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Abstract

This paper uses simulations to explore the benefits of

adding selective acknowledgments (SACK) and selec-

tive repeat to TCP. We compare Tahoe and Reno TCP,

the two most common reference implementations for

TCP, with two modified versions of Reno TCP. The first

version is New-Reno TCP, a modified version of TCP

without SACK that avoids some of Reno TCP's per-

formance problems when multiple packets are dropped

from a window of data. The second version is SACK

TCP, a conservative extension of Reno TCP modified to

use the SACK option being proposed in the Internet En-

gineering Task Force (IETF). We describe the conges-

tion control algorithms in our simulated implementation

of SACK TCP and show that while selective acknowl-

edgments are not required to solve Reno TCP's per-

formance problems when multiple packets are dropped,

the absence of selective acknowledgments does impose

limits to TCP's ultimate performance. In particular,

we show that without selective acknowledgments, TCP

implementations are constrained to either retransmit at

most one dropped packet per roundtrip time, or to re-

transmit packets that might have already been success-

fully delivered.

1 Introduction

In this paper we illustrate some of the benefits of adding

selective acknowledgment (SACK) to TCP. Current im-

plementations of TCP use an acknowledgment number

field that contains a cumulative acknowledgment, indi-

cating the TCP receiver has received all of the data up to

the indicated byte. A selective acknowledgment option

allows receivers to additionally report non-sequential

data they have received. When coupled with a selec-

tive retransmission policy implemented in TCP senders,
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considerable savings can be achieved.

Several transport protocols have provided for se-

lective acknowledgment (SACK) of received data.

These include NETBLT [CLZ87], XTP [SDW92],

RDP [HSV84] and VMTP [Che88]. The first pro-

posals for adding SACK to TCP [BJ88, BJZ90] were

later removed from the TCP RFCs (Request For Com-

ments) [BBJ92] pending further research. The cur-

rent proposal for adding SACK to TCP is given

in [MMFR96]. We use simulations to show how the

SACK option defined in [MMFR96] can be of substan-

tial benefit relative to TCP without SACK.

The simulations are designed to highlight perfor-

mance differences between TCP with and without

SACK. In this paper, Tahoe TCP refers to TCP with the

Slow-Start, Congestion Avoidance, and Fast Retransmit

algorithms first implemented in 4.3 BSD Tahoe TCP in

1988. Reno TCP refers to TCP with the earlier algo-

rithms plus Fast Recovery, first implemented in 4.3 BSD

Reno TCP in 1990.

Without SACK, Reno TCP has performance prob-

lems when multiple packets are dropped from one win-

dow of data. These problems result from the need

to await a retransmission timer expiration before re-

initiating data flow. Situations in which this problem

occurs are illustrated later in this paper (for example,

see Section 6.4).

Not all of Reno's performance problems are a nec-

essary consequence of the absence of SACK. To show

why, we implemented a variant of the Reno algorithms

in our simulator, called New-Reno. Using a sugges-

tion from Janey Hoe [Hoe95, Hoe96], New-Reno avoids

many of the retransmit timeouts of Reno without requir-

ing SACK. Nevertheless, New-Reno does not perform

as well as TCP with SACK when a larger number of

packets are dropped from a window of data. The pur-

pose of our discussion of New-Reno is to clarify the

fundamental limitations of the absence of SACK.

In the absence of SACK, both Reno and New-Reno

senders can retransmit at most one dropped packet per

roundtrip time, even if senders recover from multiple



drops in a window of data without waiting for a retrans-

mit timeout. This characteristic is not shared by Tahoe

TCP, which is not limited to retransmitting at most one

dropped packet per roundtrip time. However, it is a fun-

damental consequence of the absence of SACK that the

sender has to choose between the following strategies to

recover from lost data:

1. retransmitting at most one dropped packet per

round trip time, or

2. retransmitting packets that might have already been

successfully delivered.

Reno and New-Reno use the first strategy, and Tahoe

uses the second.

To illustrate the advantages of TCP with SACK, we

show simulations with SACK TCP, using the SACK im-

plementation in our simulator. SACK TCP is based on

a conservative extension of the Reno congestion con-

trol algorithms with the addition of selective acknowl-

edgments and selective retransmission. With SACK, a

sender has a better idea of exactly which packets have

been successfully delivered as compared with compa-

rable protocols lacking SACK. Given such information,

a sender can avoid unnecessary delays and retransmis-

sions, resulting in improved throughput. We believe the

addition of SACK to TCP is one of the most important

changes that should be made to TCP at this time to im-

prove its performance.

In Sections 2 through 5 we describe the congestion

control and packet retransmission algorithms in Tahoe,

Reno, New-Reno, and SACK TCP. Section 6 shows sim-

ulations with Tahoe, Reno, New-Reno, and SACK TCP

in scenarios ranging from one to four packets dropped

from a window of data. Section 7 shows a trace of Reno

TCP taken from actual Internet traffic, showing that the

performance problems of Reno without SACK are of

more than theoretical interest. Finally, Section 8 dis-

cusses possible future directions for TCP with selective

acknowledgments, and Section 9 gives conclusions.

2 Tahoe TCP

Modern TCP implementations contain a number of al-

gorithms aimed at controlling network congestion while

maintaining good user throughput. Early TCP imple-

mentations followed a go-back-n model using cumula-

tive positive acknowledgment and requiring a retrans-

mit timer expiration to re-send data lost during transport.

These TCPs did little to minimize network congestion.

The Tahoe TCP implementation added a number of

new algorithms and refinements to earlier implemen-

tations. The new algorithms include Slow Start, Con-

gestion Avoidance, and Fast Retransmit [Jac88]. The

refinements include a modification to the round-trip-

time estimator used to set retransmission timeout values.

All modifications have been described elsewhere [Jac88,

Ste94].

The Fast Retransmit algorithm is of special interest in

this paper because it is modified in subsequent versions

of TCP. With Fast Retransmit, after receiving a small

number of duplicate acknowledgments for the same

TCP segment (dup ACKs) the data sender infers that a

packet has been lost, and retransmits the packet without

waiting for a retransmission timer to expire, leading to

higher channel utilization and connection throughput.

