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Abstract| This paper

1

describes SRM (Scalable Reliable

Multicast), a reliable multicast framework for light-weight

sessions and application level framing. The algorithms of

this framework are e�cient, robust, and scale well to both

very large networks and very large sessions. The SRM

framework has been prototyped in wb, a distributed white-

board application, which has been used on a global scale

with sessions ranging from a few to more than 1000 par-

ticipants. The paper describes the principles that have

guided the SRM design, including the IP multicast group

delivery model, an end-to-end, receiver-based model of re-

liability, and the application level framing protocol model.

As with unicast communications, the performance of a re-

liable multicast delivery algorithm depends on the underly-

ing topology and operational environment. We investigate

that dependence via analysis and simulation, and demon-

strate an adaptive algorithm that uses the results of pre-

vious loss recovery events to adapt the control parameters

used for future loss recovery. With the adaptive algorithm,

our reliable multicast delivery algorithm provides good per-

formance over a wide range of underlying topologies.

1 Introduction

Several researchers have proposed generic reliable multicast

protocols, much as TCP is a generic transport protocol for

reliable unicast transmission. In this paper we take a dif-

ferent view: unlike the unicast case where requirements for

reliable, sequenced data delivery are fairly general, di�erent

multicast applications have widely di�erent requirements

for reliability. For example, some applications require that

delivery obey a total ordering while many others do not.

Some applications have many or all the members sending

data while others have only one data source. Some applica-

tions have replicated data, for example in an n-redundant

�le store, so several members are capable of transmitting

a data item while for others all data originates at a single

source. These di�erences all a�ect the design of a reliable

multicast protocol. Although one could design a protocol

for the worst-case requirements, e.g., guaranteeing totally

ordered delivery of replicated data from a large number of
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sources, such an approach results in substantial overhead

for applications with more modest requirements. One can-

not make a single reliable multicast delivery scheme that

simultaneously meets the functionality, scalability, and ef-

�ciency requirements of all applications.

The weakness of \one size �ts all" protocols has long

been recognized. In 1990 Clark and Tennenhouse proposed

a new protocol model called Application Level Framing

(ALF) which explicitly includes an application's semantics

in the design of that application's protocol [CT90]. ALF

was later elaborated with a light-weight rendezvous mech-

anism based on the IP multicast distribution model, and

with a notion of receiver-based adaptation for unreliable,

real-time applications such as audio and video conferenc-

ing. The result, known as Light-Weight Sessions (LWS)

[J93], has been very successful in the design of wide-area,

large-scale, conferencing applications. This paper further

evolves the principles of ALF and LWS to add a framework

for scalable reliable multicast (SRM).

ALF says that the best way to meet diverse application

requirements is to leave as much functionality and ex-

ibility as possible to the application. Therefore SRM is

designed to meet only the minimal de�nition of reliable

multicast, i.e., eventual delivery of all the data to all the

group members, without enforcing any particular delivery

order. We believe that if the need arises, machinery to en-

force a particular delivery order can be easily added on top

of this reliable delivery service.

It has been argued [XTP92, PS93] that a single dynam-

ically con�gurable protocol should be used to accommo-

date di�erent application requirements. The ALF argu-

ment is even stronger: not only do di�erent applications

require di�erent types of error recovery, ow control, and

rate control mechanisms, but further, these mechanisms

must explicitly account for the structure of the underlying

application data itself.

SRM is also heavily based on the group delivery model

that is the centerpiece of the IP multicast protocol [D91].

In IP multicast, data sources simply send to the group's

multicast address (a normal IP address chosen from a re-

served range of addresses) without needing any advance

knowledge of the group membership. To receive any data

sent to the group, receivers simply announce that they

are interested (via a \join" message multicast on the local

subnet) | no knowledge of the group membership or ac-

tive senders is required. Each receiver joins and leaves the

group individually, without a�ecting the data transmission
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to any other member. SRM further enhances the multicast

group concept by maximizing information and data sharing

among all the members, and strengthens the individuality

of membership by making each member responsible for its

own correct reception of all the data.

Finally, SRM attempts to follow the core design prin-

ciples of TCP/IP. First, SRM requires only the basic IP

delivery model | best-e�ort with possible duplication and

reordering of packets | and builds reliability on an end-

to-end basis. No change or special support is required from

the underlying IP network. Second, in a fashion similar to

TCP adaptively setting timers or congestion control win-

dows, the algorithms in SRM dynamically adjust their con-

trol parameters based on the observed performance within

a session. This allows applications using the SRM frame-

work to adapt to a wide range of group sizes, topologies

and link bandwidths while maintaining robust and high

performance.

Wb, the distributed whiteboard tool designed and imple-

mented by McCanne and Jacobson [J92, M92], is the �rst

application based on the SRM framework. In this paper

we discuss wb in some detail, to illustrate the use of SRM

in a speci�c application.

The paper proceeds as follows: Section 2 discusses gen-

eral issues for reliable multicast delivery. Section 3 de-

scribes the SRM framework, and discusses the wb instan-

tiation of this framework. Section 4 discusses the perfor-

mance of SRM in simple topologies such as chains, stars,

and bounded-degree trees, and Section 5 presents simula-

tion results from more complex topologies. Section 6 ex-

amines the behavior of the loss recovery algorithm in SRM

as a function of the timer parameters. Section 7 discusses

extensions to the basic reliable multicast framework, such

as adaptive algorithms for adjusting the timer parameters

and algorithms for local recovery. Section 8 discusses both

the application-speci�c aspects of wb's implementation of

SRM, as well as issues concerning the general applicability

of SRM. Section 9 discusses related work on reliable mul-

ticast. Section 10 discusses future work on SRM. Finally,

Section 11 presents conclusions.

2 The design of reliable multicast

2.1 Reliable data delivery: adding the word

\multicast"

The problem of reliable unicast data delivery is well under-

stood and a variety of well-tested solutions are available.

However, for the reliable transmission of data to a poten-

tially large group of receivers, multicast transmission o�ers

the most promising approach. If a sender were to open N

separate unicast TCP connections to N di�erent receivers,

then N copies of each packet might have to be sent over

links close to the sender, making poor use of the available

bandwidth. In addition, the sender would have to keep

track of the status of each of the N receivers. Multicast

delivery permits a much more e�cient use of the available

bandwidth, with at most one copy of each packet sent over

each link in the absence of dropped packets. In addition,

IP multicast allows the sender to send reliably to a group

without having to have any knowledge of the group mem-

bership. At the same time, adding \multicast" to the data

transport problem signi�cantly changes the solution set for

reliable delivery.

For example, in any reliable protocol some party must

take responsibility for loss detection and recovery. Because

of the \fate-sharing" implicit in unicast communication,

i.e., the data transmission fails if either of the two ends fails,

either the sender or receiver can take on this role. In TCP,

the sender times transmissions and keeps retransmitting

until an acknowledgment is received. NETBLT [CLZ87]

uses the opposite model and makes the receiver responsible

for all loss detection and recovery. Both approaches have

been shown to work well for unicast.

However, if a TCP-style, sender-based approach is ap-

plied to multicast distribution, a number of problems oc-

cur. First, because data packets trigger acknowledgments

(positive or negative) from all the receivers, the sender is

subject to the well-known ACK implosion e�ect [ES87].

Also, if the sender is responsible for reliable delivery, it

must continuously track the changing set of active receivers

and the reception state of each. Since the IP multicast

model deliberately imposes a level of indirection between

senders and receivers (i.e., data is sent to the multicast

group, not to the set of receivers), the receiver set may be

expensive or impossible to obtain. Finally, the algorithms

that are used to adapt to changing network conditions tend

to lose their meaning in the case of multicast. E.g., how

should the round-trip time estimate for a retransmit timer

be computed when there may be several orders of magni-

tude di�erence in propagation time to di�erent receivers?

What is a congestion window if the delay-bandwidth prod-

uct to di�erent receivers varies by orders of magnitude?

What self-clocking information exists in the ACK stream(s)

if some receivers share one bottleneck link and some an-

other?

These problems illustrate that single-point, sender-based

control does not adapt or scale well for multicast delivery.

Since members of a multicast group have di�erent com-

munication paths and may come and go at any time, the

\fate-shared" coupling of sender and receiver in unicast

transmissions does not generalize to multicast. Thus it is

clear that receiver-based reliability is a far better building

block for reliable multicast [PTK96].

Another unicast convention that migrates poorly to mul-

ticast has to do with the vocabulary used by the sender

and receiver(s) to describe the progress of their communi-

cation. A receiver can request a retransmission either in

application data units (\sector 5 of �le sigcomm-slides.ps")

or in terms of the shared communication state (\sequence

numbers 2560 to 3071 of this conversation"). Both models

have been used successfully (e.g., NFS uses the former and

TCP the latter) but, because the use of communication

state for naming data allows the protocol to be entirely in-

dependent of any application's namespace, it is by far the
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most popular approach for unicast applications. However,

since multicast transmission tends to have much weaker

and more diverse state synchronization than does unicast,

using shared communication state to name data does not

work well in the multicast case.

For example, if a receiver joins a conversation late and

receives sequence numbers 2560 to 3071, it has no idea of

what's been missed (since the sender's starting number is

arbitrary) and so can neither do anything useful with the

data nor make an intelligent request for retransmission. If

receivers hear from a sender again after a lengthy network

partition, they have no way of knowing whether \2560" is

a retransmission of data they received before the partition

or is completely new (due to sequence number wrapping

during the partition). Thus the \naming in application

data units (ADUs)" model works far better for multicast.

Use of this model also has two bene�cial side e�ects. As

[CT90] points out, a separate protocol namespace can im-

pose delays and ine�ciencies on an application, e.g., TCP

will only deliver data in sequence even though a �le transfer

application might be perfectly happy to receive sectors in

any order. The ADU model eliminates this delay and puts

the application back in control. Also, since ADU names

can be made independent of the sending host, it is possible

to use the anonymity of IP multicast to exploit the redun-

dancy of multiple receivers. E.g., if some receiver asks for

a retransmit of \sigcomm-slides.ps sector 5", any member

who has a copy of the data, not just the original sender,

can carry out the retransmission.

2.2 Reliable multicast requirements

While the ALF model says that applications should be

actively involved in their communications and that com-

munication should be done in terms of ADUs rather than

some generic protocol namespace, we do not claim that

every application's protocol must be completely di�erent

from every other's or that there can be no shared design or

code. A great deal of design commonality is imposed sim-

ply because di�erent applications are attempting to solve

the same problem: scalable, reliable, multipoint commu-

nication over the Internet. As Section 2.1 pointed out,

just going from unicast to multicast greatly limits the vi-

able protocol design choices. In addition, experience with

the Internet has shown that successful protocols must ac-

commodate many orders of magnitude variation in every

possible dimension. While several algorithms meet the con-

straints of Section 2.1, very few of them continue to work

if the delay, bandwidth and user population are all varied

by factors of 1000 or more.

In the end we believe the ALF model results in a frame-

work that is then �lled in with application speci�c details.

Portions of the SRM framework are completely determined

by network dynamics and scaling considerations and apply

to any application. So, for example, the scalable request

and repair algorithms described in Sections 3 through 7 are

completely generic and apply to a wide variety of reliable

multicast applications. Each di�erent application supplies

this reliability framework with a namespace to talk about

what data has been sent and received; a policy and machin-

ery to determine how much bandwidth is available to the

group as a whole; a policy to determine how the available

bandwidth should be apportioned between the participants

in the group; and a local send policy that a participant

uses to arbitrate the di�erent demands on its bandwidth

(e.g., locally originated data, repair requests and responses,

etc.). It is the intent of this paper to describe the frame-

work common to scalable, reliable multicast applications.

In particular, this paper focuses on reliability rather than

on congestion control. We believe that for multicast ap-

plications, the congestion control mechanisms will have to

take into account application-speci�c needs and capabili-

ties.

To make the SRM framework concrete, we �rst describe

a widely used application | wb, the LBNL network white-

board | that has been implemented according to the SRM

framework. One component of wb is an application-level

reliable multicast protocol that is the precursor to SRM.

However, the goal of this paper is not to explore the speci�cs

of wb, but to use wb to illustrate the underlying reliable

multicast framework. After mentioning some details of

wb's operation that are direct results of the design consid-

erations outlined in Section 2.1, we then factor out the wb

speci�cs to expose the generic SRM framework underneath.

The remaining sections of this paper are an exploration of

that framework.

2.3 Wb's assumptions about reliable mul-

ticast

This section briey describes wb, a network conferencing

tool that provides a distributed whiteboard, and explores

some of the assumptions made in wb's use of reliable mul-

ticast.

Wb separates the drawing into pages, where a new page

can correspond to a new viewgraph in a talk or the clear-

ing of the screen by a member of a meeting. Any member

can create a page and any member can draw on any page.

There are oor control mechanisms, largely external to wb,

that can be used if necessary to control who can create or

draw on pages. These can be combined with normal Inter-

net privacy mechanisms (e.g., symmetric-key encryption of

all the wb data) to limit participation to a particular group

and/or with normal authentication mechanisms (e.g., par-

ticipants signing their drawing operations via public-key

encryption of a cryptographic hash over the data). The

privacy, authentication and control mechanisms are com-

pletely orthogonal to the reliability machinery that is the

subject of this paper and will not be described here. For

further details see [MJ95, J94].

Each member is identi�ed by a globally unique identi�er,

the Source-ID, and each page is identi�ed by a Page-ID con-

sisting of the Source-ID of the initiator of the page and a

page number locally unique to that initiator. Each member

drawing on the whiteboard produces a stream of drawing

operations, or \drawops", that are timestamped and as-
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signed sequence numbers, relative to the sender. Each se-

quence of drawops is sent with the Page-ID of the relevant

page. An example would be a drawop to draw a blue line

at a particular set of coordinates on a page. Most drawing

operations are idempotent and are rendered immediately

upon receipt; out of order drawops are sorted upon arrival

according to their timestamps. Each member's graphics

stream is thus independent from that of other sites.

The following assumptions are made in wb's reliable mul-

ticast design:

� All data has a unique, persistent name.

This global name consists of the end host's Source-ID

and a locally-unique sequence number.

