
September 1996 Volume 9, Number 2

1

$2.50 MUUGlines
Red Alert – Meeting Location
Changed
Our second meeting of this year will be at a different location
from the first, as we have yet to settle on a permanent site for
our monthly and SIG meetings.

This month we’ll be meeting on October 8th at 7:30 PM in
room 500A Machray Hall on the University of Manitoba Fort
Garry campus. You’ll have to take the elevator to the 4th floor
and then walk up to the fifth, as the elevator does not go to the
5th floor outside regular business hours. After-hours parking is
free, but watch the signs because there is some that is reserved
24 hours per day! If you have a suggestion for a permanent
location, please let the board know.

As a reminder, the MUUG regular and Linux SIG meetings
have been combined.

LUG/nut CDs Are In
MUUG recently placed an order for 10 copies of the latest LUG/
nut CD, SSC’s “Do-It-Yourself Linux for User Groups”. All
copies in this order have been sold. If you’d like one of your
own, let the MUUG board know, and we’ll enter your name for
the next order. If you want to test it out before spending the
money (which doesn’t make a great deal of sense because the
price is so low!), MUUG’s lending library has a copy you can
borrow.

The following individuals really should come to the next
meeting to pick up and pay $11 for their copy of this exciting
CD:
Doug Jackson, Ross Cavanagh, Richard Lukes, Michael
Doob, Harry Lakser, Rob Janzen, Gilbert Detillieux, Gilles
Detillieux, Kevin McGregor

Contact Information
To contact the MUUG board for membership information or
anything else, send e-mail to board@muug.mb.ca. We have a
Web presence as well, at http://www.muug.mb.ca/, where you
can find all kinds of information, including details of upcoming
and past meetings and presentations and references related to
them.

To contact the newsletter editor (and I know you want to
shower him with, well, article submissions, anyway), e-mail
editor@muug.mb.ca.

This Month’s Meeting
We are hoping to have a live demonstration of the Caldera
desktop for the October meeting. If that cannot be arranged, we
will have an (almost) live demonstration of the installation and
setup of Wine, the free Linux Windows emulator.

Installing Wine
By Kevin McGregor

If you haven’t heard, there is a group of programmers around
the world working on a program to let you run shrink-
wrapped Windows applications on your Linux system, under
X. When complete, you can run (almost) all of your favorite
Windows applications without having any Microsoft
executables on your computer at all!

The Wine team has been working on this project for well
over a year now, and there is work going on to support
Windows 95 applications as well. New versions (considered
“alpha” code, not yet ready for beta testing) are released every
1-2 weeks. I tested the September 13th version, but as I write
this there is a September 28th version available for anyone to
download.

How is this done? There are two parts. One, a program to
recognize, load and execute Windows applications; two, a
library of code that translates the functions and parameters
from a Windows program call to the equivalent Linux and X
Window System calls.

Now, I was prepared to write a lengthy article detailing
my heroic struggles in getting this up and running on my
system, but I was disappointed. Well, not really, but it turns
out that it can be easier to install Wine on Linux than to install
Windows on DOS! Here’s a brief outline of how it went for
me:
Start Linux; login as ‘root’
Start the X Window System
Start Netscape Navigator
ftp://sunsite.unc.edu/pub/Linux/ALPHA/wine/

development/Wine-960913.tar.gz (about 1100 KB)
Open a terminal window
gzip -d Wine-960913.tar.gz
tar -xvf Wine-960913.tar
cd wine960913
(Read the README and a couple of other files)
./configure (and wait a minute for some messages as it

scanned my system for the right versions of various
libraries, etc.

make depend; make (and wait about 35-40 minutes as it
compiled on my 486DX2-80 with 16 MB RAM)

make install
Edit /usr/local/etc/wine.conf to set up DOS drive mappings

for Wine
wine sol.exe &

And it ran!
I then tried a number of other Windows applets and

applications with varying success. The best results were with
the Windows applets like Solitaire, MineSweeper, Calculator
(which even gives the correct wrong answers!) and Clock.

continued

Volume 9, Number 2 September 1996

These seemed to run fine, producing a
very standard-looking window, plus the
message “Warning: could not find DOS
drive for cwd /root; starting in windows
directory.” Notepad and File Manager
ran quite well, but Write and Program
Manager (as well as Paint Shop Pro and
Microsoft Money) didn’t, and even pro-
duced segmentation faults and a big
dump of debug information. For a longer
list of working and semi-working appli-
cations, see http://www.linpro.no/wine.

