
5.1 NCSA DataScope

Chapter 5 Programs That Run on Remote Hosts

Chapter Overview
Networking Introduction

Installing Your Network
Checking Your Networking Setup

Using DataScope for Remote Computing: Delivering Data to
DataScope with TCP/IP

Generating an Image Automatically
Making Movies with a Sequence of Arrays
Making Faster Movies
Saving to Disk
Command Summary

Using a Remote Network Server for Notebook Functions
Basics
Writing Your Own Functions
Writing FORTRAN Functions

Using a Sample Program
DataScope's Interactions with a Remote Host

Programs Run on Remote Hosts 5.1

5.2 NCSA DataScope
Chapter Overview

This chapter describes DataScope's networking capabilities and its relationship with
Telnet 2.3MacTCP.

Networking Introduction
Installing Your Network

NCSA DataScope version 2.0 can be used with or without a TCP/IP network
connection. If you do not install the network functions, all local functions of
DataScope continue to work as before. However, if you do install it, you must set up
MacTCP correctly on your Macintosh.

NOTE: You should install NCSA Telnet 2.3 -MacTCP- on your Macintosh before
attempting to use any of the DataScope network capabilities. The configuration file
is used by DataScope to resolve the addresses of remote machines.

After installing NCSA Telnet 2.3 -MacTCP-, make sure you can connect to the
appropriate host machines with NCSA Telnet, and that you can log in via Telnet. If
you cannot, consult the NCSA Telnet documentation, contact your local networking
support organization, or contact NCSA to get NCSA Telnet working first. (See the
Bugs and ReadMe pages of this document.)

NOTE: NCSA DataScope does not support name server functions. If the name of
the machine is not in the config.tel file explicitly, you will have to use the machine's
Internet address.

The only change you may want to make to the config.tel file is to include all names
and IP addresses of machines you wish to connect to from DataScope.

NOTE: You should place your config.tel file from NCSA Telnet 2.3 -MacTCP- in the
system folder. If you don't, an error message stating that there is a problem with the
config.tel file will appear on the screen.

DataScope 2.0 is no longer limited to the processing power of the Macintosh alone.
Notebook functions, which you may not have used before because they were too
slow or you didn't have access to a local compiler, can now automatically be
executed on a remote compute server. Although you do have to wait for the data to
be sent there and back, this inconvenience is negligible when compared to the
increased computational speed of the supercomputer.

If you have an existing FORTRAN or C application running on a supercomputer or
other UNIX computer with the TCP/IP network protocols, DataScope can be used as a
flexible, interactive output device for two dimensional arrays. When the program or
a specific time step finishes, a simple subroutine call transfers the array to your
Macintosh.

Programs Run on Remote Hosts 5.2

5.3 NCSA DataScope
Figures 5.1 and 5.2 show the new network functions in DataScope 2.0. There are two
completely separate functions which may be used. You can:

• send datasets from your mainframe to DataScope on demand from a mainframe
application that you've written.

• use a remote compute server to access notebook functions that are too time-
consuming to calculate or that you cannot compile on your Macintosh.

Figure 5.1One-way Passage of Data from a Remote Host to DataScope on the
Mac

DataScope
1.2

Cray or Sun
Application
FORTRAN or C
linked with special
DataScope library calls
sends arrays to the
Macintosh with TCP/IP
protocols

Notebook

One Way

Figure 5.2Two-way Passage of Data from a Remote Host to DataScope on the
Mac

DataScope 1.2

Notebook

Cray or Sun Server

FORTRAN or C
subroutines linked
with DataScope
library calls.

Round Trip

Programs Run on Remote Hosts 5.3

5.4 NCSA DataScope
One-Way Process
An example of a one-way process in DataScope (Figure 5.1) would be a FORTRAN
application used to simulate a growing, moving thunderstorm. After each simulation
time step, your application might send out one or more arrays which "pop up" in
the background of your Macintosh screen. This is a one way transfer; the data
originates in your remote simulation and ends up in DataScope on your Macintosh.

Two-Way Process
The need for a two-way process of data in the program (Figure 5.2) might come later
when you are looking at your array in DataScope and need to perform a Fourier
Transform on one of the arrays to analyze it in frequency space. Once you've
prepared a FFT routine on a supercomputer, all you have to do is select the
Calculate From Notes command from the Numbers menu on the following notebook
formula. (See Chapter 4, "Notebook Calculations.")

transform = fft(mydata)

This kind of compute serving requires a round trip for the data. DataScope delivers
the array to the remote computer, waits for the response, and then receives the
answer back.

