
4.1 NCSA DataScope

Chapter 4 Notebook Calculations

Chapter Overview
Notebook Calculations

Rules for Calculating
Constant Result Calculations

Built-In Functions
Trigonometric Functions
Mathematical Functions
Data Manipulation Functions
Transformation Functions
Built-In Kernels

Nesting Functions
Kernel Convolution Functions

Kernel Array Construction
Generic Kernel Examples
Kernels for Built-In Functions

External Libraries of Functions
Using the External Library Functions
Creating an External Function
Creating Your Own Library Functions

Notebook Calculations 4.1

4.2 NCSA DataScope

Chapter Overview
The notebook window in NCSA DataScope contains a powerful data manipulation
system based on two-dimensional arrays of floating-point data. This chapter
describes how to use these features and describes the built-in functions that NCSA
DataScope provides.

Notebook Calculations
To perform calculations using the notebook window:

1. Enter a calculation as a FORTRAN-like assignment statement, using the variable
names for the currently loaded datasets that appear as the window titles (see the
sample statements below).

2. Select the statement.

3. Choose Calculate From Notes from the Numbers menu or press ⌘-R. The assigned
variable in the formula is created from the calculation.

Several sample assignment statements are presented in Figure 4.1:

Figure 4.1Sample Assignment Statements
logden = log(density)
Ftemp = (Ctemp*5.0/9.0) + 32.0
ke = 1/2 * mass * vel * vel
magnitude = sqrt(xvel*xvel + yvel*yvel)
c = 3.1416*sin(.65)

Rules for Calculating
Notebook calculations may contain the operators *, / , +, –, and unary –. They may
also contain parentheses and any of a selection of functions. The supported
functions are described in the next section, "Built-In Functions." A function is a name
followed by one or two parameters in parentheses, e.g., sin(x).

There are two ways to indicate the equation to be evaluated by the Calculate from
Notes command:

• Select the entire equation with the mouse.

• Insert the blinking cursor on a line which contains an equation and nothing more.

If there is a selection region, NCSA DataScope uses the characters within the
highlighted region. If not, it tries to use all of the characters that are on the line
which contains the cursor.

Notebook Calculations 4.2

4.3 NCSA DataScope
All arrays used in a calculation must have the same row and column dimensions.
The new variable created has the same dimensions as the arrays that were used to
produce it. For example, adding the two arrays means that each element from the
first array is added to its corresponding element in the second array. This produces
one resulting value at each position that is placed into the array for the new
variable.

When constants are combined with arrays, the constant is expanded to become an
array with each element set to that constant. For example:

c = a + 3.2

is equivalent to

c = a + b

if and only if b is an array of the same size as a with each element of b equal to 3.2.

Attributes for the newly created variable are copied from the first source variable in
the expression. The newly created variable has the same dimensions as the source
variable. A text window is created and appears on the screen with the new variable
name from the formula. The maximum and minimum values that define the region
of interest are automatically calculated by finding the maximum and minimum
values of the resulting array. You can change these variables in the Attributes dialog
box to select a different region of interest (see "Specifying Text Window
Characteristics" in Chapter 3).

Function names may be upper, lower, or mixed case; i.e., they are not case
sensitive. For example, SIN, sin, and Sin may all be used to call the same sin
function. On the other hand, variable names entered into equations must match the
dependent variable names in the text windows exactly. For example, Density is not
equivalent to DENSITY.

NOTE: The legal characters for a variable name include all of the alphanumerics
and the underscore (_). Periods, backslashes, asterisks, and plus or minus signs (. / *
+ –) are not allowed in variable names. For example, pressure/dens, ke.hdf, and v*u
are invalid variable names; but xv102 and K_Energy are permissible.

If you misspell a variable name or use one which is not loaded into NCSA
DataScope's memory, the Variable Name dialog box (Figure 4.2) appears to question
you about the spelling when you execute the equation. Enter a valid variable name
and click OK or press RETURN to return to the calculation. If you click Cancel to
abort the calculation and return to the notebook, an error message appears in the
notebook.

Notebook Calculations 4.3

4.4 NCSA DataScope
Figure 4.2Changing the Variable Name

Constant Result Calculations
As shown in the example presented in the preceding section, a calculation does not
need to contain any variables. It may contain only constants; therefore, the formula
may yield a constant value result. In this case, a text window with an array is not
required. Instead, the value is returned to the notebook window. After the Calculate
From Notes command is issued, the answer appears in the notebook window, as
shown below.

x = 1.23456*1.00
***Result: 1.23456

The result value of the calculation is reported in the notebook directly below the
selected formula. The assignment variable is ignored.