There’s much more to this, but this
will get you started. In upcoming news-
letters and meetings I’ll provide updates
and any feedback I get from you!

Error Recovery and
Restart in FTP
The explosive growth in the use of the Internet
requires a re-examination of the File Transfer
Protocol’s ability to recover from system
failures

From UnixWorld Online: Tutorial No. 011
By Raghuram Bala

Today, several million users access the
Internet and its vast ocean of resources
daily. To the layman, the Internet’s most
visible aspects are:

Electronic mail
Remote login
using Telnet
File transfer using FTP
The World Wide Web
Many users of the Internet spend

hours uploading and downloading soft-
ware and data from FTP sites. This is
made possible by the FTP application-
level protocol of the TCP/IP suite as
described by RFC 959 (144K text file).
Although FTP has been around for al-
most two decades in various forms, not
many implementations of this protocol
have implemented mechanisms for re-
covery from system failures. Till now,
this has not been a major concern be-
cause the sizes of the transferred files
were relatively small (less than 1 MB) in
most cases.

However, with multimedia ranging
from audio to full-motion video being
incorporated into entertainment, educa-
tion and business software, file sizes are
increasing on average. For instance, a
minute long full-motion video clip could
run into a megabyte or more. With tech-
nologies such as video-on-demand
looming on the horizon, a lot more data
transfer activity involving large files is
anticipated.

Common Problems using
FTP
One of the common problems that many
Internet users can relate to is a system
error during a file transfer. File transfer
sessions get aborted as a result of:
Server machine failure
A failure of an intermediate host

machine
Network failure
Client machine failure

The above reasons mainly indicate
hardware failures. However, there are a
number of other reasons not directly
related to hardware that can abort a file
transfer, including:

Heavy network load As more and
more people get on the Information Su-
perhighway, there are heavier loads on
networks, and at times network bottle-
necks that cause systems to slow down
to a crawl leading to communication
timeouts. A timeout occurs when one
machine which is in communication with
another is unable to receive an
acknowledgement from the latter after a
predetermined period of time. After this
time window elapses, the first machine
assumes that the second is unreachable.
Power outages If there is a fluctuation in
power or a blackout, then computers
without backup power supplies invari-
ably shut down.

Software failure For those with
Windows 3.1 software, General Protec-
tion Faults (GPF) are a daily affair. When
a GPF occurs with one program, all
other programs are affected. So, let us

assume that you have a GPF with Mi-
crosoft Excel while you are download-
ing a file, then it is likely that your file
transfer would be aborted in midstream.

 System failures during file trans-
fers are palatable when the file that is
being transferred is small. However, it
becomes annoying when a failure oc-
curs in the midst of transferring a large
file, especially when most of the transfer
has taken place.

 For example, let us assume that
you are downloading a four megabyte
file and that a system failure occurs after
three megabytes have been transferred.
The only recourse offered by most imple-
mentations of FTP today is for you to
begin the download operation from
scratch. This is an extremely painful
reality, but it need not be so. In this
article, I’ll shed some light on the little
known facts about the error recovery
and restart aspects of the File Transfer
Protocol.

TCP/IP in a Nutshell
The TCP/IP protocol suite forms the
basis for the Internet. TCP/IP is made up
of four layers:

Link The link layer is usually made
up of the network interface card and
device drivers and is primarily concerned
with the physical interface.

Network This layer is concerned
with routing of packets around a net-
work. The most prominent of the proto-
cols in this layer is the Internet Protocol
(IP).

Transport This layer is concerned
with the flow of data between two hosts.
There are two transport protocols at this
layer: Transmission Control Protocol
(TCP) and User Datagram Protocol
(UDP). TCP is a connection-oriented
protocol and is reliable, which means it
ensures that the data that flows from one
host to another is delivered success-
fully. Often, an application would re-
quire a long message to be transmitted to
another application on another machine.

2

September 1996 Volume 9, Number 2

If the message is too large to fit in a
single packet, TCP will split it up into
small chunks. These packets would be
routed from the source computer to the
destination where they may arrive out of
order. TCP on the destination machine
will ensure that the packets are ordered
correctly, to reconstruct the original
message and present it to the Applica-
tion Layer. UDP is a connectionless
protocol and is unreliable, which means
it does not ensure reliable delivery of
packets from one host to another. The
onus is on the Application layer to en-
sure that packets arrive reliably when
using UDP.

