
Router Mechanisms to Support End-to-End Congestion Control

Sally Floyd and Kevin Fall�

Network Research Group

Lawrence Berkeley National Laboratory, Berkeley CA

ffloyd,kfallg@ee.lbl.gov

February 15, 1997

Abstract

This paper considers the potential negative impacts from

an increasing deployment of non-congestion-controlled best-

effort traffic on the Internet. These negative impacts range

from extreme unfairness against competing TCP traffic to the

potential for congestion collapse. To promote the inclusion

of end-to-end congestion control for best-effort traffic, we

propose lightweight router mechanisms for identifying and

restricting the bandwidth of high-bandwidth best-effort flows

that are using a disproportionate share of the bandwidth in

times of congestion. Our method does not require per-flow

state based on packet arrivals, but instead relies on the his-

tory of packet drops from a queue with RED (Random Early

Detection) queue management.

Starting with high-bandwidth flows identified from the

RED drop history, we describe a sequence of tests capable

of suggesting flows for bandwidth regulation. These tests

additionally identify a high-bandwidth flow in times of con-

gestion as unresponsive, “not TCP-friendly”, or simply very-

high-bandwidth. An unresponsive flow is one failing to re-

duce its offered load at a router in response to an increased

packet drop rate. A flow that is not TCP-friendly is one

whose long-term arrival rate exceeds that of any conformant

TCP in the same circumstances. A very-high-bandwidth flow

uses a disproportionate share of the bandwidth relative to

other flows. Simulations show the results of regulating the

bandwidth of these unresponsive, TCP-unfriendly, or very-

high-bandwidth flows in times of congestion. We end with a

comparison between this approach and others using per-flow

scheduling for all best-effort traffic.

1 Introduction

The use of the end-to-end congestion control mechanisms of

TCP has been a critical factor in the robustness of the Internet

�This work was supported by the Director, Office of Energy Research,

Scientific Computing Staff, of the U.S. Department of Energy under Con-

tract No. DE-AC03-76SF00098, and by ARPA grant DABT63-96-C-0105.

today. However, the Internet is no longer a small, closely

knit user community, and it is no longer possible to rely on

all end-nodes to use end-to-end congestion control for best-

effort traffic. Similarly, it is no longer possible to rely on

all developers to incorporate end-to-end congestion control

in their Internet applications. The network itself must now

participate in controlling its own resource utilization.

This leads to several possible approaches for best-effort

traffic sharing scarce bandwidth in the Internet. One ap-

proach is to propose, as the primary mechanism for shar-

ing scarce bandwidth, that routers isolate each flow, as much

as possible, from the effects of other flows [She94]. This

approach suggests the deployment of per-flow scheduling

mechanisms that separately regulate the bandwidth used by

each best-effort flow.

A second approach outlined in this paper is for routers

to support the continued use of end-to-end congestion con-

trol as the primary mechanism for best-effort traffic to share

scarce bandwidth, but to deploy additional mechanisms to

restrict the bandwidth of best-effort flows using a dispropor-

tionate share of the bandwidth in times of congestion. These

mechanisms would give a concrete incentive to end-users,

application developers, and protocol designers to use end-to-

end congestion control for best-effort traffic.

A third approach would be to rely on pricing mechanisms

to control sharing, and to gamble that the network providers

are able to provision additional bandwidth and deploy ap-

propriate pricing structures fast enough to keep up with the

growth in unresponsive best-effort traffic in the Internet.

These three approaches to sharing, of isolating flows at the

router, deploying concrete incentives for best-effort traffic to

use end-to-end congestion control, and relying on pricing

mechanisms, are not necessarily mutually exclusive. Fur-

thermore, given the fundamental heterogeneity of the Inter-

net, there is no requirement that all routers or all service

providers follow the same approach.

However, these three approaches can lead to different con-

clusions about the role of end-to-end congestion control for

best-effort traffic, and different consequences in terms of the

1



increasing deployment of such traffic in the Internet. The

Internet as now at a cross-roads in terms of the use of end-

to-end congestion control for best-effort traffic, and is in a

position to actively welcome the widespread deployment of

non-congestion-controlled best-effort traffic, to actively dis-

courage such a widespread deployment, or, by taking no ac-

tion, to allow such a widespread deployment to become a

simple fact of life. We argue of this paper that reiterating the

essential role of end-to-end feedback for best-effort traffic

and strengthening incentives for best-effort flows to use end-

to-end congestion control are critical issues as the Internet

expands to a larger community.

As we show in Section 2, an increasing deployment of

traffic lacking end-to-end feedback could lead to conges-

tion collapse in the Internet. This form of congestion col-

lapse would result from congested links sending packets that

would only be dropped later in the network. This form of

congestion collapse cannot be avoided by router scheduling

mechanisms alone, whether they are per-flow scheduling or

the mechanisms described in this paper; the essential fac-

tor behind this form of congestion collapse is the absence of

end-to-end feedback. Per-flow scheduling algorithms supply

fairness with a cost of increased state, but provide no inher-

ent incentive structure for best-effort flows to use end-to-end

congestion control. Our approach, however, gives a low-

overhead mechanism that also provides an incentive struc-

ture for flows to use end-to-end feedback.

The mechanisms described in this paper are suggested to

help manage best-effort traffic only. We expect other traf-

fic to use one of the “premium services” being added to the

Internet. Examples of such premium services are the guar-

anteed and controlled-load services currently under devel-

opment in the IETF. These services are primarily for real-

time or other traffic with particular quality-of-service re-

quirements, and require explicit admission control and pref-

erential scheduling in the network. However, it seems likely

that these premium services will apply only to a small frac-

tion of future Internet traffic, and that the Internet will con-

tinue to be dominated by best-effort traffic.1

In this paper we propose router-based mechanisms for

identifying high-bandwidth unresponsive flows in times of

congestion, and for restricting their bandwidth usage. Sec-

tion 2 discusses the problems of extreme unfairness and po-

tential congestion collapse resulting from increasing levels

of best-effort traffic not using end-to-end congestion control.

Starting with queues managed by the RED queue manage-

ment algorithm [FJ93], Section 3 describes the light-weight

mechanism we use to identify high-bandwidth flows based

on the history of packets dropped by RED. This mechanism

does not require per-flow arrival state for every flow, and can

run periodically in the background rather than the packet-

1Another example of premium services includes mechanisms under in-

vestigation to use pricing along with mechanisms to indicate flows that

should be differentially treated within the network.

forwarding path.

Next, Section 4 describes a range of mechanisms for

determining which high-bandwidth flows should be regu-

lated by having their bandwidth use restricted at the router.

The most conservative such mechanism identifies high-

bandwidth flows that are not “TCP-friendly” (i.e. using more

bandwidth than would any conformant TCP implementation

in the same circumstances). The second mechanism identi-

fies high-bandwidth flows as “unresponsive” when they do

not seem to be reducing their arrival rate at the router in

response to increased packet drops. The third mechanism

identifies high-bandwidth flows that may be both responsive

and TCP-friendly, but nevertheless are using excessive band-

width in a time of high congestion.

Section 5 discusses mechanisms in the router capable of

restricting the bandwidth of those flows identified as requir-

ing regulation. These mechanisms include either round-

robin or priority scheduling. Simulations in Section 6 show

how reclassifying unresponsive or high-bandwidth flows into

a separate scheduling partition can effectively provide isola-

tion from other best-effort traffic.

As mentioned above, a different approach would be the

use of per-flow scheduling mechanisms such as variants of

round-robin or fair queueing to isolate all best-effort flows at

routers. Most of these per-flow scheduling mechanisms pre-

vent a best-effort flow from using a disproportionate amount

of bandwidth in times of congestion, and therefore require

no further mechanisms to identify and restrict the bandwidth

of particular best-effort flows. Section 7 compares the two

approaches, and discusses some advantages of aggregating

best-effort traffic in queues using simple FIFO scheduling

and RED queue management along with the mechanisms de-

scribed in this paper. Section 8 gives conclusions and dis-

cusses some of the open questions.

For all of the simulations presented, the ns simulator is

available at [MF95], and the scripts to run these simulations

will be made available from the Network Research Group

web page [Gro97].

2 The problem of unresponsive flows

Unresponsive flows do not use end-to-end congestion con-

trol, and in particular do not reduce their load on the network

when subjected to packet drops. Such behavior can result in

two separate problems for the Internet. The first is a form of

bandwidth starvation that unresponsive flows can inflict on

well-behaved responsive traffic. The second is congestion

collapse from a network busy transmitting packets that will

simply be discarded before reaching their final destinations.

We discuss these two dangers separately below.

2



2.1 Problems of unfairness

A first problem caused by the absence of end-to-end conges-

tion control is drastic unfairness resulting from TCP flows

competing with unresponsive UDP flows for scarce band-

width. The TCP flows reduce their sending rates in response

to congestion, leaving the uncooperative UDP flows to use

the available bandwidth.

3 ms
1.5 Mbps

2 ms
10 Mbps10 Mbps

R1

S1

S2

R2

S3

S4

10 ms

X Kbps
5 ms

10 Mbps
3 ms

Figure 1: Simulation network.

(Dashed Line for UDP Sending Rate, Dotted Line for UDP Goodput,
Solid Line for TCP Goodput)

Sending Rate for UDP Traffic (Kbps)

G
oo

dp
ut

 (
K

bp
s)

0 500 1000 1500 2000

0
50

0
10

00
15

00

xxxxxxxx xxxxx
x x x

x

x
x

x
x

x
x xxxxxxxxx xxxxxx x x

x

x
x

x
x

x
x xxxxxxxxx

xxxxx
x x x

x

x
x

x
x

x

x

Figure 2: Simulation showing extreme unfairness.

The simulations in Figure 2 graphically illustrate what

happens when UDP and TCP flows compete for bandwidth,

given routers with FIFO scheduling. The simulation in Fig-

ure 2 uses the scenario in Figure 1, with the bandwidth of

the R2-S4 link set to 10 Mbps. The traffic consists of sev-

eral TCP connections from node S1 to node S3, each with

unlimited data to send, and a single constant-rate UDP flow

from node S2 to S4. The routers have a single output queue

for each attached link, and use FIFO scheduling. The send-

ing rate for the UDP flow ranges up to 2 Mbps.

Definition: goodput. We define the “goodput” of a flow as

the bandwidth delivered to the receiver, excluding duplicate

packets.

Each simulation is represented in Figure 3 by three marks,

one for the UDP sending rate for that simulation, another for

UDP goodput, and a third for TCP goodput. The dashed line

shows the UDP sending rate for the entire simulation set, the

dotted line shows the UDP goodput, and the solid line shows

the TCP goodput, all as a function of the UDP sending rate.

As Figure 2 shows, when the sending rate of the UDP flow

is small, the TCP flows have high goodput, and use almost

all of the bandwidth on the R1-R2 link. When the send-

ing rate of the UDP flow is larger, the UDP flow receives a

correspondingly large fraction of the bandwidth on the R1-
R2 link, while the TCP flows back off in response to packet

drops. This unfairness results from responsive and unrespon-

sive flows competing for bandwidth under FIFO scheduling.

The UDP flow effectively “shuts out” the responsive TCP

traffic.

Of course, even if all of the flows were using the ex-

act same TCP congestion control mechanisms, with FIFO

scheduling the bandwidth would not necessarily be dis-

tributed equally among those TCP flows with sufficient de-

mand. As an example, [FJ92] discusses the relative distri-

bution of bandwidth between two competing TCP connec-

tions with different roundtrip times. [Flo91] analyzes this

difference, and goes on to discuss the relative distribution

of bandwidth between two competing TCP connections on

paths with different numbers of congested gateways. For ex-

ample, [Flo91] shows how, as a result of TCP's congestion

control algorithms, a connection's throughput varies as the

inverse of the connection's roundtrip time. For paths with

multiple congested gateways, [Flo91] further shows how a

connection's throughput varies as the inverse of the square

root of the number of congested gateways.

2.2 The danger of congestion collapse

This section discusses various forms of congestion collapse,

and shows how unresponsive flows could contribute to con-

gestion collapse in the Internet.

