Reliable multicast and the whiteboard

January 18, 1995

1 Introduction

2 The whiteboard

3 Wb's reliable multicast

3.1 Repair/request algorithms for trees.

Trees, all links have distance 1, all interior nodes have fanout p. Level 0, 1, etc., relative to the failed link. Source distance j from failed link (that is, from the level 0 node). Requests: [2d, 4d].

Level 0: time 0, timer $[2j,4j]$, expiration $[2j,4j]$.

Level 1: time 1, timer $[2(j+1),4(j+1)]$, expiration $1+[2(i+1),4(i+1)].$

Receives level 0 at 1+[2j,4j].

Receives other level 1s at $3+[2(j+1),4(j+1)]$.

Level i: time i, timer $[2(j+i),4(j+i)]$.

expiration $i+[2(i+i),4(i+i)]$.

For level k on branch through level h (for h_ii), receives level k at $(i-h) + (k-h) + [2(i+k), 4(i+k)]$

Level i receives level 0's request at i+[2j,4j].

Level i no longer matters if $i+4j$; $i+2(j+i)$, that is, if j;i. Prob[level 0 suppresses one at level i] =

prob $[X_iY]$ for X uniform in i+[2j,4j], and Y uniform in $i+[2(i+i),4(i+i)] =$

$$
1 - \frac{(i-j)^2}{(2j(i+j))}.
$$

Prob[level 0 suppresses all p^i at level i], for $i < j$? Distribution of first at level $i = i +$ first of $pⁱ$, each uniform in $[2(j+i),4(j+i)]$. From Feller II, p. 24, in the limit the first of n independent random variables each uniformly distributed in [0,1] is exponentially distributed with expectation n^{-1} . (We approximate by $1/(n+1)$.

So Prob[level 0 suppresses all p^i at level i] = Prob[X uniform in i+[2j,4j] is less than $i + 2(j+i)$ + first of $pⁱ$ uniform in interval of width $2(j+i) = i + 2(j+i) +$ exponential with expectation $1/\lambda$, for $\lambda = (p^{i} + 1)/2(j + i)$.

This is Prob[[uniform in [0, 2]] is less than $2i +$ exponential with expectation $1/\lambda$. This is

$$
\int_0^{2(j-i)}\frac{y+2i}{2j}\lambda e^{-\lambda y}dy+\int_{2(j-i)}^\infty \lambda e^{-\lambda y}dy=
$$

$$
\int_0^{2(j-i)} \frac{y}{2j} \lambda e^{-\lambda y} dy + \int_0^{2(j-i)} \frac{2i}{2j} \lambda e^{-\lambda y} dy + e^{-\lambda 2(j-i)} =
$$

$$
\frac{\lambda}{2j} \int_0^{2(j-i)} y e^{-\lambda y} dy + \frac{\lambda i}{j} \int_0^{2(j-i)} e^{-\lambda y} dy + e^{-\lambda 2(j-i)} =
$$

$$
\frac{\lambda}{2j} \left(\lambda^{-2} + \frac{-1 - \lambda 2(j-i)}{\lambda^2 E^{\lambda 2(j-i)}} \right) + \frac{\lambda i}{j} \left(\lambda^{-1} - \frac{1}{\lambda E^{\lambda 2(j-i)}} \right)
$$

$$
+ e^{-\lambda 2(j-i)}.
$$

Prob[the first one at level i suppresses all other levels]?

We use the fact that for X and Y independent continuous random variables,

$$
P[X \le Y] = \int_{-\infty}^{\infty} F_X(y) f_Y(y) dy
$$

for distribution function F_X and density function f_Y .

Expected number of requests?

Prob[level 0 request is sent first].

We use the fact that, for X uniform in [a,c] and Y uniform in [b,d], and for $a < b < c < d$, the probability that Y is less than X is $1/2$ times the probability that Y is in $[b,c]$ times the probability that X is in [b,c]. This is $1/2(c - b)^2/((c - b)^2)$ $a)(d-b)$.

References

- [Ch94] Cheriton
- [J92] Jacobson

[JMF93] Jacobson

- [J94] Jacobson
- [M92] McCanne