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Abstract

Network arrivals are often modeled as Poisson processes for ana-

lytic simplicity, even though a number of traffic studies have shown

that packet interarrivals are not exponentially distributed. We eval-

uate 24 wide-area traces, investigating a number of wide-area TCP

arrival processes (session and connection arrivals, FTP data con-

nection arrivals within FTP sessions, and TELNET packet arrivals)

to determine the error introduced by modeling them using Poisson

processes. We find that user-initiated TCP session arrivals, such

as remote-login and file-transfer, are well-modeled as Poisson pro-

cesses with fixed hourly rates, but that other connection arrivals

deviate considerably from Poisson; that modeling TELNET packet

interarrivals as exponential grievously underestimates the bursti-

ness of TELNET traffic, but using the empirical Tcplib [Danzig et

al, 1992] interarrivals preserves burstiness over many time scales;

and that FTP data connection arrivals within FTP sessions come

bunched into “connection bursts,” the largest of which are so large

that they completely dominate FTP data traffic. Finally, we of-

fer some results regarding how our findings relate to the possible

self-similarity of wide-area traffic.

1 Introduction

When modeling network traffic, packet and connection arrivals are

often assumed to be Poisson processes because such processes have

attractive theoretical properties [FM94]. A number of studies have

shown, however, that for both local-area and wide-area network

traffic, the distribution of packet interarrivals clearly differs from

exponential [JR86, G90, FL91, DJCME92]. Recent work argues

convincingly that LAN traffic is much better modeled using statisti-

cally self-similar processes [LTWW94], which have much different

theoretical properties than Poisson processes. For self-similar traf-

fic, there is no natural length for a “burst”; traffic bursts appear on a

wide range of time scales. In this paper we show that for wide-area

traffic, Poisson processes are valid only for modeling the arrival

of user sessions (TELNET connections, FTP control connections);

that they fail as accurate models for other WAN arrival processes;

and that WAN packet arrival processes appear better modeled using

self-similar processes.
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yThis work was supported by the Director, Office of Energy Research,
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For our study we analyze 24 traces of wide-area TCP traffic. We

consider both previous and new models of aspects of TELNET and

FTP traffic, discuss the implications of these models for burstiness

at different time scales, and compare the results of the models with

the trace data. We show that in some cases commonly-used Poisson

models seriously underestimate the burstiness of TCP traffic over a

wide range of time scales. (We restrict our study to time scales of

0.1 seconds and larger.)

We first show that for interactive TELNET traffic, connection

arrivals are well-modeled as Poisson with fixed hourly rates. How-

ever, the exponentially-distributed interarrivals commonly used to

model packet arrivals generated by the user side of a TELNET con-

nection grievously underestimate the burstiness of those connec-

tions, and high degrees of multiplexing do not help. Using the em-

pirical Tcplib [DJ91, DJCME92] distribution for TELNET packet

interarrivals instead results in packet arrival processes significantly

burstier than Poisson arrivals, and in close agreement with traces

of actual traffic. From these findings we then construct a model of

TELNET traffic parameterized by only the hourly connection ar-

rival rate and show that it accurately reflects the burstiness found in

actual TELNET traffic. (We do not model the TELNET response,

only the user side.) The success with this model of using Tcplib

packet interarrivals confirms the finding in [DJCME92] that the ar-

rival pattern of user-generated TELNET packets has an invariant

distribution, independent of network details.

For small machine-generated bulk transfers such as SMTP

(email) and NNTP (network news), connection arrivals are not well-

modeled as Poisson, which is not surprising since both types of con-

nections are machine-initiated and can be timer-driven. Previous

research has discussed how the periodicity of machine-generated

IP traffic such as routing updates can result in network-wide traf-

fic synchronization [FJ94], a phenomenon impossible with Poisson

models.

For large bulk transfer, exemplified by FTP, the traffic structure is

quite different than suggested by Poisson models. As with TELNET

connections, user-generated FTP session arrivals are well-modeled

as Poisson with fixed hourly rates. However, we find that FTP

data connections within a single FTP session (which are initiated

whenever the user lists a directory or transfers a file) come clus-

tered in bursts. Hereafter we will refer to these data connections as

FTPDATA connections, and the corresponding bursts as FTPDATA

bursts. Neither FTPDATA-connection nor FTPDATA-burst arrivals

are well-modeled as Poisson processes. Furthermore, one of our

key findings is that the distribution of the number of bytes in each

burst has a very heavy upper tail; a small fraction of the largest

bursts carries almost all of the FTPDATA bytes. This implies that
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faithful modeling of FTP traffic should concentrate heavily on the

characteristics of the largest bursts.

