
MUUG Lines 1 April 1994

Volume 6, Number 6

Printing Courtesy of Xerox Canada Ltd.

MUUG Lines

Inside This IssueThis Month’s Meeting

Newsletter of the Manitoba UNIX® User Group

April 1994 $2.50

Sound Bytes
By Arne Grimstrup and Doug Shewfelt

Meeting Location:
Our next meeting is scheduled for Tuesday, April

12, at 7:30 PM. Once again, the meeting will be held

in the auditorium of the St-Boniface Hospital

Research Centre, just south of the hospital itself, at

351 Taché. You don’t have to sign in at the security

desk — just say you’re attending the meeting of the

Manitoba UNIX User Group. The auditorium is on

the main floor, and is easily found from the en-

trance.

Meeting Agenda: See inside for details.

News of the Computer World you would rather not know

about!

Phillippe Kahn of Borland was overheard to say “Look, we

bought Paradox from Ansa and DBase from Ashton-Tate. If

we don’t find another database manufacturer soon whose

name starts with ‘A’, we’re going to have to start buying

from the ‘B’s!”

In a surprise move yesterday, IBM announced that they were

changing the name of the latest release of their mainframe

database system from “IMS” to “Advanced IMS”. All

functions associated with developing and maintaining the

database will be transferred to a new subsidiary company

called “Advanced IMS Ltd.”. When asked about the

prospects of the aging database system, an IBM spokesper-

son responded “Don’t worry — we have great plans for this

puppy! We know were we can make some quick money

with it!”

William Gates called a sudden news conference last Satur-

day, where he announced “Ok, you’re right! I screwed up!”

and gave ownership of Microsoft to Richard Stallman.

The Software Foundation for Law and Government has

announced the release of its new “ClipperNet” architecture.

The Foundation (which is funded entirely by the U.S.

National Security Agency) says that the architecture is a

convenient encryption system that automatically forwards a

copy of all transactions to the NSA offices.

Microsoft has rounded out its financial offering by pre-

announcing “Fraud for Windows.” “We think that this will

open a whole net market for us,” said a Microsoft spokesper-

son. Also planned are “Tax Evasion for Windows”, “Grand

Larceny for Windows”, and “Avoiding Anti-Trust Suits for

Windows”.

Complaining that C code is too difficult to read, Kenneth

Iverson has ported the Unix kernel into a single line of

APL.

MIT researchers into Object Oriented Programming have

discovered that methods are not inherited, but are instead

socialized by their peer methods.

The SAA Association (Students Against Acronyms), had

created its first annual top 5 worst computer industry

acronyms of the year. Here is the list:

5. POWER — Try not to choose the acronym first!

4. WABI — First coined by Elmer Fudd!

3. WYSIWYG — Now we are really geeking out!

2. EBCDIC — Not new, but loathsome!

and finally...

1. PCMCIA — Acronyms are supposed to help you

remember the words right? ✒

Manitoba UNIX User Group

Newsletter Editor’s Ramblings 2

President’s Corner3

C++ Q & A ...4

A Concise Guide to UNIX Books 5

UNIX Q & A ...6

GNU Review..7

A Day in The Life of a Grad Student 8

April Speaker Topic and Biography. 8

SIG Sideline ..10

April 12th Meeting Agenda 10

MUUG Lines 2 April 1994

President: Bary Finch (W) 934-2723

Vice-President: Ramon Ayre (W) 947-2669

Treasurer: Rick Horocholyn (W) 474-4533

Secretary: Brad West (W) 983-0336

Membership Sec.: Greg Moeller (H) 786-6132

Mailing List: Roland Schneider 1-482-5173

Meeting Coordinator: Roland Schneider 1-482-5173
Newsletter editor: Andrew Trauzzi (W) 986-3898

Publicity Director Rory Macleod (W) 488-5168

Past President Susan Zuk (W) 989-3530

Information: Bary Finch (W) 934-2723

(FAX) 934-2620

(or) Andrew Trauzzi (W) 986-3898

(FAX) 986-5966

This newsletter is ©opyrighted by the Manitoba

UNIX User Group. Articles may be reprinted

without permission, for non-profit use, as long as

the article is reprinted in its entirety and both the

original author and the Manitoba UNIX User

Group are given credit.

The Manitoba UNIX User Group, the editor, and

contributors of this newsletter do not assume any

liability for any damages that may occur as a result

of information published in this newsletter.

The Manitoba UNIX User Group meets at 7:30 PM the

second Tuesday of every month, except July and

August. Meeting locations vary. The newsletter is

mailed to all paid-up members one week prior to the

meeting. Membership dues are $25 annually and are

due as indicated by the renewal date on your

newsletter’s mailing label. Membership dues are

accepted at any meeting, or by mail.

Manitoba UNIX User Group
P.O. Box 130, Saint-Boniface
Winnipeg, Manitoba R2H 3B4

Internet E-mail: membership@muug.mb.ca

Quarter page $50

Half page $75

Full page $100

Insert (1-4 pages) $100

Above prices are per issue. The first ad is charged at

the full price; each successive month is 1/2 price.

Ad copy must be submitted by the final copy

deadline for an issue (usually 3 weeks prior to the

monthly meeting) in a format acceptable to the editor.

(Please make arrangements with editor beforehand.)

