
Key Management in an Encrypting File System

Matt Blaze
AT&T Bell Laboratories

Abstract

As distributed computing systems grow in size,

complexity and variety of application, the problem of

protecting sensitive data from unauthorized disclo-

sure and tampering becomes increasingly important.

Cryptographic techniques can play an important role

in protecting communication links and file data, since

access to data can be limited to those who hold the

proper key. In the case of file data, however, the rou-

tine use of encryption facilities often places the orga-

nizational requirements of information security in

opposition to those of information management.

Since strong encryption implies that only the holders

of the cryptographic key have access to the cleartext

data, an organization may be denied the use of its

own critical business records if the key used to

encrypt these records becomes unavailable (e.g.,

through the accidental death of the key holder).

This paper describes a system, based on cryp-

tographic "smartcards," for the temporary "escrow"

of file encryption keys for critical files in a crypto-

graphic file system. Unlike conventional escrow

schemes, this system is bilaterally auditable, in that

the holder of an escrowed key can verify that, in fact,

he or she holds the key to a particular directory and

the owner of the key can verify, when the escrow

period is ended, that the escrow agent has neither

used the key nor can use it in the future. We describe

a new algorithm, based on the DES cipher, for the on-

line encryption of file data in a secure and efficient

manner that is suitable for use in a smartcard.

1. Introduction

Modern distributed computing systems, for all their

virtues, make it difficult to limit reliably access to

sensitive data. Networks often unselectively broad-

cast data to far-reaching and unpredictable places,

remote login facilities create new opportunities for

trespassers and distributed file systems often assume

that all machines to which they provide service are

trustworthy and reliable. To reduce these risks, cryp-

tographic techniques make it possible to limit data

access while still taking advantage of untrustworthy

networks and services. Modern workstations can

encrypt in software at close to network speeds [4][5].

Data encryption attempts to ensure that only those

who possess the correct decryption key can obtain the

cleartext data.

Most commercial applications of encryption

techniques protect communication links (and related

services such as electronic mail). When communica-

tion endpoints are under the control of a single entity,

or trust a common authority, the management of

cryptographic keys is a conceptually straightforward

matter. Keys can be assigned and changed as often as

desired, the main problem being to ensure that both

sender and receiver agree as to the current keys and

that keys are discarded when no longer in use.

Should sender and receiver get "out of sync" with the

keys, the problem becomes immediately apparent

because communication fails. Ensuring access by

third parties in the event that keys are lost or unavail-

able is rarely an issue.* Public key techniques

[3][10] make communication key management easier,

allowing two parties to establish a secure channel

without prior arrangement.

*The law enforcement community argues that it may be an

exception; widespread use of encryption techniques may impede

police wiretap investigations [2]. The ethical, legal, social and

technical implications of law enforcement access to cryptographic

communication are presently the subjects of intense public debate

in the United States and are (fortunately) outside the scope of this

paper.

Cryptography can also be used to protect file

data, although there are relatively few tools for this

purpose in widespread use. Most file encryption

takes place at the application level, with tools such as

the Unix crypt command or with special encrypting

applications (e.g., "vi -x"). File encryption can also

take place at a lower level, as a basic service of the

file system [1][9][13].

Regardless of where encryption takes place,

key management for encrypted files is a fundamen-

tally different problem from that in cryptographic

communication. In a secure communication system,

keys must be distributed and synchronized geograph-

ically. Keys often serve the dual purpose of authenti-

cating identity as well as protecting against eaves-

droppers. The architecture for distributing communi-

cation keys is closely tied to the trust relationships

within the system, and practical key distribution pro-

tocols (such as those employed by the Kerberos sys-

tem[12]) must be carefully engineered to balance reli-

ability, security and performance.

In a file system, on the other hand, there is usu-

ally little need to distribute keys geographically; most

protected files are encrypted and decrypted at the

same locations (and by the same users). Authentica-

tion of identity is a less serious issue, with access

implicitly controlled through knowledge of the key

itself, although cryptographic techniques can also be

used to detect unauthorized tampering with file data.