Application There are several ap-
plications that rely on services provided
by the other layers of the TCP/IP suite.
Common applications found in many
implementations of TCP/IP are: Telnet
for remote login; FTP for file transfer;
SMTP, the Simple Mail Transfer Proto-
col, for electronic mail; and SNMP, the
Simple Network Management Protocol.

For more in-depth information on
the TCP/IP Protocol Suite, refer to Ref-
erence 1.

FTP
FTP is an application-layer protocol in
the TCP/IP suite, and it uses TCP as its
transport-layer protocol. The primary
objectives of FTP include:
Promote sharing of files
To shield users from variations in file

systems across different platforms
 To transfer files efficiently and

reliably

FTP follows the client-server model
as many other TCP/IP applications do.
The client half of the equation is made
up of three pieces, namely, the user
interface (also known as the FTP client),
user protocol interpreter, and the user-
data transfer function. When a user ac-
cesses a character-mode FTP client in-
teractively, the user enters commands
such as “get” and “put”. Newer user

when using block or compressed trans-
mission mode. With block transfers, a
file is transferred in chunks made up of
a header portion followed by a data
portion. The header portion has a de-
scriptor and a byte count for the data
portion. The one-byte descriptor field
describes the data block. Certain bits are
set for a special meaning. For instance,
if the most significant bit is set to one, it
means that the data block marks the end
of a record. In that vein, if the fourth
most significant bit is enabled, then it
indicates that the data block holds a
restart marker.

In compressed-mode transfers, re-
start markers are preceded by an escape
sequence that is a double byte. The first
byte is all zeroes and the second is a
descriptor byte similar to that used in
block-transfer mode.

What is a restart marker and how is
it going to help us in recovering from a
system failure? Restart markers (also
known as checkpoints) are milestones
during a file transfer process. Should a
failure occur, the file transfer need not
be restarted from the beginning, and
instead could proceed from the last re-
corded milestone.

Readers should note that in order
for any error recovery as specified by
RFC 959 to be implemented effectively,
it requires cooperation among all
implementors of FTP client and server
programs to agree on a common format
for restart markers.

Proposal for a Better
Restart Marker
Let us assume that an FTP client and an
FTP server support a common recovery
and restart scheme. Now, suppose the
FTP client wants to download a four-
megabyte file from the server. The server
may decide to embed a restart marker
every 100K bytes, say. Then, if a system
failure occurs after transferring
3,213,517 bytes, say, the file transfer
process could be rolled back and started

interfaces are graphical, replacing these
commands with graphical buttons. The
commands that the user issues get inter-
preted by the user-protocol interpreter,
which translates the request into com-
mands understood by the FTP server.
For a list of commands, refer to Refer-
ence 1. On the server end, there is a FTP
server listener process (also known as a
daemon) that interprets the request from
the client. This connection between the
user-protocol interpreter and server-pro-
tocol interface is known as a control
connection . When a file needs to be
transferred from the server to the client,
a data connection is spawned by the
client. Once data transfer is complete,
the data connection is terminated. For
more details, readers should refer to the
References.

Users don’t need to access FTP
functionality with a dedicated client.
Instead, other application software can
access FTP servers transparently. For
example, most Web browsers, such as
Netscape’s Navigator, use FTP “under
the hood” to download files.

The way in which files are trans-
ferred and stored is determined by the
following factors:

File Type For instance, ASCII,
EBCDIC, binary Format Control For
instance, non-print format, Telnet for-
mat, carriage return format

Structure For instance, file struc-
ture, record structure

Transmission Mode For instance,
stream mode, block mode, compression
mode

For more information on data rep-
resentation issues, please refer to the
References.

Restart and Recovery
Mechanisms
The way in which error recovery and
restart is detailed in RFC 959 is vague
and implementation details are not men-
tioned. The primary mechanism is use
of a restart marker that is only available

3

Volume 9, Number 2 September 1996

4

from the 3,200,000 byte mark. Is this
good enough? Well in most cases the
answer would be “yes”. What if the file
that was being transferred is modified
before the FTP client decides to rollback
and continue to download the remainder
of the file? In this case, there is no
guarantee that the file that was trans-
ferred would be coherent to the intended
audience because it would essentially be
a mish-mash of two files.