Internet E-mail: editor@muug.mb.ca

Copyright Policy and DisclaimerThe 1993-1994 Executive

Advertising Rates Group Information

RAMBLINGS

Some Quick Hacks
By Andrew Trauzzi

In keeping with April’s festivities, I have compiled some of my
favourite definitions from The New Hacker’s Dictionary. If you
enjoy the following quips, The New Hacker’s Dictionary is
available at many fine bookstores (ISBN 0-262-68079-3). Some
definitions © Eric S. Raymond, 1993.
heisenbug /hi:´zen-buhg/ [from Heisenberg’s Uncertainty Principle
in quantum physics] n. A bug that disappears or alters its behaviour
when one attempts to probe or isolate it. In C, nine out of ten
heisenbugs result from uninitialized auto variables.
obi-wan error /oh´bee-won`er´er/ [RPI, from ‘off-by-one’ and the
Obi-Wan Kenobi character in “Star Wars”] n. A loop of some sort
in which the index is off by 1. Common when the index should
have started from 0 but instead started from 1.
walking drives n. An occasional failure mode of magnetic-disk
drives back in the days when they were huge, clunky washing
machines. These old dinosaur parts carried terrific angular
momentum; the combination of a misaligned spindle or worn
bearings and stick-slip interactions with the floor would cause them
to ‘walk’ across a room, lurching alternate corners forward a couple
of millimeters at a time.

Walking could also be induced by certain patterns of drive
access (a fast seek across the whole width of the disk, followed by a
slow seek in the other direction). Some bands of old-time hackers
figured out how to induce disk-accessing patterns that would do this

to particular drive models and held disk-drive races.
COBOL /koh´bol/ [COmmon Business-Oriented Language] n.
(Synonymous with evil.) A weak, verbose, and flabby language
used by card wollopers to do boring mindless things on dinosaur
mainframes. Hackers believe that all COBOL programmers are
suits or code grinders, and no self-respecting hacker will ever admit
to having learned the language. Its very name is seldom uttered
without expressions of disgust or horror. See also fear and loathing
and software rot.
lots of MIPS but no I/O adj. Used to describe a person who is
technically brilliant but can’t seem to communicate with human
beings effectively. Technically it describes a machine that has lots
of processing power but is bottlenecked on input-output (in 1991,
the IBM Rios, a.k.a. RS/6000, is a notorious recent example).
(sorry Bary ;-) — ed)

eighty-column mind [IBM] n. The sort said to be possessed by
persons for whom the transition from punched card to tape was
traumatic. It is said that these people will be buried ‘face down, 9-
edge first’ (the 9-edge being the bottom of the card). The following
is inscribed on IBM’s 1402 and 1622 card readers:

He died at the console
Of hunger and thirst.
Next day he was buried,
Face down, 9-edge first. ✒

MUUG Lines 3 April 1994

PRESIDENT’S CORNER

CORPORATE SPONSORS

 A Glimpse of the Future

The Manitoba UNIX User Group
gratefully acknowledges the

generous support of the following

Corporate Sponsors

ONLINE
B U S I N E S S S Y S T E M S

TM

Great-West Life Assurance
Company

formed within the Personal Systems (PS) division of IBM,
called the Power Personal Systems, or PP Systems. This new
division will specialize in products for the PC marketplace,
especially the notebook style of computers. In fact the PP
Systems will be uninary based, rather than binary, for further
weight savings.

Another direction that many of you will have heard of is
the WorkplaceOS coming out as a micro-kernel based
operating system to run on the PowerPC systems. This OS
will likely have several personalities available to run on the
the kernel, such as OS/2, or AIX. My sources indicate that
there will be other specialty OS’s, based on the WorkplaceOS.
One such OS will be WorkshopOS for routers, with many
toolkits built in.

A Terabyte of Storage?

On the high end of our product line are the 9076-SP1 systems,
where SP stands for Scalable POWERparallel. These are
parallel systems that consist of up to 64 RS/6000s today.
Cornell University has one that they intend to upgrade to 512
processors. The direction I have heard of is to continue up to
1024 processors. Each of these processors has local disk as
they are running in parallel. In fact they could easily have 1GB
of disk each. So for all 1024 of the processors they would have
1KGB of disk. Very secure!

Well that’s all the inside info I have to pass on for now.
I’d just ask you to remember that this edition of the newsletter
coincides with a very special time of year, and you can’t
always believe what you read! ✒

This month I have the rare treat of being able to provide some
insight into the future of IBM products. I have just recently
been informed of many new directions that IBM is taking.
Most of these products are of great interest to the UNIX
community, so I thought I’d take the opportunity to describe
some of the wonderful things coming in the near future.

That Wascaly WABI
There has been huge interest in the coming availability of
WABI (Windows Application Binary Interface) for all those
MS Windows fans. This addresses the requirements of one of
the larger desktop user “communities” out there. However
there are a number of smaller “communities” that have not yet
been addressed. One that IBM recognizes is long overdue for
recognition is the large application base of CP/M. So I am
happy to announce the direction of providing CUE (CP/M
User Environment). This will give all of the people that are
still big CP/M users a chance to move to the latest technology.

My 409?

Another development direction that everyone is talking about
is the PowerPC. IBM’s Bruce Danforth just presented on this
at our last meeting. One direction he mentioned was of the
PowerPC getting into process control environments. The
PowerPC chips to be used for process control are going to
have a different numbering scheme than the current 601, 603,
604, 620, ... chips. I have inside info that the numbering will
be “4xx”, and that one of the specific chips will be marketed
with the slogan “She’s so fine, my 409.”

On the same topic of PowerPC, there will be a new group

By Bary Finch

MUUG Lines 4 April 1994

only those inside your encapsulation barrier (your members,

friends, and [for ‘protected’ things] your subclasses) should have

access.

Question 23: What are some advantages/disadvantages of using friends?

The advantage of using friends is generally syntactic. i.e.: both a

member fn and a friend are equally privileged (100% vested), but a

friend function can be called like f(obj), where a member is called

like obj.f(). When it’s not for syntactic reasons (which is not a

‘bad’ reason — making an abstraction’s syntax more readable

lowers maintenance costs!), friends are used when two or more

classes are designed to be more tightly coupled than you want for

‘joe public’ (ex: you want to allow class ‘ListIter’ to have more

privilege with class ‘List’ than you want to give to ‘main()’).