� The name always refers to the same data.

It is impossible to achieve consistency among di�er-

ent receivers in the face of late arrivals and network

partitions if, say, drawop \oyd:5" initially means to

draw a blue line and later means to draw a red circle.

This does not mean that the drawing can't change,

only that drawops must e�ect the change. E.g., to

change a blue line to a red circle, a \delete" drawop

for \oyd:5" is sent, then a drawop for the circle is

sent.

� Source-ID's are persistent.

A user will often quit a session and later re-join, ob-

taining the session's history from the network. By

ensuring that Source-ID's are persistent across invoca-

tions of the application, the user maintains ownership

of any data created before quitting.

� IP multicast datagram delivery is available.

� All participants join the same multicast group; there

is no distinction between senders and receivers.

Wb has no requirement for ordered delivery because most

operations are idempotent. Operations that are not strictly

idempotent, such as a \delete" that references an earlier

drawop, can be patched after the fact, when the missing

data arrives. A receiver uses the timestamps on the draw-

ing operations to determine the rendering order. Assume

that member B draws a line across some text from mem-

ber A. Member C renders the line from member B upon

receiving that drawop. If member C later receives mem-

ber A's text, which has an earlier timestamp that member

B's line, then the page is redisplayed for member C, this

time with the line on top of the earlier-timestamped text.

This coarse synchronization mechanism captures the tem-

poral causality of drawing operations at a level appropriate

for the application, without the added complexity and de-

lay of protocols that provide guaranteed causal ordering.

The issue of mechanisms to satisfy applications' ordering

requirements is discussed further in Sections 8 and 9.

3 The SRM framework

SRM is the reliable multicast framework intended for a

range of applications that share wb's assumptions above,

including that of IP multicast datagram delivery. One as-

sumption central to SRM is that the data has unique, per-

sistent names; this name consists of the globally unique

Source-ID and a locally unique name de�ned by the ap-

plication. An open research challenge is to design a data

naming scheme that reects the exibility of ALF yet al-

lows the SRM framework to manipulate names in a generic

fashion. A second assumption is that the application nam-

ing conventions allow us to impose a hierarchy over the

name space. For the rest of this paper, we assume that the

locally unique name is a simple sequence number with suf-

�cient precision to never wrap and that the data space is

subdivided into groups or containers that we call \pages".

(The term \page" refers to a general concept even though

it reects our whiteboard-biased design.) In this model,

each page is identi�ed by the Source-ID of the initiator of

that page coupled with a page number locally unique to

that initiator. A �nal assumption of SRM is that session

members have not only unique but also persistent Source-

IDs.

Whenever a member generates new data, the data is mul-

ticast to the group. Each member of the group is individ-

ually responsible for detecting loss and requesting retrans-

mission. Loss is normally detected by �nding a gap in the

sequence space. However, since it is possible that the last

object of a sequence is dropped, each member sends low-

rate, periodic, session messages that announce the highest

sequence number received from every member for the cur-

rent page. In addition to the reception state, the session

messages contain timestamps that are used to estimate the

distance (in time) from each member to every other (de-

scribed in Section 3.1).

To prevent the implosion of control packets sent from

receivers in a multicast group, Xpress Transport Protocol

(XTP) [XTP92] proposed that receivers multicast control

packets to the entire group. Using the slotting and damp-

ing mechanisms in the XPT design, receivers wait for a

random time before sending a control packet, and refrain

from sending a control packet if they see a control packet

from another receiver with the same information. SRM

uses similar mechanisms to control the sending of request

and repair packets, with the addition that in the SRM de-

sign, the random delay before sending a request or repair

packet is a function of that member's distance in seconds

from the node that triggered the request or repair.

When receiver(s) detect missing data, they wait for a

random time determined by their distance from the original

source of the data, then send a repair request. (The timer

calculations are described in detail in Section 3.2). As with

the original data, repair requests and retransmissions are

always multicast to the whole group. Thus, although a

number of hosts may all miss the same packet, a host close

to the point of failure is likely to timeout �rst and multicast

the request. Other hosts that are also missing the data

hear that request and suppress their own request. (This

prevents a request implosion.) Any host that has a copy of

the requested data can answer a request. It will set a repair

timer to a random value that depends on its distance from

the sender of the request message, and multicast the repair

when the timer goes o�. Other hosts that had the data
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and scheduled repairs will cancel their repair timers when

they hear the multicast from the �rst host. (This prevents

a response implosion.) A lost packet ideally triggers only

a single request from a host just downstream of the point

of failure and a single repair from a host just upstream of

the point of failure. Section 5 explores in more detail the

number of requests and repairs in di�erent topologies.

3.1 Session messages

In SRM, each member multicasts periodic session messages

that report the sequence number state for active sources.

Session messages for reliable multicast [ES87] are been pro-

posed to enable receivers to detect the loss of the last packet

in a burst, and to enable the sender to monitor the status

of receivers. Members also use session messages in SRM

to determine the current participants of the session. The

average bandwidth consumed by session messages is lim-

ited to a small fraction (e.g., 5%) of the aggregate data

bandwidth, whether pre-allocated by a reservation proto-

col or measured adaptively by a congestion control algo-

rithm. SRM members use the algorithm developed for vat

and described in [SCFJ94] for dynamically adjusting the

generation rate of session messages in proportion to the

multicast group size.

In a large, long-lived session, the state would become

unmanageable if each receiver had to report the sequence

numbers of everyone who had ever sent data to the group.

To prevent this explosion, we impose hierarchy on the data

by partitioning the state space in a fashion that depends on

the underlying application. Under our the page-based se-

quence number model, each member only reports the state

of the page it is currently viewing. A receiver browsing

over previous pages may issue page requests to learn the se-

quence number state for that page. If a receiver joins late,

it may issue page requests to learn the existence of previous

pages. We omit the details of the page state recovery pro-

tocol as it is almost identical to the repair request/response

protocol for data.

In addition to state exchange, receivers use the session

messages to estimate the one-way distance between nodes.

All packets for that group, including session packets, in-

clude a Source-ID and a timestamp. The session packet

timestamps are used to estimate the host-to-host distances

needed by the repair algorithm.

The timestamps are used in a highly simpli�ed version of

the NTP time synchronization algorithm [M84]. Assume

that host A sends a session packet P

1

at time t

1

and host

B receives P

1

at time t

2

. At some later time, t

3

, host B

generates a session packet P

2

, marked with (t

1

;�) where

� = t

3

�t

2

(time t

1

is included in P

2

to make the algorithm

robust to lost session packets). Upon receiving P

2

at time

t

4

, host A can estimate the latency from host B to host A

as (t

4

�t

1

��)=2, or equivalently, as ((t

4

�t

3

)+(t

2

�t

1

))=2.

Note that while this estimate does not assume synchronized

clocks, it does assume that paths are roughly symmetric.

We have not yet explored the performance of these algo-

rithms in topologies with strong asymmetry in the one-way

delays of forward and reverse paths.

3.2 Loss recovery

This section describes SRM's loss recovery algorithm, which

provides the foundation for reliable delivery. Section 7.1

describes a modi�ed version of this algorithm with an adap-

tive adjustment of the timer parameters. Section 7.2 dis-

cusses the local recovery algorithms that would be a critical

component of SRM for e�cient operation in large multicast

groups in a congested environment.

In SRM, members who detect a loss wait a random time

and then multicast their repair request, to suppress re-

quests from other members sharing that loss. These repair

requests di�er from traditional negative acknowledgements

(NACKs) in two respects: they are not addressed to a spe-

ci�c sender, and they request data by its unique, persistent

name. When a host A detects a loss, it schedules a repair

request for a random time in the future. When the request

timer expires, host A multicasts a request for the missing

data, and doubles the request timer to wait for the repair.

In SRM, the interval over which the request timer is set

is a function of the member's estimated distance to the

source of the packet. The request timer is chosen from the

uniform distribution on [C

1

d

S;A

; (C

1

+ C

2

)d

S;A

] seconds,

where d

S;A

is host A's estimate of the one-way delay to

the original source S of the missing data. The numbers C

1

and C

2

are parameters of the request algorithm that are

discussed at length later in the paper.

If host A receives a request for the missing data before

its own request timer for that data expires, then host A

does a (random) exponential backo�, and resets its request

timer.

2

That is, if the current timer had been chosen from

the uniform distribution on

2

i

[C

1

d

S;A

; (C

1

+ C

2

)d

S;A

];

then the backed-o� timer is randomly chosen from the uni-

form distribution on

2

i+1

[C

1

d

S;A

; (C

1

+ C

2

)d

S;A

]:

2

In the unicast case, it is easy for a receiver to decide when to back-o�

an already backed-o� timer but the multicast case requires more care.

Assume that member A has set a request timer, and has scaled back that

timer after seeing a request for the same data from another member. We

call a request message sent when an initial request timer expires a �rst-

try request. Several requests might be sent in the �rst iteration of loss

recovery, by di�erent members of the multicast group. Member A should

back-o� its request timer only once for these �rst-try requests. We call

a request message that a member sends after its backed-o� request timer

expires a second-try request. When member A sees a second-try request,

member A should back-o� its already backed-o� timer without sending a

duplicate second-try request.

One way to implement this would be to include the iteration number in

the request, indicating whether this is a �rst-try, second-try, or third-try

request. Instead of doing this in our simulator, we use a heuristic to detect

requests that belong to the same iteration of loss recovery. When mem-

ber A backs-o� the request timer, then member A sets an ignore-backo�

variable to a time halfway between the current time and the expiration

time, and ignores additional duplicate requests until ignore-backo� time.

Requests received before the ignore-backo� time are assumed to belong

to the same iteration of the loss recovery as the request that resulted in

the most recent backo�. A request received after the ignore-backo� time

is assumed to belong to the next iteration, and causes member A to again

back-o� its request timer.
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When some other host B (where B may be S) receives a

request from A that host B is capable of answering, host B

sets a repair timer to a value from the uniform distribution

on

[D

1

d

A;B

; (D

1

+D

2

)d

A;B

]

seconds, where d

A;B

is host B's estimate of the one-way

delay to host A, and the numbers D

1

and D

2

are param-

eters of the repair algorithm discussed later in the paper.

If host B receives a repair for the missing data before its

repair timer expires, then host B cancels its repair timer.

Otherwise, when host B's repair timer expires host B mul-

ticasts the repair. In keeping with the philosophy that the

receiver is responsible for insuring its own correct reception

of the data, host B does not verify whether host A actually

receives the repair.

Due to the probabilistic nature of these algorithms, it is

not unusual for a dropped packet to be followed by more

than one request. When two or more hosts generate a

request for the same data at roughly the same time, we have

redundant control tra�c (i.e., wasted bandwidth) and the

colliding participants should increase the spread in their

retransmission distribution to avoid similar collisions in the

future.

Because there can be more than one request, a host could

receive a duplicate request immediately after sending a re-

pair, or immediately after receiving a repair in response to

its own earlier request. In order to prevent duplicate re-

quests from triggering a responding set of duplicate repairs,

host B ignores requests for data D for 3 d

S;B

seconds after

sending or receiving a repair for that data, where host S

is either the original source of data D or the source of the

�rst request.

3.3 Congestion control

The simplest congestion control mechanism for SRM would

be for all members of the multicast group to assume a

�xed bandwidth constraint over the aggregate session. This

would be appropriate, for example, if members of the mul-

ticast group used an out-of-band mechanism (e.g., explicit

bandwidth reservations, or the informal, consensus-based

procedures of the current Mbone) to verify bandwidth avail-

ability. However, di�erent congestion control mechanisms

are likely to be required for di�erent applications and dif-

ferent contexts. Congestion control mechanisms for SRM

are discussed further in Section 10.3.

Because data represents idempotent operations, loss re-

covery can proceed independently from the transmission of

new data. Similarly, recovery for losses from two di�erent

sources can also proceed independently. Since transmis-

sion bandwidth is often limited, a single transmission rate

is allocated to control the throughput across all these dif-

ferent modes of operation, while the application determines

the order of packet transmission according to their relative

importance.

3.4 Ordering, partition, and other consid-

erations

An application's oor control, privacy, or authentication

requirements are orthogonal to the reliability machinery of

SRM, and can be met by separate oor control, encryption,

or authentication mechanisms designed for those purposes.

Similarly, SRM does not provide guaranteed ordered deliv-

ery of data. Those applications with ordering requirements

could use a partial or total ordering protocol built on top

of SRM.

SRM does not include special mechanisms for the detec-

tion or recovery from network partitioning. Because SRM

relies on the underlying concept of an IP multicast group,

where members can arrive and depart independently, SRM

does not distinguish a network partition from a normal de-

parture of members from the multicast session. During a

partition, members can continue to send data in the con-

nected components of the partitions. Because pages are

identi�ed by the Source-ID of the initiator of the page,

along with the page number for that initiator, members

can continue creating new pages during the partition (e.g.,

\Floyd:3" in one half of the partition, and \Zhang:5" in the

other). After recovery each page will still have a unique

page ID and the repair mechanism will distribute any new

state throughout the entire group.

3.5 Wb's instantiation of SRM

This section describes both the design and the current state

of the implementation of reliable multicast for wb. Most of

the design of reliable multicast for wb is present in version

1.59 of wb. Aspects of the design that are not included,

and that are still pending implementation, include the rate-

contol mechanism and the estimates of one-way delays, as

discussed below.

In the present implementation of wb, members set a re-

quest timer to a random value from the interval [d, 7d],

where d is set to a �xed value of 30 msec. Thus, in the cur-

rent wb implementation members do not estimate the one-

way distances to other members, but instead use a default

value for all distance estimates. Similarly, after receiving

a request members set a repair timer to a random value

from the interval [d

1

, 2d

1

]. For the original source of the

data, d

1

is set to a �xed value of 100 msec., and for other

members d

1

is set to 200 msec. These �xed values for d

and d

1

were chosen after examinations of traces taken over

several typical wide-area wb sessions. The current values

for d and d

1

are su�ciently large to ensure that there is

generally only one request and one repair. When the orig-

inal source of the data is still on-line, the repair generally

comes from that original source.