Checking Your Networking Setup
NCSA DataScope does not contain diagnostics or error messages concerning the
operation of the network. Therefore, your best bet to debug any network problem is
to make sure NCSA Telnet works first.

NOTE: In the worst case, you may have to enter the IP address of the machine to
connect to. If NCSA Telnet can connect to a machine by name, you can always
connect to the machine from NCSA DataScope by using its IP number.

DataScope provides two kinds of diagnostics to let you know whether the network
has been initialized successfully or not.

• In the About DataScope dialog under the Apple menu, the information includes an
indicator of "Network Enabled" or "Network Disabled".

• If the network is disabled and you attempt to execute a notebook function which
is not local, the "Use Network Server" button will be dimmed and cannot be
selected.

Programs Run on Remote Hosts 5.4

5.5 NCSA DataScope

Using DataScope for Remote Computing:
Delivering Data to DataScope with TCP/IP

Most supercomputer simulations write out results into ASCII or binary data files,
which you then can use to print out or create graphs or images from the numbers.
With DataScope 2.0, you can bypass viewing the intermediate data file since the
program displays the data on your screen immediately, as values are generated.
The following section describes this process and give examples.

In order to display an array, DataScope needs the data information listed in Table
5.1.

Table 5.1 Required Information to Display
an Array

• name the name of the variable to display
• flags the array's purpose (Flags specifies what is to be done with
the data when returned to DataScope.)
• nrows the number of rows in the array
• ncols the number of columns in the array
• rows the scale values (independent variable), one for each
row
• cols the scale values (independent variable), one for each
column
• max the largest value of interest in the array
• min the smallest value of interest in the array
• vals the array of floating-point data values

With the appropriate linkable library (source provided on DataScope 2.0 distribution
disk), you can write a FORTRAN program which combines all of this information into
one call statement as shown in Figure 5.3.

Figure 5.3FORTRAN Call Statement
call
ds_send(mac,name,flags,max,min,nrows,ncols,rows,cols,vals)

The additional "mac" parameter is present so that the remote computer can
indicate which Macintosh is ready to receive the array. This call may be used
anywhere in a FORTRAN or C program written for a UNIX host computer where the
special DataScope linkable library will operate.

The ds_send call connects the remote computer to your Macintosh and sends all of
the relevant information over the TCP/IP connection to DataScope. When DataScope
finishes receiving all of the data, the array window appears on the screen, just as if
you had used the "Open" command on a data file. Of course this means that
DataScope 2.0 must be ready and waiting, running under MultiFinder before the
transfer attempt starts.

Programs Run on Remote Hosts 5.5

5.6 NCSA DataScope
Generating an Image Automatically

DataScope 2.0 can generate an image each time it receives a data array from
another computer. The flags field from the ds_send command is used to indicate
that an image should be generated as soon as the whole data array arrives. For
example, you can use the 'G' flag to generate an image by entering the boxed code
segment in Figure 5.4.

Figure 5.4Call Statement using 'G' Flag
flags = 'G'
call
ds_send(mac,name,flags,max,min,nrows,ncols,rows,cols,vals)

As soon as this array arrives in DataScope, the "Generate Image" command is
invoked just as if you had selected it from the Image menu. The new image window
appears on top of the text window.

Making Movies with a Sequence of Arrays
The 'R' flag performs a special "replace" operation in DataScope. When using the 'R'
flag, all of the members of its associated sequence must be the same size
(cols,rows), and they must have the same or similar names. In your FORTRAN
program, use the same ds_send call and add the 'R' flag to the flags parameter
(Figure 5.5). This flag causes any previously sent dataset to be replaced by
subsequently sent datasets.

Figure 5.5ds_send Call with 'R' Flag
flags = 'RG'
call
ds_send(mac,name,flags,max,min,nrows,ncols,rows,cols,vals)

DO Loop
Using a DO loop around this same ds_send call with different arrays of the same
size cycles each array through the same DataScope window(s). You can easily create
a movie effect with a top speed of approximately one frame every two seconds by
using small (50 x 50) arrays and high-speed Ethernet links. (See the this chapter's
section, "Making Faster Movies" for more information.)