Informally, congestion collapse occurs when the network

is at full or near full utilization but little useful work is being

accomplished. Congestion collapse was first reported in the

mid 1980s [Nag84], and was largely due to TCP connections

unnecessarily retransmitting packets that were either in tran-

sit or had already been received at the receiver. Problems

with the unnecessary retransmission of packets have gen-

erally been corrected by the timer improvements and con-

gestion control mechanisms in modern implementations of

TCP [Jac88].

A second form of congestion collapse has been discussed

in [KM87] and [RF95], and consists of the network trans-

mitting fragments or cells of packets that will be discarded

at the receiver because they cannot be reassembled into a

valid packet. This occurs when any of the cells or frag-

ments of a network-layer packet are discarded (e.g. at the

link layer), while the rest are delivered to the receiver, thus

wasting bandwidth on a congested path. This danger of

congestion collapse comes from a mismatch between link-

level transmission units (e.g., cells or fragments) and higher-

layer retransmission units (datagrams or packets), and can

be prevented by mechanisms aimed at providing network-

layer knowledge to the link-layer or vice-versa. One such

mechanism is Early Packet Discard [RF95], which arranges

that when an ATM switch drops cells, it will drop complete

packets worth of cells. Another mechanism is Path MTU

3



discovery [KMMP88], which helps to minimize packet frag-

mentation.

A variant of the second form of congestion collapse con-

cerns the network transmitting packets received correctly by

the transport-level at the end node, but subsequently dis-

carded by the end-node before they can be of use of the end

user [Var96]. This can occur when web users abort half-

completed TCP connections because of delays in the net-

work and then re-request the same data, or when TCP con-

nections are automatically reset because the TCP data sender

has failed to successfully retransmit a packet in a specified

time. This form of congestion collapse could result from a

persistent high packet drop rate in the network, and could be

ameliorated by arranging for end-nodes to not discard data

from half-completed connections.

A third form of congestion collapse, and the form of pri-

mary interest to us in this paper, arises when bandwidth is

wasted by delivering packets through the network that are

dropped before reaching their ultimate destination. We be-

lieve this is the largest unresolved danger with respect to

congestion collapse in the Internet today. It is due primarily

to the increasing deployment of open-loop applications not

using end-to-end congestion control. Even more destructive

would be best-effort applications that increased their sending

rate in response to an increased packet drop rate (e.g., using

an increased level of FEC).

(Dashed Line for UDP Sending Rate, Dotted Line for UDP Goodput,
Solid Line for TCP Goodput)

Sending Rate for UDP Traffic (Kbps)

G
oo

dp
ut

 (
K

bp
s)

0 500 1000 1500 2000

0
50

0
10

00
15

00

xxxxxxxx xxxxxx x x x x xx x x x x x

xxxxxxxx xxxxxx x x
x

x
xx

x
x

x
x xxxxxxxxx

xxxxx
x x x

x

x
xx

x
x

x

x

Figure 3: Simulation showing congestion collapse.

Figure 3 illustrates the third form of congestion collapse,

caused when bandwidth is wasted by packets that never reach

their destination. The simulation in Figure 3 uses the sce-

nario in Figure 1, with the bandwidth of the R2-S4 link set

to 128 Kbps. Because the final link in the path for the UDP

traffic (R2-S4) is of smaller bandwidth compared to the oth-

ers, most of the UDP packets will be dropped at R2, at the

output port to the R2-S4 link, when the UDP source rate

exceeds 128 Kbps.

As illustrated in Figure 3, as the UDP source rate increases

linearly, the TCP goodput decreases linearly, and the UDP

goodput is nearly constant. Thus, as the UDP flow increases

its offered load, its only effect is to hurt the TCP (and aggre-

gate) goodput. On the R1-R2 link, the UDP flow ultimately

“wastes” the bandwidth that could have been used by the

TCP flow, and reduces the goodput in the network as a whole

down to a small fraction of the bandwidth of the R1-R2 link.

A different traffic mix could be used to illustrate con-

gestion collapse for a network with routers with per-flow

Fair Queueing or Round Robin scheduling. For this traf-

fic mix, let the sending rate for a single UDP flow be fixed.

As the number of UDP flows is increased, the fraction of

the bandwidth in the R1-R2 link used by the UDP traf-

fic would also increase, while the aggregate goodput of the

UDP flows would still be limited at 128 Kbps. The limit-

ing case of a very large number of very small bandwidth

non-congestion-controlled flows in a highly-congested In-

ternet would threaten congestion collapse regardless of the

scheduling discipline at the router. It is difficult to envision

incentive structures at the routers capable of discouraging

such a situation.

The essential factor behind this form of congestion col-

lapse is not the scheduling algorithm at the router, or the

bandwidth used by a single UDP flow, but the absence of

end-to-end congestion control for the UDP traffic. The con-

gestion collapse would be essentially the same if the UDP

traffic somewhat stupidly reserved and paid for more than

128 Kbps of bandwidth on the R1-R2 link in spite of the

bandwidth limitations of the R2-S4 link. In a datagram

network, end-to-end congestion control is needed to prevent

flows from continuing to send when a large fraction of their

packets are dropped in the network before reaching their des-

tination. We note that it would not be possible to duplicate

this scenario in a circuit-switched network where a sender is

only allowed to send if there is an end-to-end path with the

appropriate bandwidth.

3 Identifying high-bandwidth flows

from the RED packet drop history

This section describes an efficient mechanism for a router to

identify high-bandwidth flows in times of congestion, using

the RED packet drop history. This mechanism does not re-

quire the router to keep per-flow state for each active flow.

Keeping per-flow counters for packet arrivals for all active

flows would be an unnecessary overhead for a router han-

dling packets from a large number of very low bandwidth

flows, many of which might never have a packet dropped. In-

stead, our identification mechanism detects high-bandwidth

flows with a periodic pass in the background over informa-

tion about the packets dropped at the router by the RED

queue management.

The mechanism is independent of the granularity used to

define a flow. One possibility would be for a router to define

a flow by source and destination IP addresses. This would

have the advantage of not being “fooled” by an application

that breaks a single TCP connection into multiple connec-

4



tions to increase throughput.2 Another possibility for defin-

ing the granularity of a flow would be to use source and des-

tination IP addresses and port numbers to distinguish flows.

The packet format for IPv6 provides a flow ID field routers

could use to define some flows. Routers attached to high

speed links in the interior of the Internet might use a coarser

granularity to define a flow, rather than have each TCP con-

nection belong to a separate flow.

The identification mechanism in this section assumes a

router with RED queue management, and draws on the

discussion in [Nai96] for identifying high-bandwidth flows

from the RED packet drop history. RED queue management

gives an efficient sampling mechanism and provides exactly

the information needed for identifying high-bandwidth flows

in times of congestion. For the remainder of this section, we

distinguish between forced and random packet drops, and

define both a packet and byte drop metric. We show the

mechanism for identifying high-bandwidth flows should use

the packet drop metric for random packet drops, and the byte

drop metric for forced packet drops. The appendix shows

that for queues with Drop-Tail queue management, the his-

tory of packet drops does not give sufficiently reliable infor-

mation for identifying high-bandwidth flows.

Definitions: forced and random packet drops. We say a

packet drop is forced if a packet is dropped because either

the FIFO buffer overflowed, or the average queue size main-

tained by RED exceeded the RED maximum threshold pa-

rameter maxthresh. Otherwise a packet drop is called ran-

dom. Random packet drops are expected to represent the

majority of all packet drops for a properly-configured RED

gateway, and result from RED's probabilistic sampling of the

arriving packet stream.

When the average queue size exceeds some minimum

threshold, indicating incipient congestion, RED queue man-

agement uses a random sampling method to choose which

arriving packets to drop. [FJ93] describes two variants of the

RED algorithm. In packet mode, for a given average queue

size, each arriving packet has the same probability of being

dropped regardless of the packet size in bytes. In byte mode,

the probability a packet is dropped takes into account its size

in bytes. For the remainder of this paper, we assume RED

queue management operates in byte mode. RED in packet

2Breaking a single TCP connection into multiple connections at the ap-

plication level to increase throughput would be one example of a possi-

ble spiral of increasingly-aggressive TCP congestion control. For a TCP

connection that has been separated into N different TCP subconnections, a

single packet drop results in one of the N subconnections, receiving 1=N -

th of the aggregate bandwidth, having its throughput cut in half. Thus, a

single packet drop causes the aggregate bandwidth to be dropped to a frac-

tion (2N � 1)=(2N) of its previous value. Then, because each TCP sub-

connection continues to increase its congestion window by one packet per

RTT for those TCP subconnections that have not yet reached the receiver's

advertised window, the aggregate TCP connections together increase their

bandwidth by up to N packets per RTT. This is a much more aggressive

congestion control algorithm that would lead to a correspondingly-larger

steady-state packet drop rate in the Internet.

mode is preferable for routers limited by the number of pack-

ets arriving from each flow, rather than the number of bytes;

RED in packet mode would give flows an incentive to use

larger packets.

RED in byte mode is designed so that a flow's fraction of

the aggregate random packet drops roughly equals its frac-

tion of the aggregate arrival rate in bytes per second.3 The

reasoning for the design of byte-mode RED comes from the

operation of TCP congestion avoidance. TCP assumes a sin-

gle packet drop indicates congestion to the end nodes, re-

gardless of the number of bytes lost in any dropped packet.

Thus for random packet drops, the goal of RED queue man-

agement in byte-mode is to have each flow's fraction of the

congestion indications correspond to its fraction of the arriv-

ing traffic in bytes per second. Section X of [FJ93] gives a

statistical result showing that given a fixed average queue

size, n packet drops, and a flow with a fraction b of the

arriving bandwidth in bytes per second, the probability a

flow receives more than twice its share of packet drops is

at most 1=(e2nb
2

): This is illustrated quantitatively in [FJ93]

for n = 100. Informally, the result implies a high-bandwidth

flow is very unlikely to receive more than twice its “share”

of packet drops, and therefore the RED packet drop history

should give an effective aid in estimating the arrival rate of

high-bandwidth flows.

Definition: the packet drop metric. We define the packet

drop metric for a flow as the ratio of the number of pack-

ets dropped from that flow over the total number of dropped

packets. For random packet drops for RED in byte mode,

the packet drop metric estimates a flow's fraction of the ag-

gregate arrival rate in bytes per second (Bps). For random

packet drops for RED in packet mode, the packet drop met-

ric instead estimates a flow's fraction of the aggregate arrival

rate in packets per second.

We used extensive simulations to verify that the per-flow

packet drop metric for random packet drops is a good esti-

mator of a flow's arrival rate in times of congestion. Figure 4

shows the results of a simple simulation in a topology sim-

ilar to that in Figure 1, but with the link R1-R2 assigned a

propagation delay of 20 ms, and link R2-S3 assigned a prop-

agation delay of 4 ms, and the bandwidth of the R2-S4 link

set to 10 Mbps. For all simulations in this paper, the RED

queue management is configured with a minimum threshold

of five packets, a maximum threshold of 20 packets, and a

packet drop rate approaching 10% as the average queue size

approaches the maximum threshold.4 The FIFO buffer size

in router R1 for the queue for the congested link R1-R2 is

set to 100 packets; packets are rarely dropped due to buffer

3This assumes the packet drop rate is sufficiently low relative to the

packet size that, in byte mode, it is unlikely that two “bytes” in the same

packet will be marked to be dropped.
4This is a change from the upper bound on the packet drop rate used for

simulations in [FJ93]. This change is better suited for routers that typically

have high levels of congestion.