File systems still present a significant, if differently

formulated, key management problem, however, in

that keys can be said to be distributed temporally.

The corresponding keys must be available at both

encryption and decryption time. File encryption keys

have much longer lifetimes than their communication

counterparts. If a key is lost or unavailable, the files

encrypted with it are rendered useless. This condi-

tion may not be detected until it is too late. The key

distribution center and public key cryptographic pro-

tocols developed for geographically distributed com-

munication systems do not have direct analogues that

can be readily applied to temporal file key manage-

ment.

Arguably, it is because of difficulties associated

with key management that sensitive files are rarely

encrypted in practice even when encryption tools are

available. This is especially true in critical business

environments where ensuring the availability of data

to authorized users is at least as important as ensuring

its unavailability to everyone else. Sometimes, files

are protected with weak ciphers, such that the

encrypted data can be recovered with the application

of sufficient computing resources. A toolkit ("Crypt

Breaker ’s Workbench") is available in Internet

archives for the purpose of decrypting files enci-

phered with the Unix crypt program. Needless to

say, since these tools are also available to the adver-

sary, encryption with weak ciphers is of questionable

value in the first place.

In the context of organizational information

systems, cryptographic file protection presents sev-

eral problems not addressed by traditional (communi-

cation-oriented) key management schemes. These

problems are not only technical (e.g., providing

mechanisms for ensuring that keys are available

when and where authorized) but also managerial and

social (balancing secrecy and privacy against emer-

gency access requirements). Carefully controlled key

management services with explicit, auditable trust

relationships that are integrated into the underlying

file system security architecture can help reconcile

these often conflicting goals.

2. Key Escrow

Hence the problem: strong file encryption is often

necessary to protect privacy while availability

requirements sometimes dictate the need for a "back

door" for emergency access. We use as our model

the common problem of ensuring continued access to

critical business files even after the only employees

who know the keys to those files leave the organiza-

tion. One approach adapts the procedures used for

controlling physical locks and keys to file encryption

keys and provides a central key distribution ("lock-

smith") service. Any time a user requires an encryp-

tion key, it is generated by a central service, which

also keeps a copy for emergency access.

In practice, however, the central locksmith

model adapts poorly to large-scale file encryption key

management. The central service must be uncondi-

tionally trusted by all who obtain keys from it. No

further controls preclude or audit access by those

with access to the key database. (Note that this is not

the case with locksmiths who manage physical keys

— use of a key requires access to the lock, which

may itself be controlled by independent security

mechanisms and which can be changed if the lock-

smith’s office is compromised. In the case of file

keys, on the other hand, once a copy of the key

database has leaked, all files with keys in the

database must be considered compromised forever.)

Furthermore, a central service can quickly become a

service bottleneck or worse, a single point of failure

or attack. The key service is an "online" part of the

key creation process and users cannot create new

keys if the service is unavailable. Finally, the prob-

lem of securing communication between the user and

the key center introduces all the problems of commu-

nication key management in addition to the existing

problem of file key management.

An alternative approach reverses the relation-

ship and provides a controlled mechanism for users

to deposit copies of their keys for emergency use as

needed. The keys for crucial files could thereby be

"escrowed" with a trusted caretaker who would

reveal them only when certain conditions are met,

such as when encrypted business data are required

after the death of the legitimate key holder. Concep-

tually, keys might be delivered within sealed

"envelopes." When a set of files is no longer critical,

the envelope containing its keys could be returned to

its originator, who could verify the integrity of the

seal and destroy the keys, preventing future access to

outdated, but still private, data. The "escrow-deposit"

approach has the benefit of allowing the key holder to

generate keys in the usual manner, without direct

"online" interaction with a third party. There is no

central service bottleneck, since the escrow agent is

not directly involved in the creation of new keys.

Envelopes containing escrowed keys can be delivered

to the escrow agent at any time and any inability to

deliver the keys to the agent need not preclude their

use by the key holder.