Poisson arrival processes are quite limited in their burstiness, es-

pecially when multiplexed to a high degree. Our findings, however,

show that wide-area traffic is much burstier than Poisson models

predict, over many time scales. This greater burstiness has im-

plications for many aspects of congestion control and traffic per-

formance. We conclude the paper with a discussion of how our

burstiness results mesh with self-similar models of network traffic,

and then with a look at the general implications of our results.

2 Traces used

Dataset Date Duration What

Bellcore (BC) 10Oct89 13 days 17K TCP conn.
U.C.B. (UCB) 31Oct89 24 hours 38K TCP conn.
coNCert (NC) 04Dec91 24 hours 63K TCP conn.

UK-US (UK) 21Aug91 17 hours 26K TCP conn.
DEC 1-3 See refs. 24 hours �3 195K TCP conn.

LBL 1-8 See refs. 30 days �8 3.7M TCP conn.

Table 1: Summary of Wide-Area TCP Connection Traces

Dataset Date When What

LBL PKT-1 Fri 17Dec93 2PM-4PM 1.7M TCP pkts.

LBL PKT-2 Wed 19Jan94 2PM-4PM 2.4M TCP pkts.
LBL PKT-3 Thu 20Jan94 2PM-4PM 1.8M TCP pkts.
LBL PKT-4 Fri 21Jan94 2PM-3PM 1.3M pkts.

LBL PKT-5 Fri 28Jan94 2PM-3PM 1.3M pkts.

DEC WRL-1 Wed 08Mar95 10PM-11PM 3.3M pkts.
DEC WRL-2 Thu 09Mar95 2AM-3AM 3.9M pkts.

DEC WRL-3 Thu 09Mar95 10AM-11AM 4.3M pkts.
DEC WRL-4 Thu 09Mar95 2PM-3PM 5.7M pkts.

Table 2: Summary of Wide-Area Packet Traces

Our study is based on two sets of traces of wide-area network

traffic. The first set, shown in Table 1, consisted of TCP SYN/FIN

connection start/stop packets. SYN/FIN packets are enough to mea-

sure connection start times (and hence connection arrival processes),

durations, TCP protocol, participating hosts, and data bytes trans-

ferred in each direction. The BC and UCB traces are analyzed in

depth in [DJCME92], and also in [P94a], and the UCB trace forms

the basis of the connection characteristics used for Tcplib [DJ91].

The NC, UK, and DEC traces are analyzed in [P94a], and the LBL

traces are analyzed in [P94a, P94b]. The “DEC 1-3” rows represents

three wide-area TCP SYN/FIN traces, each spanning 1 day, and the

“LBL 1-8” row represents 8 wide-area TCP SYN/FIN traces, each

spanning 30 days. The reader is referred to the abovementioned

papers for details regarding the characteristics of the traffic in each

dataset, including the number of connections and bytes due to each

TCP protocol.

These traces are all fairly lengthy, allowing us to assess how traf-

fic varies over the course of a day or longer, and giving us enough

TCP connection arrivals to make a statistically sound evaluation of

the connection arrival processes. These traces are used in x 3 to

evaluate the effectiveness of using Poisson models for TCP con-

nection arrivals. Because SYN/FIN traces allow us to characterize

connection size, we also used these trace in x 6 to investigate the

notion of “FTPDATA bursts.”

Because the SYN/FIN traces do not contain information regard-

ing packet arrivals within a connection, to evaluate packet arrival

processes we acquired nine packet-level traces of wide-area traffic,

summarized in Table 2.1

The “LBL PKT-n” rows summarize traces gathered at the

Lawrence Berkeley Laboratory’s wide-area Internet gateway. The

first three traces captured all TCP packets, and lasted two hours.

The final two traces captured all packets and lasted one hour. In

the first set of traces, the fraction of dropped packets, where known,

was always � 5 � 10�6. For the second set, it was always � 0:001.

The “DEC WRL-n” rows summarize traces gathered at the pri-

mary Internet access point for the Digital Equipment Corporation.

The access point is operated by Digital’s Palo Alto research groups,

and the traces were supplied by Digital’s Western Research Lab

(hence “WRL”). For these traces, the fraction of dropped packets

was always � 0:00025.

The packet traces do not include a large number of TCP con-

nections, unlike the traces in Table 1, so we do not use them for

evaluating Poisson models for TCP connection arrivals, nor for the

size of FTPDATA bursts (though the traces are used to illustrate

the heaviness of the distribution’s upper tail). Instead we use the

LBL PKT datasets in x 4 and x 5 to evaluate different models for

TELNET packet arrivals, and both the LBL PKT and the DEC WRL

datasets in x 7 to investigate the presence of “large-scale correla-

tions” in wide-area network traffic. (We did not include the DEC

WRL datasets in our packet-level TELNET evaluation because, due

to the use of a firewall proxy server, the DEC TELNET traffic is

dominated by a single, heavily-loaded machine.)

