
TCP and Successive Fast Retransmits

Sally Floyd�

Lawrence Berkeley Laboratory

One Cyclotron Road, Berkeley, CA 94704

floyd@ee.lbl.gov

May 1995

(This is an expanded version of a note
released in October 1994.)

1 Successive fast retransmits in cur-

rent TCP implementations

In this note we point out a long-standing problem for cur-

rent Tahoe and Reno TCP implementations that results from

invoking Fast Retransmit more than once in one roundtrip

time. The problem is illustrated by packet trace from simu-

lations. We have seen the same behavior in packet traces of

TCP traffic on the Internet.

Given current TCP implementations, for a TCP connec-

tion with a large congestion window and multiple noncon-

secutive packet drops within one window of data, it is possi-

ble for the TCP source to execute the Fast Retransmit proce-

dure twice for one window of packets. For Tahoe TCP, this

can occur when there are at least two nonconsecutive runs of

packet drops in one window of data.

2 A simulation of a packet-based net-

work

See Figure 2. First, the Tahoe-style TCP source receives

three duplicate ACKs, infers a dropped packet, and begins

slow-start. At 2.9 seconds, during the slow-start triggered

by a Fast Retransmit, the congestion window is 4 packets,

and the source retransmits packets 131 through 134, receiv-

ing four acknowledgements in return for packet 141. The

first ACK for packet 141 causes the source to transmit packet

142. Immediately after that, three duplicate ACKs arrive ac-

knowledging packet 141, triggered by the receipts of the re-

transmitted packets 132, 133, and 134. and the source uses

the Fast Retransmit procedure to Slow-Start and to retransmit

packet 142. The exact train of events after this is somewhat

intricate, and we won' t go through the details, but Figure 2

shows the pathological behavior that can result from multiple

Fast Retransmits in one roundtrip time.

�This work was supported by the Director, Office of Energy Research,

Scientific Computing Staff, of the U.S. Department of Energy under Con-

tract No. DE-AC03-76SF00098.

This problem is somewhat more difficult to duplicate in

simulations with Reno implementations. With Reno im-

plementations, the source essentially assumes that only one

packet has been dropped, retransmits that dropped packet,

and instead of waiting for the ACK to be received, contin-

ues transmitted new packets. For multiple packet drops in

one roundtrip time, the Reno source often has to wait for a

retransmit timer to recover (given the absence of Selective

ACKs). And in some circumstances with Reno, the ability to

have multiple Fast Retransmits in a single roundtrip time can

avoid the wait for a retransmit timer timeout, in the absence

of Selective ACKs. However, it is also possible for a second

Fast Retransmit to be invoked from duplicate ACKS received

from packets retransmitted during the slow-start triggered by

the retransmit timer timeout. This leads to problems similar

to those shown in Figure 2.

1

.
....
......

....
....
....
......

......
.....
....
....
....
....
.

....
....
....
.....
....
..

....
....
....
...

Time (in Seconds)

P
ac

ke
t N

um
be

r

0.0 0.5 1.0 1.5

0
20

40
60

80
10

0

Figure 1: The first 100 packets

.....
....
.

....
....
....
....
.....
....

....
.

. ...
.....

.......
....
......

.....
...

.....
....
..

...
.

....
....

.....
.

..
...

...

Time (in Seconds)

Pa
ck

et
 N

um
be

r

2 3 4 5

10
0

12
0

14
0

16
0

18
0

20
0

Figure 2: The second 100 packets, with Tahoe TCP

....
....
.

....
....
....
....
....
....

....
.

. ...
.....

.......
....
.....

.....
.....
...

.....
....
..

....
....
...

....
.....
..

Time (in Seconds)

P
ac

ke
t N

um
be

r

2.0 2.5 3.0 3.5 4.0

10
0

12
0

14
0

16
0

18
0

20
0

Figure 3: The second 100 packets, with Tahoe TCP modified not to allow multiple Fast Retransmits from one window of data.

2

3 A simulation of TCP over ATM

A second illustration of problems of multiple Fast Retrans-

mits comes from Tim Dwight [D95], from simulations of

TCP/IP over ATM.

Figure 4 shows the pathological behaviour that can result

from multiple fast retransmits. The dots show packets and

the open boxes show acknowledgements. The x-axis shows

the time that packets were transmitted on an interior link in

the simulated network. The dropped packets can be inferred

from the trace.