Variable Names
A special component of the movie sequencing is the use of the variable name.

A sequence of variable names can be created from a base name and an extension.
The base name must be identical in each variable name entry for the replace flag to
work, but the extension may be arbitrary (e.g., _001, _002, _003, etc.). For example,
with a base name of "pressure" and numbers used as extensions, the sequence of
names in Figure 5.6 can be generated and used to create a movie sequence in
DataScope .

Programs Run on Remote Hosts 5.6

5.7 NCSA DataScope
Figure 5.6Example Code to Create a Movie

Sequence
pressure_001
pressure_002
pressure_003
...

The separator between the base name and the extension can be any non-
alphanumeric character. A period, underscore, or even a space may be used. An
underscore is recommended since DataScope translates all non-alphanumerics to
underscores before using the specified name.

To sum up:

• If you use the identical variable name for ds_send, then the replace flag works as
expected with each new array appearing in the same window.

• If you use a brand new name, a new window appears whether the 'R' flag is used
or not.

• If you use the replace flag with more than one variable name alternately, you
allow two movies to proceed in two different windows at the same time.
DataScope matches the windows by variable name.

Making Faster Movies
A primary factor in the delay between frames is the time it takes to make a network
connection between the remote computer and the Macintosh. With a slight variation
on the ds_send call, you can remove the need to open and close the connection
between each frame of a movie sequence. This new form involves the ds_send1
call. The "mac" parameter has been moved to a new call, ds_open. Your code would
resemble that in Figure 5.7.

Figure 5.7Using ds_send1 and ds_open for
Faster Movies

mac = '192.17.20.10'
call ds_open(mac)
flags = 'RGS'
do 100 i=1,10
c calculate new vals array
c
100 call ds_send1(name,flags,max,min,nrows,ncols,rows,cols,vals)

call ds_close

Saving to Disk
To save an array, use the flag 'S' for Save. Each time an array arrives with the 'S'
flag set, the array and/or image(s) will be displayed on the screen as usual, and then
saved to disk in an HDF file. This save operation is identical to selecting the Save
command from the File menu.

NOTE: If you repeat the use of a variable name, the new file will be saved on top of
the old file, thus replacing the former file. Use a

Programs Run on Remote Hosts 5.7

5.8 NCSA DataScope
base name plus an extension as discussed in this chapter's section "Making Movies
with a Sequence of Arrays" to avoid overwriting files while saving a movie.

With the 'G' flag to generate an image, the 'R' flag to cause a replacement each
time, and the 'S' flag to save the files to disk, the remote FORTRAN or C program can
create an entire animated movie sequence on disk. This sequence may be animated
from disk with NCSA Image, NCSA ImageIP, or other programs in the NCSA suite of
Macintosh software, which can redisplay the animation while adjusting speed and
direction of the animation.

To make the use of NCSA Image easier, run the animation once without the 'S' flag
on. Then save the last frame, or a representative frame, into an empty folder. This
sets up the default folder for the movie sequence. Run the animation again with the
'S' flag and DataScope fills that folder with a complete set of animation files.

Command Summary
Listed below is a summary of the routines used in DataScope.

DS_SEND
The ds_send call is shown in Figure 5.8, as defined in FORTRAN.

Figure 5.8ds_send in FORTRAN
SUBROUTINE DS_SEND(MAC,NAME,FLAGS,MAX,MIN,NROWS,NCOLS,ROWS,COLS,VALS)

CHARACTER *80 MAC,NAME,FLAGS
INTEGER NROWS,NCOLS
REAL MAX,MIN,ROWS(NROWS),COLS(NCOLS),VALS(NCOLS,NROWS)

where:

• mac the name or IP address of the Macintosh to connect with

• name the name of the variable to display

• flags the function of the array (Flags specifies what is to be done with the
data when its returned to DataScope.)

• max the largest value of interest in the array

• min the smallest value of interest in the array

• nrows the number of rows in the array

• ncols the number of columns in the array

Programs Run on Remote Hosts 5.8

5.9 NCSA DataScope
• rows the scale values (independent variable), one for each row

• cols the scale values (independent variable), one for each column

• vals the array of floating-point data values

DS_SEND1
The DS_SEND1 version of the ds_send call is the same, except for the MAC parameter.
The MAC parameter is used in the separate DS_OPEN call (Figure 5.9).