3 Reno TCP

The Reno TCP implementation retained the enhance-

ments incorporated into Tahoe, but modified the Fast

Retransmit operation to include Fast Recovery [Jac90].

The new algorithm prevents the communication path

(“pipe”) from going empty after Fast Retransmit,

thereby avoiding the need to slow-start to re-fill it after

a single packet loss. Fast Recovery operates by assum-

ing each dup ACK received represents a single packet

having left the pipe. Thus, during Fast Recovery the

TCP sender is able to make intelligent estimates of the

amount of outstanding data.

Fast Recovery is entered by a TCP sender after re-

ceiving an initial threshold of dup ACKs. This thresh-

old, usually known as tcprexmtthresh, is generally set to

three. Once the threshold of dup ACKs is received, the

sender retransmits one packet and reduces its congestion

window by one half. Instead of slow-starting, as is per-

formed by a Tahoe TCP sender, the Reno sender uses

additional incoming dup ACKs to clock subsequent out-

going packets.

The sender's usable window becomes

min(awin; cwnd + ndup) where awin is the re-

ceiver's advertised window, cwnd is the sender's

congestion window, and ndup is maintained at 0 until

the number of dup ACKs reaches tcprexmtthresh, and

thereafter tracks the number of duplicate ACKs. Thus,

during Fast Recovery the sender “inflates” its window

by the number of dup ACKs it has received, according

to the observation that each dup ACK indicates some

packet has been removed from the network and is now

cached at the receiver. After entering Fast Recovery and

retransmitting a single packet, the sender effectively

waits until half a window of dup ACKs have been re-

ceived, and then sends a new packet for each additional

dup ACK that is received. Upon receipt of an ACK for

new data (called a “recovery ACK”), the sender exits

Fast Recovery by setting ndup to 0. Fast Recovery is

illustrated in more detail in the simulations in Section 6.



Reno's Fast Recovery algorithm is optimized for the

case when a single packet is dropped from a window of

data. The Reno sender retransmits at most one dropped

packet per roundtrip time. Reno significantly improves

upon the behavior of Tahoe TCP when a single packet is

dropped from a window of data, but can suffer from per-

formance problems when multiple packets are dropped

from a window of data. This is illustrated in the simu-

lations in Section 6 with three or more dropped packets.

The problem is easily constructed in our simulator when

a Reno TCP connection with a large congestion window

suffers a burst of packet losses after slow-starting in a

network with drop-tail gateways (or other gateways that

don' t monitor the average queue size).

4 New-Reno TCP

We include New-Reno TCP in this paper to show how a

simple change to TCP makes it possible to avoid some

of the performance problems of Reno TCP without the

addition of SACK. At the same time, we use New-Reno

TCP to explore the fundamental limitations of TCP per-

formance in the absence of SACK.

The New-Reno TCP in this paper includes a small

change to the Reno algorithm at the sender that elimi-

nates Reno's wait for a retransmit timer when multiple

packets are lost from a window [Hoe95, CH95]. The

change concerns the sender's behavior during Fast Re-

covery when a partial ACK is received that acknowl-

edges some but not all of the packets that were out-

standing at the start of that Fast Recovery period. In

Reno, partial ACKs take TCP out of Fast Recovery by

“deflating” the usable window back to the size of the

congestion window. In New-Reno, partial ACKs do not

take TCP out of Fast Recovery. Instead, partial ACKs

received during Fast Recovery are treated as an indica-

tion that the packet immediately following the acknowl-

edged packet in the sequence space has been lost, and

should be retransmitted. Thus, when multiple packets

are lost from a single window of data, New-Reno can

recover without a retransmission timeout, retransmit-

ting one lost packet per roundtrip time until all of the

lost packets from that window have been retransmitted.

New-Reno remains in Fast Recovery until all of the data

outstanding when Fast Recovery was initiated has been

acknowledged.

The implementations of New-Reno and SACK TCP

in our simulator also use a “maxburst” parameter. The

“maxburst” parameter in our SACK TCP implementa-

tion limits to four the number of packets that can be

sent in response to a single incoming ACK, even if the

sender's congestion window would allow more packets

to be sent. The “maxburst” parameter in New-Reno lim-

its the number of packets that can be sent in response to

a single incoming ACK to four outside of Fast Recovery,

and to two during Fast Recovery, to more closely repro-

duce the behavior of Reno TCP. The “maxburst” param-

eter is really only needed for the first window of packets

that are sent after leaving Fast Recovery. If the sender

had been prevented by the receiver's advertised window

from sending packets during Fast Recovery, then, with-

out “maxburst”, it is possible for the sender to send a

large burst of packets upon exiting Fast Recovery. This

applies to Reno and New-Reno TCP, and to a lesser ex-

tent, to SACK TCP. In Tahoe TCP the Slow-Start al-

gorithm prevents bursts after recovering from a packet

loss. The bursts of packets upon exiting Fast Recovery

with New-Reno TCP are illustrated in Section 6 in the

simulations with three and four packet drops. Bursts of

packets upon exiting Fast Recovery with Reno TCP are

illustrated in [Flo95].

[Hoe95] recommends an additional change to TCP's

Fast Recovery algorithms. She suggests the data sender

send a new packet for every two dup ACKs received dur-

ing Fast Recovery, to keep the “flywheel” of ACK and

data packets going. This is not implemented in “New-

Reno” because we wanted to consider the minimal set of

changes to Reno needed to avoid unnecessary retransmit

timeouts.

5 SACK TCP

The SACK TCP implementation in this paper, called

“Sack1” in our simulator, is also discussed in [Flo96b,

Flo96a].1 The SACK option follows the format

in [MMFR96]. From [MMFR96], the SACK option

field contains a number of SACK blocks, where each

SACK block reports a non-contiguous set of data that

has been received and queued. The first block in a

SACK option is required to report the data receiver's

most recently received segment, and the additional

SACK blocks repeat the most recently reported SACK

blocks [MMFR96]. In these simulations each SACK op-

tion is assumed to have room for three SACK blocks.