The current implementation of wb relies on the informal,

consensus-based \admissions-control procedure" of the cur-

rent Mbone. The congestion control mechanism in the de-

sign for wb assumes a �xed maximum bandwidth alloca-

tion for each session. In this design, each wb session has

a sender bandwidth limit advertised as part of the session
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announcement. With a bandwidth limit of 64 Kbps, for

example, the wb session would cost no more (and typically

considerably less) than the accompanying audio session.

In this design, individual members use a token bucket rate

limiter to enforce this peak rate on transmissions. This

peak rate is mostly relevant when a source distributes a

large data object like a postscript �le, or when a member

joins late and requests the past history of the whiteboard

session.

As of the writing of this paper, this rate control mech-

anism has not yet been added to the wb implementation.

In general, wb sessions use considerably less bandwidth

than their accompanying audio sessions. However, the need

for the rate control can at times be made painfully obvi-

ous. One such instance was during the Mbone broadcast

of a Rolling Stones concert in November 18, 1994, when

someone created a whiteboard session for the concert. The

whiteboard session accumulated a long back history, and

every time a new user joined, the wb protocol asked for the

entire session history (at startup, newer versions of wb ask

only for the current page). Consequently, signi�cant con-

gestion transients disrupted the entire broadcast (including

the audio and video channels) each time a new user joined

the session.

One application-speci�c issue concerns the relative pri-

orities between sending new data, requests, and repairs.

When a member of a wb session is able to send a packet,

the highest priority goes to requests or repairs for the cur-

rent page, middle priority to new data, and lowest priority

to requests or repairs for previous pages.

One issue that has been made obvious from implementa-

tion experience has been the persistence of the data. Wb

does not necessarily store all of the data on backup storage

on a disk; data for current pages is kept only in memory.

If data somehow becomes corrupt | either due to inter-

nal application bugs or because of external system failures

| it can spread like a virus throughout the wb session.

When the corrupted data is used to answer repair requests,

the corrupted data is distributed throughout the multicast

group, and persists for the life of the session. To avoid this,

each piece of data can be accompanied by a tag that not

only authenticates the source of the data but also veri�es

its integrity.

4 Request/repair algorithms for sim-

ple topologies

We now turn to a more detailed investigation of the loss

recovery algorithms in SRM. Because multiple hosts may

detect the same losses, and multiple hosts may attempt to

handle the same repair request, the goal of the request/repair

timer algorithms is to de-synchronize host actions to keep

the number of duplicates low. Among hosts that have di-

verse delays to other hosts in the same group, this di�er-

ence in delay can be used to di�erentiate hosts; for hosts

that have similar delays to reach others, we can only rely

on randomization to de-synchronize their actions.

This section discusses a few simple, yet representative,

topologies, namely chain, star, and tree topologies, to pro-

vide a foundation for understanding the loss recovery al-

gorithms in more complex environments. For a chain the

essential feature of a loss recovery algorithm is that the

timer value is a function of distance. For a star topology

the essential feature of the loss recovery algorithm is the

randomization used to reduce implosion. Request/repair

algorithms in a tree combine both the randomization and

the setting of the timer as a function of distance. This

section shows that the performance of the loss recovery

algorithms depends on the underlying network topology.

4.1 Chains

Figure 1 shows a chain topology where all nodes in the

chain are members of the multicast session. Each node in

the underlying multicast tree has degree at most two. The

chain is an extreme topology where a simple deterministic

loss recovery algorithm su�ces. In this section we assume

that the timer parameters C

1

and D

1

are set to 1, and that

C

2

and D

2

are set to 0. This results in request timers set

deterministically to d

S;A

, and repair timers set to d

A;B

.

For the chain, as in most of the other scenarios in this

paper, link distance and delay are both normalized. We

assume that packets take one unit of time to travel each

link, i.e. all links have distance of 1.

. . . . . .. . .

Lj L2 L1 R1 R2 RkL(j+1)
S

: source of dropped packet

: congested edge

Figure 1: A chain topology.

In Figure 1 the nodes in the chain are labeled as either to

the right or to the left of the congested link. Assume that

source L

j

multicasts a packet that is subsequently dropped

on link (L

1

, R

1

), and that the second packet sent from

source L

j

is not dropped. We call the edge that dropped

the packet, whether due to congestion or to other problems,

the congested link. Let the right-hand nodes each detect

the failure when they receive the second packet from L

j

.

Let node R

1

�rst detect the loss at time t, and let each

link have distance 1. Then node R

1

multicasts a request at

time t+ j. Node L

1

receives the request at time t+ j + 1

and multicasts a repair at time t+ j+2. Node R

k

receives

the repair at time t+ k + j + 2.

Note that all nodes to the right of node R

1

receive the

request from R

1

before their own request timers expire. We

call this deterministic suppression. The reader can verify

that, due to deterministic suppression, there will be only

one request and one repair. For example, node R

k

detects

the loss at time t + k � 1, sets its request timer for time

(t+ k � 1) + (j + k � 1) = t+ 2k + j � 2, and receives the

request from node R

1

at time (t+ j) + (k� 1), well before
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its own request timer expires.

Had the loss repair been done by unicast, i.e. node R

k

sent a unicast request to the sourceL

j

as soon as it detected

the failure and L

j

sent a unicast repair to R

k

as soon as it

received the request, node R

k

would not receive the repair

until time t + 2j + 3k. Thus, with a chain and with a

simple deterministic loss recovery algorithm, the furthest

node receives the repair sooner than it would if it had to

rely on its own unicast communication with the original

source. While both the original source and the furthest

node setting a request timer could be arbitrarily far from

the congested link, in the multicast repair algorithm both

the request and the repair come from nodes immediately

adjacent to the congested link.

4.2 Stars

For the star topology in Figure 2 we assume that all links

are identical and that the center node is not a member

of the multicast group. For a star topology, setting the

request timer as a function of the distance from the source

is not an essential feature, as all nodes detect a loss at

exactly the same time. Instead, the essential feature of the

loss recovery algorithm in a star is the randomization used

to reduce implosion; we call this probabilistic suppression.

N1

N2

N3

N4
N5

N6

. . .
Ng

: source of dropped packet

: congested edge

Figure 2: A star topology.

For the star topology in Figure 2 assume that the �rst

packet from nodeN

1

is dropped on the adjacent link. There

are G members of the multicast session, and the other

members detect the loss at exactly the same time. For

the discussion of this topology we assume that the timer

parameters C

1

and D

1

are set to 0; because all nodes de-

tect losses and receive requests at the same time, C

1

and

D

1

are not needed to amplify di�erences in delay. The

only bene�t in setting C

1

greater than 0 would be to avoid

unnecessary requests from out-of-order packets.

If C

2

is at most 1, then there will always be G � 1 re-

quests. Increasing C

2

reduces the expected number of re-

quests but increases the expected time until the �rst re-

quest is sent. For C

2

> 1, the expected number of requests

is roughly 1 + (G � 2)=C

2

, and the expected delay until

the �rst timer expires is 2C

2

=G seconds (where one unit

of time is one second).

3

For example, if C

2

is set to

p

G,

then the expected number of requests is roughly

p

G, and

3

The G � 1 nodes all detect the failure at the same time, and all set

their timers to a uniform value in an interval of width 2C

2

. If the �rst

timer expires at time t, then the other G � 2 receivers receive that �rst

request at time t + 2. So the expected number of duplicate requests is

equal to the expected number of timers that expire in the interval [t, t+2].

the expected delay until the �rst timer expires is 2=

p

G

seconds.

Note that if N

2

was the source of the dropped packet,

then N

1

would be the only node to send a request, and

the other session members would receive the request at the

same time. The same remarks as above would then apply

to D

2

with respect to repairs.

4.3 Bounded-degree trees

The loss recovery performance in a tree topology uses both

the deterministic suppression described for chain topologies

and the probabilistic suppression described for star topolo-

gies. Consider a network topology of a bounded-degree

tree with N nodes where interior nodes have degree p. A

tree topology combines aspects of both chains and stars.

The timer value should be a function of distance, to enable

requests and repairs to suppress request and repair timers

at nodes further down in the tree. In addition, random-

ization is needed to reduce request/repair implosion from

nodes that are at an equal distance from the source (of the

dropped packet, or of the �rst request). In this section,

we show that the behavior of the request algorithms in a

tree topology depends principally on the distance of the

sender from the congested link, and on the ratio between

the timer parameters C

2

and C

1

.

We assume that node S in the tree is the source of the

dropped packet, and that link (B,A) drops a packet from

source S. We call nodes on the source's side of the con-

gested link (including node B) good nodes, and nodes on

the other side of the congested link (including node A) bad

nodes. Node A detects the dropped packet at time t, when

it receives the next packet from node S. We designate node

A as a level-0 node, and we call a bad node a level-i node

if it is at distance i from node A.

Assume that the source of the dropped packet is at dis-

tance j from node A. Node A's request timer expires at

time

t+ C

1

j + U

1

[C

2

]j;

where U [C

2

] denotes a uniform random variable between 0

and C

2

. Assuming that node A's request is not suppressed,

a level-i node receives node A's request at time

t+ i+ C

1

j + U

1

[C

2

]j:

Node B receives node A's repair request at time

t+ 1 + C

1

j + U

1

[C

2

]j:

A bad level-i node detects the loss at time t+i, and such

a node's request timer expires at some time

t+ i+ C

1

(i+ j) + U

2

[C

2

](i+ j):

Note that regardless of the values of U

1

[C

2

] and U

2

[C

2

], a

level-i node receives node A's request by time t+ i+C

1

j+

C

2

j; and a level-i node's request timer expires no sooner

than t+ i+ C

1

(i+ j): If

t+ i+ C

1

j + C

2

j � t+ i+ C

1

(i+ j);

8



that is, if

C

2

C

1

j � i;

then the level-i node's request timer will always be sup-

pressed by the request from the level-0 node. Thus, the

smaller the ratio C

2

=C

1

, the fewer the number of levels

that could be involved in duplicate requests. This relation

also demonstrates why the number of duplicate requests or

repairs is smaller when the source (of the dropped packet,

or of the request) is close to the congested link.

Note that the parameter C

1

serves two di�erent func-

tions. A smaller value for C

1

gives a smaller delay for node

B to receive the �rst request. At the same time, for nodes

further away from the congested link, a larger value for

C

1

contributes to suppressing additional levels of request

timers. A similar tradeo� occurs with the parameter C

2

.

A smaller value for C

2

gives a smaller delay for node B

to receive the �rst repair request. At the same time, for

topologies such as star topologies, a larger value for C

2

helps to prevent duplicate requests from session members

at the same distance from the congested link. Similar re-

marks apply to the functions of D

1

and D

2

in the repair

timer algorithm.

5 Simulations of the request and

repair algorithms

For a given underlying network, set of session members,

session sources, and congested link, it should be feasible to

analyze the behavior of the repair and request algorithms

with �xed timer parameters C

1

, C

2

, D

1

, and D

2

. How-

ever, we are interested in the repair and request algorithms

across a wide range of topologies and scenarios. We use

simulations to examine the performance of the loss recov-

ery algorithms for individual packet drops in random and

bounded-degree trees. We do not claim to be presenting

realistic topologies or typical patterns of packet loss.

We de�ne the density of a session as the fraction of nodes

that are members of the multicast session. The simula-

tions in this section show that the loss recovery algorithms

with �xed timer parameters perform well in a random or

bounded-degree tree for dense sessions, where many of the

nodes in the underlying tree are members of the multicast

session. The loss recovery algorithms perform somewhat

less well for a sparse session, where the session size is small

relative to the size of the underlying network, and the mem-

bers might be scattered throughout the net. This motivates

the development on the adaptive loss recovery algorithm in

Section 7.1, where the timer parameters C

1

, C

2

, D

1

, and

D

2

are adjusted in response to past performance.

In these simulations the �xed timer parameters are set

as follows: C

1

; C

2

= 2, and D

1

; D

2

= log

10

G, where G is

the number of members in the same multicast session. The

choice of log

10

G for D

1

and D

2

is not critical, but gives

slightly better performance than D

1

; D

2

= 1 for large G.

Each simulation constructs either a random tree or a

bounded degree tree withN nodes as the network topology.

Next, G of the N nodes are randomly chosen to be session

members, and a source S is randomly chosen from the G

session members.

We assume that messages are multicast to members of

the multicast group along a shortest-path tree from the

source of the message. In each simulation we randomly

choose a link L on the shortest-path tree from source S to

the G members of the multicast group. We assume that the

�rst packet from source S is dropped by link L, and that

receivers detect this loss when they receive the subsequent

packet from source S.

5.1 Illustrating the simulator

In this section we show one of the tools that we use to

verify that our simulator is implementing the loss recovery

algorithms correctly. The example in Figure 4 also serves

as a concrete illustration of the loss recovery algorithms in

operation.

: source of dropped packet

5 4

3 2 1

6

: congested edge

Figure 3: A simulation network for the �gure above.
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: receiving requests
: sending repairs
: receiving repairs
: timer expiration
: end ignoring requests

Figure 4: A request/repair exchange from a single dropped

packet.

Figure 4 shows a single request/repair exchange for the

network in Figure 3. This is one of a series of automated
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tests that we run after each change we make to our simula-

tor. The underlying network shown in Figure 3 consists of

a randomly-created tree of six nodes. A packet takes one

unit of time to traverse each link.

In Figure 4 the x-axis shows time. The y-axis shows a

row for each session member, indicating when timers are

set and repair and request packets sent and received by that

member. This simulation uses the �xed timer parameters

C

1

; C

2

= 2 and D

1

; D

2

= 1.

For each member a�ected by the loss, we de�ne the loss

recovery delay as the time from when the member �rst

detects the loss until the member �rst receives a repair.

The simulator's summary statistics correctly report that

the loss recovery delay for the last node to receive the repair

is 0.65 RTT. This is for node 6, which detects the loss at

time 4, receives the repair at time 9.2, and has a RTT of 8

to the source of the dropped packet.