5



(Packets Drop Metric, for Random Packet Drops)
Per-Flow Arrival Rate(%)

F
lo

w
’s

 P
er

ce
nt

 o
f D

ro
ps

 (
P

ac
ke

ts
)

0 20 40 60 80 100

0
20

40
60

80
10

0

1

1

1

11
1

1
1

1
1

11
11

11
11

1 111
1

111
11

1
1

1
11

1

2
2

22
2 22222 2

2
222 222222 2

2
2222 2222222

3

3

3

3
3

3

33
33

3 3
3

3
33
33
3
3

3
3

3

3
33
3

333

33

33

18

18
181818 18

181818
18

1818
18

18
181818

18
18

18
1818

18
18

18181818
18
181818 18

19

19

19
1919

1919

19

19
191919 19

19
1919

191919
19

1919
19 191919

19

19
19

1919
19

19
4

4
4

4
4

4
44

4
44

444

4
4

4

4 44 44
4

4
4

44
444

4
55555
5555555
555555555555
5
55

6
6

66 6
6
6
6

666666666
6
6

6
66 666

77777
7
7777777
77777
7
77
77

8
88
8

88
88888

8
88

8 88
8 88

9 9
999 99
99

9 999
1010101010
10

(Bytes Drop Metric, for Random Packet Drops)
Per-Flow Arrival Rate(%)

F
lo

w
’s

 P
er

ce
nt

 o
f D

ro
ps

 (
B

yt
es

)

0 20 40 60 80 100

0
20

40
60

80
10

0

1

1

1

11
1

1
1

1
1

11
11

11

1
1

1
1
111111

1
1

1

1
1

11
1

2222 2 22222 22222 222222 222222 2222222
3

3

333 333 333 3333333333
333333333
33
3318

18

1818
18 18

18
1818

18

18
18

18

18
181818

18

18

18
1818

18
18

18
18

1818

18

18
1818 18

19

19

19

1919

1919

19

19

191919 19

19

19
19

19
1919

19

1919

19 191919

19

19

19

1919

19
19

4

4
4

4
4

4

44

4
4

4
444

4

4

4

4
44 4

4

4

4

4

4
4

4
4
4

4

555555555555555555555555555
6 6

66 66
6
6

666666666
6
66 66 66677777777777777777777777

8
88
8

88
8
8
888

88
8

8 88
8 88

9 9999 99999 999
101010101010

(Packets Drop Metric, for Forced Packet Drops)
Per-Flow Arrival Rate(%)

F
lo

w
’s

 P
er

ce
nt

 o
f D

ro
ps

 (
P

ac
ke

ts
)

0 20 40 60 80 100

0
20

40
60

80
10

0

11

1 1
1
11

1
1

1 111

2

22

2

2
2

2

22

2
2

2
2

3

33

3

33
3
333

3
3

3

18
18
18

181818
1818

1818
18
18 1819 1919

19
1919

19 19
19

19
19

19
194 4
44 4

4 444 44
4 4
55

5
55
55
5
55
5
5

6 66666666
66
67

7

77
7
7
77

777

7

8
88

8
88 88 8

888
9 9

9
9

99

9
9

10

1010

10

(Bytes Drop Metric, for Forced Packet Drops)
Per-Flow Arrival Rate(%)

F
lo

w
’s

 P
er

ce
nt

 o
f D

ro
ps

 (
B

yt
es

)

0 20 40 60 80 100

0
20

40
60

80
10

0
1

1

1

1

1

1
1

1

1

1
11

1

222
2222 22
22 22

3
3
33

33

3
333

3
3

3
18

18

18

18

1818

18
18

18
18

18

18

18

19
19

19

19

19
19

19
19

19

19

19

19

194 4

4

4

4

4

4
44

4

4

4

4
555555555555

6
66666

6
6

6
66
6

7777777777778

8

8

8

8
8

88
8

8
8

8
9

9

9

9

99

99

10101010

Figure 4: Comparing drop metrics for forced and random packet drops.

overflow.

The simulation includes a range of two-way traffic, includ-

ing both constant-bit-rate (CBR) UDP flows and TCP con-

nections. The TCP connections have a range of start times,

packet sizes (from 512 to 2000 bytes), receiver's advertised

windows, and round-trip times. Of particular interest are the

high-bandwidth flows. Flow 3 is a CBR flow with 190 byte

packets and an arrival rate of 64 KBps, about one-third of the

link bandwidth. Flow 4 is a TCP flow whose high bandwidth

is due to its larger packet size of 2000 bytes; most of the TCP

flows in the simulation use 512-byte packets. To include a

significant number of forced packet drops in the simulation,

TCP connections “18” and “19” start up at roughly the same

time, with large packets (1500 bytes) and large receiver's ad-

vertised windows, after 50 seconds of the 300-second simu-

lation. More details of the simulation scenario will be given

in the scripts that will be made available shortly.

The graph in the upper left corner of Figure 4 shows the

packet drop metric for the random packet drops in the simu-

lation. For every 100 random packet drops, there is a mark

in the graph for every flow experiencing at least one packet

drop. For each flow i, the number i is plotted on the graph,

with the x-axis giving i' s fraction of the aggregate arrival rate

in Bps over the 100-drop time interval, and the y-axis giving

i' s fraction of the 100 packet drops.

If a flow's packet drop metric for random packet drops was

an exact indication of the flow's arrival rate in Bps, then all

of the marks in the left-hand graph would lie precisely on the

diagonal line. A mark in the upper left quadrant of the graph

indicates a flow with a large fraction of the dropped pack-

ets, but only a small fraction of the arriving packets. As the

graph shows, the packet drop metric for the random packet

drops does indeed give a reliable identification of the high-

bandwidth flows.

Unlike random packet drops, with forced packet drops the

RED algorithm does not get to “choose” whether or not to

drop a packet. When the buffer is full, or when the aver-

age queue size exceeds the maximum threshold, RED drops

all arriving packets until conditions change (the buffer is not

longer full, or the average queue size no longer exceeds the

threshold). Thus, a flow with one large packet arriving dur-

ing a forced-drop time interval will have its packet dropped,

and a flow with several small packets arriving during this in-

terval will instead have all of its small packets dropped.

The graph in the bottom left corner of Figure 4 shows the

packet drop metric for forced packet drops. As Figure 4

shows, the packet drop metric with forced packet drops has a

systematic bias overestimating the arrival rate for flows with

6



small packets such as Flow 3 and underestimating the arrival

rate for flows with larger packets such as Flow 4.

Definition: the byte drop metric. The byte drop metric is

defined as the ratio of the number of bytes dropped from a

flow to the total number of bytes dropped. For forced packet

drops, this metric gives the best estimate of a flow's arrival

rate, as shown in the lower right graph of Figure 4. The upper

right graph of Figure 4 shows that the byte drop metric is not

adequate for random packet drops, because it overestimates

the arrival rate of flows with larger packets and underesti-

mates the arrival rate of flows with smaller packets.

(Combined Drop Metric, for All Packet Drops)
Per-Flow Arrival Rate(%)

F
lo

w
’s

 P
er

ce
nt

 o
f D

ro
ps

 (
C

om
bi

ne
d)

0 20 40 60 80 100

0
20

40
60

80
10

0

1

1

1

1

1
11

1
1
111

1 11
1 1

1

1
11
1

11

1

11

1
11

1

1

1
1

1

111

1

1

1
11

11

1

2 22

2 22
2

22222
2
22222

22
2
22
2222222222222

222 222222223

3

3

33
3

3 3

3
3

3
33
3
3
3

3

3
3
3

3

3 3

3
333

3

3

3

33

3

3

3
33

3

3

3

3

333

33
3

18

18

18

1818 1818
18

1818
18

18
18

1818

18

18
18

18

18

18 18

18

18
18

18

18
18
1818

1818
18 18

18

18
18

18
18

18

18

18
18

18

1818
19

19
19

19

19

19
19
19

19
1919

19
19

1919

19
19 1919

19

191919
19191919

19

19

1919

1919

1919

19

19

19

19

19

1919

19

19

44

4

4

4 4
4

4
4

44 44

4

4

4
4

4
4

4

44
44

4

44
444

44 4
4

4

4

4

44

44

4
4

5555555555555555
55555555555555555566

6
6

666
6

6

666

6
6666
6666

66 66
666

6
6

6
6 6 666 67

7777777777777777777777777777
8 88

8

8

8

8

8 8
8

8
8

8

8 8
8888

888
8

8 8

8

8

8
8 8

889

9

9
9

9999 9

9

99
99 99 9

9
9

9
101010101010

10

Figure 5: The combined drop metric for all packet drops.

Definition: the combined drop metric. By weighting a

flow's byte and packet drop metrics by the ratio of forced

and random packet drops, we can better estimate a flow's

behavior than by using either metric alone. We define the

combined drop metric for forced and random packet drops

as follows:

M

Forced

� f

Forced

+M

Random

� f

Random

;

where M

Forced

is the flow's byte drop metric for the forced

packet drops, M
Random

is the flow's packet drop metric for

the random packet drops, and f

Forced

and f

Random

are the

fraction of the total packet drops from that queue that are

forced and random, respectively.

Figure 5 shows the combined drop metric for each flow for

the simulation in Figure 4, calculated for every 100 packet

drops. As Figure 5 shows, the combined drop metric is

a reasonably accurate indicator of the arrival rate for high-

bandwidth flows.

A router particularly concerned about accurately estimat-

ing the arrival rate of high-bandwidth flows could monitor

the arrival rate and drop rate for each flow identified by the

packet drop history as likely to be high-bandwidth. Instead

of estimating a flow's arrival rate from drop metrics, the

router could make accurate measurements of the number of

packet arrivals and drops for each candidate high-bandwidth

flow over that time interval. Our simulations to date do not

show any significant advantages to collecting this optional

arrival information. Collecting this additional arrival infor-

mation would not imply the router keeps per-flow statistics

for all active flows; it would only collect per-flow arrival

statistics for the particular high-bandwidth flows it is mon-

itoring.

For a queue in units of packets, the appendix shows

that packets dropped because of buffer overflow should be

counted as forced packet drops. In contrast, for a queue in

units of bytes, packets dropped because of buffer overflow

should be counted as if they were random packet drops. The

appendix also shows that routers with Drop-Tail queue man-

agement cannot use the packet drop history to reliably iden-

tify high bandwidth flows.

4 Identifying flows to regulate

The previous section shows how a router can examine the

history of packet drops to help identify high-bandwidth

flows. In this section, we discuss the range of policies a

router might use to decide which flows to regulate. The

router only needs to consider regulating those best-effort

flows using significantly more than their “share” of the band-

width in the presense of suppressed demand (as evidenced

by packet drops) from other best-effort flows. A router can

“regulate” a flow's bandwidth by using available scheduling

mechanisms. When congestion is mild (as represented by a

low packet drop rate), a router does not need to take any steps

to identify high-bandwidth flows or further check if those

flows need to be regulated.

The policies outlined in this section for identifying which

high-bandwidth flows should be regulated range in the de-

gree of caution. The most conservative policy is to only

regulate high-bandwidth flows in times of congestion when

they are determined to be either unresponsive to congestion

or exceeding the bandwidth used by any conformant TCP

flow under the same circumstances. A less cautious policy

would include regulating any high-bandwidth flow using sig-

nificantly more than its “share” of the bandwidth in a time of

high congestion.

The tests in this section assume a “flow” is defined on the

granularity of source and destination IP addresses and port

numbers, so each TCP connection is a single flow. For a

router in the interior of the network where a different gran-

ularity is used to define a flow, it will also be necessary to

use different policies to identify a “flow” whose bandwidth

should be regulated.

In our simulations the RED packet drop history is exam-

ined after 100 packet drops or five seconds, whichever is

longer. From the set of packet drops, a flow is identified as

the high-bandwidth flow if it has the highest combined drop

metric. The router applies a set of tests to determines if the

7



selected flow is unresponsive, not TCP-friendly, or “very-

high-bandwidth”. If the flow meets the criteria for any of

these tests, the bandwidth of the flow is regulated by the

router. Section 5 discusses the scheduling or packet drop

mechanisms a router could use to restrict the bandwidth of

regulated flows.

4.1 Identifying flows that are not TCP-

friendly

Definition: TCP-friendly flows. We say that a flow is TCP-

friendly if its arrival rate does not exceed that of any TCP

connection in the same circumstances. The most conserva-

tive and clearly-defined test to deploy is to restrict the band-

width of a high-bandwidth flow only when the router has

high confidence it is not TCP-friendly. The test of whether

or not a flow is TCP-friendly assumes TCP can be charac-

terized by a congestion response of reducing its congestion

window at least by half upon indications of congestion (i.e.,

packet drops), and of increasing its congestion window by a

constant rate of at most one packet per roundtrip time other-

wise. This response to congestion leads to a maximum over-

all sending rate for a TCP connection with a given packet

loss rate, packet size, and roundtrip time. Given a packet

drop rate of p, the maximum sending rate for a TCP connec-

tion is T Bps, for

T �

1:5

p

2=3 �B

R �

p

p

; (1)

for a TCP connection sending packets of B bytes, with a

fairly constant roundtrip time, including queueing delays, of

R seconds. This equation is derived in the appendix.