Hence, let me now propose a stan-
dardized restart marker that would solve
this problem. A simple solution would
be to store the file size of the file to be
downloaded in the restart marker to-
gether with a byte count indicating the
cumulative number of bytes downloaded
thus far. When a failure occurs, the file
size from the restart marker can be com-
pared with the file size at the time of
error recovery to see if they match. If
they match, then the file transfer can
proceed, otherwise, the FTP client is
notified that the file has been modified
and that recovery is not possible.

There is an inherent flaw in the
above solution. Files can change with-
out file sizes having to change! So, file
size is not a reliable gauge for determin-
ing whether a file has been modified or
not. Instead a better measure would be a
time stamp. This time stamp would in-
clude the date and time when a file was
last modified. Our proposal for a restart
marker will consist of a byte-count fol-
lowed by a time stamp.

The proposed restart marker con-
sists of N bytes, where N is an integer
greater than or equal to nine, and the first
eight bytes store the time stamp for the
last-modified time of the file being trans-
ferred. The ninth to the Nth byte stores
the file size. The value assigned N is
based on the number of bytes required to
store the file size. For example, if the file
size is 50 bytes long, then N would be 8
+ 1 = 9. If the file size is one gigabyte,
then 8 + 30 = 38 is employed

Example
In this section, I shall go through the

time line for an FTP download proce-
dure which has a system failure and
subsequent recovery.

The events that take place during
the file transfer process are in the fol-
lowing chronological order:

1.FTP client issues download re-
quest, for instance, get abc.doc

2.FTP server receives download
request and begins downloading abc.doc.
Every 100K bytes, it inserts a restart
marker with a byte-count and time stamp.

3.FTP client receives data blocks
and creates a local version of abc.doc.
Whenever it comes across a restart
marker, it updates a transfer log as to
how many bytes have been transferred
and remote file’s time stamp. In addi-
tion, the transfer log would contain the
local file’s time stamp. Assuming the
FTP server does not have an exclusive
lock on abc.doc, it is possible that abc.doc
is modified even when no system failure
takes place. Hence, the two successive
time stamps can be compared by the
FTP client to ensure that there is no loss
of data integrity during the file transfer.
If time stamps don’t match, abort trans-
fer and inform FTP server. Otherwise
continue.

4.System failure occurs!
5.FTP client reads its transfer log

and extracts the local file’s time stamp
and byte count. Comparison is made
between bytes transferred from server
and local file size, and the time stamp
from the transfer log with the local file’s
last modification date. This is to ensure
that no modifications have been made to
abc.doc locally. If there is a mismatch,
do not proceed with error recovery.

6.FTP client issues request to FTP
server to restart download passing re-
start marker that contains byte-count
and time stamp for instance,
get abc.doc 3213517 013196 / 142301

7.FTP server receives restart re-
quest and compares the time stamp with
server copy of abc.doc. If time stamps
match, then it moves file pointer to an
offset equivalent to the byte count and
continues to download from that point.

Note that a transfer Log is main-
tained on the client end in the scheme
shown above. This transfer log may be
implemented as a simple file whose
records have the following structure:
struct { char* filename; // should include
path (if any)
long bytestransferred; // bytes transferred
TIMESTAMP rt; // last server file
// modification time stamp
TIMESTAMP ct; // last client file
// modification time stamp
} LOGSTRUCT;

Conclusion
It is apparent that error recovery and
restart are essential in implementations
of the File Transfer Protocol. However,
it requires cooperation among software
vendors and the industry in general to
bring about a consensus opinion on the
format of a restart marker.

References
1.Stevens, W. Richard. TCP/IP Illus-
trated, Volume 1. The Protocols. Read-
ing, Mass: Addison-Wesley. ISBN: 0-
201-63346-9
2.Comer, Douglas E. Internet-working
With TCP/IP, Volume 1: Principles,
Protocols, and Architecture. Englewood
Cliffs, N.J.: Prentice-Hall. ISBN: 0-13-
468505-9
3.Official FTP protocol specification in
RFC 959 (144K text file) (ftp://
ds.internic.net/rfc/rfc959.txt).
4.Stevens, W. Richard. Unix Network
Programming. Englewood Cliff, N.J.:
Prentice-Hall Software Series. ISBN: 0-
13-949876-1
5.Stallings, William. Data and Com-
puter Communications, Third Edition.
MacMillan Publishing Company, New
York, N.Y., ISBN: 0-02-415454-7

Copyright _ 1995, 1996 The
McGraw-Hill Companies, Inc. All
Rights Reserved. Edited by Becca Tho-
mas / Online Editor / UnixWorld Online
/ editor@unixworld.com

