
Notes on Class-Based Queueing: Setting Parameters

Sally Floyd

Lawrence Berkeley National Laboratory

floyd@ee.lbl.gov

September 27, 1995

Abstract

These are informal notes about how to set the class

parameters for Class-Based Queueing (CBQ) [FJ95].

Some of the guidelines, such as those for setting max-

idle and offtime, apply to any of the link-sharing algo-

rithms discussed in [FJ95]. Others are only necessary

for Ancestor-Only link-sharing.

The current distribution of the CBQ code imple-

ments Ancestor-Only link-sharing; this should be up-

dated to Top-Level Link-Sharing shortly. As explained

in [FJ95], Ancestor-Only link-sharing is somewhat sen-

sitive to the exact setting of the class parameters. Sec-

tion 2 underscores that fact.

1 An overview of the guidelines

In CBQ, each class has variables idle and avgidle, pa-

rameter maxidle used in computing the limit status for

the class, and parameter offtime used in determining

how long to restrict throughput for overlimit classes.

Definition: idle. The variable idle is the difference

between the desired time and the measured actual time

between the most recent packet transmissions for the last

two packets sent from this class. When the connection

is sending perfectly at its alloted rate p, then idle is zero.

When the connection is sending more that its allocated

bandwidth, then idle is negative.

Definition: avgidle. The variable avgidle is the

average of idle, and is computed using a exponential

weighted moving average (EWMA). When avgidle is

zero or lower, then the class is overlimit (the class has

been exceeding its allocated bandwidth in a recent short

time interval).

Definition: maxidle. The parameter maxidle gives

an upper bound for avgidle. Thus maxidle limits the

‘credit’ given to a class that has recently been under its

allocation.

Definition: offtime. The parameter offtime gives

the time interval that a overlimit class must wait before

sending another packet. This parameter determines the

steady-state burst size for a class when the class is run-

ning over its limit.

There are three types of classes: leaf classes (such as

a video class) that have directly-assigned connections;

nonleaf classes used for link-sharing (such as a class for

a particular agency); and the root class that represents

the entire output link. These types of classes are treated

somewhat differently.

Leaf classes should not be penalized for borrowing

unused bandwidth. When leaf class is overlimit and

unable to borrow, it is simply restricted to its assigned

bandwidth, regardless of how much bandwidth it bor-

rowed previously. Thus if avgidle becomes nonnega-

tive, it is reset to a lower bound of zero.

General Guidelines:

�Maxidle: Set maxidle to control the burstiness al-

lowed to a class.

As Section 3 shows, to permit a maximum burst of n

back-to-back packets, set

maxidle t(1=p� 1)
(1� g

n

)

g

n

;

for t, p, g, and n as defined in that section.

� Offtime: For leaf classes, set offtime to regulate

the steady-state burst size.

As Section 5 shows, a simple guideline is to set

o�time t(1=p � 1);

for t and p as defined in Section 3. This is the target

waiting time to maintain a steady-state burst size of only

one packet.

2 Guidelines for Ancestor-Only

Link-Sharing

Additional guidelines are needed for Ancestor-Only

Link-Sharing to prevent undesired borrowing, or equiv-

alently, to encourage borrowing from lower levels be-

fore borrowing from higher levels.

Additional Guidelines for Ancestor-Only Link-

Sharing:

� In Ancestor-Only link-sharing, assign a throughput

to non-leaf classes that is slightly smaller than the sum

of the assignments to the child classes. In the distributed

code, this is done with the nsecPerByte class parameter.

This helps to prevent higher-priority classes from being

able to borrow when lower-priority classes can send

without borrowing.

In particular, for the root class set the allocated link-

sharing bandwidth to less than 100% of the actual link

bandwidth (e.g., 98% might do). This matters in par-

ticular for Ancestor-Only link-sharing; this guideline is

not needed for Formal link-sharing.

� Offtime could be set larger for higher-level classes

than for lower-level classes in the link-sharing structure.