To apply this test, the router must be configured with a

minimum roundtrip time R for flows and a maximum packet

size B in bytes. In the most conservative case, R should be

set to twice the one-way propagation delay of the attached

link. The router can use its measurement of the aggregate

packet drop rate for that queue over the recent time interval

to estimate p, the packet drop rate experienced by a particular

flow. Given the packet drop rate p, the minimum roundtrip

time R, and the maximum packet size B, a router can use

equation (1) to easily calculate the maximum arrival rate

from a conformant TCP connection. TCP connections will

generally use less than this maximum bandwidth, because

they have limited demand, a longer roundtrip time, a win-

dow size limitation, a smaller packet size, a less-aggressive

TCP implementation, a receiver that sends delayed ACKs, or

additional packet drops from elsewhere in the network.

Given R and B, equation (1) reduces to a simple table at

the router: if the steady-state packet drop rate is “x”, then the

arrival rate of an individual flow should be at most “y”. The

arrival rate of a high-bandwidth flow can be estimated from

the flow's combined drop metric. If a flow's drop rate (the

ratio of a flow's dropped packets to its arriving packets) is

lower than the aggregate drop rate for the queue, the router

will overestimate the flow's actual drop rate, but at the same

time will underestimate the flow's arrival rate in Bps. These

effects tend to cancel, implying the estimates should not lead

to problems with incorrect identification of unresponsive or

unfriendly flows. This is confirmed by our simulations to

date.

The test of TCP-friendliness does not attempt to verify

that a flow responds to each and every packet drop exactly

as would a conformant TCP flow. It does however assume

a flow should not use more bandwidth than would the most

aggressive conformant TCP implementation in the same cir-

cumstances. The TCP protocol itself is subject to change,

and the congestion control mechanisms used to derive equa-

tion 1 could at some point be changed by the IETF (Inter-

net Engineering Task Force), the responsible standards body.

Nevertheless, the two limitations on TCP's window increase

and decrease algorithms have been followed by all confor-

mant TCP implementations since 1988 [Jac88], and have an

installed base in the end-systems of the Internet that will per-

sist for some time, even if at some point in the future changes

might be proposed to the TCP standards to allow more ag-

gressive responses to congestion. As long as best-effort traf-

fic is dominated by such an installed base of TCP traffic, it

would be reasonable for routers to restrict the bandwidth of

any flow with an arrival rate higher than that of any confor-

mant TCP implementation in the same circumstances.

Care should be taken to only apply the TCP-friendly test

to measurements taken over a sufficiently large time inter-

val. The time period should not correspond to only one or

two flow round-trip times. If the interval represents a small

number of roundtrip times, then the flow might not have

time to respond to the packet drops during that cycle until

one roundtrip time later (i.e. in the subsequent cycle). If

a very long round-trip time flow is incorrectly identified as

not TCP-friendly because of a short measurement interval

relative to its roundtrip time, then the router will notice the

flow's delayed response to congestion a short time later, and

can remove the bandwidth restrictions then.

Another consideration in applying equation (1) is the

prevalence of forced packet drops. If the router is experi-

encing a large number of forced packet drops, a flow identi-

fied by the equation could be experiencing clusters of packet

drops, with each cluster of packet drops representing a sin-

gle indication of congestion to that flow. This is likely only

to be a problem if the level of congestion is high; otherwise,

RED gateways are characterized by random packet drops,

with few instances of multiple packets dropped from a sin-

gle window of data.

This test does not attempt to detect all flows which are not

TCP-friendly. For example, the router might know a lower

bound on the flow's roundtrip time, but the router does not

know any flow's actual round-trip time. For routers with at-

8



tached links with large propagation delays, the TCP-friendly

test of equation (1) gives a useful tool for identifying flows

which are not TCP-friendly. For routers with attached links

of smaller propagation delay, the TCP-friendly test of equa-

tion (1) is less likely to identify any unfriendly flows. Such

routers cannot exclude the possibility that a conformant TCP

flow could receive a disproportionate share of the link band-

width simply because it has a significantly smaller roundtrip

time than competing TCP flows.

Flows whose arrival rates significantly exceed the max-

imum TCP-friendly arrival rate either are not using TCP-

friendly congestion control, or have larger packets or a

smaller round-trip time than assumed by the router. (Flows

with particularly large packets could be observed at the

router, but there is no simple test for a router to determine

the end-to-end round-trip time of an active connection.) The

router can freely restrict the bandwidth of best-effort flows

determined not to be TCP-friendly in times of congestion.

Such flows are “stealing” bandwidth from TCP-friendly traf-

fic. Any such flow should only have its bandwidth restriction

removed when there is no longer any significant link conges-

tion, or when it has shown to reduce its arrival rate appropri-

ately in response to congestion.

Definition: the TCP-friendly test. In our simula-

tions, a high-bandwidth best-effort flow is restricted as not

TCP-friendly if its estimated arrival rate is greater than

1:45B=(R

p

p), for B = 1460 bytes, R twice the propaga-

tion delay of the attached link, and p the aggregate packet

drop rate for that queue. A flow's restriction is removed if its

arrival rate returns to less than 1:22B=(R

p

p), for the new

packet drop rate p.

4.2 Identifying unresponsive flows

The TCP-friendly test is based on the specific congestion

control responses of TCP, and many routers may not want to

use such a “TCP-centric” measure. The TCP-friendly test is

also of limited usefulness for routers unable to assume strong

bounds on TCP packet sizes and round-trip times. A more

general test would be simply to verify a high-bandwidth flow

was responsive (i.e. its arrival rate should decrease in re-

sponse to an increased packet drop rate).

Equation (1) shows that for a TCP flow with persistent

demand, if the long-term packet drop rate of the connec-

tion increases by a factor of x, then the arrival rate from

the source should decrease by a factor of at least
p

x. For

example, if the long term packet drop rate increases by a fac-

tor of four, than the arrival rate should decrease at least by a

factor of two. This suggests a test for identifying unrespon-

sive flows if the drop rate is changing. If the steady state

drop rate increases by a factor x, and the presented load for

a high-bandwidth flow does not decrease by a factor reason-

ably close to
p

x or more, then the flow can be deemed not

to be using congestion control (unresponsive).

Applying this test requires estimates of a flow's arrival rate

and packet drop rate over several long time intervals. As in

the previous section, the arrival rate can be estimated using

the flow's drop metric, and the flow's packet drop rate can be

estimated using the aggregate packet drop rate at the queue.

This test does not attempt to detect all flows that are not re-

sponding to congestion, but is only applied to the high band-

width flows. When the packet drop rate remains relatively

constant, no flows will be identified as unresponsive. In ad-

dition, the router has limited information about the flow's

responses to congestion. The primary congestion indications

experienced by a flow might be coming from elsewhere in

the network. In addition, the arrival rate seen by a router is

a result not only of the sending rate, but also of the drop rate

experienced by a flow at a congested link earlier on its path.

As discussed in the previous section, care should be taken

when applying this test. In particular, a test for unrespon-

siveness is less straightforward for a flow with a variable de-

mand. In addition to possible end-to-end congestion mech-

anisms such as senders adjusting their coding rates or re-

ceivers subscribing and unsubscribing from layered multi-

cast groups, the original data source itself could be ON/OFF

or otherwise have strong rate variations over time. If a high-

bandwidth flow is restricted because it has been identified as

unresponsive, and it is later determined to be responding to

congestion by reducing its arrival rate, then the restriction is

removed

An additional refinement of this “responsiveness” test

would be to distinguish three separate subcases: flows with

an increasing or relatively constant average arrival rate (as in-

dicated by the drop metric) in the face of an increasing packet

drop rate at the router; a flow whose average arrival rate gen-

erally tracks longer-term changes in the packet drop rate at

the router; and a flow whose average arrival rate seems to

change independently of changes in the router's packet drop

rate.

The router can freely restrict the bandwidth of best-effort

flows determined to be unresponsive in times of congestion.

Such flows are “stealing” bandwidth from responsive TCP-

friendly traffic.

Definition: the test for unresponsiveness. In our simula-

tions, a high-bandwidth best-effort flow is restricted as un-

responsive if the packet drop rate has increased by a factor

of four, but the flow's arrival rate has not decreased to below

90% of its previous value. Restrictions are removed from

an unresponsive flow only if, after an increased packet drop

rate, its arrival rate returns to at most half of its arrival rate

when it was restricted.

4.3 Identifying very-high-bandwidth flows

A third test some routers might use identifies flows using a

disproportionate share of the bandwidth in times of high con-

gestion. There are times when a router might want to restrict

9



the bandwidth of such flows even if they are TCP-friendly.

A “disproportionate share” of bandwidth can be consumed

by a TCP flow under several circumstances: if there is only

one TCP with sustained persistent demand, or only one TCP

using large windows, or one TCP with a significantly smaller

roundtrip time or larger packet size than other active TCPs.

Let n be the number of flows with packet drops in the re-

cent time interval. The most straightforward test to check if

a flow was using a disproportionate share of the bandwidth

in times of congestion would be to test if the flow's fraction

of the aggregate arrival rate was greater than some preconfig-

ured fraction, or greater than some small constant times 1=n,

when the aggregate packet drop rate was greater than some

preconfigured threshold deemed as an unacceptable level of

congestion. Our test is a modification of this approach that,

instead of relying on a preconfigured threshold for the packet

drop rate, allows for greater skewedness in the distribution of

best-effort bandwidth when packet drop rates are lower. The

goal is to prevent flows from using a highly disproportion-

ate share of the bandwidth only when there is likely to be

“sufficient” demand from other best-effort flows.

The first component of the very-high-bandwidth test is to

check if a flow is using a disproportionate share of the band-

width. We define a flow as using a disproportionate share

of the best-effort bandwidth if its fraction of the aggregate

arrival rate is more than log(3n)=n, for log is the natural

logarithm. We chose this fraction because it is close to one

(i.e., 0.9) for n equal to two, and grows slowly as a multiple

of 1=n.

The second component of our test takes into account the

level of congestion itself, as reflected in the aggregate packet

drop rate p. We define a flow as having a high arrival rate rel-

ative to the level of congestion if its arrival rate is greater than

c=

p

p Bps for some constant c. This definition is motivated

by our characterization in the appendix of the relationship

between the arrival rate and the packet drop rate for confor-

mant TCP. For our simulations we set c to 12,000, which is

close to 1:5

p

2=3B=R for B = 512 bytes and R = 0:05

seconds.

Gauging the level of unsatisfied demand using packet

drops can be difficult. For a large round-trip time TCP flow

with persistent demand, a single packet drop can represent a

significant suppressed demand. For a short bursty web trans-

fer, a single packet drop might not mean much in terms of

unsatisfied demand. A conservative approach would be to

limit the restriction of a high-bandwidth responsive flow so

that over the long run, each such flow receives as much band-

width as the highest-bandwidth unrestricted flow.

In restricting the bandwidth of a high-bandwidth flow that

has not been identified as either unresponsive or not TCP-

friendly, care should be taken not to “punish” it by restricting

its bandwidth too severely. If the regulation is performed by

reassigning the flow to a different scheduling partition at the

same priority level, this could be done by classifing the regu-

lated high-bandwidth-but-responsive flows in a separate par-

tition, and controlling the bandwidth allocated to the parti-

tion. If the regulation is by reassigning the flow to a schedul-

ing partition at a lower priority level, then one possibility

is to have separate priority levels for unrestricted best-effort

traffic, restricted very-high-bandwidth traffic, and restricted

unresponsive or unfriendly traffic. Another possibility is to

monitor the bandwidth achieved by a restricted very-high-

bandwidth flow and periodically reclassify it back to the un-

regulated best-effort partition to avoid starvation.

Definition: the very-high-bandwidth test. Let p be the ag-

gregate packet drop rate for the unrestricted best-effort traf-

fic, and let n be the number of flows with packet drops in the

most recent interval. In our simulations, a best-effort flow is

restricted as very-high-bandwidth if the estimated arrival rate

is greater than 12; 000=

p

p and the arrival rate is also greater

than a fraction log(3n)=n of the best-effort bandwidth. The

restriction is removed when one of these conditions is no

longer true.