When the SACK option is used with the Timestamp

option specified for TCP Extensions for High Perfor-

mance [BBJ92], then the SACK option has room for

only three SACK blocks [MMFR96]. If the SACK op-

tion were to be used with both the Timestamp option and

with T/TCP (TCP Extensions for Transactions) [Bra94],

the TCP option space would have room for only two

SACK blocks.

1The 1990 “Sack” TCP implementation on our previous simula-

tor is from Steven Mccanne and Sally Floyd, and does not conform

to the formats in [MMFR96]. The new “Sack1” implementation con-

tains major contributions from Kevin Fall, Jamshid Mahdavi, and Matt

Mathis.



The congestion control algorithms implemented in

our SACK TCP are a conservative extension of Reno's

congestion control, in that they use the same algorithms

for increasing and decreasing the congestion window,

and make minimal changes to the other congestion con-

trol algorithms. Adding SACK to TCP does not change

the basic underlying congestion control algorithms. The

SACK TCP implementation preserves the properties of

Tahoe and Reno TCP of being robust in the presence

of out-of-order packets, and uses retransmit timeouts as

the recovery method of last resort. The main difference

between the SACK TCP implementation and the Reno

TCP implementation is in the behavior when multiple

packets are dropped from one window of data.

As in Reno, the SACK TCP implementation enters

Fast Recovery when the data sender receives tcprexmt-

thresh duplicate acknowledgments. The sender re-

transmits a packet and cuts the congestion window in

half. During Fast Recovery, SACK maintains a vari-

able called pipe that represents the estimated number

of packets outstanding in the path. (This differs from the

mechanisms in the Reno implementation.) The sender

only sends new or retransmitted data when the estimated

number of packets in the path is less than the conges-

tion window. The variable pipe is incremented by one

when the sender either sends a new packet or retransmits

an old packet. It is decremented by one when the sender

receives a dup ACK packet with a SACK option report-

ing that new data has been received at the receiver.2

Use of the pipe variable decouples the decision of

when to send a packet from the decision of which packet

to send. The sender maintains a data structure, the

scoreboard (contributed by Jamshid Mahdavi and Matt

Mathis), that remembers acknowledgments from previ-

ous SACK options. When the sender is allowed to send

a packet, it retransmits the next packet from the list of

packets inferred to be missing at the receiver. If there are

no such packets and the receiver's advertised window is

sufficiently large, the sender sends a new packet.

When a retransmitted packet is itself dropped, the

SACK implementation detects the drop with a retrans-

mit timeout, retransmitting the dropped packet and then

slow-starting.

The sender exits Fast Recovery when a recovery ac-

knowledgment is received acknowledging all data that

was outstanding when Fast Recovery was entered.

The SACK sender has special handling for partial

ACKs (ACKs received during Fast Recovery that ad-

vance the Acknowledgment Number field of the TCP

2Our simulator simply works in units of packets, not in units of

bytes or segments, and all data packets for a particular TCP connection

are constrained to be the same size. Also note that a more aggressive

implementation might decrement the variable pipe by more than one

packet when an ACK packet with a SACK option is received reporting

that the receiver has received more than one new out-of-order packet.

header, but do not take the sender out of Fast Recov-

ery). For partial ACKs, the sender decrements pipe by

two packets rather than one, as follows. When Fast Re-

transmit is initiated, pipe is effectively decremented

by one for the packet that was assumed to have been

dropped, and then incremented by one for the packet

that was retransmitted. Thus, decrementing the pipe

by two packets when the first partial ACK is received

is in some sense “cheating”, as that partial ACK only

represents one packet having left the pipe. However, for

any succeeding partial ACKs, pipe was incremented

when the retransmitted packet entered the pipe, but was

never decremented for the packet assumed to have been

dropped. Thus, when the succeeding partial ACK ar-

rives, it does in fact represent two packets that have

left the pipe: the original packet (assumed to have been

dropped), and the retransmitted packet. Because the

sender decrements pipe by two packets rather than one

for partial ACKs, the SACK sender never recovers more

slowly than a Slow-start.

The maxburst parameter, which limits the number

of packets that can be sent in response to a single incom-

ing ACK packet, is experimental, and is not necessarily

recommended for SACK implementations.3

There are a number of other proposals for TCP con-

gestion control algorithms using selective acknowledg-

ments [Kes94, MM96]. The SACK implementation in

our simulator is designed to be the most conservative

extension of the Reno congestion control algorithms, in

that it makes the minimum changes to Reno's existing

congestion control algorithms.

6 Simulations

This section describes simulations from four scenarios,

with from one to four packets dropped from a window of

data. Each set of scenarios is run for Tahoe, Reno, New-

Reno, and SACK TCP. Following this section, Section

7 shows a trace of Reno TCP traffic taken from Internet

traffic measurements, illustrating the performance prob-

lems of Reno TCP without SACK, and Section 8 dis-

cusses future directions of TCP with SACK.

For all of the TCP implementations in all of the sce-

narios, the first dropped packet is detected by the Fast

Retransmit procedure, after the source receives three

dup ACKs.

The results of the Tahoe simulations are similar in

all four scenarios. The Tahoe sender recovers with a

3For those reading the SACK code in the simulator, the boolean

overhead parameter significantly complicates the code, but is only

of concern in the simulator. The overhead parameter indicates

whether some randomization should be added to the timing of the TCP

connection. For all of the simulations in this paper, the overhead

parameter is set to zero, implying no randomization is added.



Fast Retransmit followed by Slow Start regardless of

the number of packets dropped from the window of

data. For connections with a larger congestion window,

Tahoe's delay in slow-starting back up to half the previ-

ous congestion window can have a significant impact on

overall performance.

The Reno implementation without SACK gives opti-

mal performance when a single packet is dropped from

a window of data. For the scenario in Figure 3 with two

dropped packets, the sender goes through Fast Retrans-

mit and Fast Recovery twice in succession, unnecessar-

ily reducing the congestion window twice. For the sce-

narios with three or four packet drops, the Reno sender

has to wait for a retransmit timer to recover.