The first Fast Retransmit in Figure 4 results from three

dup acks for packet 25. The second Fast Retransmit results

from three dup acks for packet 42, the last packet transmitted

before the first Fast Retransmit was initiated.

Because the x-axis shows the time that packets appeared

on a link within the network, the sequence of events at the

sender has to be inferred from the graph. After the first Fast

Retransmit, when the sender's congestion control window

reaches four, the sender transmits packets 29-32. The sender

receives an ACK for packet 29, and transmits packets 33 and

34. Next the sender receives an ACK for packet 30, and

retransmits packets 35 and 36. Finally, the sender receives

two dup acks for packets 42 (as responses to packets 31 and

32). At this point the congestion window is 6, and the sender

transmits packets 43-48.

When the receiver receives packets 33-36, the receiver

sends four dup ACKs for packet 42. These dup ACKs trigger

the second Fast Retransmit and the sender reduces the con-

gestion window to 1 and transmits packet 43. The receiver

next receives packets 43-48, and returns ACKs. Immediately

after the second transmission of packet 43, the sender re-

ceives the ACK from the first transmission of packet 43. The

sender increases the congestion window to 2 and sends pack-

ets 44 and 45. The trace continues to unfold in this fashion.

In this case, the second Fast Retransmit triggered by dup

acks for packet 42 ultimately leads to a succession of fast re-

transmits. There is a Fast Retransmit every roundtrip time,

the congestion window never gets larger than 6 packets, and

every packet is transmitted twice. In this case, this patholog-

ical scenario will continue indefinitely.

4 Recommendations

One fix to the problem of multiple Fast Retransmits is not

to treat duplicate ACKs that acknowledge packets from the

same window as packets from a previous Fast Retransmit as

an indication of continued congestion.

In the Tahoe TCP implementation in our simulator, the fix

was done using an extra variable high seq to record the high-

est sequence number outstanding when the TCP initiated a

Fast Retransmit or responded to an ECN (Explicit Conges-

tion Notification [F94], such as a Source Quench message,

or the Explicit Congestion Notification bit implemented in

our simulator in packet headers) or a retransmit timer time-

out. Duplicate ACKs that did not acknowledge data higher

than this sequence number, not necessarily being an indica-

tion of congestion, would not trigger a Fast Retransmit. Once

the TCP source transmitted a packet higher than the variable

high seq, then the variable would be disabled (e.g., set to

zero) until the next congestion event.

In a Reno TCP implementation, the issues are slightly dif-

ferent. One possilibity would be to set the variable high seq

when the TCP source responds to an ECN or to a retransmit

timer timeout, but not to set it when TCP initiates Fast Re-

tranmit/Fast Recovery. This would still allow multiple Fast

Retransmits during Fast Recovery, but would prevent the se-

quence of a Fast Retransmit/Fast Recovery, a timeout, and

then a second Fast Retransmit/Fast Recovery for the same

window of data.

The disadvantage of this fix is that, for both the Tahoe and

the Reno cases, and for acks that do not acknowledge data

greater than high seq, the TCP source cannot distinguish du-

plicate acks resulting from retransmitted packets that had

previously been correctly received by the receiver, and du-

plicate acks resulting from packet losses. In the absence of

Selective ACKs, it is inevitable that any fix would rely on in-

complete information, and therefore would occasionally re-

sult in sub-optimal behavior.

Thus, the most robust and appropriate fix to this prob-

lem would be to implement Selective ACKs. The problem

of multiple Fast Retransmits described in this section only

occurs because the source retransmits packets that have al-

ready been correctly received by the receiver. With Selective

ACKs, this behavior could generally be avoided.

References

[D95] Dwight, Tim, private communication, 1995.

[F94] Floyd, S., TCP and Explicit Congestion Notifica-

tion, ACM Computer Communication Review, V.

24 N. 5, October 1994, p. 10-23.

3

.
....
....

....

....

....

....
....
....
...

.
....
....
...

....

....

...
...

..
..

.. ...
...

..
..

..
..

..

Time (in Seconds)

Pa
ck

et
 N

um
be

r

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0
20

40
60

80

Figure 4: Multiple Fast Retransmits

4