Friends have three disadvantages. The first disadvantage is

that they add to the global namespace. In contrast, the namespace

of member functions is buried within the class, reducing the chance

for namespace collisions for functions.

The second disadvantage is that they aren’t inherited. That is,

the ‘friendship privilege’ isn’t inherited. This is actually an

advantage when it comes to encapsulation. Ex: I may declare you

as my friend, but that doesn’t mean I trust your kids.

The third disadvantage is that they don’t bind dynamically.

i.e.: they don’t respond to polymorphism. There are no virtual

friends; if you need one, have a friend call a hidden (usually

‘protected:’) virtual member fn. Friends that take a ptr/ref to a class

can also take a ptr/ref to a publically derived class object, so they

act as if they are inherited, but the friendship rights are not inherited

(the friend of a base has no special access to a class derived from

that base).

Question 24: What does it mean that ‘friendship is neither

inherited nor transitive’?

This is speaking of the access privileges granted when a class

declares a friend.

The access privilege of friendship is not inherited:

• I may trust you, but I don’t necessarily trust your kids.

• My friends aren’t necessarily friends of my kids.

• Class ‘Base’ declares f() to be a friend, but f() has no

special access rights with class ‘Derived’.

The access privilege of friendship is not transitive:

• I may trust you, and you may trust Sam, but that doesn’t

necessarily mean that I trust Sam.

• A friend of a friend is not necessarily a friend.

Question 25: When would I use a member function as opposed

to a friend function?

Use a member when you can, and a friend when you have to. Like

in real life, my family members have certain privileges that my

friends do not have (ex: my family members inherit from me, but

my friends do not, etc). To grant privileged access to a function,

you need either a friend or a member; there is no additional loss of

encapsulation one way or the other. Sometimes friends are

syntactically better (ex: in class ‘X’, friend fns allow the ‘X’ param

to be second, while members require it to be first). Another good

use of friend functions are the binary infix arithmetic operators. Ex:

‘aComplex + aComplex’ probably should be defined as a friend

rather than a member, since you want to allow ‘aFloat + aComplex’

as well (members don’t allow promotion of the left hand arg, since

that would change the class of the object that is the recipient of the

member function invocation). ✒

PROGRAMMING

C++ Q&A
By Marshall P. Cline

This month’s column will look at friends and friend functions, but

first we will wrap up operator overloading.

Question 20: Can I create a ‘**’ operator for ‘to-the-power-of’

operations?

No. The names of, precedence of, associativity of, and arity of

operators is fixed by the language. There is no ‘**’ operator in

C++, so you cannot create one for a class type.

If you doubt the wisdom of this approach, consider the

following code: x = y ** z; Looks like your power operator?

Nope. z may be a ptr, so this is actually: x = y * (*z); Lexical

analysis groups characters into tokens at the lowest level of the

compiler’s operations, so adding new operators would present an

implementation nightmare (not to mention the increased mainte-

nance cost to read the code!).

Besides, operator overloading is just syntactic sugar for

function calls. It does not add fundamental power to the language

(although this particular syntactic sugar can be very sweet, it is not

fundamentally necessary). I suggest you overload ‘pow(base,

exponent)’, for which a double precision version is provided by the

ANSI-C <math.h> library.

By the way: operator^ looks like a good candidate for to-the-

power-of, but it has neither the proper precedence nor associativity.

 SECTION 6: Friends

Question 21: What is a ‘friend’?

Friends can be either functions or other classes. The class grants

friends access privileges. Normally a developer has political and

technical control over both the class, its members, and its friends

(that way you avoid political problems when you want to update a

portion, since you don’t have to get permission from the present

owner of the other piece(s)).

Question 22: Do ‘friends’ violate encapsulation?

Friends can be looked at three ways: (1) they are not class members

and they therefore violate encapsulation of the class members by

their mere existence, (2) a class’ friends are absorbed into that

class’ encapsulation barrier, and (3) any time anyone wants to do

anything tricky they textedit the header file and add a new friend so

they can get right in there and fiddle ‘dem bits.

No one argues that (3) is a Good Thing, and for good reasons.

The arguments for (1) always boil down to the rather arbitrary and

somewhat naive view that a class’ member functions ‘should’ be

the only functions inside a class’ encapsulation barrier. I have not

seen this view bear fruit by enhancing software quality. On the

other hand, I have seen (2) bear fruit by lowering the overall

coupling in a software system. Reason: friends can be used as

‘liaisons’ to provide safe, screened access for the whole world,

perhaps in a way that the class syntactically or semantically isn’t

able to do for itself.

Conclusion: friend functions are merely a syntactic variant of a

class’ public access functions. When used in this manner, they

don’t violate encapsulation any more than a member function

violates encapsulation. Thus a class’ friends and members are the

encapsulation barrier, as defined by the class itself.

I’ve actually seen the ‘friends always violate encapsulation’

view destroy encapsulation: programmers who have been taught

that friends are inherently evil want to avoid them, but they have

another class or fn that needs access to some internal detail in the

class, so they provide a member fn which exposes the class’ internal

details to the PUBLIC! Private decisions should stay private, and

MUUG Lines 5 April 1994

FEEDBACK

A Concise Guide to UNIX Books
Compiled by: Samuel Ko (kko@sfu.ca, sko@wimsey.bc.ca)

Submitted by Andrew Trauzzi

This month’s column looks at some general intermediate/

advanced UNIX books.

Unix for the Impatient Authors

Paul Abrahams and Bruce Larson

1992 ISBN: 0-201-55703-7

• Highly Recommended. A comprehensive and in-depth

reference to Unix. “ a handbook you can use both as a

manual to learn UNIX and as a ready reference for fast

answers to specific UNIX questions.”

