashed about the time of the

�rst burst from their site. No theories were propounded to explain another broadcast packet from them

several hours later.

Some commercial routers can be con�gured to forward such packets, if destined for the name server

or selected other services. But the paths followed, in at least two of the cases, would have involved other

types of routers. Other suggested causes include too much blind reliance on default routes.

We are continuing to monitor our network for such packets. Our timestamps are synchronized to

WWV, in case anyone else has any logs they wish to match against ours.

2.2 Non-Existent Machines

We also see attempts to connect to odd addresses on our network. Some of these are very clearly security

events | when the connections requests are only to non-existent machines nevertheless listed in the

Domain Name Server (DNS) database[Moc87], the word \random" does not apply. Similarly, systematic

attempts to probe the entire network's address space are likely carried out with hostile intent. But

discounting those, we still see packets we cannot easily explain, packets destined for random addresses

of ours.

In at least one case, the cause was determined to be repeated corruption of the sender's DNS

cache. Somehow, a particular machine repeatedly acquired a variety of di�erent incorrect addresses

for research.att.com. As of this writing, we do not know where these addresses are coming from. The

frequency of change is high enough that we do not think it is random contamination from an incorrect

database; they would seem to be generated locally. A backup machine, running the same hardware and

software, has displayed the same symptoms.

We have also seen numerous ftp requests for our old gateway machine, which has not existed for at

least three years. As best we can tell, there are old host tables being passed around, even to new sites.

Most of these requests have come from non-U.S. sites, where the DNS seems to be used less. Given that,

it would seem to be worthwhile to re-advertise the existence of the standard hosts.txt �le. Yes, the

DNS is much better, but even a static host table is better than not being able to communicate at all.

3 Strange Application Requests

Some strange behavior occurs at the application layer. For example, we have seen a number of requests

to connect to inexplicable port numbers. We know of no standard TCP daemons that listen on ports

2, 42, 70, or 525. Nor are those ports listed in the latest Assigned Numbers RFC[RP90]. While these

particular requests appeared to part of an apparent break-in attempt, it is unclear to us why attackers

should bother probing unused ports. Conceivably, these are standard back doors deployed and used by

the hacker community (and documented, no doubt, in their own RFCs | \Resources For Crackers"); if

so, it is especially unfortunate that most systems cannot log attempts to connect to unused ports. We

were lucky to notice these requests; the attacker tried to connect to 9net.att.com, a Plan 9 machine,

and its design philosophy made detection quite easy.

On a number of occasions, we have seen attempts to connect to our NNTP port[KL86]. Since we

do not run NNTP, such requests are de�nitely out of line. As best we can tell, the usual motivation is

a desire to read newgroups disallowed by local administrative policy. Other reasons include a desire to

submit forged articles, and | in one instance | a purported desire to determine whether or not a news

article had been passed on. Certainly, there may be security
aws in the standard NNTP daemon. We

have no evidence for or against this proposition.

On several occasions, our RPC[Sun90, Sun88] monitors have detected attempts to send \wall"

broadcast messages to our machine. On at least one occasion, the request came from a site in Germany.

Investigation of the code for the rwall command showed that if an entry in the netgroup �le was not

a valid host name, it was presumed to be a wild card. This in turn caused the broadcast message to

be sent to every machine listed in the host �le. The combination of this property of the code, and the

apparent persistence of host tables, can cause a mind-boggling number of messages to be sent.

3.1 Wild and Crazy SNMP Agents

The most amusing application-level oddity we have seen was an SNMP message[CFSD90] from a distant

university. Investigation showed that this was a case of an overly-helpful network management system.

Apparently, several such systems have automatic or semi-automatic topology discovery mechanisms.

This is useful | creating a network map is hard work for any entity large enough to need a management

system | but such features need to be controlled. Internet-wide broadcasts are distressing enough; the

thought of implementing them by stepping through the entire address space is horrifying.

This was not an isolated incident. We described what happened in the RISKS Digest[Bel92a], and

received several reports of similar incidents elsewhere. Indeed, we have had runaways bother us since

then, including once from the control center of a regional networks.

4 ICMP Peculiarities

A recent glance at the output of the netstat command showed several peculiarities. We were seeing

non-zero counters for \bad code �elds" and for \routing redirects". The latter was especially strange,

since we have only one router on that network. Given the oddities, and given the theoretical possibility

of an attack via ICMP Redirect[Bel89] messages, we wrote a monitor to log all ICMPmessages. As usual,

we saw more than we were looking for.