Figure 5.9ds_send1 in FORTRAN
SUBROUTINE DS_SEND1(NAME,FLAGS,MAX,MIN,NROWS,NCOLS,ROWS,COLS,VALS)
SUBROUTINE DS_OPEN(MAC)
SUBROUTINE DS_CLOSE

Flag Summary
The flags field gives the remote computer application several options about what
DataScope should do after it has received an array. The fields are all set by using
upper-case letters corresponding to the Command-keys in the DataScope menus.
Except for the addition of the 'R' replace flag, the capital letters have the same
functions as the menu commands they represent.

Table 5.2 Flags and Their Functions
Flags Function

G Generate Image
I Interpolated Image
P Polar Image
S Save
R Replace

Flags may be used in any combination and in any order. The entire flags string is
scanned for the occurrence of these letters. To disable a function, omit it from the
flags string. The default performs none of these functions.

Using C Calls
The C form of the ds_send call (Figure 5.10) has the same parameters as the
FORTRAN call. Below is the C syntax. Strings are zero-terminated C strings of any
(appropriate) length.

Figure 5.10 ds_send in C
ds_send(mac,name,flags,max,min,nrows,ncols,rows,cols,vals)

char *mac,*name,*flags;
int nrows,ncols;
float max,min,*rows,*cols,*vals;

Programs Run on Remote Hosts 5.9

5.10 NCSA DataScope
ds_open, ds_send1, and ds_close are similar to their FORTRAN counterparts as
shown in Figure 5.11.

Figure 5.11 ds_open, ds_send,
ds_close in C

ds_open(mac)
char *mac;

ds_close()

ds_send1(name,flags,max,min,nrows,ncols,rows,cols,vals)
char *name,*flags;
int nrows,ncols;
float max,min,*rows,*cols,*vals;

NOTE: You may only have one connection open at a time. Entering COMMAND-
period (⌘-.) at any time will interrupt the network activity and reset the network.

Linking in dscall.o
The ds_send calls for both FORTRAN and C are contained in the same object file,
dscall.o compiled from the C source in dscall.c. You should include this file on
the cc or f77 compile lines directly. On UNICOS, dscall.o references routines in
libnet.a, so it requires that you include that library on the link line. To create
dscall.o on any UNIX system, just compile it with the -c flag.

To compile dscall.o on Sun and UNICOS systems, enter the commands in Figure
5.12.

Figure 5.12 Code to Compile dscall.o
cc -DSUN -c dscall.c
cc -DUNICOS -c dscall.c

UNICOS compile examples (Figure 5.13):

Figure 5.13 UNICOS Compile
Examples

cc myprog.c dscall.o -lnet -o myprog
cf77 myprog.f dscall.o -lnet -o myprog

Sun UNIX compile examples, direct version (Figure 5.14):

Figure 5.14 UNIX Compile Examples
cc myprog.c dscall.o -o myprog
f77 myprog.c dscall.o -o myprog

Array Order
The declaration order of the arrays must be arranged according to the storage order
of the language you are working with. The network connection to DataScope
transfers the array in storage order, across from left to right as you go down the
page (the same as reading English text). The matching declarations for the vals
array in FORTRAN and C are presented in Figures 5.15 and 5.16, respectively.

Programs Run on Remote Hosts 5.10

5.11 NCSA DataScope
Figure 5.15 Vals Array in FORTRAN

REAL VALS(NCOLS,NROWS)

Figure 5.16 Vals Array in C
float vals[nrows][ncols];

Using a Remote Network Server for Notebook Functions
Basics

Thus far we've discussed DataScope's capacity for remote computing. The second
network function available in NCSA DataScope 2.0 is the ability to off-load Notebook
computations to another computer. Previous versions of NCSA DataScope had
several built-in functions which could manipulate arrays in local memory. They could
combine the arrays to make more powerful formulas, but there was a limit to the
number of functions provided and a limit to the processing power of the Macintosh.
Now, as in previous versions, you may write external functions for DataScope which
perform calculations that you write and compile for yourself. In addition, DataScope
2.0 allows access to functions which are compiled and run on other computers.

DataScope's server routines run on Cray UNICOS and Sun UNIX. They are written in
portable C and use the rexecd mechanism provided by many UNIX systems, so they
should be portable to other types of computers. As a user, you do not have to work
with the communications routines directly. You write the function subroutines in
FORTRAN or C as described below and then DataScope takes care of transferring the
arrays back and forth.