Unix Power Tools

Jerry Peek, Tim O’Reilly and Mike Loukides

1993 ISBN: 0-553-35402-7

• Highly Recommended. Simply great!!! “ [It] contains

literally thousands of tips, scripts, and techniques that make

using UNIX easier, more effective, and even more fun.”

With a CD-ROM disk containing PD programs and shell

scripts. The shell scripts can also be obtained by anon-ftp

from ftp.uu.net (as /published/oreilly/power_tools/

unix/upt.mar93.tar.Z).

Unix System V Release 4: The Complete Reference

Stephen Coffin

1990 ISBN: 0-07-881653-X

• Another good book on Unix fundamentals and related

subjects.

Unix Desktop Guide to Tools

Pete Holsberg

1992 ISBN: 0-672-30202-0

• A comprehensive guide to numerous Unix utilities.

Modern Unix

Alan Southerton

1992 ISBN: 0-471-54916-9

• Covering selected topics like shells, X Window, networking.

Unix in a Nutshell

Daniel Gilly and O’Reilly staff

1992 (for System V and Solaris 2) ISBN: 1-56592-001-5

• Highly recommended. An excellent desktop reference to

almost all Unix commands. “ a complete reference contain-

ing all commands and options, plus generous descriptions

and examples that put the commands in context.” Also, an

edition for 4.3. BSD (ISBN: 0-937175-20-X).

SSC reference cards

SSC staff

1984-93 ISBN: 0-916151-**-*

• These are some good, inexpensive reference/tutorial cards

on Unix commands, Bourne shell, Korn shell, emacs, vi, C,

C++, etc. e.g. the new “Unix System Command Summary

for SVR4.2/Solaris 2.1” (ISBN: 0-916151-61-1). Contact

Belinda Frazier <bel@ssc.com> or <sales@ssc.com> for

more info.

The Design of the Unix Operating System

Maurice Bach

1986 ISBN: 0-13-201799-7

• An excellent reference on the internals of System V This

book and the next one are indeed highly technical. And if

you just want a short case study on Unix, consult a good

operating systems text like Modern Operating Systems by

A. Tanenbaum or Operating System Concepts by A.

Silberschatz, J. Peterson and P. Galvin.

The Design and Implementation of the 4.3 BSD Unix

Operating System

S. Leffler, M. McKusick, M. Karels and J. Quarterman

1990 ISBN: 0-201-06196-1

• An authoritative description of the design of BSD Unix ... “

It covers the internal structure of the 4.3BSD system and

the concepts, data structures, and algorithms used in

implementing the system facilities.”

Next month, we will look at some UNIX books on shells and

shell programming (including the Korn shell), and several

books on UNIX editors including vi and emacs. ✒

ADVERTISEMENT — by Roland Schneider

Announcing Cork Board™, the most efficient method of inter-office communication to come along in thirty years.

Are you tired of the constant hassle of obscure commands, unreliable operation and user dis-interest in your office

bulletin board system? Looking for a better way for people at the office to communicate? Well, look no further!

Cork Board™ features proven technology coupled with the most intuitive, easy to use user interface ever devised.

Just look at these features:

• Easy one-hand, thumb-operated user interface!

• No typing skills necessary — uses evolutionary OCR technology with near 100% accuracy.

• “At a glance”® message reading is simple, effective, and leaves hands free to hold coffee and a muffin.

• Automatic layering of new messages over old ones.

• Low maintenance: requires only bi-yearly transfer of old messages to the circular file.

• Reliable: message database cannot be affected by power spikes.

For more information on this and other fine organic office products, call Tree Bark Technologies at 1-800-555-CORK.

Your boss will love you for it!

MUUG Lines 6 April 1994

HANDS-ON

UNIX Q&A
Originally Compiled by Ted Timar

Submitted by Andrew Trauzzi

Question 1: Why do I get [some strange error message]

when I “rsh host command” ?

(We’re talking about the remote shell program “rsh” or
sometimes “remsh” or “remote”; on some machines, there is
a restricted shell called “rsh”, which is a different thing.)

If your remote account uses the C shell, the remote host
will fire up a C shell to execute ‘command’ for you, and that
shell will read your remote .cshrc file. Perhaps your
.cshrc contains a “stty”, “biff” or some other command
that isn’t appropriate for a non-interactive shell. The
unexpected output or error message from these commands
can screw up your rsh in odd ways.
Here’s an example. Suppose you have

stty erase ^H biff y

in your .cshrc file. You’ll get some odd messages like this.
% rsh some-machine date stty: : Can’t assign

requested address Where are you? Tue Oct 1

09:24:45 EST 1991

You might also get similar errors when running certain “at”
or “cron” jobs that also read your .cshrc file.

Fortunately, the fix is simple. There are, quite
possibly, a whole bunch of operations in your “.cshrc”
(e.g., “set history=N”) that are simply not worth doing
except in interactive shells. What you do is surround them in
your “.cshrc” with:

if ($?prompt) then operations.... endif

and, since in a non-interactive shell “prompt” won’t be set,
the operations in question will only be done in interactive
shells.

You may also wish to move some commands to your
.login file; if those commands only need to be done when a
login session starts up (checking for new mail, unread news
and so on) it’s better to have them in the .login file.
Question 2: How do I {set an environment variable,

change directory} inside a program or shell script and

have that change affect my current shell?

In general, you can’t, at least not without making special
arrangements. When a child process is created, it inherits a
copy of its parent’s variables (and current directory). The
child can change these values all it wants but the changes
won’t affect the parent shell, since the child is changing a
copy of the original data.

Some special arrangements are possible. Your child
process could write out the changed variables, if the parent
was prepared to read the output and interpret it as commands
to set its own variables.