Built-In Functions
NCSA DataScope contains a wide variety of built-in functions, but it continues to
develop and improve in this respect. If you need functions that are not provided,
please request them so that they may be added to future releases. You may make a
request in writing via U.S. mail at:

NCSA Software Development—DataScope
152 Computing Applications Bldg.
605 East Springfield Avenue
Champaign, IL 61820

or, via electronic mail at:

softdev@ncsa.uiuc.edu
softdev@ncsavms.bitnet
In the functions presented in the following sections, substitute the name of the data
array to be manipulated for the variable q.

Notebook Calculations 4.4

4.5 NCSA DataScope
Trigonometric Functions

NCSA DataScope supports a variety of standard math functions, including all of the
standard trigonometric functions in radians and in degrees.

The following trigonometric angles are in radians.

sin(q) asin(q) sinh(q)
cos(q) acos(q) cosh(q)
tan(q) atan(q) tanh(q)
atan2(q,p)

The following trigonometric angles are in degrees.

dsin(q)dasin(q) dsinh(q)
dcos(q) dacos(q) dcosh(q)
dtan(q) datan(q) dtanh(q)
datan2(q,p)

So that you can change the data itself, the following conversions are provided.

dtor(q)degrees to radians
rtod(q) radians to degrees

Mathematical Functions
Similar to a good scientific calculator, the following math functions round out the set
of simple one-to-one functions.

log(q) natural logarithm
exp(q) exponential function
log10(q) base 10 logarithm
pow(q,p) take q to the power p
sqrt(q) square root
abs(q) absolute value

The following functions return a single value computed from the entire array of
values, and report the value in the notebook window.

mean(q) arithmetic mean
sdev(q) standard deviation
min(q) minimum data value
max(q) maximum data value

Notebook Calculations 4.5

4.6 NCSA DataScope
Data Manipulation Functions

Because NCSA DataScope works with arrays instead of individual numbers, there
are several functions which may come in handy for more complex calculations.

pts(q) number of points in array q
cols(q) number of columns in array q
rows(q) number of rows in array q
colrange(q) range of column scale values
rowrange(q) range of row scale values
colmean(q) mean of distance between columns
rowmean(q) mean of distance between rows
colsdev(q) standard deviation of distance between columns
rowsdev(q) standard deviation of distance between rows

Transformation Functions
Frequently, you may write out arrays in FORTRAN
(column-major) array order, but NCSA DataScope reads the data in C (row-major)
array order. To restore your desired orientation of the data, NCSA DataScope
provides a transpose function, which exchanges the row and column labels and flips
the data according to the different interpretation. The operation is reversible by
calling transpose again.

transpose(q)

The shift functions are very useful in calculations to change from one row to another
and from one column to another. During the operation, the columns and rows at the
trailing edge are filled in with duplicates of the edge column or row.

shl(q) shift data to the left one column
shr(q) shift data to the right one column
shu(q) shift data up one row
shd(q) shift data down one row

For example, ΔX = Xi+1 – Xi can be calculated by taking

deltax = shr(q) – q

NOTE: Beware of unintended effects near the border of your resulting dataset.

Built-In Kernels
NCSA DataScope can perform a variety of kernel convolution operations. These
operations use the nearest neighbors of each data value to produce a new dataset.
Each neighbor is multiplied with a constant (part of the kernel) and added into the
kernel sum. The final sum is divided by a predetermined value, or left as the
aggregate sum.

For all of the convolution functions, the border values are not calculated until the
last stage. They are copied from the nearest valid data point on the edge.

Notebook Calculations 4.6

4.7 NCSA DataScope
In the first set of convolutions, this method is used to determine an approximation of
the derivative at a point. It is only accurate to the extent that the surface lacks
sudden transitions, and it only uses three adjacent values to come up with the
approximation.

ddx(q) dq/dx – difference from left to right
ddy(q) dq/dy – difference from top to bottom
d2dx(q) d2q/dx2 – second derivative from left to right
d2dy(q) d2q/dy2 – second derivative from top to bottom

The following Laplacian approximations are only valid if you have a constant spacing
of rows and columns.

lap(q) 5 point laplacian
lap5(q) same as lap(q)
lap9(q) 9 point laplacian

Generic kernel operations are implemented with the kernel function:

kernel(q,k) generic kernel

where q is the data array to be operated on and k is the kernel.