NOTE: SunOS version 4.0 and later will not allow communication to be established
with the rexecd daemon UNLESS the machine attempting to connect is in the
remote machine's hosts file. Talk to your Sun administrator to get an entry for your
Macintosh made in the hosts file.

DS_serve, the DataScope Server
DS_serve is the name of the program which DataScope accesses on your remote
computer. For UNIX, the Makefile and example subroutines are provided on the
DataScope distribution disk. When DataScope invokes the remote server, it looks for
a program called DS_serve in your home directory and runs it. This program must
be set up to receive DataScope function calls with the special DS_serve library
provided in DataScope.

On the NCSA systems, home directories are limited in their space allocation. You can
easily create a tiny shell script called DS_serve in your home directory which selects
the proper DS_serve program in another directory. This arrangement only requires
one line in the shell script; i.e., the full path name of the actual program to run
(Figure 5.17).

Programs Run on Remote Hosts 5.11

5.12 NCSA DataScope
Figure 5.17 Making a Shell Script with

DS_serve
/scr4/u14013/DS_serve

Using Remote Functions in DataScope
Remote functions in DataScope are initiated the same way that local functions are
initiated. To use remote functions, write a formula in the Notebook window and
select it. Then choose the "Calculate From Notes" command in the Numbers menu.
Any function name encountered in the formula which is on the list of local functions
is performed locally while any other name is a candidate for an external or network
function.

When a function name is not on the local list, DataScope leaves it up to the user to
find the function. For example, if you were not satisfied with the speed at which
DataScope calculates the mean of an array locally, you might define a remote
function called remote_mean() to do the same task as the local mean() function.
When DataScope looks for remote_mean(), it presents the choices in the dialog
shown in Figure 5.18.

Figure 5.18 External Function Library
Dialog Box

Select the top button if you have accidentally misspelled a function name or want to
exit the dialog box. Press the Select Library File button when you have programmed
an external function on your Macintosh. The new option, the Use Network Server
button, invokes DS_serve over the network. Each of these options proceeds with the
appropriate dialog boxes or returns you back to the notebook.

Figure 5.19 shows the Network Server dialog box. The information you enter in it is
the same information you've entered when you logged into the remote machine
using NCSA Telnet. When you

Programs Run on Remote Hosts 5.12

5.13 NCSA DataScope
enter your password, it will echo with dummy characters. Backspace deletes the
entire password, not just one character. Press OK or hit return to initiate the remote
server function.

Figure 5.19 Network Server Dialog
Box

NOTE: If the host you intend to connect to is not in your config.tel file, you will
have to enter the IP address of the host rather than its name.

When you start the remote function, the appearance of the watch cursor indicates
that the network transfers are taking place. The cursor continues to tick while the
remote computer works on the problem and returns the answer. Then the new array
pops up on the screen, just as it does for local computations.

NOTE: If at any time you want to cancel the operation, press COMMAND-period
(⌘-.), the universal Macintosh cancel key.

Problems with rexecd
The rexecd mechanism can fail for many reasons. NCSA DataScope attempts to
capture the error message and display it for you. Some of the more common errors
are listed below.

• Cannot connect
The remote function server cannot be reached over the network. Check that you
have entered the name correctly and that NCSA Telnet can reach this host.

• Login incorrect
The user name provided is not valid for the remote computer.

• Password incorrect
The password given is not valid for the user to log in.

• No remote directory
The home directory of the user could not be located.

Programs Run on Remote Hosts 5.13

5.14 NCSA DataScope
• Command failed

DS_serve cannot be found. It must be placed in the user's home directory.

• Function not found
DS_serve does not have a function of the name you requested. Check your
spelling and make sure the correct version of DS_serve is available in your home
directory. Also check the declarations of your functions as described below.

NOTE: If at any time you want to cancel the operation, press COMMAND-period
(⌘-.), the universal Macintosh cancel key.

Writing your own functions
Writing C functions for remote UNIX systems is exactly the same as writing
DataScope external functions for the Macintosh. See Chapter 4 "Notebook
Calculations" for an example. The structures passed to and from the user-written
subroutine are defined in the file DScope.h. In fact, most C functions written for
DataScope compile and run the same unmodified source code on Apple Macintosh,
Sun UNIX, and Cray UNICOS systems.