The Redirectmessages were a bit elusive; they only seemed to come from certain sites. We eventually

trapped a burst of them. Apparently, a dial-up IP server of some sort will emit them, possibly if the

remote end is not available. The messages said, in e�ect, \to reach host X, use X as the gateway". Such

a message is clearly erroneous even if Redirects were legal when sent from other than the �rst-hop

router. Not only that, the connection information returned was erroneous, with constant (and incorrect)

values given for the local and remote port numbers, and even the remote host number, i.e., the value X

referred to above. Attempts to trace the route showed that the server was indeed confused; a routing

loop appeared as well, though that may be an artifact of the traceroute program.

We eventually learned that the target address that caused the trouble is in reality the broadcast

address for a subnet. This explains some of what we saw; a broadcast storm can certainly confuse

routers. And why were we trying to send messages to a broadcast address? Because our DNS cache was

corrupted; it listed 15 incorrect addresses (and 2 correct ones) for a very popular mail relay host.

Our ICMP monitor also detected the source of at least some of the \bad code �eld" messages. Some

routers, including a few that appear to be part of the NSFnet backbone, emitted Source Quench mes-

sages with a non-zero code �eld. This appears to be an ancient bug that was part of early releases of

4.3BSD. Unfortunately, many popular ICMP implementations will ignore messages with invalid code �elds,

recent RFC's notwithstanding[Bra89]. Thus, at the precise time when a router is strapped for resource,

it is sending useless Source Quench messages.

4.1 Firewall Routers

Many of the Destination Unreachable messages we received came from so-called \�rewall routers".

These are routers with very restrictive access control lists; their purpose is to protect hosts within an

organization, much as our gateways do. Unfortunately, the precise con�guration of such gateways can

and does cause trouble.

We encountered problems with a number of these routers. Attempts to send mail to destinations

beyond the �rewall generated large
urries of Host Unreachable messages. Analysis showed that the

problem stemmed from the desire to present a di�erent face to the inside than to the outside. For

example, DNS NS records pointed to both the internal servers, to which access was blocked, as well as

to the permitted gateway machines. For whatever reasons, our resolver tended to make large numbers

of queries to the internal DNS servers. The resolver did not see the ICMP rejections, and perceived

the problem only as a timeout. Eventually, it would switch to the next server in the NS list; until then,

retransmissions to the original server would generate new bounce messages. A similar situation existed in

the MX records. A moderately-large number of gateways were shown; only the least-desirable ones, by the

included metrics, were reachable from the outside. Thus, mail deliveries to this site were quite expensive;

a long list of failures had to be endured before a successful connection was established. The problem was

compounded by the apparent inability of our local TCP to process Destination Unreachable messages

at this point; instead, the connection attempts had to time out, a lengthy process.

The root cause of these failures is not, strictly speaking, a protocol problem. Rather, there is an

operational weakness in the existing name server implemenations. Clearly, the administrator did not

want us to try to reach the blocked hosts. Ideally, the answers returned by their DNS servers should

be �ltered: outsiders should never receive NS or MX records naming such hosts. But there is no easy

way to do this. What is needed is some sort of general �ltering language for the name server, specifying

communities of interest and what records they are allowed to see.

We are not claiming that such a mechanism is a security feature. Unless and until authentication

is added to the DNS, the level of security it could provide is fairly low. Rather, we are looking for

performance improvements, and for the elimination of these unneeded and unwanted packets aimed at

inside hosts.

4.2 A DNS Virus?

As noted above, incorrect DNS information exists. It is not clear why this happens; that it does happen

is indisputable. Worse yet, the incorrect information can spread. If a site that has a bad resource record

is queried about it, the server will blithely return the erroneous information, thereby contaminating the

cache of another site. We thus have something with characteristics akin to a virus: a mutant record that

uses standard facilities to reproduce itself. It \wins" if it can infect a high-level server, thereby causing

it to spread to almost anyone who tries to �nd out the correct address for the destination.

The word \mutant" may, in fact, be literally correct. One possible explanation for the origin of such

records is undetected corruption of DNS data while in transit. This is not at all unlikely, especially since

at least one major vendor ships machines with UDP checksum validation and generation disabled. Other

causes include address and name changes to name servers. If not done carefully, at both the delegating

site and the primary and secondary servers for the zone, records containing the union of both old and

new information will be propagated. We have seen this failure mode in our internal network.

4.3 Rejected DNS Messages

Our ICMP detected a surprisingly large number of Port Unreachablemessages, most of them to or from

port 53, the DNS port. Such messages suggest that a DNS response has arrived after the querying

process has terminated. Most likely, these indicate that more than one packet was sent out for a given

query, with some responses delayed overly long in transit. About 65% of the ICMP messages were to and

from processes on the local machine, indicating that our own queries were repeated. The rest indicate

that the local DNS server sent back late responses to outside inquiries.