5 Regulating high-bandwidth or un-

responsive flows

Regulating the bandwidth of identified flows requires two

mechanisms at the router: a classifier to identify arriv-

ing packets belonging to a regulated flow, and a schedul-

ing mechanism to restrict the bandwidth of these identified

flows. We discuss each of these two components below.

5.1 Classifiers

IP routers must inspect packet headers to “classify” arriving

packets and determine their proper output ports. For regulat-

ing flows, the classifier must also be able to identify packets

belonging to each regulated flow.

The per-flow state required for the identification of high-

bandwidth or unresponsive flows comes from a background

pass over information from the history of dropped packets,

and therefore does not include flows that have not had pack-

ets dropped. The computation of the combined drop metric

uses the number of random packet drops for a flow, along

with the number of bytes of forced packet drops from that

flow. In addition, the combined drop metric uses the aggre-

gate measures of packets dropped and bytes dropped for all

flows.

Optional per-flow arrival information could be kept for

flows that have been identified as high-bandwidth and are

pending reclassification. The optional arrival information

would consist of the number of packet and byte arrivals for

that flow. Our simulations to date do not show any significant

advantages to collecting this optional arrival information.

10



5.2 Scheduling mechanisms

We assume that routers already have available some schedul-

ing mechanism to restrict the bandwidth of a specified flow.

In this section we discuss two possible scheduling mech-

anisms, priority scheduling, and weighted round-robin or

weighted fair-queueing scheduling between two partitions at

the same priority level.

Restricting the bandwidth of specified flows would be

straightforward for routers with class-based queueing (CBQ

[FJ95]) or similar scheduling mechanisms that allow the

router to combine priority scheduling with bandwidth allo-

cations. In this case, restricted flows could be assigned to a

lower-priority class, while the scheduler could at the same

time ensure that the lower-priority class always receives

some minimum fraction of the link bandwidth. However, the

router could also use the priority-scheduling or round-robin

scheduling mechanisms that might be already available to it.

For the simulations in this paper the scheduler has two

scheduling classes or partitions at the same priority level, and

uses weighted round robin scheduling between the two parti-

tions. One partition is the default class for best-effort traffic,

and contains unrestricted best-effort traffic. The other par-

tition contains restricted best-effort traffic, and packets for

regulated flows are classified to this partition.

For a router with weighted round-robin or weighted fair

queueing scheduling, the regulation mechanism also has to

dynamically allocate the bandwidth between the two parti-

tions. In our simulations, the restricted partition is never al-

located more than 25% of the best-effort bandwidth.

Consider a restricted partition with n active flows. In our

simulations, the bandwidth allocated to the restricted parti-

tion is changed each time a new flow is added to or removed

from that partition. The partition's allocated bandwidth is

never more than n=2 times the computed TCP-friendly band-

width for the packet drop rate in the unrestricted best-effort

queue, and never more than n=2 times the highest per-flow

arrival rate for an unrestricted flow. Thus, congestion in

the restricted partition should always be significantly greater

than the level of congestion in the unrestricted partition. If

the drop rate in the restricted partition is not at least twice

the drop rate in the unrestricted partition, then the bandwidth

allocation to the restricted partition is halved. Without this

mechanism, a flow could actually benefit from being placed

in the restricted partition by being isolated from the unre-

stricted best-effort traffic.

For routers with priority scheduling, flows positively iden-

tified as either unresponsive or as not TCP-friendly can sim-

ply be classified to a lower-priority scheduling partition. This

should serve as a strong incentive for best-effort traffic to

use end-to-end congestion control. Flows can be reclassified

back to the higher-priority partition if it is determined they

are decreasing their arrival rate in response to increases in

the packet drop rate.

However, care should be taken to avoid starvation of flows

that have simply been identified as very-high-bandwidth.

One way to do this would be to use three priorities of

best-effort traffic, with the highest priority for the unre-

stricted traffic, the second priority for the restricted very-

high-bandwidth traffic, and the lowest priority for the unre-

sponsive or unfriendly traffic. Another possibility would be

to only reclassify the very-high-bandwidth traffic for short

periods of time, to avoid starvation.

For routers lacking a suitable scheduling mechanism for

regulating flows, identified flows could be regulated by hav-

ing the queue management mechanism preferentially drop

packets from those flows. We have not investigated this op-

tion [rdm97].

6 Simulations

We have run extensive simulations using our mechanisms for

identifying and regulating high-bandwidth flows, and will re-

port on them in more detail in a later paper. This section

shows a simple simulation illustrating the mechanisms for

identifying and regulating high-bandwidth flows.

2 ms

R1

S1

S2

R2

S3

R3

: 10 Mbps
: 1.5 Mbps

3 ms
X ms Y ms

S5
10 ms

S4
5 ms

1 ms S6

25 ms

Figure 6: Simulation network.

The top graph of Figure 7 shows a simulation not em-

ploying the mechanisms for regulating unresponsive or high

bandwidth flows. For each flow, there is a line in the graph

showing the average bandwidth used by that flow in succes-

sive 20-second intervals. The simulation uses the scenario

in Figure 6, with X = 30 ms and Y = 0 ms. The con-

gested links between the routers use RED queue manage-

ment. There is a range of two-way UDP and TCP traffic;

the UDP traffic consists of constant-bit-rate flows, and the

TCP connections use a range of TCP variants (Tahoe, Reno,

SACK), packet sizes (from 512 bytes to 1500 bytes), start

times, and demand (either an infinite or a limited amount of

data to send). For the UDP flows, there is also a range of

packet sizes and average arrival rates (from 2 to 66 KBps).

The simulation is constructed so that the demand peaks

at roughly 300 seconds, and then starts to decrease again.

While it is not possible to extract too much detail from this

graph, the UDP flows are recognizable as straight lines. For

further details, the scripts for these simulations will be made

available from our web page [Gro97].

11



(Unregulated)
Time (Seconds)

B
an

dw
id

th
 (

K
B

ps
)

0 100 200 300 400 500 600

0
20

40
60

80

(Regulated)
Time (Seconds)

B
an

dw
id

th
 (

K
B

ps
)

0 100 200 300 400 500 600

0
20

40
60

80

Figure 7: Simulations with and without regulation.

The bottom graph of Figure 7 shows the same simulation

scenario with the mechanisms for regulating unresponsive or

high bandwidth flows enabled. As the packet drop rate on

R1-R2 increases to 2.5%, the high-bandwidth UDP flow is

identified as unresponsive, and has its bandwidth restricted.

In our simulations, the router periodically examines the

restricted flow that has the smallest combined drop metric

to see if its restriction can be removed. In general, the re-

stricted flow is only reclassified to the unrestricted partition

if it has shown it is not likely to be immediately reclassified

as needing restriction.

If the packet drop rate at the router stays relatively con-

stant, then the router has limited information for distinguish-

ing a responsive from an unresponsive flow. For example,

it is possible to construct three different simulations with a

steady-state packet drop rate of roughly 2%, where a sin-

gle flow is receiving 80% of the link bandwidth, and twenty

smaller flows share the remaining 20%. In this scenario the

high bandwidth flow could be an unresponsive UDP flow,

and the twenty smaller flows could be TCPs willing to use a

much larger share of the link bandwidth. It is also possible to

construct scenarios where the high-bandwidth flow is a TCP

flow, with the twenty smaller flows either short TCP flows

with limited demand, or low-bandwidth UDP flows. For this

scenario, the router can determine if the high-bandwidth flow

is truly unresponsive, and if the low-bandwidth flows truly

have suppressed demand, by restricting the bandwidth of the

high-bandwidth flow, and examining the change (or lack of

change) in that flow's arrival rate.

We have not yet run simulations with realistic UDP traffic

sources, or with multiple congested gateways.

7 A comparison with per-flow

scheduling

One approach for constructing routers would be to use per-

flow scheduling mechanisms for best-effort traffic, such as

variants of round-robin or fair queueing scheduling. Most

forms of these per-flow scheduling algorithms separately

schedule the packets from each flow, dividing the available

bandwidth among the various flows. With per-flow schedul-

ing at the router, there would be no need for further mech-

anisms to identify and restrict the bandwidth of best-effort

flows using a disproportionate amount of bandwidth in times

of congestion. While this might seem like a compelling case

for deploying per-flow scheduling for best-effort traffic, in

this section we discuss some of the advantages in continuing

to aggregate best-effort traffic in FIFO queues using FIFO

scheduling.

First, FIFO scheduling is efficient to implement, a partic-

ularly important concern as links go to higher speeds while

the number of best-effort flows active at one time increases.

Many of the best-effort flows will have relatively short life-

times, and will have little need for per-flow scheduling at the

routers.

Second, completely apart from considerations of effi-

ciency, FIFO scheduling is in many ways the optimal

scheduling algorithm for a class of traffic where the long-

term aggregate arrival rate is restricted by either admission

controls or, in the case of best-effort traffic, by compatible

end-to-end congestion control procedures. In comparison to

Fair Queueing [DKS90] or Round Robin scheduling, FIFO

scheduling reduces the tail of the delay distribution [CSZ92].

In particular, FIFO scheduling allows packets arriving in

small bursts to be transmitted in a burst, rather than having

the packets “spread out” and delayed by the scheduler.

More critical than issues of efficiency or delay distribu-

tions are the questions of whether the overall architecture

in the routers encourages end-to-end congestion control for

best-effort traffic. Recommendations for the ubiquitous de-

ployment in routers of per-flow scheduling for best-effort

traffic are based on an assumption that in a heterogeneous

world, best-effort flows cannot be relied upon to be respon-

12



sive to congestion, and therefore best-effort flows should be

isolated from each other. Such an architecture might encour-

age individual best-effort flows to each “greedily” optimize

their own use of network resources, but it does not necessar-

ily encourage best-effort flows to use end-to-end congestion

control. As we showed in Section 2, the absence of end-

to-end congestion control could threaten congestion collapse

for best-effort traffic. In contrast, FIFO scheduling for best-

effort traffic, when coupled with mechanisms for restrict-

ing the bandwidth of high-bandwidth unresponsive flows in

times of congestion, encourages and supports the continued

use of end-to-end congestion control for best-effort traffic.

We note that routers with per-flow scheduling for best ef-

fort traffic still require queue management mechanisms; the

queue management mechanism (or lack thereof) is to some

extent orthogonal to the scheduling mechanism. Queue man-

agement mechanisms such as RED allow the router to con-

trol the average queue size and provide indications of incip-

ient congestion to the end-nodes [BDF+96]. A router with

per-flow scheduling for best-effort traffic still needs queue

management to prevent the unnecessary per-packet delay

that can result from a persistent queue and to minimize the

total number of packets dropped at the router.

A more speculative issue is whether min-max fairness is

the ideal fairness metric to use for best-effort traffic at a spe-

cific router. It has the advantage of being simple to define

at a router, and is indeed the basis for our approach in this

paper for defining flows using a disproportionate share of

the link bandwidth. However, instead of considering the net-

work as a whole, the min-max definition of fairness restricts

attention separately to each isolated component. A fairness

metric that would recognize each flow's equal access to the

scarce resources of the Internet would have to take into ac-

count such global factors as the number of congested links

on each flow's path.

FIFO scheduling for an aggregation of best-effort traf-

fic is completely compatible with differential scheduling at

the router for link-sharing or for premium services. FIFO

scheduling for a single queue can be combined with multiple

queues at an output port, with a range of scheduling mech-

anisms among the multiple queues. One such mechanism is

CBQ, where best-effort traffic can be aggregated in one or

more queues, with other queues for real-time traffic or traffic

with other requirements.

In a network engineered so that the typical case is one of

sufficient bandwidth for the demand, distinctions between

the various scheduling algorithms would become less im-

portant. Similarly, in such a network the possibility of con-

gestion collapse due to congested links carrying packets that

would later be dropped in the network would become more

remote. It is hard to predict, however, when or if the sce-

nario of sufficient bandwidth for the demand is likely to be

achieved.

8 Conclusions and future work

We have demonstrated light-weight router mechanisms for

detecting and restricting unresponsive or high-bandwidth

best-effort flows in times of congestion. These mechanisms

operate in conjunction with RED queue mangement and con-

cretely support end-to-end congestion control for best-effort

traffic.