To disambiguate between the LBL and DEC SYN/FIN traces

and packet traces, we use LBL-n and DEC-n to refer to SYN/FIN

traces, and LBL PKT-n and DEC WRL-n to refer to packet traces.

3 TCP connection interarrivals

This section examines the connection start times for several TCP

protocols. The pattern of connection arrivals is dominated by a

24-hour pattern, as has been widely observed before. We show

that for TELNET connection arrivals and for FTP session arrivals,

within one-hour intervals the arrival process can be well-modeled

by a homogeneous Poisson process; each of these arrivals reflects

an individual user starting a new session. Over one hour intervals,

no other protocol’s connection arrivals are well-modeled by a Pois-

son process. Even if we restrict ourselves to ten-minute intervals,

only FTP session and TELNET connection arrivals are statistically

consistent with Poisson arrivals, though the arrival of SMTP con-

nections and of FTPDATA “bursts” (discussed later in x 6) during

ten-minute intervals are not terribly far from what a Poisson pro-

cess would generate. The arrivals of NNTP, FTPDATA, and WWW

(World Wide Web) connections, on the other hand, are decidedly

not Poisson processes.

Figure 1 shows the mean hourly connection arrival rate for

datasets LBL-1 through LBL-4. For the different protocols, we

plot for each hour the fraction of an entire day’s connections of that

1The BC and UCB traces listed in Table 1 actually include all packets, and
are analyzed as such in [DJCME92]. We excluded a packet-level analysis of

the BC dataset because of its low traffic rate (on average, about 1 packet/sec
over the 11 days), and the UCB dataset because it forms the basis of the

Tcplib library, against which we compare the packet-level traces.
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Figure 1: Mean, relative, hourly connection arrival rate for

LBL-1 through LBL-4 datasets.

protocol occurring during that hour. (In the figure, FTP refers to

FTP sessions.) For example, TELNET connections occur primarily

during normal office hours, with a lunch-related dip at noontime;

this pattern has been widely observed before. FTP file transfers

have a similar hourly profile, but they show substantial renewal in

the evening hours, when presumably users take advantage of lower

networking delays. The NNTP traffic maintains a fairly constant

rate throughout the day, only dipping somewhat in the early morning

hours (but the mean size of each connection varies over the course

of the day; see [P94a]). The SMTP traffic is interesting because

it shows a morning bias for the LBL site (west-coast U.S.) and an

afternoon bias for the Bellcore site (east-coast U.S.); perhaps the

shift is due to cross-country mail arriving relatively earlier in the

Pacific time zone and later in the Atlantic time zone.

Figure 1 shows enough daily variation that we cannot reason-

ably hope to model connection arrivals using simple homogeneous

Poisson processes, which require constant rates. The next sim-

plest model is to postulate that during fixed-length intervals (say,

one hour long) the arrival rate is constant and the arrivals within

each interval might be well modeled by a homogeneous (fixed-rate)

Poisson process. Telephone traffic, for example, is fairly well mod-

eled during one-hour intervals using homogeneous Poisson arrival

processes [FL91].

To evaluate these Poisson models, we developed a simple statis-

tical methodology (Appendix A) for testing whether arrivals during

a given one-hour or ten-minute interval are Poisson with a fixed

rate. We test two aspects of each protocol’s interarrivals: whether

they are consistent with exponentially distributed interarrivals, and

whether they are consistent with independent interarrivals. If the

arrivals during the interval are truly Poisson, then we would expect

95% of the tested intervals to pass each test. Note that we would also

expect testing ten-minute intervals to perhaps be more successful

than testing one-hour intervals, because using ten-minute intervals

allows the arrival rate to change six times each hour rather than

remaining constant throughout the hour.

We applied our methodology to all of the TCP connection traces

shown in Table 1. For each trace, we separately tested the trace’s

TELNET, FTP, FTPDATA, SMTP, NNTP, and WWW connections.

Only two of the traces had significant WWW traffic, but as use of

this protocol is rapidly growing, it is worth investigating even given

the limited samples.

FTP here refers to an FTP session (i.e., an FTP control con-

nection), while FTPDATA refers to the data-transfer connections

spawned by these control connections. Prior to our analysis we re-

moved the periodic “weather-map” FTP traffic discussed in [P94b],

to avoid skewing our results. We also tested arrivals of FTPDATA

bursts (see x 6 below).
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Figure 2: Results of testing for Poisson arrivals.

Figure 2 shows the results of our tests, for both one-hour intervals

(top plot) and ten-minute intervals (bottom plot). Along the x-axis

we plot the percentage of tested intervals that passed the statistical

test for exponentially distributed interarrivals, and along the y-axis

the percentage that passed the test for independent interarrivals. The

dashed lines correspond to a 95% pass-rate, which we would expect

on average if the arrivals were truly Poisson. In general, we expect

Poisson arrivals to cluster near the upper right corner of the plots.