Ideally, in Ancestor-Only Link-Sharing nonleaf

classes SHOULD be penalized for exceeding their as-

signed bandwidth. This could be done with a (negative)

minidle parameter, or by using a larger offtime parame-

ter for non-leaf classes. Recall that for classes that are

overlimit, “offtime” is added to “undertime”, to define

the time for which that class is not allowed to send a

packet without borrowing. Thus, when a nonleaf class

goes overlimit, offtime defines the duration for which

that class does not permit borrowing. A higher value

of offtime for non-leaf classes gives room for lower-

priority classes that might be able to send without bor-

rowing.

Assume that non-leaf class A and its parent non-

leaf class B go overlimit at the same time. Then with

Ancestor-Only link-sharing, “offtime” should be set for

the two classes so that class A allows borrowing again

before class B does. Assume that for both classes, avgi-

dle has just become zero. Class A must wait at least

o�time

A

seconds before allowing borrowing again, and

class B must wait at leasto�time

B

seconds. In this case,

o�time

B

should be larger than o�time

A

.

In my simulations I set offtime to the same value for

all classes, and instead use a parameter minidle for non-

leaf classes. By allowing avgidle to occasionally stay

nonnegative, a negative value for minidle lets the av-

eraging “remember” when non-leaf classes have used

more than their allocated bandwidth. This limits unde-

sired borrowing.

Note that this only matters for Ancestor-Only link-

sharing, where it is important to restrict classes from

borrowing bandwidth when there are other classes that

could send packets without borrowing bandwidth.

3 Maxidle

Maxidle sets the upper bound for avgidle. We assume

that maxidle is set when a class is created. Maxidle

determines the maximum size burst allowed for a class

that has sent no packets in the recent time interval.

Definitions: t, g, p. Let t be the transmission time for

the most recent packet sent from this class. Let p be the

fraction of the link bandwidth allocated to a particular

class. Then for back-to-back packets from a class, the

‘target’ interpacket time (the time between transmitting

the two packets) is t=p, the actual interpacket time is

t, and idle is t (1 � 1=p). The formula for computing

avgidle is

avgidle g avgidle + (1� g) idle;

for g given by 15=16, or maybe by 31=32. The weight

g determines the time constant of the averager. 2

Assume that avgidle initially has the value maxidle.

Then after n back-to-back packets, avgidle is

g

n

maxidle+

n�1
X

i=0

g

i

(1� g) idle

= g

n

maxidle+ idle (1� g

n

):

This derivation uses the fact that

m

X

i=0

g

i

=

1� g

m+1

1� g

:

If avgidle reaches 0 after n consecutive packets, and

avgidle had the value maxidle at the beginning of the

burst, then the maximum size burst for that class is n

packets. In order to allow a maximum size burst of n

packets, maxidle should be set to

maxidle = t1(1=p� 1)
(1� g

n

)

g

n

;

where t1 is a “typical” packet transmission time, reflect-

ing some “typical” packet size in bytes.

3.1 Maxidle with arbitrary packet sizes

Of course, because there might not be a predictable,

“typical” packet size. Assume that the actual packet

transmission times are a t1, for some a > 0. Then

what is the maximum number of back-to-back packets

that could be sent, if avgidle is initially at the value for

maxidle given by the equation above?

Idle will be a t1 (1�1=p), and after b n back-to-back

packets,

avgidle = g

bn

maxidle+ idle (1� g

b n

)

= g

bn�n

t1(1=p� 1)(1� g

n

)

+a t1 (1� 1=p) (1 � g

b n

):

2

We would like to know the value of b when avgidle first

becomes zero.

Solving we get

g

n(b�1)
t1(1=p�1)(1�gn)�a t1 (1=p�1) (1�gbn) = 0;

g

n(b�1)
(1 � g

n

)� a (1 � g

bn

) = 0;

g

n(b�1)
(1� g

n

) + a g

n(b�1)
g

n

= a;

g

n(b�1)
(1 + (a� 1) gn) = a;

g

n(b�1)
=

a

1 + (a� 1) gn
;

and

b =

log a

1+(a�1) gn

n log g
+ 1:

n=8, g=15/16
Packet size (normalized).