As expected, the New-Reno and SACK TCPs each re-

cover from all four scenarios without having to wait for

a retransmit timeout. The New-Reno and SACK TCPs

simulations look quite similar. However, the New-Reno

sender is able to retransmit at most one dropped packet

each roundtrip time. The limitations of New-Reno, rel-

ative to SACK TCP, are more pronounced in scenarios

with larger congestion windows and a larger number of

dropped packets from a window of data. In this case the

constraint of retransmitting at most one dropped packet

each roundtrip time results in substantial delay in re-

transmitting the later dropped packets in the window. In

addition, if the sender is limited by the receiver's ad-

vertised window during this recovery period, then the

sender can be unable to effectively use the available

bandwidth.4.

For each of the four scenarios, the SACK sender re-

covers with good performance in both per-packet end-

to-end delay and overall throughput.

6.1 The simulation scenario

This rest of this section consists of a detailed descrip-

tion of the simulations in Figures 2 through 5. All of

these simulations can be run on our simulator ns with

the command test-sack. For those readers who are

interested, the text gives a packet-by-packet description

of the behavior of TCP in each simulation.

100ms

K1
0.8Mbps

S1

0.1ms

8Mbps
R1

Figure 1: Simulation Topology

Figure 1 shows the network used for the simulations

in this paper. The circle indicates a finite-buffer drop-

tail gateway, and the squares indicate sending or receiv-

4This is shown in the LBNL simulator ns in the test

many-drops, run with the command test-sack

ing hosts. The links are labeled with their bandwidth

capacity and delay. Each simulation has three TCP con-

nections from S1 to K1. Only the first connection is

shown in the figures. The second and third connections

have limited data to send, and are included to achieve

the desired pattern of packet drops for the first con-

nection. The pattern of packet drops is changed sim-

ply by changing the number of packets sent by the sec-

ond and third connections. Readers interested in the

exact details of the simulation set-up are referred to

the files test-sack and sack.tcl in our simula-

tor ns [MF95]. The granularity of the TCP clock is set

to 100 msec, giving round-trip time measurements ac-

curate to only the nearest 100 msec.

These simulations use drop-tail gateways with small

buffers. These are not intended to be realistic sce-

narios, or realistic values for the buffer size. They

are intended as a simple scenario for illustrating TCP's

congestion control algorithms. Simulations with RED

(Random Early Detection) gateways [FJ93] would in

general avoid the bursts of packet drops characteristic

of drop-tail gateways.

Ns [MF95] is based on LBNL's previous simulator

tcpsim, which was in turn based on the REAL sim-

ulator [Kes88]. The simulator does not use production

TCP code, and does not pretend to reproduce the exact

behavior of specific implementations of TCP [Flo95].

Instead, the simulator is intended to support exploration

of underlying TCP congestion and error control algo-

rithms, including Slow Start, Congestion Avoidance,

Fast Retransmit, and Fast Recovery. The simulation re-

sults contained in this report can be recreated with the

test-sack script supplied with ns.

For simplicity, most of the simulations shown in this

paper use a data receiver that sends an ACK for ev-

ery data packet received. The simulations in this paper

also consist of one-way traffic. As a result, ACKs are

never “compressed” or discarded on the path from the

receiver back to the sender. The simulation set run by

the test-sack script includes simulations with multi-

ple connections, two-way traffic, and data receivers that

send an ACK for every two data packets received.

The graphs from the simulations were generated by

tracing packets entering and departing from R1. For

each graph, the x-axis shows the packet arrival or de-

parture time in seconds. The y-axis shows the packet

number mod 100. Packets are numbered starting with

packet 0. Each packet arrival and departure is marked

by a square on the graph. For example, a single packet

passing through R1 experiencing no appreciable queue-

ing delay would generate two marks so close together on

the graph as to appear as a single mark. Packets delayed

at R1 but not dropped will generate two colinear marks

for a constant packet number, spaced by the queueing



delay. Packets dropped due to buffer overflow are indi-

cated by an “�” on the graph for each packet dropped.

Returning ACK packets received at R1 are marked by a

smaller dot.

6.2 One Packet Loss

Figure 2 shows Tahoe, Reno, New-Reno, and SACK

TCP with one dropped packet. Figure 2 shows that

Tahoe requires a Slow-Start to recover from the packet

drop, while Reno, New-Reno, and SACK TCP are all

able to recover smoothly using Fast Recovery. The rest

of this section describes the simulations in Figure 2 in

more detail.

In Figure 2 with Tahoe TCP, packets 0–13 are sent

without error as the sending TCP's congestion window

increases exponentially from 1 to 15 according to the

Slow Start algorithm. The figure contains a square for

each packet as it arrives and leaves the congested gate-

way. For a packet like the first one that experiences

no queueing delay, the two squares appear as a single

mark. As the queueing delay at the congested gateway

increases, due in part to competing traffic not shown

in this figure, the two marks for the arrival and depar-

ture diverge, and the distance between the arrival and

departure marks corresponds to the queueing delay ex-

perienced by that packet.

By the end of the fourth non-overlapping window

of data, the router's queue is full, causing packet 14

to be dropped. Because the first seven packets of the

fourth window were successfully delivered (and ACKs

are never dropped in these simulations), as the seven

ACKs arrive the sender increases its window from 8 to

15 and sends the next 14 packets, 15–28.

After receiving the first ACK for packet 13, the sender

receives 14 additional ACKs for packet 13 correspond-

ing to the receiver's successful receipt of packets 15–

28. The third duplicate ACK of the sequence (the fourth

ACK for packet 13) meets the duplicate ACK threshold

of three, and fast retransmission and Slow Start are in-

voked. In addition, the slow start threshold ssthresh5 is

reduced to seven (b 8+7
2

c). The sending TCP resets its

congestion window to one and retransmits packet 14.

The receiver has already cached packets 15–28, and

upon receiving the retransmitted packet 14 acknowl-

edges packet 28. The ACK for packet 28 causes the

sender to increase its congestion window by one and

continue its transmissions from packet 29. While trans-

mitting the window beginning with packet 35, the sender

reaches the slow start threshold and enters Conges-

5The slow-start threshold ssthresh is a dynamically-set value in-

dicating an upper bound on the congestion window above which a

TCP sender switches from slow-start to the Congestion Avoidance

algorithm.

tion Avoidance. During subsequent transmissions, the

sender's window is increased by roughly one packet per

roundtrip time as expected.