The only extra step needed is to declare your function to the DS_serve program and
compile it in with the provided Makefile. The declaration file is dsfn.h, an example
is shown in Figure 5.20.

Figure 5.20 dsfn.h File
/*
* Declarations for externally callable routines for the DataScope server
* on UNIX machines.
*
* Add your external function to each of the lists.
* The internal routine, when compiled, will automatically register the
* routine name and which function to call.
*
* The routine name does not need to match the function name string.
*/

int
 NORM(), /* FORTRAN declaration */
 exmean(), /* C declaration */
 puts(); /* dummy entry, anchors list */

struct flist {
 char *namestring;
 int (*fncall)();

};

struct flist dsc[] = { /* C calls list */
 "remote_mean",exmean,
 "",puts

Programs Run on Remote Hosts 5.14

5.15 NCSA DataScope
Figure 5.20 dsfn.h File (Continued)

 };

 "norm",NORM,
 "",puts

 };

Each of your functions must appear in the C calls list in order to have it be available
as a remote call in DataScope. The function name does not have to be the same as
the compiled function name as shown in the example. exmean() is the name of the
function, but it is referenced by the string "remote_mean".

Compiling and linking
The Makefile provided for Cray UNICOS is shown in Figure 5.21.

Figure 5.21 Makefile for UNICOS
DS_serve: dsfn.h DScope.h dsfns.c DS_serve.c dsfnF.o

cc -DUNICOS DS_serve.c dsfns.c dsfnF.o -lf -lu -lm
-lnet -o DS_serve

dsfnF.o: dsfnF.f
cf77 -c dsfnF.f

The Makefile provided for Sun UNIX is shown in Figure 5.22.

Figure 5.22 Makefile for UNIX
DS_serve: DS_serve.c dsfns.c dsfn.h DScope.h dsfnF.o

cc -D SUN DS_serve.c dsfns.c dsfnF.o -lF77 -lI77 -lm -f68881 -o
DS_serve

dsfnF.o: dsfnF.f
f77 dsfnF.f -c -o dsfnF.o

This compile and link process references three source files.

DS_serve.c
DS_serve.c is the only file used without modification. It contains the number
translation and array transfer code which communicates with DataScope on the
Macintosh. The -DUNICOS or -DSUN flags in the Makefile are used by DS_serve.c to
determine whether to use code specific to either UNICOS or Sun UNIX systems.
DS_serve.c contains the main() routine, so you should not include any other
main() in your other C files.

Programs Run on Remote Hosts 5.15

5.16 NCSA DataScope
dsfns.c
dsfns.c is the example C source file that contains example functions. Add your own
functions to this file, or create similar files and link them in. Make sure you declare
these functions in dsfn.h first.

dsfnF.f
dsfnF.f is the example FORTRAN source file that contains an example function. Add
your own functions to this file, or create similar files and link them in. Make sure you
declare these functions in dsfn.h first.

Once these three files are compiled and linked together as the executable program
DS_serve, install DS_serve in your home directory on the remote computer. You can
use the UNIX ln, mv or cp commands to put DS_serve in place. It is now ready to be
accessed as described in the section above.

Writing FORTRAN Functions
FORTRAN functions are declared in the same file as the C functions: dsfn.h. The
organization of the data for the subroutine call is quite different, because FORTRAN
cannot use structures. You also cannot use COMMON since the arrays are of variable
size. The call is complex, but well-organized, so you should start by taking the
example FORTRAN source and copying it for your own functions.

An example FORTRAN function is shown in Figure 5.23. It simply divides every
element of an array by 254 and returns the result. It contains the full declaration of
the arrays which can be used to perform a variety of one-parameter and two-
parameter calculations.

Figure 5.23 Example FORTRAN
Function

subroutine norm(vals,rows,cols,nrows,ncols,maxr,maxc,p)
integer maxr,maxc,p
integer nrows(0:p),ncols(0:p)
real vals(maxc,maxr,0:p)
real rows(maxr,0:p), cols(maxc,0:p)

do 100 j=1,nrows(0)
 do 100 i=1,ncols(0)
 vals(i,j,0) = vals(i,j,1)/255.0
100 continue
return
end

The arrays are laid out to allow for any size of two dimensional array(s) to be used.
The arguments of the call all depend on p, the number of parameters to the
notebook function. Figure 5.24 shows a pictorial representation of some of the
arrays in a FORTRAN function.