Unfortunately, this is difficult to do in practice.

The simplest procedure has the key holder write

down the key, place it in a sealed envelope, and leave

it with a trusted caretaker. This is vulnerable to mis-

takes, however, since there is no inherent mechanism

to ensure that the escrowed key is the same as the real

one. The security of the scheme also depends

entirely on the honesty of the caretaker and the

tamper-resistance of the envelope. An electronic ana-

logue to the sealed envelope can be implemented by

encrypting the key with a "caretaker" key, perhaps

using public key techniques. If this is done automati-

cally as part of key generation, the problems associ-

ated with transcription mistakes are avoided, but the

scheme still depends entirely on the caretaker’s hon-

esty (and even more so without the sealed envelope).

If no single caretaker can be trusted, the key could be

multiply encrypted with more than one caretaker’s

key, split among several escrow agents (in the man-

ner of the US Escrowed Encryption Standard) or

encrypted using a group-oriented public key protocol.

Both the manual and encrypted key escrow

schemes suffer from a fundamental problem, how-

ever. After an escrow agent "opens" the key and

learns its value, no further controls on its use are

possible. Anyone who learns the keys can use them

at any time in the future without detection. Elec-

tronic escrow is particularly hard to revoke or audit,

since it is difficult to ensure that all copies of the keys

have been destroyed when the escrow period ends

even if the keys have never actually been used (con-

sider backups or illicit copies of the escrow data).

Under these schemes, key escrow is an "all or

nothing" proposition, with no mechanism to guaran-

tee, in any formal sense, that the caretaker is doing

his or her job honestly. It is not obvious how to

implement key escrow schemes that offer stronger

protection against abuse without relying on elaborate

physical access controls or special purpose hardware.

Cryptographic smartcards can be used to

implement more carefully controlled and fully revo-

cable file system key escrow. Smartcards have sev-

eral properties that lend themselves to use as a con-

trolled store for escrowed keys. These cards are

designed to be sufficiently tamper-resistant to allow

their use in financial applications, have a controlled-

access non-volatile memory, can run general purpose

software and include built-in cryptographic and ran-

dom number generation capabilities.

3. Smartcard-Based Key Escrow in a Crypto-
graphic File System

The shortcomings of entirely software-based key

escrow schemes arise out of the inability to control

the use of the key once it has been revealed to the

escrow agent. Thus the problem is to guarantee the

escrow agent use of the key without actually reveal-

ing what it is. While this may appear to involve

impossibly contradictory requirements, most com-

mercial smartcards can be adapted to serve exactly

this purpose.

We propose a system in which an "escrow

smartcard" can be created along with each file

encryption key. This card is provided to a designated

third party (the "escrow agent") who is authorized to

use the key under some well-defined set of circum-

stances. If emergency access is required the card can

decrypt files without revealing what the key is, acting

as a self-contained decryption engine for ciphertext

sent to it by the escrow agent. Any time the card

decrypts data it also records that fact in its secure

storage. Later, when the escrow period is terminated

or when an audit is to be performed, the user can

query the card to determine whether the escrow agent

has used it. This section describes the design and

implementation of a smartcard-based key escrow

scheme for CFS, a file encryption system for Unix.

CFS is a cryptographic file system interface for

Unix-like systems; it allows the user to associate

cryptographic keys with directories. It runs entirely

on the client workstation. No modification to the

underlying file system (or file server) is required, and

file contents as well as some meta-data (file names)

are cryptographically protected. Backups and other

such routine administrative services can take place in

the normal manner and without the encryption keys.

Details on CFS can be found in [1].

Basically, CFS provides a mechanism to asso-

ciate "real" directories (on other file systems) that

contain encrypted data with temporary "virtual"

names through which users can read and write cleart-

ext. These virtual names appear in a separate names-

pace under the CFS mount point, which is usually

called /crypt. Users create encrypted directories

on regular file systems (e.g., in their home directo-

ries) using the cmkdir command, which creates the

directory and assigns to it a cryptographic

"passphrase" that will be used to encrypt its contents.