Note that with unicast communications the ratio of loss

recovery delay to RTT is at least one. For a unicast receiver

that detects a packet loss by waiting for a retransmit timer

to time out, the typical ratio of delay to RTT is closer

to 2. As the earlier discussion of chain topologies shows,

with multicast loss recovery algorithms the ratio of delay to

RTT can sometimes be less than one, because the request

and repair could each come from a node close to the point

of failure.

Figure 4 can be read in two ways to verify the correct-

ness of the algorithms implemented in the simulator. First,

a single row shows the history of a single member. We

leave the veri�cation of each row as an exercise for the

reader. Second, for each multicast request or repair, the

�gure shows when that message was received by each of

the other nodes.

5.2 Simulations on random trees

This section uses simuations to explore the behavior of the

loss recovery algorithms where the underlying networks are

tree topologies. We �rst consider networks of random la-

beled trees, where all nodes in the networks are session

members. We next consider large networks with nodes of

degree four, where only a fraction of the nodes are members

of the multicast group.

For the simulations on random labeled trees of N nodes,

the random labeled trees are constructed according to the

labeling algorithm in [Pa85, p.99]. These trees have un-

bounded degree, but for large N , the probability that a

particular vertex in a random labeled tree has degree at

most four approaches (approximately) 0.98 [Pa85, p.114].

Figure 5 shows simulations of the loss recovery algorithm

for this case, where all N nodes in the tree are members of

the multicast session (that is, G = N). For each graph the

x-axis shows the session size G; twenty simulations were

run for each value of G. For each simulation, a new ran-

dom tree was constructed, and session members, a source,

and a congested link were randomly chosen. Each simula-

tion is represented by a jittered dot

4

, and the median from

4

A jittered dot is a dot for which some small random jitter has been

the twenty simulations is shown by a solid line. The two

dotted lines mark the upper and lower quartiles; thus, the

results from half of the simulations lie between the two dot-

ted lines. While there are not enough simulations to make

accurate predictions of the behavior of the loss recovery

algorithms, the simulations do illustrate the loss recovery

algorithms under a range of circumstances.
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Figure 5: Random trees with a random congested link and

a single packet loss, where all nodes are members of the

multicast session.

The top two graphs in Figure 5 show the number of re-

quests and repairs to recover from a single loss. In these

graphs the median, lower quartile, and upper quartile lines

are the same; the y-axis was chosen for an easy visual com-

parison with other simulations later in the paper.

For each simulation, there is a dot in the bottom graph

in Figure 5 showing the loss recovery delay for the last

member of the multicast session to receive the repair. This

loss recovery delay is given as a multiple of the RTT, the

roundtrip time from that member to the original source of

the dropped packet. While this member has the largest loss

recovery delay in absolute terms, this member generally

does not have the largest delay when expressed in units of

RTT.

Figure 5 shows that the repair/request algorithm with

�xed timer parameters works well for a tree topology where

all nodes of the tree are members of the multicast session.

There is usually only one request and one repair. (Some

lack of symmetry results from the fact that the original

added to the x and y coordinates. In this way, the reader can di�erentiate

between a single dot, and multiple dots that have the same coordinates.
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source of the dropped packet might be far from the point

of failure, while the �rst request comes from a node close

to the point of failure.) The average recovery delay for

the farthest node is less than 2 RTT, competitive with the

average delay available from a unicast algorithm such as

TCP. The results are similar in simulations where the con-

gested link is chosen adjacent to the source of the dropped

packet, and for simulations on a bounded-degree tree of

size N = G where interior nodes have degree four. (We do

not claim that this is the average degree for a router in the

Internet, in the current Mbone, or in the likely multicast

backbone of the foreseeable future. From looking at a map

of the current Mbone topology, choosing a degree of four

seemed as reasonable a choice as any other that we might

have made.)

5.3 Simulations on large bounded-degree

trees

The loss recovery algorithms with �xed timer parameters

perform less well for a sparse session in a large bounded-

degree tree. The underlying topology for the simulations in

this section is a balanced bounded-degree tree of N = 1000

nodes, with interior nodes of degree four. In these simu-

lations the session size G is signi�cantly less than N . For

a session that is sparse relative to the underlying network,

the nodes close to the congested link might not be members

of the session.
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Figure 6: Bounded-degree tree, degree 4, 1000 nodes, with

a random congested link.

As Figure 6 shows, the average number of repairs for each

loss is somewhat high. In simulations shown in [FJLMZ95]

where the congested link is always adjacent to the source,

the number of repairs is low but the average number of

requests is high.

[FJLMZ95] shows the performance of the loss recovery

algorithm on a range of topologies. These include topolo-

gies where each of the N nodes in the underlying network

is a router with an adjacent Ethernet with 5 workstations,

point-to-point topologies where the edges have a range of

propagation delays, and topologies where the underlying

network is more dense that a tree. None of these variations

that we have explored have signi�cantly a�ected the per-

formance of the loss recovery algorithms with �xed timer

parameters.

6 Exploring the parameter space

As the previous section showed, a particular set of val-

ues for the timer parameters C

1

, C

2

, D

1

, and D

2

that

performs well in one scenario might not perform well in

another scenario. In this section we choose a few simple

topologies, and explore the behavior of the request/repair

algorithms as a function of the request timer parameter

C

2

. The only simulations in this section that give unac-

ceptably large numbers of requests are those with small

values for C

2

on stars or for sparse sessions on trees. For

these scenarios, increasing C

2

reduces the number of du-

plicate requests, accompanied by moderate increases in the

loss recovery delay.

For the simulations in this section, C

1

is set to 2. As

Section 4.1 showed, for a chain with a deterministic loss

recovery algorithm, it is su�cient to set C

1

to 1. However,

for a chain with a randomized loss recovery algorithm, a

higher value of C

1

is needed to ensure that members further

from the congested link receive a request before their own

request timer expires. For the star topology, the number

of requests is completely insensitive to the value of C

1

.

In the following section we discuss adaptive algorithms

where the timer parameters are adjusted as a function of

the past performance of the loss recovery algorithms.

For a star topology, there is a clear tradeo� between the

delay and the number of duplicates. In contrast, with a

chain topology, setting C

2

to zero gives the optimal behav-

ior both in terms of delay and in the number of duplicates.

For a dense session in a tree topology, a small value for C

2

gives good performance in terms of both delay and dupli-

cates.

Figure 7 shows the tradeo�s between delay and dupli-

cates in a star topology of size 100, where the congested

link is adjacent to the source of the dropped packet. We

de�ne the request delay for a session member as the de-

lay from when the request timer is set until a request was

either sent by that member or received from another mem-

ber. The top graph in Figure 7 contains a dot for each

integer value of C

2

from 1 to 100, for the star topology

described in Section 4.2. For each dot, the x-coordinate is

the expected request delay for that value of C

2

, and the
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Star Topology
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Star Topology
Simulation Results of Average Request Delay (in units of RTT)
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Figure 7: Tradeo� between delay and duplicates in a star

topology.

Chain Topology
Simulation Results of Average Request Delay (in units of RTT)
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Figure 8: Tradeo� between delay and duplicates in a chain

topology.

y-coordinate is the expected number of requests.

More precisely, the x-coordinate is given by the expected

request delay for the bad member closest to the source of

the dropped packet, expressed as a multiple of the roundtrip

time from that member to the source of the dropped packet.

When there is not a unique bad member at the minimum

distance from the source, as in a star topology, then the x-

axis shows the expected smallest request delay from those

members at the minimum distance from the source. For

a star topology this is the request delay for that member

whose request timer expires �rst.

From the heuristic analysis in Section 4.2, the expected

request delay (in units of the RTT of 2D) is as follows:

C

1

D + C

2

D=G

2D

= C

1

=2 + C

2

=(2G);

where D is the distance in seconds from the source to a

session member. From Section 4.2, the expected number

of requests is estimated as 1 + (G � 2)=C

2

. The \x" in

Figure 7 shows the results for C

2

= 0, and the circle shows

the results for C

2

= 10. Thus the top graph of Figure 7

shows that increasing C

2

in a star topology increases the

expected request delay slightly while signi�cantly decreas-

ing the expected number of requests.

The bottom graph in Figure 7 shows the results from

simulations, which concur with the analytical results in

the top graph. For each integer value of C

2

from 0 to 100,

twenty simulations are run, and the request delay and total

number of requests is calculated for each simulation. Each

simulation is represented by a jittered dot, and the line

shows the average for each value of C

2

. Thus, the graph

shows that for C

2

set to 100, the average number of requests

is 1.5 and the average request delay, as a multiple of the

RTT, is 1.42. The minimum request delay of 1 comes from

the �xed value of 2 for request parameter C

1

.

For each of the simulations with C

2

set to one, there

were 99 requests, one from each member who set a request

timer. Because all of the request timers are set at the

same time, and all timers expire within half a RTT, then

regardless of when the �rst timer expires, all other request

timers will have expired before any of the members sees

the �rst request. For the simulations with C

2

set to two,

there were between 41 and 59 requests; this matches well

with the expected number of requests of 50.

These results generally concur with those of [PSA96],

which investigates the relative bene�ts of using unicast or

multicast NACKs. [PSA96] concludes that for a scenario

similar to our star topology, where a message sent by any

member is received by all other members exactly r seconds

later, and for a multicast group with ten members, the ran-

dom interval over which NACK timers were set would have

to be at least 10 times r for the multicasting of NACKs to

result in bandwidth savings over a scheme of unicasting

NACKs to the source. [PSA96] concludes that unicasting

NACKs would be desirable in some scenarios, but for mul-

ticast groups that could have hundreds of members, and for

multicast groups where the receivers were somewhat toler-

ant of delay, multicasting NACKs would be quite e�ective

in reducing the unnecessary use of bandwidth.

Figure 8 shows the results from the chain topology dis-

cussed in Section 4.1. For a chain, with C

2

set to zero there

will be exactly one request, with request delay C

1

=(2D).

Increasing C

2

can increase both the expected request delay

and the expected number of duplicates. The four lines in

Figure 8 show the results for a chain topology with a failed

edge 1, 2, 5, or 10 hops, respectively, from the source of the

dropped packet. For the simulations with a failed edge one

hop from the source, the individual simulations are shown

by a dot. For each scenario C

2

ranges from 0 to 10 in in-

crements of 1, and then from 10 to 100 in increments of 10.

While increasing C

2

can increase the number of duplicates,

the magnitude of the increase is quite small.

Figures 9 and 10 show the results for a range of tree

topologies. Each line shows the results for a particular

�xed scenario, as C

2

varies from 0 to 100. In all of the

scenarios the session size is at least 100. In each graph,

the lines represent scenarios that di�er only in the number

of hops between the source and the failed edge. The four

lines represent scenarios with failed edges that are one,

two, three, or four hops, respectively, from the source of

the dropped packet. For all of the topologies, the failed

edge closest to the source gives the line with the worst-case
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(Tree Topology, Degree 4, Session Membership Density 1),
Simulation Results of Average Request Delay (in units of RTT)

A
ve

ra
ge

 N
um

be
r 

of
 R

eq
ue

st
s

2 4 6 8 10

2
4

6
8

10
12

. . . . . . . . . . . . . . . . . . ..
.

.
. .

. . . . .

..................... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... ....

.

... .

.

..

.

... .... ....

.

... .

.

..

.

... .... ....

..

.. .
.

..

.

...
.

... .

.

.. .

.

..
..

..

.

...

.

...

..

.. .

.

..

.

...

.

...

.

...

..

.. .

.

..

.

.

.

.

.
...

.

...

.

.

.. .

.

..

.

.

.

.

.
...

.

...

.

.

.. .

.

..

.

.

.

.

.
... ....

.

.

.. .

.

..

.

.

.

.

.

... ....

.

.

.. .

.

..

.

.

.

.

.

... ....

.

.

.. .

.

..

.

.

.

.

.

... ....

.

.

.. .

.
..

.

.

.

.
.

... . ...

.

.
.. .

.

..

.

.

.
.

.

.

.. . ...

.

.

.. .

.

..

.

. ..

.

.

.. .

.

..

.

..

. .

.

..

.

. ..

.

.

.. .

.

..

.

..

. .
.

..

.

. ..

.

.

.. .

.

..

.

..
. .

.

..

.

. ..

.

.

.. .

.

..

.

.

.

. .

.

.
.

.

. ..
..

. .

.

.

.

.

..
.

.

.

.

.

. ..

. .

. .

.

.

.

.

..

.

.

.

.

.

. ..

.

.

. .

.

.

.

.

..

.

.

.

.

.

. ..

.

.

.. .

.

.

.

.

..

.

.

.

.

.

. ..

.

.

.. .

.

.

.

.

..

.

.

.

.

.

. ..

.

.

.. .

.

.

.

.

..

.

.

.

. ..

.

.

.. .

.

.

.

.

..

.

.

.

. ..

.

.. .

.

..................... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... ....

.

... .

.

..

.

... .... ....

.

... .

.

..

.

... .... ....
..

.. .

.
..

.

...

.

... .

.

.. .

.

..

..

..

.

...

.

...

..

.. .

.

..

.

...

.

...

.

...

..

.. .

.

..

.

.
.

.

.

...

.

...

.

.

.. .

.

..

.
.

.
.

.

...

.

..x
o

. . . . . . . ....
. . . . .

. . . . . . .
x

o

. . . . .....
.. . . . . . . . . .

x

o
.. ..

.. ................ .. .. .. .. .. .. .. .. ..x
o

(Tree Topology, Degree 4, Session Membership Density 0.5),
Simulation Results of Average Request Delay (in units of RTT)
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Figure 9: Tradeo� between delay and duplicates for dense

sessions in tree topologies.

number of duplicate requests. For this line, the individual

simulations are each shown by a jittered dot. The graphs

are sized for easy comparisons, and do not necessarily show

all of the dots.

As an example, the top graph in Figure 9 shows the

results for trees of density 1. For each of the lines the

average number of duplicates is minimized for C

2

= 0, and

maximized for an intermediate value of C

2

. In particular,

for a failed edge adjacent to the source of the failed packet,

(Tree Topology, Degree 4, Session Membership Density 0.02),
Simulation Results of Average Request Delay (in units of RTT)
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Figure 10: Tradeo� between delay and duplicates for sparse

sessions in a tree topology.