Each letter in a plot corresponds to a single trace’s connection

arrivals for the given TCP protocol. Letters drawn in large bold

indicate that the trace’s arrivals are statistically indistinguishable

from Poisson arrivals (see Appendix A for details). A + or � after

a letter indicates that consecutive interarrival times are consistently

either positively or negatively correlated, even if the correlation
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itself is not particularly strong (again, see Appendix A).

We see immediately that TELNET connection arrivals and FTP

session arrivals are very well modeled as Poisson, both for 1-hour

and 10-minute fixed rates. No other protocol’s arrivals are well

modeled as Poisson with fixed hourly rates. If we require fixed rates

only over 10-minute intervals, then SMTP and FTPDATA burst ar-

rivals are not terribly far from Poisson, though neither is statistically

consistent with Poisson arrivals, and consecutive SMTP interarrival

times show consistent positive correlation. NNTP, FTPDATA, and

WWW arrivals, on the other hand, are clearly not Poisson.

That NNTP and to a lesser extent SMTP arrivals are not Poisson

is not too surprising. Because of the flooding mechanism used

to propagate network news, NNTP connections can immediately

spawn secondary connections as new network news is received from

one remote peer and in turn offered to another. NNTP and SMTP

connections are also often timer-driven. Finally, SMTP connections

are perturbed by mailing list explosions in which one connection

immediately follows another, and possibly by timer effects due to

using the Domain Name Service to locate MX records [P86].

That FTPDATA connection arrivals are clearly not Poisson can

be readily attributed to the fact that “multiple-get” file transfers often

result in a rapid succession of FTPDATA connections, one imme-

diately following another [P94a]. Coalescing multiple FTPDATA

connections into single burst (x 6) arrivals improves the 10-minute

Poisson fit somewhat, but still falls short of statistical consistency.

The finding that TELNET connection arrivals are well-modeled

as a Poisson process with fixed hourly rates is at odds with that of

[MM85], who found that user interarrival times looked “roughly

log-normal”. We believe the discrepancy is due to characterizing

the distribution of all of the interarrivals lumped together, rather

than postulating separate hourly rates.

Given that TELNET connection arrivals appear Poisson over

one-hour intervals, one might imagine that other human-initiated

traffic such as RLOGIN and X11 will also fit this model. We find

that RLOGIN does and X11 does not. We conjecture that the differ-

ence is that during a single X11 session (corresponding to running

an instance of xterm, say) a user initiates multiple X11 connections,

while TELNET and RLOGIN sessions are comprised of a single

TCP connection. Thus, TELNET connection arrivals correspond to

users deciding to begin using the network; X11 connection arrivals

correspond to users deciding to do something new during their use

of the network. The former behavior is likely to be close to uncor-

related, memoryless arrivals, since each arrival generally involves a

new user. The latter is much more akin to the creation of FTPDATA

connections during a single FTP session, since a single user is in-

volved in generating new arrivals. Because X11 connections are

created in this way, their arrivals do not have the memoryless prop-

erty and hence are not Poisson. If we could discern between X11

session arrivals and X11 connection arrivals, then we conjecture we

would find the session arrivals to be Poisson.

4 TELNET packet interarrivals

The previous section showed that start times for TELNET connec-

tions are well-modeled by Poisson processes. In this section we

look at the packet arrival process within a TELNET connection.

We restrict our study to packets generated by the TELNET connec-

tion originator; this in general is a user typing at a keyboard. We

would expect the packets generated by the TELNET connection

responder to have a somewhat different arrival process, since they

will usually include both echoes of the user’s keystrokes and larger

bursts of bulk-transfer consisting of output generated by the user’s

remote commands.

Because the originator packets are initiated by a human, we might

hope that the arrival process is to some degree “invariant”; that is,

the process may be independent of network dynamics and instead

mainly reflect the delays and bursts of activity associated with peo-

ple typing commands to a computer. Indeed, our empirical results of

the interarrival times between packets in a single TELNET connec-

tion are consistent with the empirical Tcplib distribution found by

previous researchers. Unlike the exponential distribution, the em-

pirical distribution of TELNET packet interarrival times is heavy-

tailed; we show that using the exponential distribution results in

seriously underestimating the burstiness both of TELNET traffic

within a single connection and of multiplexed TELNET traffic.

Modeling TELNET packet arrivals by a Poisson process, as is gen-

erally done, can result in simulations and analyses that significantly

underestimate performance measures such as average packet delay.
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Figure 3: Empirical distributions of packet-interarrivals
within TELNET connections.