To use an encrypted directory, it must be "attached"

to CFS using the cattach command, which asks for

the passphrase and installs an association between the

"real" directory and a name under /crypt. Cleart-

ext is read and written under the virtual directory in

/crypt, but the files are stored in encrypted form

(with encrypted names) in the real directory. When

the directory is not in use, the association is removed

with the cdetach command, which deletes the cleart-

ext virtual directory under /crypt. When CFS is

run on a client workstation, the cleartext data (and the

cryptographic key passphrase) are never stored on a

disk or sent over a network, even when the real direc-

tory is located on a remote file server. The system is

implemented as a user-level NFS[11] server. The

basic flow of data in CFS is shown in Figure 1.

Key escrow is implemented for CFS as an

option to escrow the key when the encrypted direc-

tory is created with cmkdir. When keys are initially

assigned and whenever escrowed access is required,

the machine running CFS must have a smartcard

reader-writer attached. (In day-to-day user operation

on encrypted files, no smartcard reader is required.)

The smartcard has a small store of secure memory,

the ability to run simple programs securely and a

secret-key cryptographic engine compatible with that

of the host file system. Ideally, the card could have a

real-time calendar and the ability to schedule execu-

tion at some future date, although the cards we use

(the AT&T smartcard) do not have these capabilities.

We call the user who created the files the "owner"

and the caretakers of the escrowed keys the "escrow

...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...

User-Level

Application
Any

Program

NFS Svr. Interface

Encryption/

Decryption Engine

CFS

System Calls

Unix

Kernel

Sys. Call Interface

FS Client(local) (NFS)

Daemon

System Calls

Unix

Kernel

Sys. Call Interface

FS Client

File System Interface

(local)

(local or remote)

File

System
Storage

Media

FS Svr. Interface

Cleartext

(internal - localhost)

File System Interface

Encrypted

(local or remote)

Figure 1 − Data Flow in Standard CFS System

agents." The techniques described here could be

applied to any file encryption system and are not lim-

ited to CFS.

At the time keys are assigned (e.g., with the

CFS cmkdir command), the smartcard is initialized

with three sets of cryptographic keys. The first key

set, the "file system key," is used for actual file data

encryption, and consists, in CFS, of two 56 bit

DES[6] keys derived from a user-selected secret

"passphrase." The file key is also used to hash a

known plaintext string that is stored in the host file

system in the "check file." The second key, the "audit

key," is used to post-audit the card at escrow revoca-

tion time and will be explained in more detail below.

The audit key is also stored in a file on the host com-

puter (encrypted under the file keys). The last key,

the "escrow key," is used to encrypt the file system

keys stored on the card. It must also be provided to

the escrow agent (perhaps via public key techniques,

and perhaps split among several agents, but this key

is not essential to the security of the protocol). Ordi-

narily, the escrow key is derived from a second

passphrase entered by the owner. The encrypted file

keys and audit key are maintained in secure storage

on the card and cannot be easily "reverse engineered"

from the card. All smartcard initialization takes place

in CFS through a modified version of the cmkdir

command.

Once keys are assigned, the smartcard is turned

over to an escrow agent for safekeeping and the

escrow key passphrase revealed to the escrow agent.

(The escrow agent who holds the card need not be the

same agent who knows the escrow key). If the smart-

card has a calendar and the ability to schedule future

execution, the escrow data on the cards could be con-

figured to automatically self-destruct after a set

period. If needed, duplicate cards, with new escrow

and audit keys, can be created by the owner (using

the file passphrase) at any time.

In normal CFS operation, the file system keys

are derived from the user passphrase on the trusted

host computer when the owner issues the "cattach"

command for an encrypted directory; the smartcard is

not involved. Regular user operation requires only

the standard version of CFS (without any escrow

software). The check file assures that the entered

phrase is valid and that wildly incorrect decrypted file

names and contents are not returned to the file sys-

tem.