Clearly there is more work still to be done in investigating

the mechanisms outlined in this paper in a wide range of

environments and with a wider range of traffic mixes. We

have not yet outlined a specific proposal for implementing

these mechanisms in routers with priority scheduling. We

also intend to explore these mechanisms in more complex

scenarios with multiple congested gateways, more realistic

traffic models for UDP traffic, and higher-priority real-time

traffic.

We believe the most important issue is not the precise

functioning of the mechanisms to restrict the bandwidth of

unresponsive best-effort flows, but simply that such mech-

anisms be deployed. Mechanisms such as these would go

a long way to making concrete the essential role played by

congestion control for best-effort traffic in the Internet.

9 Acknowledgments

This paper results in part from a long collaboration with Van

Jacobson. It also results from a long history of discussions

and disagreements in the IETF Transport Area Directorate,

the Internet End-to-End Research Group, and elsewhere. We

are particularly indebted to Greg Minshall and Lixia Zhang

for feedback on this paper, and to Jean Bolot, Bob Braden,

Jamshid Mahdavi, Matt Mathis, and Scott Shenker for dis-

cussions of some of these matters.

References

[BDF+96] B. Braden, B. Davie, S. Floyd, G. Minshall,

and S. Shenker. “Recommendations on Queue

Management and Congestion Avoidance in the

Internet,”. 1996. unpublished manuscript.

[CSZ92] D.D. Clark, S. Shenker, and L. Zhang. “Sup-

porting Real-Time Applications in an Inte-

grated Services Packet Network: Architecture

and Mechanism,”. SIGCOMM Symposium on

Communications Architectures and Protocols,

pages 14–26, 1992.

[DKS90] A. Demers, S. Keshav, and S. Shenker. “Anal-

ysis and Simulation of a Fair Queueing Algo-

rithm,”. Internetworking: Research and Expe-

rience, 1:3–26, 1990.

13



[FF95] K. Fall and S. Floyd. “Comparisons of Tahoe,

Reno, and Sack TCP,”. Technical report,

1995. URL http://www-nrg.ee.lbl.gov/nrg-

papers.html.

[FJ92] S. Floyd and V. Jacobson. “On Traffic Phase Ef-

fects in Packet-Switched Gateways,”. Internet-

working: Research and Experience, 3(3):115–

156, Sep. 1992.

[FJ93] S. Floyd and V. Jacobson. “Random Early

Detection Gateways for Congestion Avoid-

ance,”. IEEE/ACM Transactions on Net-

working, 1(4):397–413, Aug. 1993. URL

http://www-nrg.ee.lbl.gov/nrg-papers.html.

[FJ95] S. Floyd and V. Jacobson. “Link-sharing and

Resource Management Models for Packet Net-

works,”. IEEE/ACM Transactions on Network-

ing, 3(4), 1995.

[Flo91] S. Floyd. “Connections with Multiple Con-

gested Gateways in Packet-Switched Networks

Part 1: One-way Traffic,”. ACM Com-

puter Communication Review, 21(5):30–47,

Oct. 1991.

[Flo94] S. Floyd. “TCP and Explicit Congestion Noti-

fication,”. ACM Computer Communication Re-

view, 24(5):10–23, Oct. 1994.

[Gro97] Network Research Group. “LBNL Network

Research Group Web Page,”. Technical report,

1997. http://www-nrg.ee.lbl.gov/.

[Jac88] V. Jacobson. “Congestion Avoidance and Con-

trol,”. SIGCOMM Symposium on Communica-

tions Architectures and Protocols, pages 314–

329, 1988. An updated version is available via

ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z.

[KM87] C. Kent and J. Mogul. “Fragmentation Con-

sidered Harmful,”. SIGCOMM Symposium on

Communications Architectures and Protocols,

pages 390–401, Aug. 1987.

[KMMP88] C. Kent, K. McCloghrie, J. Mogul, and C. Par-

tridge. “IP MTU Discovery options,”. Request

for Comments RFC 1063, Internet Engineering

Task Force, July 1988.

[MF95] S. McCanne and S. Floyd. “NS (Net-

work Simulator),”, 1995. URL http://www-

nrg.ee.lbl.gov/ns.

[Nag84] J. Nagle. “Congestion control in IP/TCP inter-

networks,”. Request for Comments RFC 896,

Internet Engineering Task Force, January 1984.

[Nai96] T. Nairne. “Idenfitying High-Bandwidth Users

in RED Gateways,”. Technical report, Oct.

1996. UCLA Computer Science Department.

[OKM96] T. Ott, J. Kemperman, and M. Mathis. “The

Stationary Distribution of Ideal TCP Conges-

tion Avoidance,”. Technical report, Aug. 1996.

[rdm97] rdm@tad.micro.umn.edu). “Re: conges-

tion control mechanisms in realaudio,”.

Technical report, 9 Jan 1997. Message

¡19970109200431.29536.qmail@test.legislate.com¿

to the end2end-interest mailing list, archived at

ftp://isi.edu/end2end/.

[RF95] A. Romanow and S. Floyd. “Dynamics of TCP

Traffic over ATM Networks,”. IEEE Journal

on Selected Areas in Communications, 13(4),

1995. URL http://www-nrg.ee.lbl.gov/nrg-

papers.html.

[She94] S. Shenker. “Making Greed Work in Networks:

A Game-Theoretic Analysis of Switch Service

Disciplines,”. SIGCOMM Symposium on Com-

munications Architectures and Protocols, pages

47–57, Aug. 1994.

[Var96] G. Varghese. “On Avoiding Congestion Col-

lapse,”. Technical report, Nov. 19 1996. view-

graphs, Washington University Workshop on

the Integration of IP and ATM.

A Characterizing TCP-friendly flows

Since congestion control was introduced to TCP in

1988 [Jac88], TCP flows in the Internet have responded to

congestion signals from the network (i.e. packet drops) by

reducing their offered load by half for each window of data

experiencing a packet drop. For a responsive flow with per-

sistent demand, increasing the packet drop rate of a flow at a

router should result in a decreased arrival rate from that flow

at that router. The maximum arrival rate a router should see

from any single conformant TCP connection can be charac-

terized, given the steady-state packet drop rate at the router,

an upper bound the TCP packet size, and a lower bound on

the TCP connection's roundtrip time. Using this characteri-

zation, routers can identify any flows using more bandwidth

than would any TCP flow in the same circumstances.

In this section we explore the relationship between

throughput and the packet drop rate for a conformant TCP

connection. By a conformant TCP connection, we mean a

TCP connection where the TCP sender follows the following

two essential components of today's TCP congestion con-

trol. First, the TCP data sender interprets any packet drop

14



in a window of data as an indication of congestion, and re-

sponds by reducing the congestion window, and therefore

the effective sending rate, at least in half. Second, during the

congestion avoidance phase in the absence of congestion, the

TCP sender increases the congestion window by at most one

packet per roundtrip time (or more precisely, by at most one

packet per window of data). These two components lead to

a simple relationship between the “steady-state” packet drop

rate received by a TCP connection, and the “steady-state”

average throughput achieved by that connection.

Many conformant TCP implementations respond to con-

gestion less aggressively than allowed by the limits of con-

gestion control described above. TCP implementations have

potentially-long delays due to retransmit timeouts; at times,

TCP senders invoke slow-start in responding to congestion;

they may be limited by maximum bounds on the window

size, imposed by buffering or lack of window scaling at ei-

ther at the sender or receiver; for TCP connections where the

receiver only sends an ACK packet for every two data pack-

ets, the TCP sender increases the congestion window by less

than one packet per roundtrip time.

We assume a steady-state model of TCP as introduced in

Section 5 of [Flo91]. For the purposes of heuristic analy-

sis, we assume a single packet is dropped from a TCP con-

nection each time the congestion window is increased to W

packets (and never when the congestion window is below W

packets). The steady-state model assumes a non-zero aver-

age packet drop rate of p and independent packet drops. The

TCP sender responds to a packet drop by cutting the con-

gestion window at least in half. After a packet is dropped,

the TCP sender increases its congestion window by at most

one packet each roundtrip time, until the congestion window

again reaches its old value ofW packets (and, in steady state,

the TCP connection receives another packet drop). The as-

sumption in this model of a deterministic and repeatable pat-

tern, although admittedly unrealistic, leads to results verified

by simulations in this section and by an independently de-

rived more rigorous analysis in [OKM96].

We consider a TCP connection sending packets (or more

precisely, segments) of B bytes, with a fairly constant

roundtrip time, including queueing delays, of R seconds.

Each time a packet is dropped, the TCP sender has a con-

gestion window of W packets.

By decreasing its window by at least half for each packet

drop and increasing its window by at most one per round-trip

time afterwards, the TCP sender transmits at least

W

2

+

�

W

2

+ 1

�

+ :::+W �

3

8

W

2

: (2)

packets for each packet dropped. The fraction of the sender's

packets that are dropped is then bounded by the reciprocal of

that value:

p �

8

3W

2

: (3)

From equation (3),

W �

r

8

3p

: (4)

For our steady-state model assuming a link with steady-

state packet drop rate p, equation (4) gives the maximum

congestion window W of a TCP connection when a packet

is dropped. With a steady-state packet drop rate of p in the

steady-state model, the TCP connection sends 3

8

W

2 pack-

ets between packet drops. Because the congestion window

is decreased by at least half, and increased by at most one

packet per roundtrip time, there are at least W=2 roundtrip

times between packet drops in the steady-state model. The

maximum sending rate for a TCP connection over a single

cycle of the steady-state model is thus T Bps, for

T �

0:75 �W �B

R

:

Substituting for W from equation (4), we get

T �

1:5

p

2=3 �B

R �

p

p

: (5)

This upper bound on a TCP's sending rate applies for any

conformant TCP that decreases its congestion window by

at least half, and, after the congestion window has been de-

creased by half, increases the congestion window by at most

one packet per roundtrip time.5 Thus, this upper bound also

applies to a TCP restricted by the receiver's advertised win-

dow, or by TCP variants such as Vegas TCP which some-

times refrain from increasing the congestion window during

the congestion avoidance phase. Assuming a steady-state

packet drop rate of p, and thus in the steady-state model

that the TCP connection gets to send 1=p packets between

packet drops, clearly the TCP connection maximizes its av-

erage throughput by increasing its congestion window by the

maximum allowed amount each roundtrip time.

This might at first seem counter-intuitive. However, the

purposes of the steady-state model in this section are to ex-

plore the relationship between the steady-state packet drop

rate and the steady-state arrival rate from the TCP connec-

tion. Certainly in a specific scenario with all else being

equal, a TCP that refrains from increasing its congestion

window from time to time might increase its own through-

put by decreasing the aggregate packet drop rate. This does

not change the fact that the inequality in equation 1 still de-

scribes the relationship between the packet drop rate and the

arrival rate for that connection.

¿From the appendix, for TCP connections where the data

receiver sends at most one ACK for every two packets, we

show a stronger upper bound on the sending rate of

T �

1:5

p

1=3 �B

R �

p

p

: (6)

5The same result was derived by [OKM96], using a more rigorous

model, with a constant of 1.3 instead of 1.22 (� 1:5

p

2=3).

15



Equation 5 does not take into account TCP delays due to

waiting for retransmit timers to time out. Thus, equation

(5) drastically overestimates the bandwidth for steady-state

scenarios when the congestion window W is less than four

packets when a packet is dropped. From equation (4), this

occurs when the packet drop rate is 16% or higher. (If the

congestion window is four or higher, the TCP connection

can recover from a single packet drop using Fast Retrans-

mit, after receiving several duplicate acknowledgements. If

the congestion window is smaller, then the TCP connection

generally has to wait for a retransmit timeout. [FF95]) For a

packet drop rate of 100%, our steady-state model would as-

sume that the TCP connection stubbornly sends one packet

every roundtrip time, and equation (5) (because it used an

approximation in equation (2)) gives a TCP sending rate of

slightly over one packet per roundtrip time. Incorporating

the notion of retransmit timer backoff in the model would

give a much more realistic result.

Although the language in this paper refers only to packet

drops, proposals have been made to add explicit congestion

notification to TCP/IP [Flo94]. If explicit congestion noti-

fication were deployed, then instead of dropping a packet

to provide feedback about congestion, a router could simply

“mark” packets by setting the the Explicit Congestion Noti-

fication bit in packet headers.