Figure 3 shows two empirical distributions of the interarrival

times of packets within TELNET connections. The solid line shows

the distribution used by Tcplib [DJ91, DJCME92]; the dashed line

shows the same for the LBL PKT-1 trace. Above 0.1 seconds, the

agreement is quite good, especially in the upper tail. That different

sites produce the same distribution argues heavily that the distribu-

tion is independent of network dynamics and instead reflects human

typing dynamics. Below 0.1 seconds the interarrival times probably

are dominated by network dynamics; but, as stated earlier, in this

paper we are not concerned with time scales below 0.1 seconds.

Even ignoring the lower tail, the interarrival distribution is not

even close to exponential in shape (note that the x-axis is logarith-

mically scaled). To dramatize this fact, we have also plotted two

logarithmically-scaled exponential distributions. The lefthand one

(“fit #1”) has the same geometric mean as the LBL PKT-1 distribu-

tion, and the righthand one has the same arithmetic mean.

The exponential fits are very poor. Using the exponential dis-

tribution fitted to the same geometric mean will faithfully capture

only the distribution of packet interarrivals that are between 200 and

400 msec apart. Shorter interarrivals will be overestimated, and

longer interarrivals will be underestimated. For example, the expo-

nential distribution models a full 25% of the interarrivals as being

less than 8 msec, and only 2% as being longer than 1 sec, but for

the actual data under 2% were less than 8 msec apart, and over 15%
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were more than 1 sec apart.

The exponential distribution fitted to the arithmetic mean fares

even worse. For example, it predicts nearly 70% of the packets will

arrive more than 1 sec apart, when the actual observed distribution

is 15% of the packets.

Thus, simple exponential distributions for packet interarrival

times, which are necessary for Poisson models of packet arrivals,

provide very poor fits to the observed distribution. On the other

hand, the main body of the observed distribution fits very well to

a Pareto distribution (doubly-exponential; see Appendix B) with

shape parameter � � 0:9, and the upper 3% tail to a Pareto dis-

tribution with � � 0:95. Interestingly, a Pareto distribution with

� < 1 has infinite mean and variance; a very different beast than an

exponential distribution. We will see later that Pareto-distributed in-

terarrivals lead to observable large-scale correlations (Appendix C).

It is not surprising that interactive packet arrivals do not fit a

Poisson model, since earlier work looking at many different compo-

nents of interactive traffic failed to find any statistically significant

exponential fits to the observed distributions [FJ70]. This leaves

the question: What are the consequences of using Poisson packet

arrivals rather than the Tcplib distribution for TELNET traffic?
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Figure 4: Comparisons between Tcplib and exponential in-

terpacket times.

Figure 4 shows two views of packet arrivals from two simulated

TELNET connections, each lasting 2,000 seconds. The first graph

shows the first 200 seconds, and the second graph the entire 2,000

seconds. Row 1 for each graph shows a connection using inde-

pendent, identically-distributed (i.i.d.) interpacket times from the

Tcplib distribution, and row 2 shows a connection using i.i.d. inter-

packet times from an exponential distribution with a mean of 1.1

seconds (to give roughly the same number of packets as the Tcplib

distribution). We have plotted a dot for each packet arrival, with

the x-axis giving the time of the arrival. In all, there were 1,926

Tcplib interarrivals and 2,204 exponential interarrivals. Over both

time scales, the packets from the connection with Tcplib interpacket

times are dramatically more clustered.

This difference in burstiness between exponential and heavy-

tailed (i.e., Tcplib) interpacket times persists to some extent for

multiplexed connections. For example, we ran 10-minute simula-

tions with 100 active TELNET connections, where all connections

were active for the entire duration of the simulation. In one simula-

tion each connection used Tcplib interpacket times, and in the other

simulation each connection used exponential interpacket times. We

found that the multiplexed packet arrival processes with Tcplib in-

terpacket times remained more bursty. For each simulation, con-

sider the number of TELNET packets arriving during successive

one-second intervals. For the simulation with individual connec-

tions using Tcplib interpacket times, this aggregate number had a

mean of 92 and a variance of 240; for the simulation with expo-

nential interpacket times, the aggregate number had a mean of 92

and a variance of 97. Even a high degree of statistical multiplexing

failed to smooth away the difference between the two packet arrival

processes.

One of the natural performance measures for TELNET traffic is

average packet delay. It would not be hard to construct simulations,

one using Tcplib and the other using exponential interarrivals, where

making the mistake of using exponential interarrivals instead of

Tcplib significantly underestimates the average queueing delay for

TELNET packets.

