
TCP and Successive Fast Retransmits

Sally Floyd

�

Lawrence Berkeley Laboratory

One Cyclotron Road, Berkeley, CA 94704

oyd@ee.lbl.gov

May 1995

(This is an expanded version of a note

released in October 1994.)

1 Successive fast retransmits in

current TCP implementations

In this note we point out a long-standing problem for

current Tahoe and Reno TCP implementations that re-

sults from invoking Fast Retransmit more than once

in one roundtrip time. The problem is illustrated by

packet trace from simulations. We have seen the same

behavior in packet traces of TCP tra�c on the Internet.

Given current TCP implementations, for a TCP con-

nection with a large congestion window and multiple

nonconsecutive packet drops within one window of data,

it is possible for the TCP source to execute the Fast Re-

transmit procedure twice for one window of packets. For

Tahoe TCP, this can occur when there are at least two

nonconsecutive runs of packet drops in one window of

data.

2 A simulation of a packet-based

network

See Figure 2. First, the Tahoe-style TCP source receives

three duplicate ACKs, infers a dropped packet, and be-

gins slow-start. At 2.9 seconds, during the slow-start

triggered by a Fast Retransmit, the congestion window

is 4 packets, and the source retransmits packets 131

through 134, receiving four acknowledgements in return

for packet 141. The �rst ACK for packet 141 causes the

source to transmit packet 142. Immediately after that,

three duplicate ACKs arrive acknowledging packet 141,

triggered by the receipts of the retransmitted packets

132, 133, and 134. and the source uses the Fast Retrans-

mit procedure to Slow-Start and to retransmit packet

142. The exact train of events after this is somewhat

intricate, and we won't go through the details, but Fig-

�

This work was supported by the Director, O�ce of Energy

Research, Scienti�c Computing Sta�, of the U.S. Department of

Energy under Contract No. DE-AC03-76SF00098.

ure 2 shows the pathological behavior that can result

from multiple Fast Retransmits in one roundtrip time.

This problem is somewhat more di�cult to dupli-

cate in simulations with Reno implementations. With

Reno implementations, the source essentially assumes

that only one packet has been dropped, retransmits that

dropped packet, and instead of waiting for the ACK to

be received, continues transmitted new packets. For

multiple packet drops in one roundtrip time, the Reno

source often has to wait for a retransmit timer to re-

cover (given the absence of Selective ACKs). And in

some circumstances with Reno, the ability to have mul-

tiple Fast Retransmits in a single roundtrip time can

avoid the wait for a retransmit timer timeout, in the

absence of Selective ACKs. However, it is also possible

for a second Fast Retransmit to be invoked from dupli-

cate ACKS received from packets retransmitted during

the slow-start triggered by the retransmit timer time-

out. This leads to problems similar to those shown in

Figure 2.

1

.
....
......

....
....
....
......

......
.....
....
....
....
....
.

....
....
....
.....
....
..

....
....
....
...

Time (in Seconds)

P
ac

ke
t N

um
be

r

0.0 0.5 1.0 1.5

0
20

40
60

80
10

0

Figure 1: The �rst 100 packets

.....
....
.

....
....
....
....
.....
....

....
.

. ...
.....

.......
....
......

.....
...

.....
....
..

...
.

....
....

.....
.

..
...

...

Time (in Seconds)

Pa
ck

et
 N

um
be

r

2 3 4 5

10
0

12
0

14
0

16
0

18
0

20
0

Figure 2: The second 100 packets, with Tahoe TCP

....
....
.

....
....
....
....
....
....

....
.

. ...
.....

.......
....
.....

.....
.....
...

.....
....
..

....
....
...

....
.....
..

Time (in Seconds)

P
ac

ke
t N

um
be

r

2.0 2.5 3.0 3.5 4.0

10
0

12
0

14
0

16
0

18
0

20
0

Figure 3: The second 100 packets, with Tahoe TCP modi�ed not to allow multiple Fast Retransmits from one window

of data.

2

3 A simulation of TCP over

ATM

A second illustration of problems of multiple Fast Re-

transmits comes from Tim Dwight [D95], from simula-

tions of TCP/IP over ATM.

Figure 4 shows the pathological behaviour that can

result from multiple fast retransmits. The dots show

packets and the open boxes show acknowledgements.