DNS queries are in some sense a parasitic load. There is generally no value to the information per

se; rather, a DNS query generally indicates a desire to open up a useful connection for things like mail

delivery. A locally-generated query means that our host wishes to send information; a remote query

means that someone wants to send something to us. Accordingly, we compared the number of locally-

generated rejections with the number of outgoing calls during the same period, and the number of remote

rejections of our DNS responses with the number of incoming calls. The results were alarmingly high,

on the order of 50-60%. That is, about half the connections made involved repeated DNS inquiries, with

the repetition due to CPU or network load. Given that many calls can be made solely with reference to

the DNS cache, it would seem that either resolver retransmit timers are set much too low, or that there

is some unsuspected name server bug that causes unneeded transmissions.

The quantitative aspects of this analysis are somewhat suspect. There are two servers for our domain,

and two gateways; we are only monitoring one of each. Conceivably, our server is seeing a disproportion-

ate number of DNS queries compared with the number of inbound mail messages. But we did see the

same results for outbound messages, when the confounding factor was absent. We plan to investigate this

further, deploying appropriate monitors on both machines. We also plan to trap and analyze sequences

of DNS queries, responses, and rejections, an investigation our current monitoring con�guration does

not permit.

5 Conclusions

To some, our observations can be summarized succinctly as \bugs happen". That certainly is not news.

But dismissing our results so cavalierly misses the point. Yes, bugs happen. But bugs can be �xed |

if they are detected. The Internet is, as a whole, working remarkably well. Huge software packages

(i.e., X11R5) can be distributed electronically. Connections span the globe. But the very success of the

Internet makes some bugs invisible.

Because of our monitoring, we are able to spot certain classes of misbehavior that are, in general,

not seen. Unfortunately, unlike our security logging recommendations[Bel92b], many of the techniques

discussed here are not practical elsewhere. Trying to analyze bogus IP destination addresses on a busy

Ethernet cable does not work, for example. But the underlying problems they are symptomatic of have

not thereby gone away. We therefore suggest that, di�culties notwithstanding, others make similar

e�orts to instrument at least portions of their networks. That is the only way some of these subtle (and

not so subtle) problems will be detected and eliminated.

References

[Bel89] Steven M. Bellovin. Security problems in the TCP/IP protocol suite. Computer Communi-

cations Review, 19(2):32{48, April 1989.

[Bel92a] Steven M. Bellovin. \Helpful" self-con�guring programs. RISKS Digest, 13(25), March 5

1992.

[Bel92b] Steven M. Bellovin. There be dragons. In Proc. UNIX Security Symposium III, pages 1{16,

Baltimore, September 1992.

[Bra89] R.T. Braden, ed. Requirements for Internet hosts - communication layers., October 1989.

RFC 1122.

[CFSD90] J.D. Case, M. Fedor, M.L. Scho�stall, and C. Davin. Simple Network Management Protocol

(SNMP), May 1990. RFC 1157.

[Che90] W.R. Cheswick. The design of a secure internet gateway. In Proc. Summer USENIX Con-

ference, Anaheim, June 1990.

[Che92] W.R. Cheswick. An evening with Berferd, in which a cracker is lured, endured, and studied.

In Proc. Winter USENIX Conference, San Francisco, January 1992.

[KL86] Brian Kantor and Phil Lapsley. Network News Transfer Protocol, February 1986. RFC 977.

[Moc87] P.V. Mockapetris. Domain Names | Concepts and Facilities, November 1987. RFC 1034.

[Plu82] D.C. Plummer. Ethernet Address Resolution Protocol, November 1982. RFC 826.

[Pos81] Jon B. Postel. Internet Control Message Protocol, September 1981. RFC 792.

[PPTT90] Rob Pike, Dave Presotto, Ken Thompson, and Howard Trickey. Plan 9 from Bell Labs.

In Proceedings of the Summer 1990 UKUUG Conference, pages 1{9, London, July 1990.

UKUUG.

[RP90] Joyce K. Reynolds and Jon B. Postel. Assigned numbers, March 1990. RFC 1060.

[Sun88] Sun Microsystems, Inc. RPC: Remote Procedure Call Protocol Speci�cation Version 2, June

1988. RFC 1057.

[Sun90] Sun Microsystems, Inc., Mountain View, CA. Network Interfaces Programmer's Guide, March

1990. SunOS 4.1.