For figure 2 with Reno TCP, Reno's Fast Recovery

algorithm gives optimal performance in this scenario.

The sender's congestion window is reduced by half, in-

coming dup acks are used to clock outgoing packets, and

Slow-Start is avoided.

Reno's operation in Figure 2 is identical to Tahoe un-

til the fourth ACK for packet 13 is received at the sender.

The ACKs corresponding to packets 15–28 comprise 14

dup ACKs for packet 13. The third dup ACK triggers

a retransmission of packet 14, puts the sender into Fast

Recovery, and reduces its congestion window and slow

start threshold to seven. During Fast Recovery, receipt

of the fourth dup ACK brings the usable window to 11,

and by the 14th dup ACK the usable window reaches 21.

The “inflated” window from the last six dup acks allows

the sender to send packets 29–34. Upon receiving the

ACK for packet 28, the sender exits Fast Recovery and

continues in Congestion Avoidance with a congestion

window of seven.

The New-Reno and SACK simulations in Figure 2

show no differences from the Reno simulation under one

packet drop.
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Figure 2: Simulations with one dropped packet.



6.3 Two Packet Losses

Figure 3 shows Tahoe, Reno, New-Reno, and SACK

TCP with two dropped packet. As in the previous sim-

ulation, Tahoe recovers from the packet drops with a

Slow-Start. Reno TCP recovers with some difficulties,

while both New-Reno and SACK TCP recover smoothly

and quickly. The rest of this section describes the simu-

lations in Figure 3 in more detail.

The top figure in Figure 3 shows Tahoe TCP with

two dropped packets. The response to loss on packet

14 is as described for Tahoe in the single loss case. In

Tahoe, even though packets 15–28 were sent, this fact is

forgotten by the sender when retransmitting packet 14.

After retransmitting packet 14 and receiving 13 dup

ACKs, the sender receives an ACK for packet 27. The

sender is in slow-start, opens its window to 2, and sends

packets 28 and 29. The sender switches from slow-start

to Congestion Avoidance when sending packet 40.

In Figure 3 with Reno TCP' s Fast Retransmit, the

Reno sender is often forced to wait for a retransmit time-

out to recover from two packets dropped from a win-

dow of data.6 The Reno sender does not have to wait

for a retransmit timeout, but instead recovers by doing

a Fast Retransmit and Fast Recovery two times in suc-

cession, in the process cutting the congestion window in

half twice, in two successive roundtrip times. This slows

down the TCP connection considerably.

The two packet drops occur at packets 14 and 28. Op-

eration is similar to the one-drop case, except the loss of

packet 28 implies 13 dup ACKs are generated for packet

13 rather than 14. The 13 dup ACKs allow the sender

to send packets 29–33 with a usable window of 20 after

the last dup ACK is received.

The loss of packet 28 causes a number of dup ACKs

for packet 27 to be received at the sender. The first ACK

for packet 27 is triggered by the receiver receiving the

retransmitted packet 14. This ACK allows the sender to

send packet 34. The next five dup ACKs are triggered

by packets 29–33, and the final dup ACK is triggered by

packet 34.

At the time the first ACK for packet 27 is received, the

sender exits Fast Recovery with a congestion window of

seven, having been reduced from 15 after the first loss.

Upon receipt of the third dup ACK for packet 27, the

sender begins a second Fast Retransmit. The sender re-

transmits packet 28 and reduces its congestion window

to three, but is unable to send any additional data be-

cause of its usable window of six. The usable window

6More precisely, when two packets are dropped from a window

of data, the Reno sender is forced to wait for a retransmit timeout

whenever the congestion window is less than 10 packets when Fast

Recovery is initiated, and whenever the congestion window is within

two packets of the receiver's advertised window when Fast Recovery

is initiated.

grows from eight to nine upon receipt of the fifth and

sixth dup ACKs, allowing the sender to send packets 35

and 36.

The sender receives an ACK for packet 34 as a result

of the receiver receiving retransmitted packet 28. This

ACK brings the sender out of Fast Recovery with a con-

gestion window and ssthresh of three. The ACKs for

packets 34 and 35 allow the sender to send 37 and 38,

and the ACK for packet 36 allows packet 39 to be sent.

The pattern repeats for many round-trip times, alternat-

ing between a single ACK advancing the sender's win-

dow followed by a series of ACKs which both advance

and expand the sender's window according to conges-

tion avoidance.

In figure 3 with New-Reno TCP, New-Reno's behav-

ior is similar to Reno until the sender receives the first

ACK for packet 27. This ACK is a partial ACK, and

causes New-Reno to retransmit packet 28 immediately

and not exit Fast Recovery. The dup ACK counter is

reset to zero and later increased by the number of dup

ACKs matching the partial ACK. The congestion win-

dow is not affected.

With the arrival of five dup ACKs for packet 27, the

sender sends packets 35–39. The ACK for packet 33

causes the sender to exit Fast Recovery with a con-

gestion window of seven and continue in Congestion

Avoidance.

In figure 3 with SACK TCP, SACK TCP's behav-

ior is similar to Reno until the sender receives the third

ACK for packet 13. At this point, the protocol initializes

the pipe as follows:

pipe = cwnd� ndup = 15� 3 = 12:

It then subtracts one for each of the subsequent 10 dup

ACKs and adds one for each of the five transmitted

packets 29–33. At the point the first ACK for packet

27 arrives, pipe has value 12� 10 + 5 = 7.

The first ACK for packet 27 is a partial ACK, caus-

ing pipe to be decremented by two. With the sender's

congestion window at seven, packets 34 and 35 are now

sent. The five additional dup ACKs for packet 27 minus

one for the retransmission of packet 28 allow the sender

to send packets 36–39. The sender next receives two

dup ACKs for packet 27 corresponding to the receipt of

packets 34 and 35, allowing the sender to send packets

40 and 41. The next ACK received at the sender is for

packet 35 and corresponds to the receiver receiving the

retransmitted packet 28. It brings the sender out of Fast

Recovery with a congestion window of seven, thereby

allowing packet 42 to be sent. The next four ACKs for

packets 36–39 allow the sender to send packets 43–46

and continue under Congestion Avoidance.
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Sack TCP

Figure 3: Simulations with two dropped packets.