The x-axis shows the time that packets were transmit-

ted on an interior link in the simulated network. The

dropped packets can be inferred from the trace.

The �rst Fast Retransmit in Figure 4 results from

three dup acks for packet 25. The second Fast Retrans-

mit results from three dup acks for packet 42, the last

packet transmitted before the �rst Fast Retransmit was

initiated.

Because the x-axis shows the time that packets ap-

peared on a link within the network, the sequence of

events at the sender has to be inferred from the graph.

After the �rst Fast Retransmit, when the sender's con-

gestion control window reaches four, the sender trans-

mits packets 29-32. The sender receives an ACK for

packet 29, and transmits packets 33 and 34. Next the

sender receives an ACK for packet 30, and retransmits

packets 35 and 36. Finally, the sender receives two dup

acks for packets 42 (as responses to packets 31 and 32).

At this point the congestion window is 6, and the sender

transmits packets 43-48.

When the receiver receives packets 33-36, the receiver

sends four dup ACKs for packet 42. These dup ACKs

trigger the second Fast Retransmit and the sender re-

duces the congestion window to 1 and transmits packet

43. The receiver next receives packets 43-48, and re-

turns ACKs. Immediately after the second transmission

of packet 43, the sender receives the ACK from the �rst

transmission of packet 43. The sender increases the con-

gestion window to 2 and sends packets 44 and 45. The

trace continues to unfold in this fashion.

In this case, the second Fast Retransmit triggered by

dup acks for packet 42 ultimately leads to a succession

of fast retransmits. There is a Fast Retransmit every

roundtrip time, the congestion window never gets larger

than 6 packets, and every packet is transmitted twice.

In this case, this pathological scenario will continue in-

de�nitely.

4 Recommendations

One �x to the problem of multiple Fast Retransmits is

not to treat duplicate ACKs that acknowledge packets

from the same window as packets from a previous Fast

Retransmit as an indication of continued congestion.

In the Tahoe TCP implementation in our simulator,

the �x was done using an extra variable high seq to

record the highest sequence number outstanding when

the TCP initiated a Fast Retransmit or responded to

an ECN (Explicit Congestion Noti�cation [F94], such

as a Source Quench message, or the Explicit Conges-

tion Noti�cation bit implemented in our simulator in

packet headers) or a retransmit timer timeout. Dupli-

cate ACKs that did not acknowledge data higher than

this sequence number, not necessarily being an indica-

tion of congestion, would not trigger a Fast Retransmit.

Once the TCP source transmitted a packet higher than

the variable high seq, then the variable would be dis-

abled (e.g., set to zero) until the next congestion event.

In a Reno TCP implementation, the issues are slightly

di�erent. One possilibity would be to set the variable

high seq when the TCP source responds to an ECN or to

a retransmit timer timeout, but not to set it when TCP

initiates Fast Retranmit/Fast Recovery. This would

still allow multiple Fast Retransmits during Fast Re-

covery, but would prevent the sequence of a Fast Re-

transmit/Fast Recovery, a timeout, and then a second

Fast Retransmit/Fast Recovery for the same window of

data.

The disadvantage of this �x is that, for both the

Tahoe and the Reno cases, and for acks that do not ac-

knowledge data greater than high seq, the TCP source

cannot distinguish duplicate acks resulting from retrans-

mitted packets that had previously been correctly re-

ceived by the receiver, and duplicate acks resulting from

packet losses. In the absence of Selective ACKs, it is

inevitable that any �x would rely on incomplete infor-

mation, and therefore would occasionally result in sub-

optimal behavior.

Thus, the most robust and appropriate �x to this

problem would be to implement Selective ACKs. The

problem of multiple Fast Retransmits described in this

section only occurs because the source retransmits pack-

ets that have already been correctly received by the re-

ceiver. With Selective ACKs, this behavior could gen-

erally be avoided.

References

[D95] Dwight, Tim, private communication, 1995.

[F94] Floyd, S., TCP and Explicit Congestion Noti-

�cation, ACM Computer Communication Re-

view, V. 24 N. 5, October 1994, p. 10-23.

3

.
....
....

....

....

....

....
....
....
...

.
....
....
...

....

....

...
...

..
..

.. ...
...

..
..

..
..

..

Time (in Seconds)

Pa
ck

et
 N

um
be

r

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0
20

40
60

80

Figure 4: Multiple Fast Retransmits

4