The above shows that the Tcplib packet interarrival distribution

behaves quite differently than a Poisson process, even in the pres-

ence of multiplexing. We now show that for measured network

traffic, these differences extend far beyond the time scale of indi-

vidual packets. To look at the difference in burstiness at different

time scales, we first extracted all TELNET originator packets, ex-

cept those consisting of no user data (“pure ack”), from the two-hour

LBL PKT-2 trace. These packets belonged to 277 separate TCP con-

nections. Of these connections, 4 were anomalously large and rapid

(more than 210 bytes transferred by the originator at sustained data

rates exceeding 8 bytes/sec). These are unlikely to correspond to

human typing, were clear outliers, and are probably better modeled

as bulk transfer connections. Removing the outliers left us with 273

connections.

We then synthesized several two-hour packet traces as follows.

For each of the TELNET connections, we synthesized a connec-

tion with the same starting time within the two-hour period and

the same size (in packets). One of the synthesized traces used the

Tcplib empirical distribution for the packet interarrivals within each

connection (“TCPLIB”); one used exponential interarrivals with

mean 1.1 (“EXP”); and one uniformly distributed each connection’s

packet arrivals over the interval between when the connection began

and when during the LBL PKT-2 trace the connection terminated

(“VAR-EXP”). This last method corresponds to exponential inter-

arrivals with the mean adjusted to reflect the connection’s actual

observed packet rate. Thus, for the TCPLIB and EXP schemes,

we generated connections with the same starting times and sizes

(in packets) as their counterparts in the LBL PKT-2 trace, but per-

haps with different durations, while with the VAR-EXP scheme, the

generated connections shared starting time, size, and duration.

A valuable tool for assessing burstiness over different time-scales

is the “variance-time plot” [LTWW94, GW94], which we describe

here by example rather than rigorously. Suppose we have a count

process consisting of 72,000 observations, corresponding to a two-

hour trace viewed every 0.1 seconds. Each observation gives the

number of packet arrivals during that 0.1 second interval. The

variance of this count process gives us an indication of how bursty

the traffic was when viewed on a time scale of 0.1 seconds.

If however we are interested in the process’s burst-structure on a

time scale of 10 seconds, we could construct a “smoothed” version

of the process by averaging the first 100 observations to obtain

the process’s mean value during the first 10 seconds, the next 100

observations for the next 10 seconds, and so on. In general we can

do this sort of smoothing for any aggregation level M , where in

this exampleM = 100. The variance of the smoothed process then

gives us an indication of how bursty the traffic was when viewed

on a 10-second time scale.

A natural question is then: how does the variance change as

5



we progressively smooth the process? By plotting variance vs.

degree of smoothing (M ), we can examine how burstiness changes

according to the time scale used to view the traffic.

For count processes with rapidly decaying autocorrelation func-

tions, such as Poisson processes, the variance of a process aggre-

gated to levelM will be 1=M times the variance of the unaggregated

process (see x 7.3.1). For processes with more persistent autocorre-

lation functions, however, the variance will decay more gradually.

Given this relationship, we can then construct a variance-time plot

by smoothing the process for different values ofM and plotting the

variance of the smoothed process on the y-axis vs. the aggregation

level (M ) on the x-axis. We use logarithmic scales because they

allow us to immediately assess whether the variance decays as 1=M

(which will show up on the plot as a straight line with slope �1),

or more slowly (a slope more shallow than �1), indicating slowly

decaying autocorrelation or possibly non-stationarity; that is, from

the plot we can tell a great deal about burstiness at different time

scales.
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Figure 5: Variance-Time Plot for TELNET packet arrival
process. The line from the upper left corner has slope �1.

Figure 5 shows such a plot for the LBL PKT-2 TELNET trace

and for the three schemes discussed above. Here the unaggregated

process (M = 1) corresponds to 72,000 observations of the number

of TELNET originator packets arriving during 0.1-second intervals.

The y-axis is the variance of the aggregated process normalized by

dividing by the square of the average number of packets per 0.1-

second. This normalization allows us to compare the variance of

processes with different numbers of arrivals, as the traces consisted

of between 82,500 and 86,000 packets.

From the plot it is immediately clear that the variance of the

TCPLIB scheme agrees closely with the LBL PKT-2 trace data,

while both EXP and VAR-EXP exhibit far less variance, indicating

they are much less bursty over a large range of time scales. Thus, the

TCPLIB scheme preserves the burstiness present in the measured

traffic, while the EXP and VAR-EXP schemes both sacrifice bursti-

ness at larger time scales. At very large time scales (M = 103),

we again get agreement between all of the schemes and the mea-

sured traffic, because these time scales are so coarse that we are

essentially viewing each connection’s arrivals lumped together as

a single observation—differences in the distribution of the arrivals

within the connection are lost due to the coarse granularity of our

observations.