Programs Run on Remote Hosts 5.16

5.17 NCSA DataScope
• vals

Vals represents all data. This matrix is three-dimensional, even though
DataScope is dealing only with two-dimensional data sets. Like the other
dimensions, the third dimension is used to store values that you provided as
parameters (datasets) to the original notebook function call. In addition, it stores
the result values. The first plane of the third dimension is used to store the result
of the computation.

Figure 5.24 Arrays in a FORTRAN Function

1.1 1.2 1.3

2.1
3.1

p = # of planes - 1
or # of notebook function parameters

nrows

ncols
= true # of rows
= true # of columns2.52 2.73

3.72 4.03

etc.

etc.

vals

= 1st dimension
(result)

= 2nd dimension
(1st parameter
 to the notebook
 function)

= 3rd dimension
(2nd parameter
 to the notebook
 function)

The following arrays individually determine the mesh spacing characteristics for
each of the planes of the vals matrix.

• rows
This array has an one-dimensional array for each of the parameters to the
DataScope function. Each one-dimensional array contains the offset values for
each row of each plane in the vals matrix.

• cols
This array also has an array for each of the planes in the vals matrix. Each array
contains the offset values for each column of each plane in the vals matrix.

Programs Run on Remote Hosts 5.17

5.18 NCSA DataScope
The next two arguments determine the true size of each plane in the vals matrix.

• nrows
This array contains the number of rows in each plane of the vals matrix.

• ncols
This array contains the number of columns in each plane of the vals matrix.

NOTE: Often, nrows(1) and ncols(1) will be equal to one. This indicates that the
value in the plane is a constant. If there is only one row and one column, then there
can only be one value. If your function returns a constant value, set nrows(0) and
ncols(0) equal to one. The flexibility in the size of the planes in the vals matrix
make matrix operations on matrix of different sizes possible.

• maxr,maxc
These arrays represent the maximum number of rows and columns in any plane
of the vals matrix. Use the nrows() and ncols() arrays for loop indices, but don't
be surprised if nrows(0) is equal to maxr and ncols(0) is equal to maxc. However,
make sure your code handles the cases where they are not equal.

• p
This value is the number of notebook function parameters and is equal to the
number of planes in vals minus 1 (the result plane will always be there).
DataScope supports 0, 1, or 2 parameter notebook function calls, so p is used to
dimension the vals array and the associated scales.

NOTE: The maximum value for p is 2 in NCSA DataScope 1.2. DataScope currently
can only support two parameters for each function.

Using a Sample Program
This section outlines a sample program (Figure 5.25) which you can run on a remote
host and from which you can route the resulting output back to DataScope on your
Macintosh. Examples provided with DataScope include dsfnF.f, a sample FORTRAN
simulation of a propagating wave. The output from dsfnF.f creates a movie
sequence in DataScope. Instructions to compile and link dsfnF.f are included in the
source file.

Also included in the sample program is hdf2ds.c, the source code for an HDF utility
which demonstrates calling ds_send from C. This code requires NCSA's HDF library
to be linked in and works only on HDF files.

Programs Run on Remote Hosts 5.18

5.19 NCSA DataScope
Figure 5.25 Source Code for dsfnF.f

subroutine norm(vals,rows,cols,nrows,ncols,maxr,maxc,p)
integer maxr,maxc,p
integer nrows(0:p),ncols(0:p)
real vals(maxc,maxr,0:p)
real rows(maxr,0:p), cols(maxc,0:p)

c
c this example takes the first parameter array #1 and computes
c the answer and places that in answer #0
c

do 100 j=1,nrows(0)
 do 100 i=1,ncols(0)

vals(i,j,0) = vals(i,j,1)/255.0
100 continue
return
end

DataScope's Interactions with a Remote
Host

Ultimately, it is your responsibility to be familiar with the remote host. Each different
host and each different operating system may have characteristics that will affect
the way that DataScope works. For example, when using FORTRAN subroutines
called from C on Sun systems, references to the FORTRAN subroutines within the C
code must have an underscore appended to the name (thus, a subroutine named
"norm" would be referred to as "norm_" in C code). Also in reference to the Sun OS
4.0, data is passed back and forth between DataScope on the Macintosh and the
Sun via the rexecd system call; this call REQUIRES that the Macintosh's IP number
be hardcoded in the system's host table.

Programs Run on Remote Hosts 5.19