The generic kernel array must be in a special form. Starting with a 3 x 3, 5 x 5, or 7
x 7 kernel, you must add one row at the top which contains the division constant, so
a 3 x 3 kernel becomes 4 x 3, a 5 x 5 kernel becomes 6 x 5, and a 7 x 7 kernel
becomes 8 x 7. The division constant is located at the upper-left corner of the kernel
and the rest of the first row is ignored.

Kernel convolutions are described in this chapter's section entitled "Kernels for Built-
In Functions."

Nesting Functions
NCSA DataScope allows you to nest functions. This allows you to create equations
as they are to be in final form, without going through all of the intermediate steps.
For example, to normalize the range of values in array B to a logarithmic scale,
approximately 0 to 1, the following formulas could be used in succession or
combined together.

Separate:

X = B - min(B)
Y = X / (max(B) - min(B))
Z = .1 + Y
A = log(Z)

Combined:

A = Log (.1 + (B—min(B)/(max(B)—min(B)))

Notebook Calculations 4.7

4.8 NCSA DataScope

Kernel Convolution Functions
A 3 x 3 computational kernel has the layout shown in Figure 4.3, where the value to
be computed is in the center. The individual elements of the kernel made up
coefficients in the equation used to find a new center value. The coefficients are
multiplied with the data values in the array and added together. This kernel
operation is repeated once for each member of the data array.

Figure 4.3Layout of 3x3 Kernel

i
j

i
j-1

i+1
j-1

i-1
j

i+1
j

i-1
j+1

i
j+1

i+1
j+1

i-1
j-1

As shown in Figure 4.4, the shaded square marks the current array element to be
computed. The surrounding 3 x 3 grid of nine elements is used to compute the value
in the middle for the result array. The surrounding 3 x 3 grid of numbers is used for
each point in the resulting array, along with the 3 x 3 kernel of coefficients, to
compute the results with the following formula. If array K contains the nine kernel
coefficients, and array P contains the computational subgrid diagrammed in Figure
4.4, the resulting value for the center, fi,j is given by:

fi,j = \S\DO2\UP2(i+1,∑,a=i–1) \S\DO2\UP2(j+1,∑,b=j–1) Pa,b Ka,b

Notebook Calculations 4.8

4.9 NCSA DataScope
Figure 4.43x3 Kernel in Array Grid

i
j

i
j-1

i+1
j-1

i-1
j

i+1
j

i-1
j+1

i
j+1

i+1
j+1

i-1
j-1

Computational
Subgrid

Calculations are done once for each point within the computed region, shown in
Figure 4.5. Because the kernel computations require neighbors on each side in all
directions, the computed region extends to one element from the edge. At the end
of the kernel operation, the edge values are filled in by copying them from their
nearest neighbors.

Figure 4.5Computed Region

Computed Region

When using the generic kernel function, you provide the names of two arrays, one to
be used for data input, and the other containing the kernel coefficients. The
computation proceeds across the rows of the dataset and down, evaluating the
kernel at each point to produce an answer for the resulting array. The next section
describes how to set up the kernel array.

Notebook Calculations 4.9

4.10 NCSA DataScope
Kernel Array Construction

For example, to yield the 3 x 3 kernel shown in Figure 4.6, you could input either of
the kernels shown in Figure 4.7, where the leftmost value of the first row (3 and 1,
respectively) is the division constant for the array formed by the remaining rows and
the other values of the first row are irrelevant. (The symbol "Ø" means "don't care";
any value may be there since these values are ignored.)

Figure 4.6Desired 3 x 3 Kernel

1/3 2/3 -7

4 0 -1/4

1 11

 rows

 columns

Figure 4.7Sample Input Kernels
ignored values

3 Ø

1 2 -21

12 -0.75

Ø

0

33 3

division
constant

1

0.333 0.667 -7

4 -0.250

11 1

ignored values

Ø Ødivision
constant

Notebook Calculations 4.10

4.11 NCSA DataScope
Generic Kernel Examples

For example, to perform a differencing equation to approximate the x derivative of
an array which has equally spaced columns, one unit apart:

1. Choose Open from the File menu or press ⌘-O; and select and open the
vortex.hdf file to load the vertical_vel field into NCSA DataScope.