Also, shells can arrange to run other shell scripts in
the context of the current shell, rather than in a child process,
so that changes will affect the original shell.
 For instance, if you have a C shell script named
“myscript”:
cd /very/long/path setenv PATH /something:/something-else

or the equivalent Bourne or Korn shell script

cd /very/long/path PATH=/something:/something-else

export PATH

and try to run “myscript” from your shell, your shell will
fork and run the shell script in a subprocess. The subprocess
is also running the shell; when it sees the “cd” command it
changes its current directory, and when it sees the “setenv”
command it changes its environment, but neither has any
effect on the current directory of the shell at which you’re
typing (your login shell, let’s say).

In order to get your login shell to execute the script
(without forking) you have to use the “.” command (for the
Bourne or Korn shells) or the “source” command (for the C
shell). i.e. you type

. myscript

to the Bourne or Korn shells, or
source myscript

 to the C shell.
If all you are trying to do is change directory or set an

environment variable, it will probably be simpler to use a C
shell alias or Bourne/Korn shell function. See the “how do I
get the current directory into my prompt” in the Feb. issue of
MUUGLines.
A much more detailed answer prepared by <Thomas.
Michanek@lin.infolog.se> (Thomas Michanek) can be
found at ftp.wg.omron.co.jp in /pub/unix-faq/docs/
script-vs-env.
Question 3: How do I redirect stdout and stderr sepa-

rately in csh?

In csh, you can redirect stdout with “>”, or stdout and stderr
together with “>&” but there is no direct way to redirect
stderr only. The best you can do is

(command >stdout_file) >&stderr_file

which runs “command” in a subshell; stdout is redirected
inside the subshell to stdout_file, and both stdout and
stderr from the subshell are redirected to stderr_file, but
by this point stdout has already been redirected so only stderr
actually winds up in stderr_file.

If what you want is to avoid redirecting stdout at all,
let sh do it for you.

sh -c 'command 2>stderr_file'

Question 3: How do I ring the terminal bell during a shell
script?
The answer depends on your Unix version (or rather on the
kind of “echo” program that is available on your machine).
A BSD-like “echo” uses the “-n” option for suppressing the
final newline and does not understand the octal \nnn
notation. Thus the command is

echo -n '^G'

where ^G means a _literal_ BEL-character (you can produce
this in emacs using “Ctrl-Q Ctrl-G” and in vi using “Ctrl-
V Ctrl-G”).

A SysV-like “echo” understands the \nnn notation
and uses \c to suppress the final newline, so the answer is:

echo '\007\c' ✒

MUUG Lines 7 April 1994

HANDS-ON

GNU Review
By Peter Graham

Greetings. The deadline for submitting this article is March 19th.

Can anyone guess what the date is now when I am writing it? I

knew you could. :-)

I thought that this month I would start talking about some of

the Gnu tools designed to aid in software development. Most people

use make and SCCS (the Source Code Control System) to manage

their software projects under Unix. As with other Unix programs,

there are enhanced gnu products. For make, its ‘make’ (funny how

they keep the same names...) while RCS is Gnu’s replacement for

SCCS. Gnu also offers another product called CVS (a front end to

RCS). Conveniently enough, there are three products and three

months left in the year, so I’ll talk about RCS this month, Gnu

make next month, and then close out the year by talking about CVS.

RCS — the Revision Control System

Why RCS isn’t called SCCS or GCCS I don’t know. Its likely

historical but since RCS isn’t a strict superset of SCCS, its probably

just as well.

So what is revision control? If you consider the process of

software development (or development of any frequently modified,

multi-file project) you will realize that it is a process of continual

refinement. Even once a program is written, it goes through a life

cycle of improvements, bug fixes, and extensions. Furthermore, a

program may spawn multiple programs that are based on it. It is

helpful if the “versions” of the software that result at each stage of

the development process can be maintained rather than being

overwritten with each software change. This permits back out to

previous versions when mistakes are made, allows different

versions (perhaps with different performance characteristics) of a

program, and supports the concurrent development of multiple

program releases. RCS helps you automate this process in a storage

efficient way. It also helps in coordinating the work of multiple

programmers working on a single project by ensuring that program-

mers don’t make conflicting updates to the code. Finally, RCS also

allows versions to be merged. This is useful when code develop-

ment has proceeded independently on different versions of a

program resulting in versions (say for two different machine

architectures) with different capabilities. By merging the code, the

addition of new features from other code versions can be simplified.

All the versions of a given file/system are maintained in a tree

structure which reflects their relationships. Programmers may check

code in and out of the tree for modification. RCS users are asked to

document their changes at check in time. This documentation is

associated with each version and can be extracted automatically to

produce a change history for the code.

RCS requirements

RCS maintains versions of software using “deltas”. That is, it does

not store each version in its entirety. Instead, to save disk space, it

stores the differences between a version and the version which

precedes it. In order to manage these deltas, RCS uses the Unix

‘diff’ program extensively and the diff on your machine must have

certain capabilities. Quoting from the installation document...

 “RCS requires a diff that supports the -n option. Get GNU diff

(version 1.15 or later) if your diff lacks -n. RCS works best with a

diff that supports -a and -L, and a diff3 that supports -E and -m.

GNU diff supports these options.”

If you want to use RCS, make sure you get Gnu diff. Things

will work a lot smoother.