A.1 Simulations verifying the “TCP-friendly”

characterization

R1S1 S4

100 Mbps
1 msec

10 Mbps
28 msec

Figure 8: Simulation network.

Figure 8 illustrates the simulation topology used to evaluate

the “TCP-friendly” characterization. The solid line in Fig-

ure 9 shows the TCP-friendly bandwidth from equation (5)

as a function of the packet drop rate. Figure 9 assumes a

TCP connection with minimum roundtrip time of R = 0:06

seconds and a maximum packet size of B = 1460 bytes.

The x-axis shows p, the fraction of arriving packets that are

dropped, and the y-axis shows T , the upper bound on TCP

arrival rate in KBps.

Each dashed line in Figure 9 shows the results from a sin-

gle simulation set. Each simulation consists of two compet-

ing connections, one TCP and the other UDP, from node S1
to node S4. For each simulation set the sending rate of the

UDP flow ranges from zero up to the available bandwidth of

the congested link. The router uses FIFO scheduling and

RED queue management. The RED packet drop mecha-

(1460-byte packets, 0.06 second roundtrip time)
Drop Rate (PerCent of Arriving Packets Dropped)

T
C

P
-F

rie
nd

ly
 A

rr
iv

al
 R

at
e 

(K
B

ps
)

0 2 4 6 8 10

0
20

0
40

0
60

0
80

0
10

00
12

00 .

.

.

.

.

.

.

.
.
.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1
1

111
11

1
1

1
1

1
1

1
1

2

2

2
2
2
2 2

2
2

2
2

2
2

2
2

3
3

3
33
3
3
3

3
3

3
3

3
3

3

4
44
4
4
4
4
4
4

4
4

4
4

4

55

5
5
55
5
5
5
5
5

5
5

5
5

5

66

6
6
66
6
6
6
6
6

6
6

6
6

6

Figure 9: TCP-friendly bandwidth for a 60-ms roundtrip

time and 1460-byte packets.

nisms are generally able to prevent both the FIFO buffer

from overflowing and RED's average queue size from ex-

ceeding its maximum threshold. The TCP connection sees a

roundtrip time, including queueing delay, of roughly 60 ms.

Each simulation is represented by a number in Figure 9.

The simulations in a simulation set differ from each other

only in the sending rate of the UDP flow. Numbers “1”

through “3” show simulations where the TCP connection

uses 1460-byte packets. Numbers “4” through “6” show

simulations with 512-byte packets. Simulation sets “2” and

“5” use Tahoe TCP, and the others use SACK TCP. Simula-

tion sets “3” and “6” use data receivers with delayed ACKs

(sending one ACK to acknowledge two data packets), and

the others use single ACKS (sending an ACK for every data

packet). For all of the simulations, the TCP clock granularity

is 100 ms. The x-axis in Figure 9 shows the TCP connec-

tion's sending rate and the y-axis shows the fraction of its

packets which are dropped.

For the SACK and Tahoe simulations with 1460-byte

packets and single-ACK receivers (simulation sets “1” and

“2”), the simulation results are a reasonable match to the

computed TCP-friendly bandwidth. For drop rates lower

than 2%, the SACK and Tahoe TCPs receive more than the

computed TCP-friendly bandwidth. One factor contribut-

ing to the discrepancy is that at these drop rates, the aver-

age queue size is low, and the roundtrip time is closer to

58 than to 60 ms. A second factor is that the steady-state

model makes the unrealistic assumption that packets are al-

ways dropped when TCP's congestion window is exactly W

packets. From [OKM96], a more realistic model of packet

drops raises the constant in equation (5) from 1.22 (that is,

1:5

p

2=3) to 1.3. Our simulations would confirm that for

lower packet drop rates, 1.3 is the more realistic value.

For packet drop rates greater than 5%, Figure 9 shows that

the TCP-friendly bandwidth greatly overestimates the arrival

rate of a TCP connection. As mentioned earlier, this is be-

16



cause the current version of the steady-state model does not

take into account delays due to retransmit timers.

Simulations with 512-byte packets closely match (equa-

tion 5) using 512-byte packets. As seen in Figure 9, the

more aggressive the TCP congestion control (i.e. a TCP

with 1460-byte packets is more aggressive than TCP with

512-byte packets), the higher the steady-state packet drop

rate needed to sustain the same per-connection bandwidth.

A spiral of increasingly-aggressive congestion control would

lead to a matching spiral of an increasingly-high steady-state

packet drop rate, in the context of a fixed available band-

width.

A.2 TCP with delayed acks

For TCP connections where the data receiver sends at most

one ACK for every two packets, we could show a stronger

upper bound on the sending rate of

T �

1:5

p

1=3 �B

R �

p

p

: (7)

For a TCP connection with a delayed-ACK sink, the

sender receives one acknowledgement for every two packets,

and increases its window more slowly that a TCP connection

that receives an ACK for every packet. With a delayed-ACK

sink, the fraction of that connection's arriving packets that

are dropped is

p =

1

P

W

i=0

(W=2 + i=2)

�

1

(3=4)W

2

: (8)

This gives a bandwidth of

T =

1:5

p

1=3 �B

R �

p

p

: (9)

(with SACK TCP, delayed-ACK sink,, 512-byte packets, 0.06 second roundtrip time)
Arriving Packets Dropped (PerCent)

T
C

P
 B

an
dw

id
th

 (
K

B
ps

)

0 2 4 6 8 10

0
10

0
30

0
50

0

.

.

.

.

.

...

.
.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 10: TCP bandwidth vs. steady-state drop rate, for

SACK TCP with a delayed-ACK sink, a 60-ms roundtrip

time and 512-byte packets.

Figure 10 shows the results for SACK TCP with a

delayed-ACK sink with the simulated topology of figure 8.

For a fixed throughput, a TCP connection with a delayed-

ACK sink should receive half the packet drop rate of a TCP

connection that receives an ACK for every packet. The top

solid line shows the analytical results for an immediate-ACK

sink, and the bottom solid line shows the analytical results

for an delayed-ACK sink. For a given packet drop rate, a

TCP connection with a delayed-ACK sink will receive less

throughput than a TCP connection with an immediate-ACK

sink.

B Identifying high-bandwidth flows

for queues with drop-tail queue

management

Figure 11 shows the results from a simulation that differs

from the simulation in Figure 4 only in that the router uses

Drop-Tail rather than RED queue management. With Drop-

Tail queue management, the router only drops arriving pack-

ets when the buffer overflows. For the simulation in Figure

11, the buffer is measured in packets, with a buffer size of

25 packets. That is, the buffer can store exactly 25 packets,

regardless of the size of each packet in bytes.

The two graphs in Figure 11 compare the packets and the

bytes drop metric. Figure 11 shows that for a Drop-Tail

queue measured in packets, the bytes drop metric is much

better than the packets drop metric in indicating a flow's ar-

rival rate in Bps. This is because a Drop-Tail queue with a

queue measured in packets drops proportionately more pack-

ets from small-packet flows than from large-packet flows

with the same arrival rate in Bps. However, Figure 11 also

shows that for a Drop-Tail queue measured in packets, nei-

ther drop metric gives a very reliable indication of a flow's

arrival rate in bytes per second. The appendix shows that

when the Drop-Tail buffer is measured in bytes rather than

packets, the packets drop metric gives a plausible indication

of a flow's arrival rate in Bps.

Figure 12 shows a simulation where the Drop-Tail buffer

is measured in bytes, with a buffer size of 12.5 KB. In

this case, an almost-full buffer might give room for a small

packet but not for a larger one. As Figure 12 shows, in this

case the packets drop metric gives a plausible indication of a

flow's arrival rate in Bps.

We should note that with very heavy congestion and un-

responsive flows, even a RED queue will no longer be drop-

ping all packets probabilistically, but will be forced to drop

many arriving packets either because of buffer overflow

(for a queue with a small buffer relative to the maximum

threshold for the average queue size), or because the aver-

age queue size is too high (for queues with larger buffers).

As the packet drop rate increases, the computational over-

head of monitoring the dropped packets approaches the com-

putational overhead of monitoring the packet arrivals di-

rectly. However, the identification and regulation of high-

bandwidth unresponsive flows should be sufficient in many

17



(Packets Drop Metric, for a Drop-Tail Queue Measured in Packets)
Per-Flow Arrival Rate(%)

F
lo

w
’s

 P
er

ce
nt

 o
f D

ro
ps

 (
P

ac
ke

ts
)

0 20 40 60 80 100

0
20

40
60

80
10

0

1

1

11
1

1
11 1111 1

11 111 11111111 111
1

11 11
1

11 1111 1 11
1

1

1
1 11 111111 1 1

1
1 1 1 111111 111

11111 1111
1 1 1

1111 11 11 1
1 1 1

11 1
11

1 1111 1111
111

11
1 1

1
1 11 1 1 1

1
1

1
11
11 1 11

1111 1 1
1

11111

1
11

2222

22

2

22

2
2
2
22
2

2222222
2
2
22
222
222
22222222
2
2

22
2
2
2

2
2
2222222
22
22222

2

222
222222
2
2
22
2222

2

222

2
22222
2

22
2
222

2
2
2

222
2222
222
2
22
2222222
2
22
22222

22222
222
2
222222
2
22
2
2
22
222

2
2
22
2
2
222

2

2

2

2
22
2
22

3

3

3
33

3

3

3
3
333
333
3
3
33333

3

3

3

3

3
3
3

3
3
333

3
3

33
3

3

33
3

3

3

3
3

3
3

33

3 3
33 33 3

3
3

3

3

33
3

3 3

3

3
33

3

3
3

33
3

3
33 333

33

3
33

3
33

3

3333 333
3
3
3

3
333

3
3
3

3
3

3

3
3
3

33 3
3

333
33 3

3
3
3
333
33
33 3
33 3

3
3 33

3
3

3

3
3

3
3

3

333

33
333

3
33 3

3

3333
33

3 33
3

3
3
33

3
33 3

33

3
3

3
3

3

18 1818181818 181818 181818 18 181818181818 18 1818
18

18 18
18

18
18 18181818 18

18 18 1818
181818181818

18 1818
18

18 1818 1818 1818181818 18
18

181818
18181818
18

18 18
181818 18 18

18
18 18181818

181818 18 18 18181818
1818

18
18 18 1818181818 1818

18
18 18 18181818 18

18 18 18 1818
18181818 18

18
18 18

18
1818 181818 18

18
18 1818 18

18 18 18 18 181818
18 18

18
1818 1819 19 19 1919 1919

1919 19 1919191919 19 19 1919 1919
19

19191919
19 1919

19 19
19

19 19191919
19 19

19
19

19
19 191919 19191919 19

19191919
1919 19

19 19 19 191919191919
191919

19
19
19 1919

19 19 1919
19
1919 191919 19 19 19

1919 19 191919191919191919
1919 19

1919191919
19191919 19 19 191919 19

19
191919 19

19
19 19

19
19

19
19 19 19 19191919 19 19

1919
19 19 19191919

19 191919191919
191919

19 19 19
19

4 44 4
4 444

4 4444 44 4 44 4444 44 444 44
44 4 44 4

444 4
4 4 444 444444 44 44 4444 44444 4

4
4 4 4444 4 4 444

4
44 444 4

4
444 4 4444 44444

44
444

4
44 4 4 44 44 4

444 4
4 44 4 44444 44 44 4444
4
44 4

44
4 4 4 4444 4 44 44 44 4 444 4444 44 44 4 4 444 4 444 444

5

5
5
55
555

555

55

5
5
5

5
5

5

5

5
5

5

5
55
5
5
5
5
5
5
5
5
55555
5

5
5
55

5
555
5

55
5
5
5
55
55
55

5
5
55
5
5
5

5
5
5
5
55
5

5
55

5
5
55555

55

5
5

55
55

5
55

555
5
55
5
555

5
5
5

5

555
5
5
55
5
555
5

5
55
5

555
5
55555
5
5
555
5
5
5
555

55

5
5
5
5

5

55555
5

55
5
5
5
5

5
5

6
6 66

66
6

6
666666 66666

66666
6
6

6 66
66666

666
66 6
66
666666 6

6 66666 66
66666 6

6
6

6
6

6666666
66

6
66666 6

6
6 666

6
66666

6
66666 6

666
6

6
6 666

7
7

77

7

7

7

77

7

7
77
7
7

7
77

7
7
7

7
7

7

7
77
777

7

7
7
77
7
7

77
7
7
7

7777

7

77

7

7

7
77

7

7

7
7777
777

7

7

7
77

7

7
7

7
7

7
7

7
7
77
7

77

7
7
7
7

7
77
7

7
7

7
7
7
7
7
77

77

7
7

7
77

7

77
77
7
77

7
7
7

7

7
7
7

77

7

7

77
7

7

7
7

7

7

7

7
777

7
7

77
77

8 8 8 8 88
8

8 8
8

8
8

8
8

8
8 8 888888

88 8 8
88 8888

8 88888 8
8888
88

8 8
88

88 8
888

88888
8 88

8
88

8888
888

88888888
99

9 9

9

9 99
9

99 99
9
9 9

999
9999

9
9

99
9 9

9 9
9 9

9
9

9999
9

9
99

9 99 9 9
999 9 9

9
99

99 999999 9
99

99
9

9
9

9
9

99
9

10
10

10

1010
10

10
10101010

10

1010

10

10

10

10
1010

1010

10

1010

10

1010
10

10
10

10

10
10

10

10

10

10

10

(Bytes Drop Metric, for a Drop-Tail Queue Measured in Packets)
Per-Flow Arrival Rate(%)