N
o.

 o
f b

ac
k-

to
-b

ac
k

by
te

s
(n

or
m

al
iz

ed
).

0 1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

Figure 1: Number of back-to-back bytes allowed by

maxidle given a range of packet sizes. Fraction of allo-

cated throughput, for g = 15=16.

Assume that the initial t1 transmission time was based

on s-byte packets. Now, instead of sending ns back-

to-back bytes, with packets of a s bytes we get to send

b n a s back-to-back bytes. Figure 1 shows a b plotted

as a function of a, for n = 8 and g = 15=16. Thus,

maxidle is fairly effective in controlling the maximum

number of back-to-back bytes even for a range of packet

sizes.

4 Calculating undertime

Definition: undertime, now, overlimit. The scheduler

checks the class variable undertime to see if a class can

send packets without borrowing. If avgidle is positive

after a packet has been sent, then undertime should

be set to zero (or to something else less than the current

time now). A class is not allowed to send a packet when

undertime > now and the class is unable to borrow.

For a regulated leaf class, which is not penalized

for exceeding its allocation as a result of borrowing,

then when avgidle is at most zero, undertime is set

by adding offtime to the current time; this is regardless

of the exact value of avgidle. The minimum value for

offtime is the target waiting time ptime, for

ptime t(1=p� 1):

5 Setting offtime

5.1 Setting offtime for leaf classes

Offtime can be used to regulate the steady-state burst

size, and this steady-state burst size might be less than

the maximum burst size allowed by maxidle. One pos-

sibility is to have a steady-state burst size of one packet;

in this case offtime is simply set to the target waiting

time ptime.

However, for efficiency or other reasons, it might be

desirable to have a larger steady-state burst size than one

packet. Assume that in steady state, with a class going

on and off of the delay queue (that is, a class with plenty

of demand that is being restricted to its link-sharing

bandwidth), we want a steady-state burst of n pack-

ets. (This refers to a steady-state where the class sends

a burst of n packets, goes on the delay queue, sends an-

other burst of n packets, and so on.) This steady-state

burst size n could be less than the size of the maximum

burst discussed in Section 3. Let avgidle
n

be the value

for avgidle that allows a burst of size n before avgidle

reaches 0. Then

avgidle

n

= t(1=p� 1)
(1� g

n

)

g

n

:

Assume that a class is put on the delay queue when

avgidle becomes at most zero. Then we want to set

offtime so that after offtime seconds, then if a packet is

sent, the new value for avgidle will be avgidle

n�1, so

exactly n�1 more consecutive packets can be sent until

avgidle reaches zero again. This is true if

(1� g) idle = avgidle

n�1;

for

idle = o�time + t � t=p:

This gives

o�time =

1

1 � g

avgidle

n�1 + t (1=p� 1)

=

1

1� g

t (1=p� 1)
(1� g

n�1
)

g

n�1
+ t (1=p� 1):

For g = 15=16, t = 0:01, and n = 8, this is

o�time = 0:1014(1=p� 1):

For g = 31=32,

o�time = 0:0896(1=p� 1):

3

(This concurs with the findings later in this section

that for a class with a steady-state burst size of 8,

the throughput is higher with g = 31=32 than with

g = 15=16.) As g increases, then o�time approaches

closer to 8t(1=p � 1), the value needed for the class to

achieve 100% of its throughput allocation.

What is a class’s actual throughput, in this case? The

class transmits n packets in n t seconds, and then waits

for o�time seconds. Thus the actual throughput, as a

fraction of the maximum bandwidth of the link, is

n t

n t+ o�time

=

n

n+

1
1�g

(1=p� 1)
(1�gn�1

)

g

n�1 + 1=p� 1
:

A connection that sends bursts of n packets in this

manner will get slightly less that the specified fraction

p of the bandwidth, for n > 1. Figure 2 shows the frac-

tion f of its allocated throughput achieved by a delayed

class, for g = 15=16.. The x-axis shows the steady-state

burst size n and the y-axis shows the allocated through-

put for the class. The z-axis shows the fraction of allo-

cated throughput achieved by the delayed class. For this

figure, we assume that t = 0:01 seconds, but the results

are essentially the same for t as small as 0.01 ms. Fig-

ure 3 shows the same results for g = 31=32. This data

argues for a small steady-state burst size, particularly

for classes with small allocations. In our simulations,

we use a steady-state burst size of n = 8 packets.