6.4 Three Packet Losses

Figure 4 shows Tahoe, Reno, New-Reno, and SACK

TCP with three dropped packets. As in the previous

simulations, Tahoe recovers from the packet drops with

a Slow-Start. Reno TCP, on the other hand, experi-

ences severe performance problems, and has to wait for

a retransmit timer to recover from the dropped pack-

ets. Both New-Reno and SACK TCP recover fairly

smoothly. The rest of this section describes the simu-

lations in Figure 4 in more detail.

The top figure in Figure 4 shows Tahoe TCP with

three dropped packets. The response to loss on packet

14 is as described for Tahoe in the single loss case. As

in the two packet loss case, even though packets 15–28

were sent, this is not taken into account by the sender.

After retransmitting packet 14 and receiving 12 dup

ACKs, the sender receives an ACK for packet 25. The

sender is in slow-start, opens its window to 2, and sends

packets 26 and 27. Note that packets 26 and 27 are sent

a second time, even though 27 has already been suc-

cessfully received. The sender next receives two ACKs

for packet 27, corresponding to the receipt of the resent

packets 26 and 27. One of these ACKs is for new data,

which increases the congestion window to three. The

sender continues in slow start until packet 37, where it

switches to Congestion Avoidance.

Figure 4 shows Reno TCP with three dropped pack-

ets. When three packets are dropped from a window of

data, the Reno sender is almost always forced to wait for

a retransmit timeout.7

Reno's operation in Figure 4 is generally similar to

Reno with two drops, except the additional packet drop

causes only 12 dup ACKs for packet 13 rather than thir-

teen. The 12 dup ACKs allow the sender to send packet

29–32 with a usable window of 19 after retransmitting

packet 14.

With the arrival of the first ACK for packet 25, Reno

exits fast recovery, but after receiving three additional

ACKs re-enters fast recovery with a congestion win-

dow of three and usable window of six. With the ar-

rival of the fifth ACK for packet 25, the usable window

grows to seven, but the sender is still unable to send

data because seven packets (26–32) are still unacknowl-

edged. The ACK for packet 27 brings the sender out of

Fast Recovery once again with a congestion window of

three. At the point the ACK for packet 27 arrives, the

sender is stalled. Although packets 28–32 have not yet

been acknowledged and 28 requires retransmission, the

“ACK clock” is lost, implying Reno is unable to employ

7When three packets are dropped from a window of data, the Reno

sender is forced to wait for a retransmit timeout whenever the number

of packets between the first and the second dropped packets is less

than 2 + 3W=4, for W the congestion window just before the Fast

Retransmit.

Fast Retransmit and must instead await a retransmission

timeout.

The timeout for packet 28 expires, causing a retrans-

mission and putting the sender into slow start. The ACK

for packet 32 corresponds to the arrival of packet 28

at the receiver, and the sender continues in Congestion

Avoidance as expected.

Figure 4 shows New-Reno TCP with three dropped

packets. New-Reno's operation is similar to Reno with

three drops until the receipt of the first ACK for packet

25. After receiving this ACK, the New-Reno sender im-

mediately retransmits packet 26 and sets its usable win-

dow to a congestion window of seven. The four subse-

quent dup ACKs for packet 25 inflate the usable win-

dow to eleven, allowing the sender to send packets 33–

36. The next partial ACK acknowledges packet 27 and

causes the sender to retransmit packet 28 and reduce its

usable window to seven. The sender is unable to send

additional data until the receipt of the third and fourth

dup ACKs for packet 27, which allow the sender to send

packets 37 and 38 with a usable window of eleven.

The ACK for packet 36 brings the sender out of Fast

Recovery and returns its congestion window to seven.

Only packets 37 and 38 are unacknowledged at this

point, so the sender should be able to send five addi-

tional packets but is instead limited to sending only four

packets by the maxburst parameter described above.

The arrival of the ACKs for packets 37 and 38 allows

the sender to send packets 43 and 44 followed by 45, re-

spectively. The sender continues in Congestion Avoid-

ance with a window of seven.

Figure 4 shows SACK TCP with three dropped pack-

ets. SACK TCP's packet sending pattern is similar to

Reno with three packet drops, until the 12th dup ACK

for packet 13 is received at the sender. This ACK con-

tains SACK information indicating a “hole” at packet

26. Rather than sending packets 29–32 as in Reno, it

instead sends 29–31 and retransmits 26.

The handling of pipe is similar to SACK TCP with

two packet drops. When the third dup ACK for packet

13 arrives at the sender, pipe is initialized to 12. The

retransmission of packet 26 is accounted for, causing the

value of pipe to become 12� 9+ 1 + 3 = 7 when the

first ACK for packet 25 arrives. This ACK corresponds

to the receiver receiving the retransmitted packet 14, and

causes the sender to reducepipe by two and send pack-

ets 32 and 33.
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Figure 4: Simulations with three dropped packets.



The next three ACKs acknowledge packet 25 and

contain SACK information indicating a hole at packets

26 and 28. The three ACKs cause the sender to reduce

pipe by three and retransmit packet 28. At that point

no holes remain to be filled and the sender may send

packets 34 and 35. The next ACK arrives shortly there-

after, acknowledges packet 27 and indicates the hole at

packet 28. It is also a partial ACK, causing pipe to

be decremented by two and allowing the sender to send

packets 36 and 37.

The next two ACKs for packet 27 arrive nearly to-

gether and correspond to the receiver receiving packets

32 and 33. These ACKs contain SACK information in-

dicating the hole at packet 28 remains to be filled. As the

sender has already retransmitted 28 and no other holes

are indicated in the SACK information, the sender con-

tinues by sending packets 38 and 39. The next ACK

received at the sender corresponds to the receiver's re-

ceipt of the retransmission of packet 28. It acknowl-

edges packet 33 and brings the sender out of Fast Re-

covery with a congestion window of 7. The sender con-

tinues in Congestion Avoidance.