F
lo

w
’s

 P
er

ce
nt

 o
f D

ro
ps

 (
B

yt
es

)

0 20 40 60 80 100

0
20

40
60

80
10

0

1

1

1
1

1

1

1
1 1

1

11

1

11
1
11
11

11
1111 111

1
11

11

1

1
1 1

11
1

1 1

1

1

1

1

1
1

1
1

11
11

1 1 1

1

1 1 1
1

1

1
1

11 11

1

11
1
11 1

1

1
1

1
1 1

11
1
1

1

1 1
1 1

1 1
1

1
1

1

11

1

11
11 1

111

1

1
1

1

1

1 1

1

1

11

1

1

1

1

1

1

11

1
1

1
1

1

1

1

1
1

1 1

1

1

1

1

1

1

1

1
1

2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222

3

3

3
3

3

333

3
3

3

3

3
3

3
3
3

3

3
3
3

33

3

3

3

3

333
3
333

3
33
3
3

3 3

3
3

3

3

3

3

3

3

3
3

3 3 3

3

33 3
3

3

3

3

3

3

3

3

3

3

3

3

3

33

3

3

3

33

3

3

33

3

3

3

3

3

3 3

3

3
33

3

3
3 3

3

3
3

3

3
3

3
3

3

3

3
3

33

3

3

3

3

3

3 3

3

3

3
3

3

3

3

3

33

3
3

3

3
3 3

3

3
3

3

3
3

3

33

3

3

3

3 3

3

3

333

3

3

3

3
3

3

3

3

3

3

3

33

33

3

3
3

3

33

3

3

3
3

3

33

3

33

3

3
3

3

3

18 18
18

18
1818 18

1818 18
1818

18
1818181818

18
18 18

18

18

18
18

18

18

18
18

18

18
18

18

18

18 1818

18

18
181818

18

18

18

18

18

18
18

18
18

18

181818

18

18
18

18

18

18

18

1818

18
18

18

18 18

18

1818 18
18

18

18 18

18
1818

18

18

18
18 18

1818

18

18

18

18

18

18
18 18

18

18

18

18

18
18

18

18 18

18

18
18

18

18

18
18

18 1818

18

18
1818

18

18

18 18

18

18

18
181818

18

18

18

18

18

18

18 18 18 18

181818

18
18

18

1818

18

19 19

19 19
19 19

19

19

19 19 19

19

19
19

19
19 19

1919 1919

19

191919
19

19 19
19

19
19

19

19 1919

19

19

19 19

19

19

19

19 19

19
19

19

19
1919

19

19
19

19
19

19

19

19

19 19 19 19

19

19

19
19

19

19

1919

19

19

19
1919

19 19

1919

19

19

19
19

19

19

19 19 19

19
19

19 19
19

1919
1919
19

1919

19
19

19

19
19

19
19

19

19

1919

19 19 19

1919

19 19

19

19
19
19 19

19

19
19

19

19

19

19 19 19

19
19

19
19

19 19

19

19

19

19
19

19

19
19

19

19
191919

1919

191919

19 19

19

19

4
4

4
4

4

4

44

4

4
44

4 4

4

4 4

4 44
4

4 4
4

4

44

4

4

4
4

4

4

4

4

4
44

4

4 4

4

44 4
44444 44

44

4444

4
4

4

4

4

4

4

4

4 4
4

44 4

4 444

4

4

4 4
44

4

4

444 4

4

44

4

4

4

4

4

4

44

4

4

4

4

4

4

4 4 44

4
4

4

4

4

4

4

4

4

4
4

4
444

4

4

4

4

4

44

4

4

4

4

4 4

4
4

4

4

4 44

4

4 4 4

4 4

4

4

4 4

4

44 44

4

4 44

44
4

4 4

4

4 4
4

4

4

4

4

4

555555555555555555
5
555555555555555555555
555555555555555555
55555555
5
55555555555555555555555555555555555555555
555555555555555555555555555555555
5555555555
5
555555555555556

6 66

6
6

6
6

6
66666 66666

66666
6
6

6
66

6
6666

66
6

6
6 6

6
6
6
6

6
6
6

6
6

6 66
6
66 66

6666
6 6

6

6
6

6
6

66
6

6
66

6
6
6

6
6
666 6

6

6
66
6

6

66666

6

6
6

666 6

666
6

6

6 6
66

77
777

7
7

77777777777
777777

77
7777

77
7
77777
777
7

7777
7
77
7
777777
77777
77777

777
777
77
77
77777

777
777777777

77777777777
777777777777
777
777

77
77

777
7

77
7777777777777

8
8 8 8

8
8

8

8

8

8

8

8

8

8

8

8
8 8

8
8

88

8

8
8

8 8

88
8

8
8
8

8

8

8

88
8

8

8

8
8

8

88

8
8

88

8
8 8

88
8

888
8

8

8 88

8

8
8

88
8
8
88

8

8
8

8888
8899

9 9

9

9
99

9

9
9 99
9
9 9

9
9

9
999

9

9

9

9
9

9 9

9
9

9
9

9
9

9
99

9

9

9
9

9

9
9

9 9 9

9
99

9 9

9

99

9

9
99

99
99

9

9
9

9
99
9

9

9

9

99

9
1010

10
101010101010101010

1010

1010
10
101010

1010101010
10

1010
10

1010

1010101010
10

10
10

Figure 11: Comparing drop metrics for packet drops for a Drop-Tail queue measured in packets.

(Packets Drop Metric, for a Drop-Tail Queue Measured in Bytes)
Per-Flow Arrival Rate(%)

F
lo

w
’s

 P
er

ce
nt

 o
f D

ro
ps

 (
P

ac
ke

ts
)

0 20 40 60 80 100

0
20

40
60

80
10

0

1

1

1

1
1

1 1
111111

1
1

11
11

1

1
1 11 11

1
11 11111

2

222

2
2

2
2 2
22

2 2
2

2

2
2 2
2

2
2

2
2

2
222

2

2
22
2
2

2

3

3
3

3

3
3

3
3

3
3333
33
33

33
3
3

3
3
3
3
3

33
33

33

3

318
18

18
18

18
181818

18
18

18

1818 18 1818181818 18
1818

181818
181818

18

1818
18
18
19 19

19 19
19191919

19
19

19
19

19191919
19

19
19
19

1919
19
19 19

19 1919

19
19

1919

19

4 4444
4

4
44

44
4

4
4

4

4
4

4
44 44 4

4
44 4

4
4

4

4 4
5555
5555555555555555555555555

6 66
66

6
6 6

6
6666

6
6

6
6

666
6
6

6

6
6

6

7777
7
77777777777777777777

8 88
8

888
8

8
88
88

8
8

8 8
888

8
9

99 99
9 9

9 9
99

999

1010101010
10

10

(Bytes Drop Metric, for a Drop-Tail Queue Measured in Bytes)
Per-Flow Arrival Rate(%)

F
lo

w
’s

 P
er

ce
nt

 o
f D

ro
ps

 (
B

yt
es

)

0 20 40 60 80 100

0
20

40
60

80
10

0

1

1

1
1

11 1111111

11
1

1 11

1
1

1 11 11
1

11 111
11

22222222 2222 22 222 22 22 222222 2222222
3 33

3333
33333333
33
3333

33333333333
3

3

181818
18

18
1818
18

18
1818

18
18 18

1818
18

1818 18
18

18
18

18
18

18
1818

18

18
1818

18
19 19

19
191919

1919
19

19

19

19

19
191919 19

19
1919

19
19
19

19 19

19 1919

19
19

1919

19

4
4

4
4

4

4

4

44
44

4
44

4

4
4

444
4

4
4

4

44 4

4

4

4

4 4

55555555555555555555555555555 6 666666 6
66666

66 66 666
666
6

66
7777777777777777777777777

8 88
8

888
8

8
888

8

8
8

8 8
88

8

8
9

99 99
9 99 9
99

999
10101010101010

Figure 12: Comparing drop metrics for packet drops for a Drop-Tail queue measured in bytes.

cases to prevent this high packet drop rate, when coupled

with sensible network provisioning.

C Illustrating the information avail-

able at the router

In this section we consider all of the information a router

with RED queue management has easily available for detect-

ing high-bandwidth flows. This consists of the recent history

of packet drops, the average queue size, and, if the queue has

a counter of packet arrivals, the recent fraction of arriving

packets that have been dropped.

The simulation shown in Figure 14 uses the simulation

network in Figure 13. For the simulation, we gradually start

more TCP and CBR connections, each with infinite lifetime,

so that the level of congestion gradually increases. The TCP

flow have a range of packet sizes and receiver's advertised

windows. One of the UDP flows has a CBR source that

sends 190-byte packets every 3 ms, with an arrival rate that

is roughly a third of the link bandwidth.

3 ms
1.5 Mbps

25 ms

5 ms3 ms

2 ms

10 Mbps

10 Mbps10 Mbps

10 Mbps

R1

S4

S1

S2

R2

S3

Figure 13: Simulation network.

We show that for flows using a significant fraction of the

link bandwidth, the flow's drop metric is a good indicator for

that flow's fraction of the arrival rate in bytes.

The top graph in Figure 14 shows the per-flow drop met-

rics computed for every 100 packet drops. The middle graph

in Figure 14 shows the fraction of arriving packets dropped.

The bottom graph in Figure 14 shows the average queue size.

With the top two graphs, it is easy to single out the high-

bandwidth flow that does not reduce its arrival rate as the

level of congestion increases.

18



Time

P
er

-F
lo

w
 D

ro
p 

M
et

ric

0 100 200 300 400 500

0
20

40
60

80
10

0

Time

A
rr

iv
in

g 
P

ac
ke

ts
 D

ro
pp

ed
 (

%
)

0 100 200 300 400 500

0
2

4
6

8
10

Time

A
ve

ra
ge

 Q
ue

ue
 S

iz
e 

(B
yt

es
)

0 100 200 300 400 500

0
50

00
15

00
0

Figure 14: A simulation with rising congestion.

Per-Flow Arrival Rate(%)

P
e

r-
F

lo
w

 D
ro

p
 M

e
tr

ic

0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

1

1

1
1

1
1

11
11

1111 11111
1

11
11 1

1
1 1

112

22
2222 2222222222222222

2
22
222223

3
33
3
3
3
33

3
3
3
3

3

3
3
33
3
3
3

3

3

3
3

3
3

3

3
3
3

3
4

4

444444
4
44444

44
4444

4
444

4
4 44

44
4

4
5

555555555555566
6
666

6
666
66666

666
66

666
6
666666
6
7

777777777777
7
77
8

8
8

88 88 888
8

8
888
8

888 88 8888 888 899

99
9
99

999
9 99999 99999
9

99 999910101010101010101010101010
1010101010101010111111111111111111111111

12
12
1212

12
12

1212 12121212 1212121212
1212 121313

13
1313 13131313131313131313

13131314
14

141414141414
14141414141414141515

1515

15

1515 1515
15

1515
15

Figure 15: Verifying the drop metric.

19