The smartcard itself is used to perform three

operations. The first operation, "pre-audit," simply

verifies to the escrow agent that the keys on the card

correspond to those used to encrypt the actual file

system. In this mode of operation, the escrow agent

sends the contents of the check file (in the escrowed

file system) and the escrow key to the smartcard,

which provides a "yes" or "no" answer based on the

decrypted file keys. (The owner could "cheat" and

provide a "dummy" check file; we discuss this

below.) The escrowed keys do not leave the card.

In "escrow access" operation, the smartcard

decrypts files for the escrow agents. The agents sup-

ply the escrow key; if it is supplied correctly, the card

decrypts the file system keys and increments a

counter in its secure store. Thereafter, for the remain-

der of the session, the card will use the decrypted file

keys to decrypt file data sent to it. If the card has a

real time clock, it could also maintain two time

stamps for the first and most recent times the escrow

key was used. Again, the keys never leave the card;

the card acts as a wholely self-contained decryption

engine. Once the card is removed, its state is reset

and the escrow key must be supplied again to enable

further decryption. Escrow access in CFS takes place

through a modified CFS file system daemon in which

the crypto engine is replaced with calls to the smart-

card interface. Additional support tools supply the

escrow key to the smartcard. Note that the card inter-

face is part of the data path for all decrypted data.

The data flow is shown in Figure 2.

The last mode of operation, "post-audit," is

used when the escrow period is ended and the card is

returned to the owner. The card reports the number

of times the escrow keys were used. If the card has

the capability to store this data it could also report the

first and last access times and number of bytes

decrypted under escrow (again, our cards do not). To

help protect against card forgery and to safeguard

against the return of a fake card by the escrow agent,

the owner can challenge the card to perform encryp-

tions under the audit key. The audit key is decrypted

on the host computer with the owner passphrase; by

comparing the results of a random challenge with the

result of a decryption performed locally, the owner

can verify that the card that was returned is the same

one that was originally escrowed. Post audit is per-

formed in CFS with an additional user tool.

3.1. File Encryption Scheme

One of the lessons learned from the design of CFS is

that the problem of encrypting files on-line in a file

system is somewhat different from other kinds of

encryption problems. No single standard encryption

mode[7] has all the properties required for file system

use; further compounding the problem are concerns

NFS Svr. Interface

...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...

User-Level

Application
Any

Program

System Calls

Unix

Kernel

Sys. Call Interface

FS Client(local) (NFS)

Unix

Kernel

Sys. Call Interface

FS Client

File System Interface

(local)

(local or remote)

File

System
Storage

Media

FS Svr. Interface

(internal - localhost)

File System Interface

Encrypted

(local or remote)

Cleartext

System Calls

Smartcard

Escrow

Smartcard

Interface

Decrypt

Engine

Interface

CFS Escrow Daemon

Figure 2 − Data Flow in CFS Escrow Agent System

that the 56 bits of key used by the DES cipher are

vulnerable to exhaustive search attack[14].

CFS uses a combination of DES "codebook"

and pre-computable "stream" cipher modes to

approximate the strength of multiple iterations of

DES with the runtime latency of only a single itera-

tion of DES. This scheme has the resistance to struc-

tural analysis of a chaining cipher but allows random

read and write access in constant time.

The encryption scheme relies on the ability to

trade off space (in the precomputation of the streams)

for time. To accommodate the key escrow system,

we modified the CFS encryption scheme to allow

"lazy evaluation" on the smartcard without the large

memory requirements of the precomputed stream.

We believe this scheme to be equivalent to 3-DES

under currently known practical attacks. The new

CFS cipher is as follows:

Recall that keys in CFS consist of two DES

keys, K1 and K2, derived from the user passphrase.