C

2

set to 40 gives an average number of duplicates of 4.1.

7 Extending the basic approach

7.1 Adaptive adjustment of random timer

algorithms

The results in the previous section suggest that the SRM

loss recovery algorithms with �xed timer parameters give

acceptable performance for sessions willing to tolerate a

small number of duplicate requests and repairs and willing

to accept a moderate request and repair delay (in terms

of the roundtrip times of the underlying multicast group).

However, there is not a single setting for the timer pa-

rameters that gives optimal performance for all topologies,

session memberships, and loss patterns. For applications

where it is desirable to optimize the tradeo� between delay

and the number of duplicate requests and repairs, an adap-

tive algorithm can be used that adjusts the timer parame-

ters C

1

, C

2

, D

1

, and D

2

in response to the past behavior of

the loss recovery algorithms. In this section we describe an

adaptive algorithm that adjusts the timer parameters as a

function of both the delay and of the number of duplicate

requests and repairs in recent loss recovery exchanges.

For sparse sessions, which we expect to be the most com-

mon, there is a tradeo� between the delay and the number

of duplicates; increasing C

2

decreases the expected number

of duplicate requests but increases the expected request

delay. However, the exact nature of the duplicate/delay

curve depends on the topology and on the (possibly chang-

ing) failure scenario and session membership. Thus, the

approach is to adjust C

2

dynamically, as a function of the

past history of the request algorithms, to achieve the de-

sired tradeo� between duplicates and delay.

A related strategy to minimize the number of duplicate

requests is to rely on deterministic suppression, with mem-

bers closest to the point of failure sending requests �rst.

One mechanism for encouraging deterministic suppression

is for members to reduce C

1

after they send a request.

Because members who frequently send requests are likely

to also be members who are close to the point of failure,

reducing C

1

for those members aids the deterministic sup-

13



pression. In a star topology, where otherwise the loss recov-

ery mechanisms rely on probabilistic suppression, reducing

C

1

in this fashion helps to break symmetry, encouraging

certain members to continue sending requests early.

A second mechanism for encouraging deterministic sup-

pression is for members who have sent requests to reduce

C

2

if they have received duplicate requests from members

signi�cantly further from the source of the failed packet.

This mechanism for requests requires that requests include

the requestor's estimated distance from the original source

of the requested packet. The corresponding mechanism for

replies requires that replies include the replier's estimated

distance from the source of the request.

After sending a request:

decrease start of req. timer interval

Before each new request timer is set:

if requests sent in prev. rounds, and any

dup. requests were from further away:

decrease request timer interval

else if ave. dup. requests high:

increase request timer interval

else if ave. dup. requests low

and ave. req. delay too high:

decrease request timer interval

Figure 11: Dynamic adjustment algorithm for request

timer interval.

Figure 11 gives the outline of the dynamic adjustment al-

gorithm for adjusting the request timer parameters. A cor-

responding algorithm applies for adjusting the reply timer

parameters. This adaptive algorithm combines the general

adaptation performed by all members when they set a re-

quest timer with more speci�c adaptations performed only

by members who have recently sent requests. A member

determines if the average number of duplicate requests is

\too high" by comparing the observed average to a prede-

�ned threshold; in this paper the prede�ned threshold is

one duplicate request. If the average number of duplicate

requests is too high, then the adaptive algorithm increases

the request timer interval. Alternately, if the average num-

ber of duplicates is okay but the average delay in sending a

request is too high, then the adaptive algorithm decreases

the request timer interval. In this fashion the algorithm can

adapt the timer parameters not only to �t the generally-

�xed underlying topology, but also to �t a changing session

membership and pattern of congestion.

First we describe how a session member measures the

average delay and number of duplicate requests in previ-

ous loss recovery rounds in which that member has been a

participant. A request period begins when a member �rst

detects a loss and sets a request timer, and ends only when

that member begins a new request period. The variable

dup req keeps count of the number of duplicate requests

received during one request period; these could be dupli-

cates of the most recent request or of some previous re-

quest, but do not include requests for data for which that

member never set a request timer. At the end of each re-

quest period, the member updates ave dup req, the average

number of duplicate requests per request period, before re-

setting dup req to zero. The average is computed as an

exponential-weighted moving average,

ave dup req  (1� �) ave dup req + � dup req;

with � = 1=4 in our simulations. Thus, ave dup req gives

the average number of duplicate requests for those request

events for which that member has actually set a request

timer.

When a request timer either expires or is reset for the

�rst time, indicating that either this member or some other

member has sent a request for that data, the member com-

putes req delay, the delay from the time the request timer

was �rst set (following the detection of a loss) until a re-

quest was sent (as indicated by the time that the request

timer either expired or was reset). The variable req delay

expresses this delay as a multiple of the roundtrip time to

the source of the missing data. The member computes the

average request delay, ave req delay.

In a similar fashion, a repair period begins when a mem-

ber receives a request and sets a repair timer, and ends

when a new repair period begins. In computing dup rep,

the number of duplicate repairs, the member considers only

those repairs for which that member at some point set a

repair timer. At the end of a repair period the member

updates ave dup rep, the average number of duplicate re-

pairs.

When a repair timer either expires or is cleared, indicat-

ing that this member or some other member sent a repair

for that data, the member computes rep delay, the delay

from the time the repair timer was set (following the receipt

of a request) until a repair was sent (as indicated by the

time that the repair timer either expired or was cleared).

As above, the variable rep delay expresses this delay as a

multiple of the roundtrip time to the source of the miss-

ing data. The member computes the average repair delay,

ave rep delay.

Figure 12 gives the adaptive adjustment algorithm used

in our simulator to adjust the request timer parameters C

1

and C

2

. The adaptive algorithm is based on comparing the

measurements ave dup req and ave req delay with AveDups

and AveDelay, the target bounds for the average number

of duplicates and the average delay. An identical adjust-

ment algorithm is used to adapt the repair timer param-

eters D

1

and D

2

, based on the measurements ave dup rep

and ave rep delay. Figure 13 gives the initial values used

in our simulations for the timer parameters. All four timer

parameters are constrained to stay within the minimum

and maximum values in Figure 13.

The numerical parameters in Figure 12 of 0.05, 0.1, and

0.5 were chosen somewhat arbitrarily. While this might

look like a multitude of constants, the exact value of these

constants is not important - all that matters is that they

represent small adjustments to the timer parameters C

1

and C

2

as a function of the past observed behavior of the

loss recovery algorithms. The adjustments of �0:05 and

+0:1 for C

1

are small, as the adjustment of C

1

is not the

14



Nonadaptive Timer Parameters.  
Round Number

N
um

be
r 

of
 R

ep
ai

rs

0 20 40 60 80 100

0
5

10
15

20
25

..

..

...

..

.

.

....

.

..

.

.

..

.....

.

.

.

.

..

..

.

.

.

.

.

.

....

..

.

..

..

..

..

.

...

.

..

..

.

..

.

.

.

..

..

...

..

...

..

..

..

.

...

..

.

..

..

...

..

...

.

.

.

..

..

.

.

..

.

..

..

..

..

.

.

.

.

..

.

...

.

.

...

.

.

.

.

..

.

.

..

.

..

..

.

.

...

..

..

.

.

.

..

...

..

.

..

.

..

.

.

..

..

.

.

..

..

.

.

..

.

.

..

.

.

.

...

.

.

...

.

.

...

.

..

...

...

.

.

..

.
.
.
..
.
.
.

.

..

.

...

.

..

.

..

..

..

.

..

.

.

....

..

.

.

.

...

.

..

.

..

..

.

..

..

..

.

.

..

..

...

..

.

...

..

..

..

...

.

..

..

..

.

..

....

.

.

.

.

....

.

...

.

.

...

.

.

.

...

...

.

..

..

.

.

.

..

..

...

..

..

..

.

..

.

..

.

.

..

...

..

.

.

...

.

..

.

.

.

...

..

..

.

..

..
..

..

..

..

.

..

....

.

.

.

..

.

..

..

.

.

.

....

...

..

.

....

..

.

.

.

.

.

.

..

..

..

..

.

.

..

..

..

..

..

...

.

.

.

.

.

.

..

..

.

.

..

.

...

..

..

.

.

.

.

...

..

.

.

.

.

.

...

..

.

..

.

...

..

...

..

..

...

...

.

.

...

..

.

.

.

..

..

...

..

.

..

.

..

.

..
.
.
.

.

..

....

.

.

.

.

.

..

..

..

.

.

.

.

..

.

..

.

.

.

.

.

..

..

..

.

.

.

....

.

..

..

.

..

...

..

.

.

.

..

..

.

...

.

.

.

....

.

..

..

...

..

.

.
..
.

.

.

..

..

..

.

.

.

.

.

...

.

..

.

.

..

..

..

..

.

...

.

.

..

.

.

.

..
..
..
.
.
.

.

.

......

..

.

..

...

...

.

.

.

.

....

...

.

.

...

...

.

..

..

.

..

.

..

.

.

..

..

.

.

.

.

.

.

..

.

.

.

...

.

.

....

..

.

.

.

.

.

.

...

..

..

.

.

.

.
..
...
.

.

...

.

.

..

.

.

.

.

...

....

.

.

...

...

.

.
.

.

.

.

.

.

....

.

.

.

..

..

...

.

.

..

.

.

.

..

.

.

.

.

..

...

.

.

.

.

.

..

..

..

..

.

..

..

...

.

.

.

..

..

.

.

.

..

.

.

...

.

..

.

.

.

.

..

..

..

.

..

.

..

..

..

..

.

.

..

.

..

..

.

.

.

.

...

..

.

.

.

.

..

..

.

.

.

.

.

..

....

.

.

..

...

..

...

..

Nonadaptive Timer Parameters.  
Round Number

A
ve

ra
ge

 D
el

ay
 (

in
 u

ni
ts

 o
f R

T
T

)

0 20 40 60 80 100

0
1

2
3

4
5

6

..

..

....

..

......

.

...

......

....
...
.....
..

...

....

...

....

.....

.

...

...

...

.

..

.....

...

.....

..

...
...
.......

...

.......
..
.......
.

..

.......

.

...

..

.....

...
....
..
.

....

....
..

.

....

.....
..
......
.
.

....
..
...
.

..

...

.....

....

...

...

.....

..

.

..

...

...

..

..

...

...

....

.....

....

.

.....

...
..

.....

...

..

...

......

.
..
.....
...

.

......

...

....

...

...

.

......

...

...

...

....

...

......

.

...

......

.
....
......
...
..
...
..

.....

...

..

.....

...

..

..

...

...

.

.

...
....
...

.....

...

..
...
....
...

......

....
.....
....
.

..

....

...

.

...

....

...

...

..

....

.

....

.....

.

....

...

...

....

...

..

.

...

.....

..

...

....

...

...

.....

..

...

..

....

.

...

...

...

.

...

....

...

..

.......

.
.....
.....
..
....
....

....

...

..

.

....

...

...

......

...

.

....

.....

.

....

...

..

.

.......

..

.

....

.....

.

...

..

....

.

...
..
..
...

.

.....

..

..

.....

....

.

......

..

.

.

...

...

....

.....

..

...

...

.....

..
...
....
...

..

.....

..

.

...

.....

..

...

...

...

.

.

......

...

..

...

....

.

...

....

...
..
.....
..
.

......

...

.

..

......

..

..

......

..
..
....
....

..

....

...

.

..

...

.....
......
...
.

..

....

...

.

..

....

....

.

.....

..

..

...
.....
..

.....

..

..

.

..

.....

...

...

.....

..

..

....

...

.

.......

..

.

....
....
..

Figure 14: The non-adaptive algorithm.
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Figure 15: The adaptive algorithm.

After a request timer expires or is first

reset:

update ave req delay

After sending a request:

C

1

� = 0:1

Before each new request timer is set:

update ave dup req

if closest requestor on past requests:

C

2

� = 0:1

else if (ave dup req � AveDups)):

C

1

+ = 0:1

C

2

+ = 0:5

else if (ave dup req < AveDups��):

if (ave req delay > AveDelay):

C

2

� = 0:1

if (ave dup req < 1/4):

C

1

� = 0:05

else C

1

+ = 0:05

Figure 12: Dynamic adjustment algorithm for request

timer parameters. In our simulations � = 0:1

primary mechanism for controlling the number of dupli-

cates. The adjustments of �0:1 and +0:5 for C

2

are su�-

ciently small to minimize oscillations in the setting of the

timer parameters. Sample trajectories of the loss recovery

algorithms con�rm that the variations from the random

component of the timer algorithms dominate the behavior

of the algorithms, minimizing the e�ect of oscillations.

In our simulations we use a multiplicative factor of 3

rather than 2 for the request timer backo� described in

Section 3.2. With a multiplicative factor of 2, and with an

adaptive algorithm with small minimum values for C

1

, a

single node that experiences a packet loss could have its

backed-o� request timer expire before receiving the repair

Initial values:

C

1

= 2

D

1

= log

10

G

C

2

= 2

D

2

= log

10

G

Fixed parameters:

MinC

1

= 0:5; MaxC

1

= 2

MinC

2

= 1; MaxC

2

= G

MinD

1

= 0:5; MaxD

1

= log

10

G

MinD

2

= 1; MaxD

2

= G

AveDups = 1

AveDelay = 1

Figure 13: Parameters for adaptive algorithms

packet, resulting in an unnecessary duplicate request.

We have not attempted to devise an optimal adaptive

algorithm for reducing some function of both delay and

of the number of duplicates; such an optimal algorithm

could involve rather complex decisions about whether to

adjust mainly C

1

or C

2

, possibly depending on such fac-

tors as that member's relative distance to the source of the

lost packet. For a sparse session in a tree topology, in-

creasing C

2

reduces the number of duplicate requests; our

adaptive algorithm relies largely on increases of C

2

to re-

duce duplicates. Our adaptive algorithm also decreases C

2

for members who have sent requests, if duplicate requests

have come from members further from the source of the

requested packet. (In our simulations \further from the

source" is de�ned as \at a reported distance greater than

1.5 times the distance of the current member".) Our adap-

tive algorithm only decreases C

1

for members who have

sent requests, or when the average number of duplicates is

already small.