6.5 Four Packet Losses

Figure 5 shows Tahoe, Reno, New-Reno, and SACK

TCP with four dropped packets. As in the previ-

ous simulations, Tahoe recovers from the packet drops

with a Slow-Start. Also as in the previous simula-

tion, Reno TCP experiences severe performance prob-

lems, and has to wait for a retransmit timer to recover

from the dropped packets. New-Reno requires four

roundtrip times to recover and to retransmit the four

dropped packets, while and SACK TCP sender recovers

quickly and smoothly. The differences between New-

Reno and SACK TCP become more pronounced if even

more packets are dropped from the window of data. The

rest of this section describes the simulations in Figure 5

in more detail.

The top figure in Figure 5 shows Tahoe TCP with

four dropped packets. The response to loss on packet 14

is as described for Tahoe in the single loss case. Once

again, the transmission of packets 15–28 is forgotten by

the sender when retransmitting packet 14.

After retransmitting packet 14 and receiving 11 dup

ACKs, the sender receives an ACK for packet 23. The

sender is in slow-start, opens its window to 2, and sends

packets 24 and 25. Once again, Tahoe duplicates effort

on packet 25.

The sender next receives two ACKs for packet 25,

corresponding to receipt of the resent packets 24 and

25. One of these ACKs is for new data, which increases

the congestion window to three. The sender then sends

packets 26–28, again duplicating effort on packet 27.

The next pair of ACKs, one for new data and one du-

plicate, correspond to the receiver's receipt of packets

26 and 27 and increase the sender's congestion window

to four. The ACK for packet 28 arrives next, increases

the congestion widow to five, and continues in slow-

start. The sender switches to Congestion Avoidance as it

sends packet 35 and continues in Congestion Avoidance

as expected.

For Figure 5 with Reno TCP, the sender is always

forced to wait for a retransmit timeout when four pack-

ets are dropped from a single window of data.

The sender receives eleven dup ACKs for packet 14,

retransmits packet 14 on the third and is able to send

packets 29–31 as a result of receiving the ninth through

eleventh dup ACKs. The ACK for packet 23 brings the

sender out of Fast Recovery with a usable window set

to the congestion window of seven. The third dup ACK,

corresponding to the receiver's receipt of packets 29–

31, initiates a second Fast Retransmit and Fast Recov-

ery, triggering a retransmission of packet 24, reducing

the congestion window to three, and setting the usable

window to six. As packets 24–31 are unacknowledged,

the sender cannot proceed until it receives another ACK.

The next ACK for packet 25 brings the sender out

of Fast Recovery again, bringing the congestion win-

dow and usable window to three. As in the case of three

drops, the sender is frozen because the six unacknowl-

edged packets exceeds the congestion window and the

ACK clock is lost. The sender must await a retransmis-

sion timer expiration to proceed.

Once the timer expires, the sender retransmits packet

26, receives an ACK for packet 27, and transmits 28 and

29. After a timer expiration, Reno behaves similarly to

Tahoe, in that it sometimes retransmits packets (in this

case, packet 29) that it has already transmitted and that

have already been cached at the receiver. After receiv-

ing two ACKs for packet 31 it continues in congestion

avoidance.

In Figure 5 with New-Reno TCP, New-Reno's op-

eration is similar to Reno with three drops until the re-

ceipt of the first ACK for packet 23. Upon receiving

this ACK, the sender immediately retransmits packet 24

and sets its usable window to the congestion window

of seven. The three subsequent dup ACKs for packet

23 inflate the usable window to ten, allowing the sender

to send packets 32 and 33. The next partial ACK ac-

knowledges packet 25 and causes the sender to retrans-

mit packet 26 and reduce its usable window to seven.
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Figure 5: Simulations with four dropped packets.



The sender is unable to send additional data until the

receipt of the second dup ACKs for packet 25, which al-

lows the sender to send packet 34 with a usable window

of nine. The last partial ACK acknowledges packet 27

and causes the sender to retransmit packet 28 and reduce

its usable window to seven. The sender is again unable

to send additional data until the receipt of the dup ACK

for packet 27, which allows the sender to send packet 35

with a usable window of eight.

The ACK for packet 34 brings the sender out of Fast

Recovery and returns its congestion window to seven.

Only packet 35 is unacknowledged at this point, so the

sender should be able to send six additional packets but

is instead limited to sending only four by the “maxburst”

parameter described above. The arrival of the ACK for

packet 35 allows the sender to send packets 40–42. The

sender continues in Congestion Avoidance with a win-

dow of seven.

In Figure 5 with SACK TCP, SACK TCP's packet

sending pattern is similar to Reno with four packet

drops, until the 10th dup ACK for packet 13 is received

at the sender indicating a hole at packet 24. The 11th

dup ACK for packet 13 indicates holes at packets 24 and

26. The sender retransmits packets 24 and 26 as a result

of these ACKs.

The handling of pipe is similar to SACK TCP with

three packet drops. When the third dup ACK for packet

13 arrives at the sender, pipe is initialized to 12. The

retransmission of packets 24 and 26 are accounted for,

causing the value of pipe to be 12�8+2+1 = 7 when

the first ACK for packet 23 arrives. This partial ACK,

corresponding to the receiver receiving the retransmitted

packet 14, causes the sender to reduce pipe by two,

and also contains SACK information indicating holes

at packets 24 and 26. The sender proceeds by sending

packets 30 and 31 because 24 and 26 have already been

retransmitted.

The dup ACK for packet 23 corresponds to the re-

ceiver receiving packet 29 and contains SACK informa-

tion indicating holes at packets 24, 26 and 28. Again the

sender notices it has already retransmitted 24 and 26,

and thus proceeds by retransmitting 28. A short time

later an ACK for packet 25 arrives, indicating the holes

at packets 26 and 28. The ACK for packet 27 arrives

next, indicating the hole at packet 28. Each of these

ACKs reduces pipe by two, allowing the sender to send

packets 32–35 because it has already retransmitted 28.