2. Select See Notebook from the Numbers menu or press ⌘-N. A notebook window
appears.

3. Enter the following array into the notebook window.

2 0 0
0 0 0

-1 0 1
0 0 0

4. Select the array.

5. Choose Copy from the Edit menu or press ⌘-C. The array is copied onto the
Clipboard.

6. Select a non-notebook window.

7. Choose Paste from the Edit menu or press ⌘-V. This creates a new text window.

8. Name the window d_kernel using the Attributes dialog box (see "Specifying Text
Window Characteristics" in Chapter 3). You now have a usable kernel.

9. Enter and select the following formula in the notebook window.

diffx = kernel(vertical_vel, d_kernel)

10. Choose Calculate From Notes from the Numbers menu or press ⌘-R. The
command applies your 3x3 convolution to the data and produces a new dataset
the same size as vertical_vel.

Look at the image to verify that each data point consists of the value to its right
minus the value to its left divided by 2.

Notebook Calculations 4.11

4.12 NCSA DataScope
Try using the kernels shown in Figures 4.8 through 4.10 for experimentation. The
kernel shown in Figure 4.8 smooths the data, averaging the center value with its
neighbors, reducing any spikes and sharp transitions. The left kernel in Figure 4.9
brings out horizontal lines in the data; the right kernel brings out vertical lines.
Finally, the kernel in Figure 4.10 sharpens edges in the data.

Figure 4.8Kernel That Smooths Data

1 1

1

1 1

00

0

0

Figure 4.9Kernels That Detect Horizontal
and Vertical Lines of Data

1 11

-1 -1 -1

1

1

1

-1

-1

-1

0

0

0

0 0 0

Figure 4.10 Kernel That Sharpens
Edges in Data

1 1

1-1 -1

-1

11 -1

Notebook Calculations 4.12

4.13 NCSA DataScope
Kernels for Built-In Functions

This section presents the coefficient matrices for the built-in kernel functions
(Figures 4.11 through 4.16). Certain constants are used throughout:

• the width or mesh spacing between the rows and columns—∆x and ∆y:

∆x = (xmax – xmin) / (ncols – 1)
∆y = (ymax – ymin) / (nrows – 1)

NOTE: These constants are valid only when the columns are evenly spaced.

If the width or mesh spacing between the rows and columns are not evenly spaced,
then:

• the row and/or column differences for a point—hi and hj:

hi = xi+1 – xi
hj = yj+1 – yj

where xi is the column scale value at column i and yj is the row scale value at row
j.

Figure 4.11 ddx Kernel

A CB

A = -hi / [hi-1 (hi + hi-1)]
B = – (A + C)
C = hi-1 / [hi (hi + hi-1)]

fi,j = A*Pi-1,j + B*Pi,j + C*Pi+1,j

Figure 4.12 ddy Kernel

A

C

B

Notebook Calculations 4.13

4.14 NCSA DataScope

A = -hj / [hj-1 (hj + hj-1)]
B = – (A + C)
C = hj-1 / [hj (hj + hj-1)]

fi,j = A*Pi,j-1 + B*Pi,j + C*Pi,j+1

Notebook Calculations 4.14

4.15 NCSA DataScope
Figure 4.13 d2dx Kernel

A CB

A = 2 / [hi-1 (hi + hi-1)]
B = – (A + C)
C = 2/ [hi (hi + hi-1)]

fi,j = A*Pi-1,j + B*Pi,j + C*Pi+1,j
Figure 4.14 d2dy Kernel

A

C

B

A = 2 / [hj-1 (hj + hj-1)]
B = – (A + C)
C = 2 / [hj (hj + hj-1)]

fi,j = A*Pi,j-1 + B*Pi,j + C*Pi,j+1

Because of the use of ∆x and ∆y in the Laplacian approximations, they are only valid
for evenly spaced rows and columns.

Figure 4.15 lap and lap5 Kernel

B BC

A

A

A = 1/(∆y)2
B = 1/(∆x)2

Notebook Calculations 4.15

4.16 NCSA DataScope
C = –2 (A + B)

fi,j = A*(Pi,j-1 + Pi,j+1) + B*(Pi-1,j + Pi+1,j) + C*Pi,j

Figure 4.16 lap9 Kernel

B BC

A A

AA

B

B

∆h = (∆x + ∆y)/2
A = 1/[4 (∆h)2]
B = 2A
C = –12A

fi,j = A*(Pi-1,j-1 + Pi-1,j+1 + Pi+1,j-1 + Pi+1,j+1) +
B*(Pi,j-1 + Pi,j+1 + Pi-1,j+ Pi+1,j) + C*Pi,j

Notebook Calculations 4.16

4.17 NCSA DataScope

External Libraries of Functions
NCSA DataScope comes with a sample external library called DSlibrary. The source
code to this library, which can be compiled under MPW3.0 C, is included. The library
contains a few useful functions that may be used in the same manner that
DataScope's built-in functions are used from the notebook. This section explains
how to write and use your own library of functions.