Figures 14 and 15 show simulations comparing adaptive

15



and non-adaptive algorithms. The simulation set in Fig-

ure 14 uses �xed values for the timer parameters, and the

one in Figure 15 uses the adaptive algorithm. From the

simulation set in Figure 6, we chose a network topology,

session membership, and drop scenario that resulted in a

large number of duplicate requests with the non-adaptive

algorithm. The network topology is a bounded-degree tree

of 1000 nodes with degree 4 for interior nodes, and the

multicast session consists of 50 members.

Each of the two �gures shows ten runs of the simula-

tion, with 100 loss recovery rounds in each run. For each

round of a simulation, the same topology and loss scenario

is used, but a new seed is used for the pseudo-random num-

ber generator to control the timer choices for the requests

and repairs. In each round a packet from the source is

dropped on the congested link, a second packet from the

source is not dropped, and the loss recovery algorithms are

run until all members have received the dropped packet.

The x-axis of each graph shows the round number. For

each �gure, the top graph shows the number of requests in

that round, and the bottom graph shows the loss recovery

delay. Each round of each simulation is marked with a jit-

tered dot, and a solid line shows the median from the ten

simulations. The dotted lines show the upper and lower

quartiles.

For the simulations in Figure 14 with �xed timer pa-

rameters, one round di�ers from another only in that each

round uses a di�erent set of random numbers for choosing

the timers.

For the simulations with the adaptive algorithm in Fig-

ure 15, after each round of the simulation each session

member uses the adaptive algorithms to adjust the timer

parameters, based on the results from previous rounds.

Figure 15 shows that for this scenario, the adaptive algo-

rithms quickly reduce the average number of repairs, along

with a small reduction in delay.

0
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Figure 16: Request timer parameters for three executions

of the simulation.

Figures 16 and 17 show the request and repair timer pa-

rameters for three 200-round executions of the simulations

in Figure 15. For this scenario, the loss neighborhood con-

0
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Figure 17: Repair timer parameters for three executions of

the simulation.

sists of only two members, and the number of duplicate

requests can be at most one. For each execution of the

simulation, Figure 16 shows the request timer parameters

C

1

and C

2

for both session members in the loss neighbor-

hood. For each of the three simulations, a line marked \A"

shows the request parameters for the member closer to the

point of failure, and a line marked \B" shows the request

parameters for the member further away. Large dots mark

rounds 50, 100, and 150 of each simulation. For both nodes

the parameter C

2

is slowly decreased to its minimum value,

while C

1

is lower for the node closer to the point of failure.

Figure 17 shows the repair timer parameters D

1

and D

2

for two of the session members not in the loss neighbor-

hood, the one closest to the point of failure (represented by

the three lines marked \A"), and the other further away

(represented by the three lines marked \B"). After the

100th round, for the member further from the point of fail-

ure the parameter D

2

has almost reached its maximum

value of 50, and D

2

remains close to 50 for the remain-

ing rounds. The initial rapid increase of D

2

results in a

decrease in the number of duplicate repairs. At the same

time, D

2

remains small for the member closest to the point

of failure.

To explore the adaptive algorithms in a range of sce-

narios, Figure 18 shows the results of the adaptive algo-

rithm on the same set of scenarios as that in Figure 6. For

each scenario (i.e., network topology, session membership,

source member, and congested link) in Figure 18, the adap-

tive algorithm is run repeatedly for 40 loss recovery rounds,

and Figure 18 shows the results from the 40th loss recov-

ery round. Comparing Figures 6 and 18 shows that the

adaptive algorithm is e�ective in controlling the number of

duplicates over a range of scenarios.

Simulations in [FJLMZ95] show that the adaptive al-

gorithm works well in a wide range of conditions. These

include scenarios where only one session member experi-

ences the packet loss; where the congested link is chosen

adjacent to the source of the packet to be dropped; and

for a range of underlying topologies, including 5000-node
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Figure 18: Adaptive algorithm on round 40, for a bounded-

degree tree of 1000 nodes with degree 4 and a randomly

picked congested link.

trees, trees with interior nodes of degree 10; and connected

graphs that are more dense that trees, with 1000 nodes and

1500 edges.

In actual multicast sessions, successive packet losses are

not necessarily from the same source or on the same net-

work link. Simulations in [FJLMZ95] show that in this

case, the adaptive timer algorithms tune themselves to give

good average performance for the range of packet drops en-

countered. Simulations in [FJLMZ95] show that, by choos-

ing di�erent values for AveDelay and AveDups, tradeo�s

can be made between the relative importance of low delay

and a low number of duplicates.

In the simulations in this section, there is only one con-

gested link, and each packet that is dropped is dropped

on only that one link. More realistic simulations would

include scenarios with multiple locations for drops of a sin-

gle packet, and would use an extended SRM that incor-

porates local recovery mechanisms into the loss recovery

algorithms.

Similarly, in the simulations in this section, none of the

requests or repairs are themselves dropped. In more realis-

tic scenarios where not only data messages but requests and

repairs can be dropped at congested links as well, members

have to rely on retransmit timer algorithms to retransmit

requests and repairs as needed. Obviously, this will in-

crease not only the delay, but also the number of duplicate

requests and repairs in di�erent parts of the network. The

use of local recovery, described in the following section,

would help to reduce the unnecessary use of bandwidth in

the loss recovery algorithms.

7.2 Local recovery

With SRM's global loss recovery algorithm described above,

even if a packet is dropped on a link to a single member,

both the request and the repair are multicast to the entire

group. In cases where the neighborhood a�ected by the

loss is small, the bandwidth costs of the loss recovery algo-

rithm can be reduced if requests and repairs are multicast

to a limited area. In this section we sugest that local re-

covery can be quite e�ective in reducing the unnecessary

use of bandwidth.

Scenarios that could bene�t from local recovery include

sessions with persistent losses to a small neighborhood of

members and isolated late arrivals to a multicast session

asking for back history. Studies of packet loss patterns

in the current Mbone [YKT96] suggest that packet loss in

multicast tra�c is most likely to occur not in the \back-

bone" but in the \edges" of the multicast network. In

addition, the larger the multicast group, the more likely it

is that a packet will be dropped somewhere along the mul-

ticast tree, even in the absence of a particular persistent

point of congestion. In this case, local recovery is needed to

ensure that the fraction of bandwidth used for request and

repair messages scales well as the multicast group grows.

We are not at this stage proposing a complete set of

algorithms for implementing local recovery. We explore in

this section a set of mechanisms that can be used to limit

the scope of a request and of an answering repair. The

question of how a member decides the scope to use for a

particular request is an area for future research.

Local recovery assumes that the member sending the

request has some information about the neighborhood of

members sharing recent losses. We de�ne a loss neigh-

borhood as a set of members who are all experiencing the

same set of losses. End nodes should not know about net-

work topology, but end nodes can learn about \loss neigh-

borhoods" from information in session messages, without

learning about the network topology.

For each member, we call a loss a local loss if the number

of members experiencing the loss is much smaller than the

total number of members in the session. To help identify

loss neighborhoods, session messages could report a mem-

ber's loss rate, that is, the fraction of data for which a

request timer was set. In addition, session messages could

report a \loss �ngerprint", i.e., the names of the last few

local losses.

A member should send a request with local scope when

recent losses have been con�ned to a single loss neighbor-

hood, and when this local request seems likely to reach

some member capable of answering it. If no repair is re-

ceived before a backed-o� request timer expires, then sub-

sequent requests can be sent with a wider but still con�ned

scopes, until ultimately it is sent with global scope.
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7.2.1 Administrative scoping

One simple and now widely available mechanism for local

recovery is the use of administrative scope in IP multi-

cast. If a member believes that both the loss neighbor-

hood and a potential source of repairs are contained in

the local administratively-scoped neighborhood, then both

the request and the repair can be sent with administra-

tive scoping, so that both messages are restricted to that

neighborhood.

7.2.2 Separate multicast groups

Another potential mechanism under investigation is the

use of separate multicast groups for local recovery. In this

scheme, the initial requestor creates a separate multicast

group for local recovery and invites other nearby members

to join that multicast group. The multicast group must

include some member capable of sending repairs. This

mechanism is appropriate when there is a stable loss neigh-

borhood that results from a particular lossy link, or when

an isolated member joins a group late and asks for past

history.

[KKT96] explores a somewhat-di�erent use of multiple

multicast groups for recovery, aimed primarily at reduc-

ing the costs of processing unwanted packets at receivers.

Given G+1 multicast groups, one group is used for the orig-

inal transmission of data, and the other G multicast groups

are used for retransmissions. All members of the session

share a single function for mapping unique data names to

multicast groups. For example, for the single-sender appli-

cations explored in the paper, retransmissions for data with

name i would be sent to the multicast group Gmod i, and

members missing a particular packet would join the appro-

priate multicast group. The possibilities for future work

in [KKT96] include studying better mechanisms to reduce

network bandwidth as well as reducing receiver processing

overhead.

7.2.3 TTL-based scoping

A third possible mechanism for local recovery is for mem-

bers to use time-to-live- or TTL-based scope to limit the

reach of request and repair messages. In the current Mbone,

each link (more precisely, each interface or tunnel) is as-

signed a threshold, with a default threshold of one. The

threshold is the minimum TTL required for an IP multi-

cast packet to be forwarded on that link, and is used to

control the scope of multicast packets. Every multicast

router decrements the TTL of a forwarded packet by one.

In order to limit the scope of a request or repair message,

the sender simply sets each packet's TTL �eld to an ap-

propriate value. By including the initial TTL in a separate

packet �eld, members receiving the request (or reply) mes-

sage explicitly learn the original TTL as well as the hop

count for the path from the source.

The simplest version of TTL-based local recovery is a

one-step repair algorithm. In this approach, a request sent

with TTL h might be answered with a repair sent with

TTL h+ k, where k is the number of hops to the original

requestor. In this way, the repair would be guaranteed to

reach all of the members reached by the original request (if

we optimistically assume that multicast routes and thresh-

olds are symmetric). However, simulations suggest that

this algorithm is not very e�ective | the repair packets

generally have too large a TTL and thus cause an other-

wise avoidable waste of bandwidth.

We show instead that a two-step repair message is ef-

fective in limiting the unnecessary use of bandwidth. In

the �rst step of the repair, a local repair is sent with the

same TTL used in the request. This TTL should be su�-

ciently large to reach the original requestor, given su�cient

symmetry, but not necessarily su�ciently large to reach all

of the members reached by the original request. The lo-

cal repair includes the name of the member whose request

triggered the repair. In the second step of the repair, the

requestor, upon receiving the �rst local repair naming it-

self as the original requestor, resends the repair using the

same TTL as in the original request. In this way the re-

pair is received by all of the members who saw the original

request.

We use simulations to explore the optimal behavior that

could be achieved from two-step local recovery. First we

examine networks were all links have a link threshold of

one, and next we examine networks with a range of values

for the link thresholds.

To explore the optimal possible performance, we assume

that the loss neighborhood is stable, and that members

have some method for estimating h

1

and h

2

, where h

1

is

the minimum TTL needed to reach all members in the loss

neighborhood, and h

2

is the minimum TTL needed to reach

some member not in the loss neighborhood. Further, we

assume that for each loss recovery event, the request/repair

algorithms exhibit their optimal behavior. That is, we as-

sume that there is a single request and a single repair, and

that both come from the members closest to the point of

failure. We restrict attention to scenarios where the loss

neighborhood contains at most 1/10-th of the session mem-

bers.

Figure 19 shows the results of an optimal execution of

the two-step local recovery algorithms in a large bounded-

degree network of degree four, with link thresholds of one.

The x-axis in each graph shows the session size. For each

session size, twenty simulations are run, each with a di�er-

ent random tree (if applicable), session membership, and

source and congested link for the dropped packet. The re-

sults of each simulation are represented by a jittered dot.

The three lines indicate the �rst, second, and third quar-

tiles.

In the top graph of Figure 19, the y-axis shows the frac-

tion of session members reached by the repair. In the bot-

tom graph of Figure 19, the y-axis shows the number of

session members in the repair neighborhood, that is, the

number of session members reached by the repair, as a mul-

tiple of the number of members in the loss neighborhood.

Additional simulations not reported here show that local

recovery with two-step repairs can work well in networks
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Figure 19: Local recovery with two-step repairs in

bounded-degree trees with 1000 nodes, thresholds of one.

with a range of topologies and link thresholds. [FJLMZ95]

shows that, in contrast to two-step repairs, one-step repairs

are fairly ine�cient in their use of bandwidth, even given

an optimal setting of the the TTL of the original request.

8 Application-speci�c and general

aspects of reliable multicast

Section 2 discussed some of the underlying assumptions in

the design of reliable multicast for wb. In this section we

explore some of the ways that the SRM framework could be

used and modi�ed to meet the needs of other applications

for reliable multicast.

A fundamental concept in SRM is a multicast group, i.e.

a set of hosts that (1) can be reached by a group address

without being identi�ed individually �rst, and (2) share

the same application data and thus can help each other

with loss recovery. This group concept is also appropri-

ate for applications such as routing protocol updates and

DNS updates, as well as for the group distribution of stock

quotes, Usenet news, or WWW-based mass media.

Let's take the routing protocol Border Gateway Proto-

col (BGP) as an example. The Internet is viewed as a

set of arbitrarily connected autonomous systems (AS) that

are connected through border gateways that speak BGP to

exchange routing information. One AS may have multiple

BGP speakers, and all BGP speakers representing the same

AS must give a consistent image of the AS to the outside,

i.e., they must maintain consistent routing information. In

the current implementation, this consistency is achieved by

each BGP router opening a TCP connection to every other

BGP router to deliver routing updates reliably. There are

several problems with this approach. First, achieving mul-

ticast delivery by multiple one-to-one connections bears a

high cost. Second, for an AS with N BGP routers, one has

to manually con�gure the (N � 1) TCP connections for

each of the N routers, and recon�gure whenever a change

occurs. Both of these problems could be solved by applying

SRM, perhaps with modi�cations to the data persistence

model.

The SRM framework could easily be adapted for the dis-

tribution of such delay-insensitive material as Usenet news.