RCS installation

RCS is not a standard Gnu install (no ‘./configure’ step) but

installation is still simple. Since there is no ‘configure’ to run, you

have to customize the Makefile yourself manually. This is accom-

plished by editing the Makefile and commenting out incorrect lines

and uncommenting correct ones. A section of the README file in

the ‘src’ directory called “Makefile notes” is provided to assist

with this process. Installation then requires you to run a ‘make

conf.h’ and if this is successful, a ‘make all’ followed by a ‘make

install’. The edits were pretty simple for my machine (I think I just

had to change one incorrect pathname prefix). The ‘make conf.h’

will take a while to run (~5 minutes) since it is doing the source

code customization normally accomplished (along with the

Makefile customization) by ‘./configure’. The ‘make all’ also

took about 5 minutes. Documentation is installed separately by

doing a ‘make install’ in the ‘man’ directory.

RCS Components

RCS isn’t a single program. Instead, it is a collection of several

programs, each of which performs a different function. Here is a list

of the programs and what they do:

co • Check Out a source file. Takes a copy of the file

from an RCS archive and locks access to that file

for other programmers.

ci • Check In a source file. Places the file into an RCS

archive and releases any held locks on the file.

ident • Identify the version(s) of a source file.

merge • Incorporate the changes made between two files

into a third.

rcs • Manage rcs file attributes.

rcsdiff • Compare two rcs file versions.

rcsmerge • Merge versions rather than files.

rlog • Print log and other information about RCS files.

RCS Usage

RCS stores archived versions in a directory called RCS. So start by

making an RCS directory. Then check in (‘ci’) all of your source

files. They will disappear as you check them in and be stored for

you under the RCS directory. When you wish to update a file just

check it out (‘co’). Basic usage is as easy as that. Due to space

limitations, we’ll have to leave it at that. See the man pages or

‘rcs.ps’ (contained in the distribution) for more information.

RCS vs SCCS

Why use RCS instead of SCCS which you probably already have?

There are several reasons. First, RCS has a simpler and more

intuitive user interface. It also offers enhanced capabilities

including improved version identification and more flexible version

selection rules (see the documentation). It is also more efficient in

both space and time. It is faster than SCCS for most functions and

has an improved delta scheme which decreases space utilization for

the storage of versions. If this hasn’t convinced you, find an active

user and ask them. RCS users are avid supporters of the software.

☛

MUUG Lines 8 April 1994

RCS Summary

Name............................... RCS (Revision Control System).

Description Tool to help manage versions and

releases of software.

Archive Loc’n prep.ai.mit.edu: /pub/gnu/rcs-

5.6.0.1.tar.gz

Archive size 250585 bytes.

Approx Space to Install .. 2MB.

Time to Install (Sparc-1) 11 minutes.

Pros • Free, small, and easy to install.

• Understandable online man pages AND

excellent offline paper describing the

system as a whole.

• Superset of SCCS in function and

performance.

Cons • Damn few I could think of, although it’s

obviously not as glitzy as some of the

graphically based development systems

which offer similar capabilities. (Mind

you RCS doesn’t cost $2K per seat

either.)

Catch you all later. Maybe our baby sitters will be back from the

sunny climes of Arizona and we’ll be able to make it to the next

meeting. If so, we’ll see you there. Requests to <pgraham@

cs.umanitoba.ca>. ✒

way around the world (using the “finger” command, of

course).

 10:19 Feel sleepy, should not have stayed late playing tetris

last night.

 10:31 Momentary panic attack!!!!!!!!!!!!

 10:43 Edit .plan file.

 10:45 Write a shell program to edit .plan more easily

 10:59 Drop in at advisor’s office and borrow something you

don’t need & and kinda make him aware you are

working hard on your project.

 11:05 Perverted daydreams.

 11:11 Read electronic news.

 11:15 Mid-morning yawn time.

 11:34 Start typing junk at a very high key-in rate to pretend

you are working hard as your advisor passes by from

outside.

 11:35 Press the BackSpace key for one and a half minutes until

all the garbage you typed in is erased.

 11:37 Realize that you can type more than 256 characters per

half minute.

 11:41 Flirt with the new girl in the department.

 11:45 Print out some slides for afternoon’s draft + presentation.

 11:47 Print them again, you forgot to change the date from last

presentation.

 11:49 Print another copy in case this one gets lost.

 11:51 Completely forget about sueing the coffee-machine

company.

 12:15 Hunger pangs.

 12:20 BigMac/Fries time. Drink a not-so-cold generic can of

cola from your desk. Ch-Ching, you just saved 35 cents

by buying bulk cola.

 1:00 Group Meeting with advisor.

 1:14 Sudden awareness of one’s shallowness.

 1:20 Resentment towards foriegn officemate for sucking up

to your advisor.

 1:30 Get reminded by your advisor that you need to do some ☛

Anonymous

 6:30am Wakeup and lie awake in Bed.

 6:31 Realize you spent $18 on last night’s dinner, means

no eating out for the next 6 weeks .

 6:32 Hit snooze button. Go back to sleep.

 7:00 Wake up suddenly with heart in mouth when you realize

you didn’t hit the snooze button—you turned it off.

 7:01 Fall asleep again.

 7:44 Wake up with heart in mouth again.

 7:45 Ready to go to school, will shave tommorrow, will eat

early brunch at (Denny’s/Penny’s/Lenny’s/Dinko’s

whatever cafeteria).

 8:03 Arrive at school. Realize your foreign officemate arrived

earlier today. Must have got more work done.

 8:04 Pass by Advisor’s office, chat with Secretary to find out

if he is coming in today. He is, darn. Need to start work

on the draft due this afternoon.

 8:15 Read electronic mail.

 8:20 Delete mail from students taking 74.206 regarding

questions about the class.

 8:30 Hate your TA job.

 8:55 Depression: too much work to do today.

 9:00 For jumpstart: go to Pepsi machine.

 9:05 Kick Pepsi machine; promise yourself to call up the

company and ask for your money back.

 9:06 Wonder why they would beleive you.

 9:33 Start printing out loads of stuff that may be vaguely

related to your work.

 9:41 Early morning stupefaction.