Figure 6 shows the difference in burstiness between the schemes

Telnet Trace Data.
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Figure 6: Comparisons of actual and exponential TELNET

packet interarrival times.

explicitly. Here we plot the arrival process corresponding to 5-

second intervals (M = 50) for the LBL PKT-2 trace and for the EXP

trace. The x-axis shows the time in seconds, and the y-axis shows

the total number of TELNET packets in each 5-second interval. The

average number of packets in the two traces are similar; the LBL

PKT-2 trace has an average of 59 packets in each 5-second interval,

and the fixed-rate exponential trace has an average of 57 packets in

each 5-second interval. The variances, however, are quite different.

With 5-second bins, the LBL PKT-2 trace has a variance of 672,

while the exponential trace has a variance of 260.

Clearly, this difference in the packet-generation rate over 5-

second intervals could have consequences for queueing delays in

simulations using these two different traces. As the variance-time

plot shows, the LBL PKT-2 trace is more bursty over many time

intervals, not only over the five-second intervals shown here. The

conclusions are that using exponential packet interarrival times for

TELNET connections results in substantial underestimations of the

burstiness of multiplexed TELNET traffic, but using i.i.d. interar-

rivals drawn from the Tcplib distribution faithfully reproduces the

burst structure.

5 Fully modeling TELNET originator

traffic

Section 3 has shown that over 1-hour periods, TELNET connection

arrivals are well-modeled as Poisson processes, and x 4 has shown

that within a TELNET connection, packet interarrival times can be

modeled using the heavy-tailed distribution in Tcplib. The connec-

tion size in bytes has been previously modeled by a log-extreme

distribution [P94a]; the distribution of the connection size in pack-

6



ets is somewhat different, and seems to be better modeled by a

log-normal distribution (see below). In this section, we put these

three pieces together to construct a complete model of TELNET

originator traffic that is parameterized only by the connection ar-

rival rate. Variance-time plots show that this model corresponds

well to empirical measurements.

First, we look at the difference in the distributions of origina-

tor bytes per connection vs. originator packets. Previous work re-

ports that the number of bytes sent by the originator in a wide-area

TELNET connection is well-modeled using a log-extreme distri-

bution with location parameter � = log2 100 and scale parameter

� = log2 3:5 [P94a]. We experimented with using this distribution

to produce sizes for an equal number of TELNET connections as

appeared in the LBL PKT-2 trace. We found that the distribution

consistently generates connection sizes (in bytes) much larger than

the connection sizes (in packets) observed in the trace. We attribute

this difference to two effects:

� The [P94a] fit was made using month-long traces of TELNET

connections, allowing for much longer and larger connec-

tions than are present in our two-hour trace;

� The [P94a] fit models connection size in bytes and not in

packets. One generally assumes that each TELNET origina-

tor packet conveys one byte of user data, corresponding to a

keystroke. Often, however, a packet carries more than one

byte, either due to effects of the Nagle algorithm [N84] or

because the TELNET connection is operating in “line mode”

[B90] or “line-at-a-time mode” [PR83, S94]. For example,

the LBL PKT-2 TELNET originator traffic comprised about

85,000 packets carrying 139,000 user data bytes.

Given these difficulties, we attempted to fit the observed TELNET

connection sizes (in packets) with another simple analytic distri-

bution. We found that a log2-normal distribution with log2-mean

x̄ = log2 100 and log2-standard deviation � = 2:24 fit the con-

nection size in packets well visually, considerably better than a

log-extreme distribution with parameters fitted to the data. (The

exact numerical values of x̄ and � here should not be taken too

seriously, as they came from a small sample.) We also found that a

log-extreme distribution fit the connection size in bytes better than

a log-normal distribution, so our data remains consistent with the

models presented in [P94a].

Putting all of this together, we have a complete model for

TELNET traffic, FULL-TEL, parameterized only by the TELNET

connection arrival rate. FULL-TEL uses Poisson connection ar-

rivals, log-normal connection sizes (in packets), and Tcplib packet

interarrivals.

We then used FULL-TEL to generate three synthetic traces of

TELNET originator traffic, using a connection arrival rate of 273

connections in 2 hours. Because such traces start off with no traffic

and build up to a steady-state corresponding to the connection arrival

rate, we trimmed the traces to just their second hour. We then used

variance-time plots to compare the traces with the second hour of

the LBL PKT-2 TELNET trace.

Figure 7 shows the results of the comparison. In general the

agreement is quite good, though the models have slightly higher

variance than the trace data forM > 102. We conclude that FULL-

TEL faithfully captures TELNET originator traffic, except to be a

bit burstier on time scales above 10 seconds. As a final note, we

also tested the model’s fit to the LBL PKT-1 and PKT-3 TELNET

traces; the results were similar.

log10 M (Aggregation Size)

lo
g
1
0
 N

o
rm

a
liz

e
d
 V

a
ri
a
n
ce

0 1 2 3

-1
.4

-1
.2

-1
.0

-0
.8

-0
.6

-0
.4

-0
.2

0
.0

Trace data, 2nd hour
FULL-TEL model, seed 1
FULL-TEL model, seed 2
FULL-TEL model, seed 3

Figure 7: Variance-time plot comparing LBL PKT-2 trace

data with the complete TELNET model, FULL-TEL.