Di�erent applications have di�erent tradeo�s between min-

imizing delay and minimizing the number of duplicate re-

quests or repairs. For an interactive application such as

wb, close attention must be paid to minimizing delay. For

reliably distributing Usenet news, on the other hand, min-

imizing bandwidth would be more important than mini-

mizing delay. Again some tuning to our request and repair

timer algorithms should make the SRM framework readily

applicable to news distribution.

As a third example, we consider applying SRM to data

caching and replication for web pages. Like wb, all objects

in the Web have a globally unique identi�er. With HTTP,

all requests for a speci�c object are handled by the origi-

nal source, even though in many cases, especially for \hot"

objects, a copy may be found within the neighborhood of a

requester. A global network of Web caches is currently be-

ing deployed in the Internet, using unicast communications

between servers, web caches, and clients. One possibility

would be to organize these web caches into overlapping

multicast groups of neighboring web caches, to use mul-

ticast to send a request for an object from a cache to the

other caches in the multicast group, and to use the random-

ized timer algorithms in SRM for answering that request

from the multicast group. Clients and servers could join lo-

cal multicast groups of web caches, or could communicate

with their nearest cache using unicast communications.

We believe that the SRM framework could be useful to

a wide range of applications based on multicast groups.

Even for applications that may require partial or total data

ordering, the SRM framework could be used to reliably de-

liver the data to all group members, and a partial or total

ordering protocol could be built on top that is speci�cally

tailored to the ordering needs of that application. Order-

ing is further complicated by disagreements about how the

ordering itself should be de�ned: [CS93] has argued (and

[B94] has rebutted) that for applications with ordering re-

quirements, preserving the ordering of messages as they

appear in the network can be an expensive and inadequate

substitute for preserving the \semantic ordering" of the

messages appropriate for the application.

9 Related work on reliable multi-

cast

The literature is rich with architectures for reliable mul-

ticast [MTC]. Due to space limitations, we will not de-

scribe the details of each solution. Instead, we focus on

the di�erent goals and de�nitions of reliability in the vari-

ous architectures, and the implications of these di�erences

for the scalability, robustness, handling of dynamic group
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membership, and overhead of the algorithms.

The Xpress Transport Protocol (XTP) [XTP92, XTP95]

is designed for either unicast or one-to-manymulticast com-

munication. For one-to-many multicast, the transmitting

application is allowed to de�ne who may join the multicast

group. XTP reports changes in group membership option-

ally to the application, presupposing that the application

can best evaluate the side-e�ects of a member leaving the

group. Reliable communication is based on negative ac-

knowledgments. The sender may also initiate a synchro-

nizing handshake, to determine the status of the receivers.

In this case, receivers each use a \slotting" technique to

wait a random delay before sending their control packet,

to reduce a control packet implosion. The combined slot-

ting and damping techniques proposed in [XTP92] to re-

duce NACK suppression have been described earlier in the

paper. In XTP receivers or routers can impose a maximum

data rate and maximum burst size on the sender.

The Reliable Broadcast Protocol (RBP) of Chang and

Maxemchuk [CM84] is one of the pioneer works in many-

to-many reliable multicast protocols. RBP is a centralized

scheme that provides totally ordered delivery of data to all

group members. All the members are ordered in a logical

ring, with one designated the master \token site". The

token site moves to the next ring position after each data

transmission. Sources multicast new data to the group, and

the token site is responsible for acknowledging (by multi-

cast) the new data with a timestamp, as well as retrans-

mitting (through unicast) all missing packets upon requests

from individual receivers. The order of data reception at

all the sites is determined by the timestamp in the ACK.

Each ACK also serves to pass the token to the next mem-

ber in the ring. By shifting the token site among all the

members, with a requirement that a site can become the

token site only if it has received all the acknowledged data,

it is assured that after shifting the token site through all

the N members in the group, everyone will have received

all the data that is at least N smaller than the current

timestamp value.

Because the token site is responsible for all the acknowl-

edgments and retransmissions, it becomes the bottleneck

point whenever losses occur. The scheme also requires ref-

ormation of the ring whenever a membership change oc-

curs. Therefore it does not scale well with the size of the

group.

RMP (Reliable Multicast Protocol) [WKM95], based on

the Chang and Maxemchuk algorithm, provides an atomic,

totally ordered, reliable multicast service that runs on top

of IP Multicasting. RMP provides added QoS parameters

in each data transfer and better handling of membership

changes. The most recent version of RMP uses a modi�ed

SRM request/repair policy along with a sliding window

ow control scheme based on TCP [MWC95].

The reliable multicast protocol for ordered delivery de-

scribed in [KTHB89] is similar to, but simpler than, the

Chang and Maxemchuk protocol. Basically, all data is �rst

unicast to a master site, called a sequencer, which then

multicasts the data to the group. Therefore the sequencer

provides a global ordering of all the data in time; it is also

responsible for retransmitting, by unicast, all the missing

data upon requests. The sequencer site does not move un-

less it fails, in which case a new sequencer is elected. To

avoid keeping all the data forever, the sequencer keeps track

of the receiving state of all the members to determine the

highest sequence number that has been correctly received

by all the members.

MTP (Multicasting Transport Protocol) [AFM92] is again

a centralized scheme for totally ordered multicast delivery.

A master site is responsible for granting membership and

tokens for data transmission; each host must obtain a to-

ken from the master �rst before multicasting data to the

group, thus the total order of data packets is maintained.

A window size de�nes the number of packets that can be

multicast into the group in a single heartbeat and a re-

tention size de�nes the period (in heartbeats) to maintain

all client data for retransmission. NACKs are unicast to

the data source which then multicasts the retransmission

to whole group.

Compared to the above cited works, the Trans and Total

protocols described in [MMA90] are closer in spirit to our

work. These protocols assume that all the members in a

multicast group are attached to one broadcast LAN. Each

host keeps an acknowledgment list which contains identi-

�ers of both positive and negative ACKs. Whenever a host

sends a data packet, it attaches its acknowledgment list to

the packet, as a way to synchronize the state with all other

members in the group. Because the single LAN limits data

transmissions from all hosts to one packet at a time, partial

and total ordering of data delivery can be readily derived

from data and acknowledgment sequences.

Several proposals for reliable multicast use secondary

servers (also calledDesignated Routers orGroup Controllers

in di�erent proposals), to handle retransmissions within

a subgroup of the multicast group. One such protocol,

Log-based Receiver-reliable Multicast (LBRM) [HSC95],

was designed to support Distributed Interactive Simulation

(DIS). The receiver-based reliability is provided by primary

and secondary logging servers. Receivers request retrans-

missions from the secondary logging servers, which requests

retransmissions from the primary logging server. Both the

source and the secondary logging servers use either deter-

ministic or probabilistic requests to select between unicast

and multicast retransmissions.

LBRM uses a variable heartbeat scheme sends heartbeat

messages (e.g., session messages) more frequently immedi-

ately after a data transmission. In an environment when

the basic transmission rate is low, this variable heartbeat

enables receivers to detect losses sooner, with no penalty

in terms of the total number of heartbeat messages trans-

mitted. While the variable heartbeat scheme would not be

appropriate for an application such as wb, where the orig-

inal congestion could itself result from many senders send-

ing data at the same time, the variable heartbeat scheme

could be quite useful for an application with a natural limit

on the worst-case number of concurrent senders, and would

be easily implementable in SRM.
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Like LBRM and SRM, the Reliable Multicast Transport

Protocol (RMTP) [LP96] also includes among its goals

scalability and receiver-based reliability. RMTP accom-

plishes this by using Designated Routers (DRs) in each

region of the multicast group, where the DRs receive in-

coming acknowledgements and perform retransmissions as

needed. RMTP uses windowed ow control tuned to the

requirements of the worst-case receiver. Problems of dy-

namically choosing DRs for a given multicast tree and of

investigating congestion control tradeo�s for a heteroge-

neous environment with receivers of varying speeds are left

for continued research.

A Local Group Concept is proposed in [H96], where the

multicast group is divided into Local Groups, each repre-

sented by a Group Controller that handles retransmissions

for members in the Local Group. The Group Controller

is not a router or a separate server, but simply one of the

members of the multicast group. [H96] aims at the dynamic

generation of Local Groups and of Group Controllers, but

does not explore in detail the algorithms for �nding the

nearby Local Group, responding to the failure of a local

Group Controller, or choosing a new Group Controller.

Perhaps the most well-known work on reliable multicast

is the ISIS distributed programming system developed at

Cornell University [BSS91, ISIS]. ISIS provides causal or-

dering and, if desired, total ordering of messages on top of

a reliable multicast delivery protocol. Therefore the ISIS

work is to some extent orthogonal to the work described

in this paper, and further con�rms our notion that a par-

tial or total ordering, when desired, can always be added

on top of a reliable multicast delivery system. The reli-

able multicast delivery in existing ISIS implementations is

achieved by multiple unicast connections using a windowed

acknowledgment protocol similar to TCP [B93]. Horus, the

successor to ISIS, can optionally run on top of IP multicast.

There is also a growing literature on the analysis of re-

liable multicast schemes. As one example, [BMT94] con-

siders the performance of one-to-many reliable multicast

with a block-based ACK scheme. The paper investigates

the regime where transfer sizes are large and receivers have

limited bu�ering, and shows that in this case throughput is

signi�cantly higher if the transport layer can deliver pack-

ets to the application out-of-order. The paper also consid-

ers the number of retransmissions needed to deliver packets

to all members of the multicast group, in a scenario where

all retransmissions come from the original sender. In this

case, a topology that minimizes the bandwidth used (i.e., a

chain) is not the same as a topology that minimizes the to-

tal number of multicast retransmissions until all receivers

have received all of the packets (i.e., a star).

[PSA96] compares several retransmission schemes for mul-

ticast protocols for real-time media. The retransmission

schemes are intended for real-time media with playback

times, so that packets received after the playback time are

dropped. [PSA96] assumes that receivers unicast NACKs

to the sender, and retransmissions are done by the sender.

Note that these assumptions di�er from those of SRM,

which is intended for applications without �xed deadlines

by which packets have to be received, and which allows re-

transmissions from members other than the original source.

10 Future work

10.1 Future work on scalable session mes-

sages

The SRM framework outlined in this paper assumes that

all members of the multicast group will send session mes-

sages and estimate the distance to each of the other group

members. For larger groups, we are investigating a hierar-

chical approach for scalable session messages [S96], where

members in a local area dynamically select one of the local

members to be the representative, as far as session mes-

sages are concerned. The representatives would each send

global session messages, and maintain an estimate of their

distance in seconds from each of the other representatives.

All other members would send local session messages with

limited scope su�cient to reach their representative.

10.2 Future work on local recovery

Section 7.2 has shown that local recovery based on local-

recovery neighborhoods can be e�ective in limiting the

unnecessary use of bandwidth in loss recovery events, if

members can estimate the scope to use in sending local

requests. While [FJLMZ95] discusses some of the issues

in implementing TTL-based local recovery, there are many

open questions about which mechanisms should be used to

de�ne local-recovery neighborhoods, how individual mem-

bers should determine whether to send requests with local

or global scope, etc. For local recovery based on separate

multicast groups, there is ongoing research on algorithms

for initiating, joining, and leaving such multicast groups,

and for soliciting additional members to join such groups.

In many topologies, the e�ectiveness of local recovery

could be improved by adding members to the multicast

group in strategic locations. For example, consider the

known stable topologies discussed in [HSC95], where losses

are expected to occur mainly on the tail circuits, rather

than in the backbone or in the LANs, and the design pri-

ority is to keep unnecessary tra�c o� of the tail circuits.

The addition of a session member (i.e., cache) on a node

near the local end of the tail circuit, coupled with a local-

recovery neighborhood de�ned to include all members on

that end of the tail circuit, would allow local recovery to

continue for losses on the local area without adding any un-

necessary tra�c to the tail circuit itself. For losses on the

tail circuit itself, a larger local recovery area that spanned

the tail circuit just into the backbone would isolate indi-

vidual local recovery to independent tail circuits.

10.3 Future work on congestion control

SRM's basic framework for congestion control assumes that

the members of the multicast session have an estimate of

the available bandwidth for the session, and constrain the
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data transmitted to be within this estimated bandwidth.

This framework raises several somewhat separate issues,

such as how members determine this available bandwidth;

how to detect congestion or avoid potential congestion; and

given available bandwidth, which piece of data a member

should send �rst.

Multicast congestion control is a relatively new area for

research. For unicast tra�c, there is a single path from

source to receiver, with a feedback loop provided by re-

turning packets sent by the receiver. In contrast, in a mul-

ticast group there could be several sources, and the various

communication paths from an active source to the mem-

bers of the multicast group can have a range of bandwidth,

propagation delay, and competing congestion. In this case,

how does one de�ne and detect congestion?

With multicast tra�c, there are application-speci�c pol-

icy decisions about whether or not to tune the congestion

control procedures to the needs of the worst-case receiver;

these questions do not arise with unicast transmissions.

However, tuning the sending rate to the worst-case receiver

is only viable for a multicast group with a controlled mem-

bership; otherwise, the multicast group would be vulner-

able to denial-of-service attacks by members joining the

group from an extremely-low-bandwidth path. Given an

uncontrolled membership, and a group where the band-

width along di�erent paths in the multicast group di�ers

substantially, the sender could tune the sending rate to the

needs of the majority of receivers, requiring that receivers

on more-congested paths unsubscribe from the multicast

group. In this section we assume a scalable application

such as wb that is not necessarily tuned to the needs of the

worst-case receiver.

The most obvious possibility for multicast congestion

control would be for sources to respond to congestion by

slowing down their transmission rate. It is possible for

congestion to be detected collectively by the members in a

session, for example through observations of packet losses

or of the data reception rate. As in the Real-time Trans-

port Protocol RTP [SCFJ94], session messages can be used

to exchange information about observed performance. The

sender could tune the sending rate to the needs of the re-

ceiver on the most congested path.