5

10

15

20 0

0.2

0.4

0.6

0.8

0.6

0.8

1

5

10

15

20 0

0.2

0.4

0.6

0.8

0.6

0.8

1

Figure 2: Fraction of allocated throughput, for

g = 15=16.

(What is the intuition behind this behavior? With

a steady-state consisting of a burst of n packets fol-

lowed by a delay, the computed avgidle oscillates above

and below the true steady-state average for the variable

5

10

15

20 0

0.2

0.4

0.6

0.8

0.8

0.9

1

5

10

15

20 0

0.2

0.4

0.6

0.8

0.8

0.9

1

Figure 3: Fraction of allocated throughput, for

g = 31=32.

idle. If avgidle oscillates, and the class is delayed when

avgidle reaches zero, then the class is delayed when

the true average for idle is greater than zero, and the

true throughput is less than the allocated throughput.

The greater the amplitute of the oscillations in avgidle,

the greater the loss of throughput. The ”worst-case”

throughput is when the amplitute of the oscillations in

avgidle is the greatest, and this occurs with a steady-

state burst of n successive packets for large n. The

larger the value for n, the greater the oscillations in

avgidle, and the greater the loss in throughput.)

For any f � 1, in order to guarantee that a class

achieves at least the fraction f of its allocated through-

put, it is sufficient to pick a steady-state burst size of at

most n, for n such that

n

n+

1
1�g

(1=p� 1)
(1�gn�1

)

g

n�1 + (1=p� 1)

1

p

= f:

Figure 4 shows the upper bound on burst size for a class

to achieve at least 90% of its allocated throughput, for

g = 31=32. Thus, for a steady-state burst size of 8

packets, a class should achieve at least 90% of its al-

located throughput. Figure 5 shows the upper bound

on burst size for a class to achieve at least 80% of its

allocated throughput, for g = 15=16. For g = 15=16

and a steady-state burst size of 8 packets, a class should

achieve at least 80% of its allocated throughput. This

gives a lower bound of g = 15=16 for a reasonable size

for g.

5.2 Offtime with arbitrary packet sizes

Assume that offtime is pre-computed based on an as-

sumption of a typical packet size of s bytes, with a

4

(g = 31/32, percent of allocation = 90%)
throughput allocation(%)

u
p

p
er

 b
o

u
n

d
 o

n
 b

u
rs

t
si

ze

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

Figure 4: Upper bound on burst size for 90% of through-

put, for g = 31=32.

(g = 15/16, percent of allocation = 80%)
throughput allocation(%)

u
p

p
er

 b
o

u
n

d
 o

n
 b

u
rs

t
si

ze

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

Figure 5: Upper bound on burst size for 80% of through-

put, for g = 15=16.

transmission time of t1 seconds, but that actual pack-

ets have a size of as bytes, as in Section 3.1. Using the

results in Section 3.1, we can infer that offtime should be

fairly effective in maintaining the steady-state burst size

in bytes, even with a range of typical packet sizes. Sim-

ulations confirm that the throughput achieved by a class

in bytes-per-second is fairly insensitive to the packet

size in bytes.

References

[FJ95] Floyd, S., and Jacobson, V., Link-

sharing and Resource Management Mod-

els for Packet Networks. IEEE/ACM

Transactions on Networking, Vol. 3 No.

4, pp. 365-386, August 1995. URL

ftp://ftp.ee.lbl.gov/papers/link.ps.Z.

[F95] Floyd, S., WWW page for CBQ, URL

http://www-nrg.ee.lbl.gov/floyd/cbq.

5