Using the External Library Functions
The external DataScope library DSlibrary contains five functions that you can use
in the same manner that you use DataScope's built-in functions. The functions are
listed in Table 4.1 (P and Q denote input arrays or constants).

Table 4.1 DSlibrary Functions
Function Description
genconst(P,Q) Given an array and a constant, generate an array where the
output dimensions are the same as the input dimensions and where each
element of the array has the value of the constant. If P is a 256 x 128
array and Q is the constant 5.2, then the output is an array of 256 x 128 where
every element has the value 5.2.

lesser(P,Q) Given 2 arrays or 2 constants or a constant and an array, the
output is the lesser value.

greater(P,Q) Given 2 arrays or 2 constants or a constant and an array, the
output is the greater value.

rowarray(P) Given an array, the values of the output are the
corresponding column scale value for every element in the

array.

colarray(P) Given an array, the values of the output are the
corresponding row scale value for every element in the array.

Anytime NCSA DataScope cannot find a function name in its internal list, the dialog
box in Figure 4.17 appears on the screen to help you choose an external library. If
you misspelled the function name, click the Return to Notebook button; otherwise
click Select Library File and proceed to select and open the library from disk. Once
you open a library, you can use any of the functions within it. All the functions
remain available until you exit NCSA DataScope.

Notebook Calculations 4.17

4.18 NCSA DataScope
Figure 4.17 External Function Library

Dialog Box

Creating an External Function
To create your own external function, include the structure definition code, shown in
Figure 4.19. This is the format for the data which is passed to and from the external
function. First, though, define a function addon() (Figure 4.18), or any suitable
name, which accepts three parameters, two operands and a result. This code
segment must be the first executable code in the C file. In your function, take
information from the left and/or right parameters and place the resulting information
into the structure provided for the answer.

Figure 4.18 Defining a Function
Addon

long addon(l,r,a)
scope_array *l,*r,*a;

{

/* contents of function */
}

Compile this function in MPW3.0 C with the following compile line:

C myfile.c -o myfile.o

Next , enter the link line, which has several parts that are specifically set up for
creating code segments that NCSA DataScope can execute.

link -m addon -rt DSfn=1000 -sn Main=myfunction ∂
myfile.o -c 'NCSf' -t 'DSff' -o myextern.lib

Notebook Calculations 4.18

4.19 NCSA DataScope
Within the link line:

• The parameter -m addon indicates that the code segment you are calling is
named addon (use all uppercase letters for Pascal calling conventions).

• The -rt DSfn=1000 parameter sets up the resource information for the code
segment. DSfn is the special resource type which NCSA DataScope looks for when
it attempts to open an external library. 1000 is the resource ID number assigned
to this function. If you use more than one function in one file, change this number
for each function; for example, 1001, 1002, 1003....

• The -sn Main=myfunction parameter assigns a name to the code resource. In
the notebook window, this function is called with the name myfunction. You do
not have to have this name anywhere in the source code file in order to call it
from the notebook.

• The file type and creator settings, -c 'NCSf' and -t 'DSff' set the icon for the
file and allow NCSA DataScope to find the file. Only files with this type can be
opened as external function libraries.

The rest of this link line is comprised of standard parameters to the link command.

• myfile.o is the file to be linked (from the C compile line).

• ∂ indicates a continuation from one line to another in the MPW shell; it is not part
of the link line itself.

• -o myextern.lib chooses the filename for the output.

Working examples of the external functions for DSlibrary are included on the
distribution disk in the folder "externs".

Notebook Calculations 4.19

4.20 NCSA DataScope
Figure 4.19 Structure Definition Code

/*
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Data structure for external functions.

The field "kind" determines whether the array contains a valid
cval or a valid set of ncols,nrows,rows,cols,vals.

External functions are called as:
your_fn(lft,rgt,answer)
scope_array *lft,  left parameter 

*rgt,  right parameter 
*answer;  place to put the answer 

Answer will always contain pre-allocated space for an array of
resulting values, including the rows and cols arrays. You may
change any value (and should) in the rows,cols and vals arrays.
Do not change any values in the lft or rgt storage.