Conceptually, CFS file block encryption consists of

encryption against a positionally defined stream

cipher derived from K1, which is then encrypted with

a codebook block cipher under K2, which is further

encrypted with a second multi-use stream cipher

derived from K1. Specifically,

E p = DES1(K2, Dp + DES1(K1, f (p mod m)) + i)

(1)+ DES1(K1, g(p mod m))

The cipher is reversed in the obvious manner:

Dp = DES−1(K2, E p + DES1(K1, g(p mod m)))

(2)+ DES1(K1, f (p mod m)) + i

where:

E p is the ciphertext block of a file at byte offset p.

Dp is the cleartext block of a file at byte offset p.

+ is the bitwise exclusive-or operation.

DES1(k, b)

is the Data Encryption Standard block encryp-

tion function on cleartext b with key k.

DES−1(k, b)

is the Data Encryption Standard block decryp-

tion function on ciphertext b with key k.

i is a bit representation of a unique file identifier

derived from the Unix inode number and cre-

ation time of the encrypted file.

f (n), g(n)

are publically known functions that map an

integer representation n into unique bit strings

of the DES codebook size (64 bits).

m is the length of the precomputed stored stream

(presently 256K bytes).

Observe that the stream ciphers defined by

DES1(K1, f (p mod m)) and DES1(K1, g(p mod m))

can be precomputed for each K1 given 2m bytes of

storage. The CFS daemon precomputes these

streams when the cattach command is issued for a

particular key. With the streams precomputed, each

block encryption requires only one online DES oper-

ation (the codebook cipher based on K2).

When decryption is performed on the card, the

streams cannot be wholely precomputed in the card’s

small local memory. Instead, the card calculates

DES1(K1, f (p mod m)) and DES1(K1, g(p mod m))

for each cipherblock sent to it. (f (p mod m) and

g(p mod m) are sent to the card from the host com-

puter as parameters with the cipher block.) Although

this is computationally slower than the precomputed

cipher, requiring three DES encryptions per block

instead of one, bandwidth to the card interface (a

serial link) remains the primary limitation on encryp-

tion speed.

4. Practical Applications

File system key escrow can support a variety of

application domains. Ensuring organizational access

to proprietary data was discussed and motivated

above. Here, an employee has primary operational

responsibility for data that belongs to an organization.

Key escrow allows the organization to provide other

individuals with emergency access capability in the

primary employee’s absence. Access by these

"backup" individuals can be granted, controlled,

audited and revoked easily, without compromising

the organization’s ability to maintain and control its

own information.

Smartcard-based escrow also facilitates other

backup access relationships. In the organizational

scenario above, the primary key holder is "subordi-

nate" to the escrow holder. Alternatively, a manager

may be the primary key holder for sensitive-but-

critical business data for which the keys are escrowed

with an employee. The escrow key holder may not

be authorized for routine access, but in the manager’s

absence may be required to perform "proxy" func-

tions on the manager’s behalf. Here, the smartcard

system implements and enforces a common business

delegation of authority practice.

Another scenario, which may become more

important in the future, involves the protection of

individual personal records. Consider, for example, a

system in which medical records are encrypted under

a key known only to the patient. Routine use of these

records by a health practitioner requires the patient’s

active consent in supplying the key. In an emergency,

however, access to the records may be required even

when the patient is physically unable to supply the

key. A key escrow smartcard, which might remain in

the physical possession of the patient or be main-

tained with the records themselves, would enable

such emergency access but still permit the patient to

control (and revoke) the routine use of his or her pri-

vate records. The proposed US national health care

insurance system includes a smartcard-based identifi-

cation token into which such a scheme could possibly

be integrated.

4.1. Performance

The standard CFS system employs a software-based

cryptographic engine that performs encryption on a

modern workstation at between one and three

Mbps[4]. Because CFS uses the standard file system

cache, actual performance is much better, with a per-

formance penalty of only 20-50% above the underly-

ing file system under typical workloads. The escrow

access system, on the other hand, performs all crypto-

graphic operations on the smartcard, which commu-

nicates with the host workstation at serial link speeds

(19,200 bps). After protocol and processing over-

head, cryptographic bandwidth to the card is about

6,000 bps with the CFS cipher described in the previ-

ous section. Using the smartcard for decryption

slows the cryptographic engine by almost three

orders of magnitude. Cache performance hides this

slightly, but the escrow access system is by no means

transparent or fast enough for routine operational use.