 9:42 Mutter racist comments to yourself about your

officemate.

 9:43 Curse your officemate in a low tone he would not

comprehend.

 9:44 Feel good about him not grasping English well.

 9:58 Finger everyone in the department and most people half

This Month’s Speaker

This month, Marlon Miller of Xerox Canada Ltd. will be presen-

ting document management and workflow in a client server

environment.

Why Would Xerox (“the document company”) be speaking to MUUG?

Xerox undertook the first Object Oriented database research

in the 1960’s and created the first OO Language — Smalltalk, co-

developed ethernet, founded the Palo Alto Research Center

(PARC), created the first PC (the Alto) before IBM or Apple,

created the first WYSIWYG interface (which was the impetus

behid MS Windows, System 7, and OpenLook), the laser printer,

the optical mouse, the first LAN, etc...

Marlon Miller is Marketing Manager of Document Manage-

ment Solutions for Xerox Canada. Marlon has been involved with

electronic publishing and document management for the last 15

years. Most recently at Xerox, he has focused on integrated

document management solution sales combining document

library services, workflow and full text retrieval. Additionally, he

has significant experience with electronic document composition,

SGML and high-speed demand publishing.

He was involved with implementing the ATOS system for

the Air Force, the original system which helped spawn the CALS

initiative and SGML publishing. He is an executive member of

the Canadian SGML Users’ Group and is based out of Toronto.

Marlon has an undergraduate degree from Carnegie-Mellon

University with additional coursework completed at UCLA.

A Day in the Life of a Grad Student

MUUG Lines 9 April 1994

more work for your literature survey.

 1:51 Advisor hands you the reddened copy of your draft for

corrections.

 1:51:02 The 49 second urge to murder advisor begins!!

 1:51:52 Realize that he controls your assistantship/grade/

graduation possiblity/graduation date/all job opportuni-

ties/and the rest of your life.

 1:52:53 Thank him.

 1:52:54 Thank yourself for not saying something stupid to your

advisor.

 1:53:00 Splitting headache #1.

 1:59 Check electronic mail, don’t reply though, you are too

busy to do that.

 2:06 More generic cola.

 2:17 Oh No, it is my turn to cook tonite :-(

 2:30 Sit through the class you were told to sit through.

 2:39 Look outside the window make unrealistic plans to quit

this degree program and take up a job.

 2:42 Wonder why blonde girls are so pretty.

 2:48 More perverted day-dreams.

 2:51 Close the office door and open a few .gif files.

 3:04 Sharpen pencil.

 3:06 Worry about never graduating.

 3:08 Time to write a letter—NOT! No time for that.

 3:10 Rearrange desk.

 3:30 Call up bank; see if you have any money.

 3:40 Fear of losing aid next Fall.

 3:41 Read latex manuals to figure out how to put &$%&% in

%$^% format.

 3:43 Watch the clock.

 4:50 Make plans to do a all-nighter tonite.

 4:55 Vow to watch only 2 TV programs.

 4:58 Notice Advisor leave.

 4:58:01 Sudden sense of freedom.

 4:58:03 Go home for quick, short dinner break.

 9:00pm Come into the office.

 9:01pm The hard working grad student you are, you have to

come to the office late at night to “get the work done.”

 9:03 Check electronic mail.

 9:10 Decide it would be a good time to attack those ftp sites

since network wont be loaded.

 9:40 Run into “since network wont be loaded” traffic and get

the pictures into your machine.

 9:45 Compress all unwanted research/class directories to

make space.

 9:59 Back up all your pictures.

 10:11 Admire pictures.

 10:45 Begin work; Realize you need references.

 10:46 Realize its too late today to go to the library.

 10:47 Sudden feeling of having wasted the day.

 10:48 Sudden feeling of possibly having to waste the night.

 10:49 Decide to turn in early and come back very early

tommorrow morning.

 10:50 Decide to play a Tetris on the system to put yourself in a

good mood.

 11:15 Play game after game after game to improve your score

and get on the scoreboard.

 11:45 Realize that your officemate is still at number 6, two

notches above you on the scoreboard.

 12:20 Play until you beat your officemate into the 7th place.

A sense of achievment!! Yes, today was not wasted!!

 12:47 Return home to find your roommate watching David

Letterman reruns on NBC. Tell him about the “hard

working grad student day you had.”

 1:00 Discuss philosophy with roommate.

 1:09 Think about becoming a philosopher and dining with 4

others. (The Dining Philosophers problem, hee hee :-)

(Comp Sci joke.)

 1:15 Argue with him about politics, why people prefer

Japanese cars and whether it is better to set the heat to

“hot” or “cold” to defrost the windshields faster.

 1:49 Realize neither of you have bought milk today. Get

reminded of the “too much milk problem.”

 2:04 Forget about getting up early. Turn the phone ringer off

and go to sleep.

(repeat) ✒

ACCENTServer™ is a monthly publication of National Information

Systems, Inc., (NIS) containing interesting news and views, and

some hearsay from around the globe.

Free Subscriptions:

info@nis.com

Article/News Submissions:

accentserver@nis.com

YOU CAN BEAT CARPAL TUNNEL SYNDROME

One of the most talked about disorders affecting millions of

computing professionals, Carpal Tunnel Syndrome, can be

prevented by following these simple steps:

1. Keep your wrists and elbows flat, not angled, at the

keyboard.

2. Take a short break from typing every 15 minutes.

3. Exercise your hands by rotating the wrists, stretching the

fingers apart, and bending the hands slowly back and forth.

4. Type gently.

5. Sit at a 90-degree angle to your work — you shouldn’t have

to stretch or lean over to reach the keyboard.

SEQUOIA INTERNATIONAL ANNOUNCES MOTIF 1.2.3

FOR LINUX, BSDI, ETC.