If your routine returns only a constant, set kind == DS_CONSTANT
and put the answer in cval.

DON'T allocate anything you don't free yourself.
FREE everything you allocate.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

*/

#define DS_ERROR -1
#define DS_CONSTANT 0
#define DS_ARRAY 1

typedef struct
{float

cval, /* constant value when we are carrying a constant */
rows, / row labels, scale values: count = ncols */
cols, / col labels, scale values: count = nrows */
vals; / data values in the array, if there is an
array size = ncols*nrows */

 int ncols,
nrows; /* dimensions of the array */

 char
kind; /* ERROR, CONSTANT, ARRAY */

}

scope_array;

Creating Your Own Library Functions
Figure 4.20 shows the source code for the genconst function in the DataScope
external function library. Note that:

• The header file is included

• The passed parameters l, r, and a (corresponding to the left input, the right input,
and the answer output, respectively:
a = genconst(l,r) in DataScope's notebook) are declared.

Notebook Calculations 4.20

4.21 NCSA DataScope
• Appropriate error checking is performed (To take the dimensions from one input

array and assign all of the

Notebook Calculations 4.21

4.22 NCSA DataScope
elements of the output to have a constant value, the two inputs must be an array

and a constant. You may enter the two inputs in any order)

Once these preliminaries are covered, the code that actually does the work is
simple.

Figure 4.20 Source Code for Function Genconst

#include "DScope.h"
/*

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
genconst Given an array and a constant, generate

an array where the output dimensions are
the same as the input dimensions and 
where each element of the array has the
value of the constant

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/
long addon(l,r,a)

scope_array *l,*r,*a;
{

register float *p,*q;

if (!l || !r)
 {a->kind = DS_ERROR;

return(0);
 }

if (l->kind == DS_CONSTANT && r->kind == DS_CONSTANT)
 {a->kind = DS_ERROR;

return(0);
 }

if (l->kind == DS_ARRAY && r->kind == DS_ARRAY)
 {a->kind = DS_ERROR;

return(0);
 }

p = a->vals;
q = p + (long)(a->ncols * a->nrows - 1);

if (l->kind == DS_CONSTANT)
 {while (p < q) *p++ = l->cval;

*p = l->cval;
 return (0);
 }

while (p < q) *p++ = r->cval;
*p = r->cval;
return (0);

}

Figure 4.21 shows the Makefile used to create DataScope's DSlibrary. Symbolic
parameters make the inclusion of addition functions a straightforward procedure.
Note that the link options to create function require MPW's CRuntime.o file (needed
to perform the unsigned long multiplication): It is your responsibility to determine
which compile and link options are appropriate for a given program.

Notebook Calculations 4.22

4.23 NCSA DataScope
Figure 4.21 Makefile Used to Create DSlibrary

######################################
make external library for DataScope
######################################
LOPT = -m addon ∂

-c 'NCSf' ∂
-t 'DSff' ∂
rm.o ∂
-o DSlibrary

#
COPT = -o rm.o
#
FILE1 = colarray.c
LOPT1 = -rt DSfn=1000 -sn Main=colarray
#
FILE2 = rowarray.c
LOPT2 = -rt DSfn=1001 -sn Main=rowarray
#
FILE3 = lesser.c
LOPT3 = -rt DSfn=1002 -sn Main=lesser ∂

"{CLibraries}"CRuntime.o
#
FILE4 = greater.c
LOPT4 = -rt DSfn=1003 -sn Main=greater ∂

"{CLibraries}"CRuntime.o
#
FILE5 = genconst.c
LOPT5 = -rt DSfn=1004 -sn Main=genconst ∂

"{CLibraries}"CRuntime.o
#
FILES = {FILE1} ∂

{FILE2} ∂
{FILE3} ∂
{FILE4} ∂
{FILE5}

######################################
DSlibrary ƒ {FILE1} ∂

{FILE2} ∂
{FILE3} ∂
{FILE4} ∂
{FILE5}

C {FILE1} {COPT}
Link {LOPT} {LOPT1}
C {FILE2} {COPT}
Link {LOPT} {LOPT2}
C {FILE3} {COPT}
Link {LOPT} {LOPT3}
C {FILE4} {COPT}
Link {LOPT} {LOPT4}
C {FILE5} {COPT}
Link {LOPT} {LOPT5}

#

Notebook Calculations 4.23