An approach under investigation for the video tool vic

[MJ95] is to divide the total data transmission into several

substreams, with each being sent to a separate multicast

group [MJV96]. Members that detect congestion unsub-

scribe from higher-bandwidth groups. When this approach

is used for reliable multicast, then reliable delivery should

be provided separately within each group. This implies

that unsubscribing receivers would either not receive all of

the data, or would receive some of the data later, at a slower

rate than that used for the rest of the multicast group. In

either case, we can exploit this tradeo� through the use of

progressively re�nable or layered data representations.

While considerable research has been done on layering

techniques for video, layering techniques are application-

speci�c, and layering for wb data remains an area for fur-

ther research. As a simple example of layering for wb data,

a low-bandwidth multicast group could be limited to text-

based data, and a higher-bandwidth multicast group could

be used for graphics or for side-discussions. Wb members

behind low-bandwidth paths could still receive the text in

real time, with the rest of the group, and receive the im-

ages later, as bandwidth permits. Other possibilities would

be to encode embedded images using Progressive-JPEG or

some other layered scheme, or to tradeo� free-hand draw-

ing resolution for rate (i.e., one could send line drawings at

50 points/sec for good interactive performance over a high

rate channel but at 1 point/sec over a constrained, low-rate

channel).

As another approach to bandwidth adaptation, receivers

could reserve resources where such network services were

available; an example of such services are the guaranteed

and controlled load services currently being developed for

the Internet [BCS94]. Session members can decide individ-

ually whether to reserve resources or to rely on best e�ort

service for a session | the use of services other than best-

e�ort need not be uniformly imposed on all members of a

multicast group. Thus, resource reservation could comple-

ment other congestion control mechanisms of the multicast

session.

10.4 Future work on an SRM \toolkit"

Although we have proposed SRM as a framework that ap-

plies to many di�erent applications, we have developed just

one such application, wb. Further, because we based the

implementation on ALF and deliberately factored many

application semantics into the design of the wb transport,

it is relatively di�cult to extract and re-use wb's network

implementation in another application. However, this limi-

tation resulted from our lack of prior experience with ALF-

based design and we argue now that an ALF protocol ar-

chitecture does not necessarily preclude substantial code

re-use.

Based on our subsequent experience with another ALF

architecture | the Real-time Transport Protocol (RTP)

[SCFJ94] that underlies the MBone tools vic and vat |

we know that the core of an ALF based design can be

easily tailored for a range of application types. For ex-

ample, we developed a generic RTP toolkit as an object-

oriented class hierarchy, where the base class implements

the common RTP framework and derived subclasses imple-

ment application-speci�c semantics. Our RTP toolkit sup-

ports a wide range of applications including layered video,

traditional H.261-coded video, LPC-coded audio, generic

audio/video recording and playback tools, and RTP mon-

itoring and debugging tools. Each of these tools shares

most of its network implementation with all of the others,

yet each still reects its individual semantics through ALF

| RTP is not a generic protocol layer.

In current work, we are applying these same design prin-

ciples to both the next generation of the wb protocol as well

a new set of SRM-based applications. We are developing

a object-oriented SRM toolkit that in a base class imple-

ments the SRM framework described in Section 3 and in
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a derived subclass reects application semantics like those

described in Section 2.3. For example, the application por-

tion of the SRM class hierarchy determines the packet gen-

eration order and priority, that is, whether to send answer

repairs before sending new data, or favoring repairs of one

source over another, etc. At the same time, the SRM base

class handles the more generic SRM functionality like the

timer adaptatation algorithms and the basic request/repair

event scheduling.

11 Conclusions

This paper described in detail SRM, a scalable reliable mul-

ticast framework that was �rst developed to support wb.

We have discussed the basic design principles as well as

extensions of the basic algorithm that make it more robust

for a wide range of network topologies.

Many applications need or desire support for reliable

multicast. Experience shows, however, that individual ap-

plications may have widely di�erent requirements of multi-

cast reliability. Instead of designing a generic reliable mul-

ticast protocol to meet the most stringent requirements,

this work has resulted in a robust and scalable reliable mul-

ticast framework that meets a minimal reliability de�nition

of delivering all data to all group members, deferring more

advanced functionality, when needed, to individual appli-

cations.

The work described in this paper is based on the funda-

mental principles of application level framing (ALF), mul-

ticast grouping, and the adaptivity and robustness in the

TCP/IP architecture design. Although the SRM frame-

work in currently only implemented in wb, we believe that

the SRM framework is generally applicable to a wide vari-

ety of other applications.

Acknowledgments

This work bene�ted from discussions with Dave Clark and

with the End-to-End Task Force about general issues of

sender-based vs. receiver-based protocols. We thank Peter

Danzig for discussions about reliable multicasting and web-

caching. We also thank Mark Allman, Todd Montgomery,

Kannan Varadhan, and the anonymous referees for useful

feedback on the paper.

References

[AFM92] S. Armstrong, A. Freier, and K. Marzullo, \Mul-

ticast Transport Protocol", Request for Comments

(RFC) 1301, Feb. 1992.

[B93] K. Birman, \The Process Group Approach to Re-

liable Distributed Computing", Communications of

the ACM, Dec. 1993.

[B94] K. Birman, \A Response to Cheriton and

Skeen's Criticism of Causal and Totally Or-

dered Communication", Operating Systems Re-

view, 28(1):11-21, January 1994. URL http://cs-

tr.cs.cornell.edu/Dienst/UI/2.0/Contents/ncstrl.cornell/TR93-

1390.

[BSS91] K. Birman, A. Schiper, and P. Stephenson,

\Lightweight Casual and Atomic Group Multicast",

ACM Transactions on Computer Systems, Vol.9, No.

3, pp. 272-314, Aug. 1991.

[BCS94] B. Braden, D. Clark, and S. Shenker, \Integrated

Services in the Internet Architecture: an Overview",

Request for Comments (RFC) 1633, IETF, June

1994.

[BMT94] Bhagwat, Mishra, and Tripathi, \E�ect of Topol-

ogy on Performance of Reliable Multicast Communi-

cation", Infocom 94, pp. 602-609.

[CM84] J. Chang and N. Maxemchuk, \Reliable Broadcast

Protocols", ACM Transactions on Computer Sys-

tems, Vol.2, No. 3, pp. 251-275, Aug. 1984.

[CS93] D. Cheriton and D. Skeen, \Understanding the

Limitations of Causally and Totally Ordered Com-

munication", Proceedings of the 14th Symposium on

Operating System Principles, ACM, December 1993.

[CT90] D. Clark and D. Tennenhouse, D., \Architectural

Considerations for a New Generation of Protocols",

Proceedings of ACM SIGCOMM '90, Sept. 1990, pp.

201-208.

[CLZ87] D. Clark, M. Lambert, and L. Zhang, \NETBLT:

A High Throughput Transport Protocol", Proceed-

ings of ACM SIGCOMM '87, pp. 353-359, Aug. 1987.

[D91] S. Deering, \Multicast Routing in a Datagram In-

ternetwork", PhD thesis, Stanford University, Palo

Alto, California, Dec. 1991.

[ES87] A. Erramilli and R.P Singh, \A Reliable and Ef-

�cient Multicast Protocol for Broadband Broadcast

Networks", Proceedings of ACM SIGCOMM '87, pp.

343-352, August 1987.

[FJLMZ95] S. Floyd, V. Jacobson, C. Liu, S. McCanne,

and L. Zhang, \A Reliable Multicast Framework for

Light-weight Sessions and Application Level Fram-

ing, Extended Report", LBNL Technical Report,

URL ftp://ftp.ee.lbl.gov/papers/wb.tech.ps.Z, Sept.

1995.

[H96] M. Hofmann, \A Generic Concept for Large-

Scale Multicast", Proceedings of International

Zurich Seminar on Digital Communications (IZS

'96), URL http://www.telematik.informatik.uni-

karlsruhe.de/�hofmann/paper-izs96.ps, Feb. 1996.

[HSC95] H. Holbrook, S. Singhal, and D. Cheriton, \Log-

Based Receiver-Reliable Multicast for Distributed

Interactive Simulation", Proceedings of ACM SIG-

COMM '95, August 1995.

[ISIS] ISIS and Horus WWW page, URL

http://www.cs.cornell.edu/Info/Projects/ISIS/ISIS.html.

[J92] V. Jacobson, \A Portable, Public Domain Network

`Whiteboard' ", Xerox PARC, viewgraphs, April 28,

1992. Unpublished document (cited for acknowledge-

ment purposes).

[J93] V. Jacobson, \Lightweight Sessions - A new

architecture for realtime applications and pro-

23



tocols (viewgraphs)." Networkshop '93, Mel-

bourne, Australia, November 30, 1993. URL

ftp://ftp.ee.lbl.gov/talks/vj-lwsarch.ps.Z.

[J94] V. Jacobson, \A Privacy and Security Architecture

for Lightweight Sessions", Sante Fe, NM, Sept. 94.

URL ftp://ftp.ee.lbl.gov/talks/lws-privacy.ps.Z.

[J93] V. Jacobson, Lightweight Sessions - A new architec-

ture for realtime applications and protocols", 3rd An-

nual Principal Investigators Meeting, ARPA, Santa

Rosa, CA, Sept. 1, 1993.

[J94c] V. Jacobson, \Administratively Scoped

IP Multicast", viewgraphs, 30th IETF,

Toronto, Canada, July 25, 1994. URL

ftp://ftp.ee.lbl.gov/talks/adminscope.ps.Z.

[KTHB89] M.F. Kaashoek, A.S. Tannenbaum, S.F. Hum-

mel, and H.E. Bal, \An E�cient Reliable Broadcast

Protocol", ACM Operating Systems Review, V. 23 N.

4, Oct. 1989, pp. 5-19.

[KKT96] S.K. Kasera, J. Kurose and D. Towsley, "Scal-

able Reliable Multicast Using Multiple Multicast

Groups," CMPSCI Technical Report TR 96-73, Oc-

tober 1996.

[LP96] J.C. Lin and S. Paul, \RMTP: A Reliable Multicast

Transport Protocol", IEEE INFOCOM '96, pp. 1414-

1424.

[M92] S. McCanne, \A Distributed Whiteboard

for Network Conferencing", May 1992,

UC Berkeley CS 268 Computer Networks

term project. Unpublished report. URL

http://www.cs.berkeley.edu/�mccanne/papers/mccanne-

wb92.ps.gz.

[MJ95] S. McCanne and V. Jacobson, \vic: A Flexi-

ble Framework for Packet Video", ACM Multimedia

1995, Nov. 1995, San Francisco, CA, pp. 511-522.

[MJV96] S. McCanne, V. Jacobson, and M. Vetterli,

\Receiver-driven Layered Multicast", ACM SIG-

COMM 96, August 1996, Stanford, CA, pp. 117-130.

[MMA90] P. Melliar-Smith, L. Moser, and V. Agrawala,

\Broadcast Protocols for Distributed Systems",

IEEE Transactions on Parallel and Distributed Sys-

tems, Vol. 1 No. 1, Jan. 1990, pp. 17-25.

[M84] D.L Mills, \Network Time Protocol (Version 3)",

RFC (Request For Comments) 1305, March 1992.

[MWC95] T. Montgomery, B. Whetten, and J. Callahan,

\The Reliable Multicast Protocol Speci�cation Flow

Control and NACK Policy", October 1995, URL

ftp://research.ivv.nasa.gov/pub/doc/RMP/RMPow.txt.

[MTC] Multicast Transport Protocols WWW page, URL

http://hill.lut.ac.uk/DS-Archive/MTP.html.

[Pa85] E. Palmer, Graphical Evolution: An Introduction to

the Theory of Random Graphs, John Wiley & Sons,

1985.

[PSA96] S. Pejhan, M. Schwartz, and D. Anastassiou, \Er-

ror Control Using Retransmission Schemes in Mul-

ticast Transport Protocols for Real-Time Media",

IEEE/ACM Transactions on Networking, vol. 4 no.

3, pp. 413-427, June 1996.

[SCFJ94] H. Schulzrinne, S. Casner, R. Frederick, and

V. Jacobson, \RTP: A Transport Protocol for Real-

Time Applications", RFC 1889, January 1996.

[PTK96] S. Pingali, D. Towsley, and J. Kurose,

\A Comparison of Sender-Initiated and

Receiver-Initiated Reliable Multicast Pro-

tocols", to appear in IEEE JSAC. URL

ftp://gaia.cs.umass.edu/pub/Tows96:Comparison.ps.Z.

An earlier version of this paper appeared in SIG-

METRICS '94, May 1994.

[PS93] Thomas F. La Porta and Mischa Schwartz, \The

MultiStream Protocol: a Highly Flexible High-speed

Transport Protocol", IEEE Journal on Selected Ar-

eas in Communications, vol. 11, pp. 519-530, May

1993.

[S96] Sharma, P., \Scaling Control Tra�c in Network

Protocols", quals proposal, unpublished manuscript

(cited for acknowledgement purposes), Sept. 18,

1996.

[XTP92] W.T. Strayer, B.J. Dempsey, and A.C. Weaver,

XTP: The Xpress Transfer Protocol, Addison-

Wesley, Reading, Mass 1992. URL http://heg-

school.aw.com/cseng/authors/dempsey/xtp/xtp.nclk.

[XTP95] Xpress Transport Protocol Speci�cation, XTP

Revision 4.0, XTP Forum, Mar. 1995.

[TD95] A. Thyagarajan and S. Deering, \Hierarchical

Distance-Vector Multicast Routing for the Mbone",

ACM SIGCOMM 95, pp. 60-65, August 1995.

[TS94] A. Thyagarajan and S. Deering, IP Multi-

cast release 3.3, Aug. 1994, available from

ftp://parcftp.xerox.com/pub/net-research

/ipmulti3.3-sunos413x.tar.Z.

[WKM95] B. Whetten, T. Montgomery, and S. Kaplan, \A

High Performance Totally Ordered Multicast Proto-

col", Theory and Practice in Distributed Systems,

K.P. Birman, F. Mattern, A. Schiper (Eds), Springer

Verlag LCNS 938, July 1995.

[YKT96] M. Yajnik, J. Kurose, and D. Towsley, \Packet

Loss Correlation in the MBone Multicast Net-

work", to appear in the IEEE Global Internet mini-

conference at Globecom '96.

24