Sequoia International, Inc. recently announced the availability of

OSF/Motif 1.2.3 for these environments: Coherent 4.2, Linux 0.99,

BSDI 1.0, FreeBSD 1.0.2, and NetBSD 0.9. OSF/MOTIF is one of

the most widely accepted graphical user interfaces for the X

Window System.

Packages contain the complete runtime and development

environment for Motif 1.2.3, which includes the following:

• The Motif Window Manager (mwm)

• Shared Library (libXm) [Linux Only]

• Static Libraries (libXm, libMrm and libUil)

• Header and Include Files

• Complete On-line Manual Pages

• Source code to OSF/Motif demo programs

• Complete OSF/Motif Users Guide

For order information as well as technical details on the above

products, contact:

Sequoia International, Inc. E-Mail: info@seq.com

600 W. Hillsboro Blvd, Suite 300 Phone: (305) 480-6118

Deerfield Beach, FL 33441 Fax: (305) 480-6198

Accent Server News

MUUG Lines 10 April 1994

MEETINGS

Agenda
for

Tuesday, April 12, 1994, 7:30 PM
Samuel N. Cohen Auditorium

St-Boniface Hospital Research Centre
Main Floor, 351 Taché

SIG Sideline
By Brad West, SIG Coordinator

1. President’s Welcome 7:30

3. Business Meeting 7:35

a) Old Business

b) New Business

5. Presented Topic 7:45

This month, Marlon Miller of Xerox Canada Ltd.

will be presenting document management and

workflow in a client server environment.

See the writeup on page 8 for more info.

4. Coffee Break and Informal Discussion 9:00

Note: Please try to arrive at the meeting between 7:15 and

7:30, to avoid disrupting the meeting in progress.

below for details).

Once again we had a strong turnout at our last SIG (Special Interest
Group) meeting on Tuesday, the 15th. The meeting started out with
a round table discussion. The topics discussed ranged from video
adapter card problems in Linux to writing and modifying printcap
files. Of course the discussions turned to what’s new in Linux. The
official release of Linux has finally reached 1.0. The release will
now take two base paths, 1.01 path will be the hacker paradise
version, and 1.1 path will be the stable release platform. As the
hacker’s version becomes stable, the release will be incorporated in
the stable version. One of the next big projects being worked on in
Linux is the network code.

The presentation for the evening was sendmail given by Gilles
Detillieux. Gilles gave a great overview presentation of the
workings of sendmail. Some of sendmail special features presented
were: point to point, delivery and forget, aliasing and forwarding,
mailing list, and error notification. Topics covered were: installa-
tion, sendmail components, to MX or not to MX, and the approach
to sendmail setup. The pros of sendmail presented are: it is a public
domain program with the source code available, it is relatively bug
free, and is configurable and flexible. The cons are: its step learning
curve, tricky rules and, that fact that it is an old program.

No specific presentation is scheduled for the next meeting to
date, in the event that a speaker is not found, we will continue with
the round table format. If anyone is interested in being a guest
speaker at a SIG meeting, or you have a specific topic of interest,
let me know. I can be reached by email <bwest@muug.mb.ca>, or
my work phone is 983-0336. The next meeting is scheduled for
Tuesday, April 19, at 7:30 PM. This meeting will again be held at
ISM, 400 Ellice Avenue, behind Portage Place. Our host is
Wolfgang von Thuelen. He will be waiting in the lobby as of 7:15
PM to let everyone in. Hope to see you at the April meeting.

Internet Corner
Compiled By Andrew Trauzzi

Question: How do I send mail to other networks?
Mail to the Internet is addressed in the form <user@domain>.
(Without the ‘< >’). Remember that a domain name can have
several components and the name of each host is a node on the
domain tree. So, an example of an Internet mail address is
<atrauzzi@mona.muug.mb.ca>.

There are several networks accessible via e-mail from the
Internet, but many of these networks do not use the same addressing
conventions the Internet does. Often you must route mail to these
networks through specific gateways as well, thus further complicat-
ing the address.

Here are a few conventions you can use for sending mail from
the Internet to three networks with which Internet users often
correspond.

Internet user to BITNET user:
user%site.BITNET@BITNET-GATEWAY

e.g. gsmith%emoryu1.BITNET@cunyvm.cuny.edu
Internet user to UUCP user:
user%host.UUCP@uunet.uu.net

user%domain@uunet.uu.net

Internet user to SprintMail user:
/G=Mary/S=Anderson/O=co.abc/ADMD=SprintMail/C=US/

@SPRINT.COM (case is significant)
Internet user to CompuServe user:
Replace the comma in the CompuServe userid with a period,
and add the compuserve.com domain name.
CompuServe user to Internet user:
>Internet:user@host
Insert >internet: before an Internet address.

Internet user to MCIMail user:
accountname@mcimail.com

mci_id@mcimail.com

full_user_name@mcimail.com. ✒

Meeting:

Next month’s meeting is scheduled for Tuesday, May

10, at 7:30 PM. Meeting location will be the St-Boniface

Research Centre, as usual. The March meeting topic is

security. Stay tuned for details.

Got any ideas for meeting topics? Any particular

speaker, company, or product you’d like to see at one of

our meetings? Just let our new meeting coordinator,
Roland Schneider, know. You can e-mail him at

<rsch@muug.mb.ca>.

Newsletter:

If you are interested in a particular topic, let me know.

I’m sure I could coerce you into writing an article! I

could use a few articles — especially shorter ones —
half a page to one page (400 to 1000 words) would be

fine.

Monsieur Ex has also let me know that his mail-box has

room for more of your wonderful queries again – please
submit your questions to the old guy via e-mail to

<m-ex@muug.mb.ca>. He may be old, but he’s not ready

for retirement yet!

Coming Up

☛