In practice, the reduced performance is rarely

an issue, since escrow access is not intended to sup-

port routine processing. (Write operations by the

escrow agent are not even supported by our imple-

mentation). The normal mode of escrow operation

involves copying out those files required for emer-

gency access, such that the card is not subsequently

required for their use.

These are not fundamental limitations. Faster

smartcards are beginning to emerge in the market,

along with faster interfaces with bandwidths that

exceed the crypto-bandwidth of current software

implementations. PCMCIA cards hold particular

promise in this area.

4.2. Trust Model

Smartcard-based key escrow does not absolutely

guarantee that the access policy will be enforced.

There are risks associated with various parts of the

system, each of which must be assessed in light of the

application’s security policy, threat model and avail-

able alternatives.

The system depends on the reverse engineering

resistance of the escrow smartcard devices to control

access by the escrow agents. Reverse engineering

could reveal the keys stored on the card and permit

the escrow agent to create duplicate cards without the

knowledge of the key owner. Although the risk of

reverse engineering is difficult to quantify as technol-

ogy progresses, commercial smartcards are designed

to resist this sort of attack. Recent trends in tamper-

resistant packaging and chip fabrication technology

suggest the emergence of future products with greatly

reduced vulnerability to reverse engineering. In

highly sensitive environments in which the integrity

of the smartcard is not completely trusted, the card

can be protected with augmented physical safeguards

such as sealed envelopes and accountable paper audit

trails.

By definition, the escrow agent has access to

the escrowed data while in possession of the escrow

card. The only built-in control on the escrow agent is

access detection when the card is eventually audited.

If the card is not returned by the agent, however, it is

not possible to audit past access or prevent future

access as long as the encrypted data remains avail-

able. The escrow key serves to limit unauthorized

use of lost or stolen cards. If no single agent is

trusted, possession of the card and the escrow key

can be split among two or more agents. These risks

are largely a function of the relationship between the

escrow agent and the key owner. When appropriate,

the owner can periodically audit the escrow card

throughout the escrow period. Controls on access to

the encrypted escrowed data can further ameliorate

the risk of unauthorized access by the agent.

Any escrow system carries the risk of "cheat-

ing" by a key owner who encrypts data with keys

other than those escrowed. This risk is present any

time the key owner is able to supply his or her own

cryptographic system. The check file in the smart-

card system guards only against mistakes, not against

deliberate deception. All escrow systems suffer from

this limitation. In a centralized key distribution sys-

tem, nothing prevents the use of "out of band" keys

not obtained from the key center. In a system such as

the government Escrowed Encryption Standard[8]

(the "Clipper chip"), it is possible to suppress the

escrow exploitation field in the data stream or pre-

encrypt with a secure non-escrowed cryptosystem.

(The government system attempts to reduce this risk

by supplying the escrowed devices in tamper-

resistant modules, making it difficult to deploy the

cipher without the escrow features.)

The risk of end-user escrow circumvention

depends on the relationship between the key owner

and the escrow agent. If escrow is perceived as a ser-

vice for the mutual benefit of the key owner and

agent, this risk is not an issue. If, on the other hand,

this relationship is adversarial, there can be no com-

pletely reliable mechanism that prevents cheating.

5. Conclusions

Key escrow is not appropriate for all file encryption

applications. Some data are simply too private; per-

sonal diaries, certain individual medical and financial

records and other data for which there is no motiva-

tion for the data owner to allow third party access are

poor candidates for escrow. Other data, such as day-

to-day operational business records, have such high

availability requirements to preclude any encryption

at all. Escrow serves the "middle ground" for which

security requirements suggest the need for crypto-

graphic protection while availability requirements

dictate the need for access.