The next two ACKs for packet 27 arrive nearly to-

gether and correspond to the receiver receiving packets

30 and 31. These ACKs contain SACK information in-

dicating the hole at packet 28 remains to be filled. Once

again, the sender avoids retransmitting packet 28 and

continues by sending packets 36 and 37. The next ACK

received at the sender corresponds to the receiver's re-

ceipt of the retransmission of packet 28. It acknowl-

edges packet 31 and brings the sender out of Fast Re-

covery with a congestion window of 7. The sender con-

tinues in Congestion Avoidance.

7 A trace of Reno TCP

The TCP trace in this section is taken from actual In-

ternet traffic measurements, but exhibits behavior sim-

ilar to that in our simulator. It shows the poor perfor-

mance of Reno without SACK when multiple packets

are dropped from one window of data. The TCP con-

nection in this trace repeated has two packets dropped

from a window of data, and each time is forced to wait

for a retransmit timeout to recover.
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Figure 6: A trace of Reno TCP.

The trace in Figure 6 shows a TCP connection from

the San Diego Supercomputer Center (SDSC) in San

Diego, using IRIX-5.2, to Brookhaven National Labo-

ratory on Long Island, using IRIX-5.1.1. The TCP con-

nection receives poor throughput because of repeated

waits for a retransmit timeout. The graph on the right



gives a enlargement of a section from the graph on the

left. The blowup shows a mark for every packet trans-

mitted, and a “+” for every ACK received.

The enlargement shows that the data receiver uses a

delayed-ACK algorithm, usually sending a single ACK

for every two data packets. As a result, in the Con-

gestion Avoidance phase the data sender normally sends

two data packets for every ACK packet received. When

an ACK packet is received that causes the sender to in-

crease its congestion window by one packet, then the

data sender sends three data packets after receiving a

single ACK packet. As an example, at time 4.24 the

data sender receives an ACK acknowledging sequence

number 24065, and the data sender sends three packets,

for sequence numbers 26113-27648. The last two of the

three packets are dropped.

At time 4.48 the data sender receives a third dup ACK

(in the figure this is printed on top of the second dup

ACK), executes Fast Retransmit, retransmits one packet,

and later receives an ACK for that packet. However,

at this point the sender's congestion window is half of

its old value, and this is not large enough to permit the

sender to send the next highest packet. The sender waits

for a retransmit timer to expire before retransmitting the

second packet that was dropped from the original win-

dow of data. This is similar to the Reno behavior illus-

trated in the simulator. This is an example of a scenario

where Tahoe might give better performance that Reno.

The trace was supplied by Vern Paxson, as part of

work on his Ph.D. thesis. Vern reports that 13% of his

2299 collected TCP traces show this behavior. That is,

13% of his TCP traces contain a Fast Retransmit fol-

lowed by a retransmit timeout, where the packet re-

transmitted after the retransmit timeout had not been

previously retransmitted by the TCP sender. This ad-

ditional condition eliminates incidents from Tahoe or

Reno traces where the retransmit timeout is required

simply because a retransmitted packet is itself dropped.

Thus, 13% of Vern's TCP traces are likely to include

Reno TCP with multiple packet drops and an unneces-

sary retransmit timeout.

8 Future directions for selective ac-

knowledgments

The addition of selective acknowledgments allows ad-

ditional improvements to TCP, in addition to improv-

ing the congestion control behavior when multiple pack-

ets are dropped in one window of data. [MM96] ex-

plores TCP congestion control algorithms for TCP with

SACK. [BPSK96] shows that SACK and explicit wire-

less loss notification both result in substantial perfor-

mance improvements for TCP over lossy links. Sev-

eral researchers are exploring the use of SACK, coupled

with the explicit notification of non-congestion-related

losses, for lossy environments such as satellite links.

The SACK option will allow the TCP protocol to be

more intelligent in other ways as well.8 As one exam-

ple, the use of selective acknowledgments will allow the

sender to make a more intelligent response to the first

or second dup ACKs. Current TCP implementations,

including the ones shown in this paper, simply ignore

the first or second dup ACKs. With SACK, the sender

will know if a dup ACK indicates that another packet

has in fact left the pipe, allowing the sender to send a

new packet if the receiver's advertised window permits.

Further, with SACK the sender will know which packet

has left the network, allowing the sender to make an in-

formed guess about whether this is likely to be the last

dup ACK that it will receive.

As a second example, by giving precise information

on the exact data received by the receiver, and the order

in which that data was received, the use of SACK would

allow the sender to infer when it has mistakenly assumed

that a packet was dropped, and therefore to rescind its

decision to reduce the congestion window.

As a third example, by effectively decoupling deci-

sions of when to send a packet from decisions of which

packet to send, SACK opens the way to further advances

of TCP's congestion control algorithms.

The SACK implementation in our simulator could be

improved in its robustness to reordered packets during

Fast Recovery. If, during Fast Recovery, the sender re-

ceives a SACK packet with a SACK block for packet n,

and a second SACK block repeating a report for packet

n� 2, the sender in our implementation might immedi-

ately retransmit packetn�1. Probably the sender should

wait for a few more ACKs all indicating that packetn�1

is missing at the receiver, to give robustness against re-

ordered packets.

The New-Reno and SACK implementations in our

simulator use a “maxburst” parameter to limit the po-

tential burstiness of the sender for the first window of

packets sent after exiting from Fast Recovery. This is

mainly an issue when the sender has been prevented

from sending packets during Fast Recovery because of

restrictions imposed by the receiver's advertised win-

dow. An improved SACK implementation would only

use a “maxburst” parameter immediately after leaving

Fast Recovery. A comparable mechanism to prevent

bursts would be, upon exiting Fast Recovery, to set the

congestion window to the number of packets known to

be in the pipe, to set ssthresh to what would have been

the congestion window, and to use Slow-Start to quickly

8These proposals are not necessarily original with us, but are from

general discussions in the research community about the use of SACK.

Unfortunately I don' t have a precise attribution for each proposal.



increase the congestion window back up to ssthresh.

9 Conclusions

In this paper we have explored the fundamental restric-

tions imposed by the lack of selective acknowledgments

in TCP, and have examined a TCP implementation that

incorporates selective acknowledgments into Reno TCP

while making minimal changes to TCP's underlying

congestion control algorithms. We assume that the ad-

dition of selective acknowledgments to TCP will open

the way to further developments of the TCP protocol.
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