Smartcard-based escrow overcomes the major

shortcomings of software-based and manual escrow

systems. Unlike manual systems, the escrowed keys

can be reliably pre-audited to ensure their validity

without compromising sensitive data. And unlike

either system, once the card is returned, the owner is

assured of whether the escrow process was used and

that no further decryptions can occur. Escrowed

decryption is completely under the control of the

card; past possession of the card conveys no future

privileges.

6. Acknowledgements

The author is indebted to Doug McIlroy for suggest-

ing the encrypted file access problem. Jim Reeds’

critical insights influenced the design of the CFS

cipher. Eleanor Evans, Jack Lacy, Tom London and

Adam Moskowitz made many helpful suggestions

that improved this paper and the system it describes.

We are particularly grateful to the anonymous referee

who suggested medical records as an application

area.

7. Availability

A research prototype of the base CFS system (imple-

mented as a user-level NFS server) is available free

upon request within the US and Canada. We regret

that US Government-imposed export restrictions pre-

vent us from making it available elsewhere. For

information, ftp dist/mab/cfs.announce from

research.att.com or send email to

cfs@research.att.com. The smartcard soft-

ware, including the escrow system described here, is

not presently available.

8. References

[1] Blaze, M., "A Cryptographic File System for

Unix." Proc. First ACM Conference on Com-

puter and Communications Security, Fairfax,

VA, November 1993.

[2] Denning, D. E., "Encryption and Law Enforce-

ment." Georgetown University, Computer Sci-

ence Dept., Feb. 21, 1994, available by anony-

mous ftp from cpsr.org.

[3] Diffie, W. and Hellman, M. E., "New Direc-

tions in Cryptography." IEEE Trans. on Infor-

mation Theory, IT-11:644-654, November

1976.

[4] Lacy, J., Mitchell, D. and Schell, W., "Cryp-

toLib: Cryptography in Software." Proc.

Fourth USENIX Security Workshop, October

1993.

[5] Ioannidis, J. and Blaze, M., "Architecture and

Implementation of Network-Layer Security

Under Unix." Proc. Fourth USENIX Security

Workshop, October 1993.

[6] National Bureau of Standards, "Data Encryp-

tion Standard." FIPS Publication #46, NTIS,

April 1977.

[7] National Bureau of Standards, "Data Encryp-

tion Standard Modes of Operation." FIPS Pub-

lication #81, NTIS, December 1980.

[8] National Institute for Standards and Technol-

ogy, "Escrowed Encryption Standard." FIPS

Publication #185, NTIS, February 1994.

[9] Reiher, P., et. al., "Security Issues in the Truf-

fles File System." PSRG Workshop on Network

and Distributed System Security, 1993.

[10] Rivest, R.L., Shamir, A. and Adleman, L., "A

Method of Obtaining Digital Signatures and

Public-Key Cryptosystems." CACM, February

1978.

[11] Sandberg, R., Goldberg, D., Kleiman, S.,

Walsh, D. and Lyon, B., "Design and Imple-

mentation of the Sun Network File System."

Proc. USENIX, Summer 1985.

[12] Steiner, J., Neuman, C. and Schiller, J.I., "Ker-

beros: An Authentication Service for Open

Network Systems." Proc. USENIX, Winter

1988.

[13] Tygar, J.D. and Yee, B., "Strongbox: A System

for Self Securing Programs." CMU Computer

Science: 25th Anniversary Commemorative,

Addison-Wesley, 1991.

[14] Weiner, M.J., "Efficient DES Key Search."

Crypto ’93, (short presentation) August 1993.

Pre-publication draft — This paper will appear in

Proc. Summer 1994 USENIX Technical Conference,

Boston, MA, June 1994. The author can be reached

via email at mab@research.att.com and via

postal mail at AT&T Bell Laboratories, 101 Craw-

fords Corner Rd., Room 4G-634, Holmdel, NJ

07733.