6 FTPDATA connection arrivals

This section investigates arrival processes for FTP traffic. Model-

ing FTP is particularly important because FTPDATA connections

currently carry the bulk of the data bytes in wide area networks

([CBP93]). Section 3 showed that while FTP session arrivals can

be modeled as Poisson processes, this is not the case for FTPDATA

connection arrivals. This section shows that FTPDATA connections

within a session are clustered in bursts, and that the distribution of

burst sizes in bytes is quite heavy-tailed; half of the FTP traffic vol-

ume comes from the largest 0.5% of the FTPDATA bursts. These

large bursts are likely to completely dominate FTP traffic dynamics.

In this paper, we do not attempt to model FTPDATA packet ar-

rivals within a connection. Unlike TELNET connections, where

the originator packet arrival process is largely determined by the

packet generation pattern at the source, the packet arrival process

for an FTPDATA connection is largely determined by network fac-

tors such as the available bandwidth, congestion, and details of the

transport-protocol congestion control algorithms. Previous studies

have found that FTPDATA packet interarrivals are far from expo-

nential [DJCME92]; this is not surprising, since the above network

factors lead to a process quite different from memoryless arrivals.

To begin, x 3 showed that FTPDATA connection arrivals are not

well-modeled as Poisson. Each FTP session spawns a number of

FTPDATA connections; one key question is how these connections

are distributed within the duration of the FTP session.

We computed the distribution of spacing between FTPDATA

connections spawned by the same FTP session for six datasets:

LBL-1, LBL-5, LBL-6, LBL-7, DEC-1, and UCB. Here, “spacing”

refers to the amount of time between the end of one FTPDATA con-

nection within a session and the beginning of the next. Figure 8

plots the results. In each case the upper tail of the distribution is

much heavier than exponential (the x-axis is logarithmic), and is

better approximated using a log-normal or log-logistic distribution.

Furthermore, all of the distributions show inflection points at spac-

ings between 2 and 6 seconds, indicating bimodality. We conjecture

that spacings shorter than these points reflect sequential FTPDATA

connections due to multiple transfers (the FTP “mget” command) or

a user issuing a “list directory command” very shortly followed by

a “get.” Such closely-spaced connections might well be interpreted

as corresponding to a single “burst” of file-transfer activity. We

somewhat arbitrarily chose a spacing of � 4 seconds (the dashed

7
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Figure 8: FTPDATA Intra-session Connection Spacing.

vertical line) as defining connections belonging to the same burst,

and we note that such spacings are not inordinately larger than the

1-2 second spacings that can occur internal to a single FTPDATA

connection due to TCP retransmission timeouts. Here, “somewhat

arbitrarily” means that, for example, using a cutoff spacing of 2 sec-

onds instead (which actually slightly better delimits the two modes

of activity) results in virtually identical results as those discussed in

the remainder of this section.
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Figure 9: Percentage of all FTPDATA bytes due to largest
10% FTPDATA bursts.

With this definition of a burst of FTPDATA connections, we an-

alyzed the same datasets to measure the distribution of the number

of bytes transferred during a single connection burst. The distri-

bution proves to be remarkably heavy-tailed. Figure 9 shows the

percentage of all FTPDATA bytes (y-axis) due to the largest 10%

of the FTPDATA bursts (x-axis). The numbers in parentheses in

the legend give the total number of FTPDATA bursts occurring dur-

ing each trace. The first vertical line marks the upper 0.5% of the

FTPDATA bursts, and the line to its right, the upper 2%.

The key point to draw from this figure is that the upper 0.5% tail

of the FTPDATA bursts holds between 30% and 60% of all of the

data bytes. Thus, at any given time FTP traffic will most likely be

completely dominated by a single or small handful of bursts. Note

that this phenomenon is present in all of the connection datasets we

studied. The dataset with the least heavy tail is UK (shown in the

figure), which still held 30% of the data bytes in the upper 0.5% tail

and 55% in the 2% tail. The NC dataset lies about halfway between

UK and the others in the figure, and the remainder lie within the

bounds of the others shown in the figure.

This finding means that for many aspects of network behavior,

modeling small FTP sessions or bursts is irrelevant; all that matters

is the behavior of a few huge bursts. The sizes and durations of

these bursts will vary considerably from one time to another; but

they will be present. We also note that our finding that the size of

an FTPDATA burst has a heavy tail matches a survey conducted

by Irlam [I93] of the sizes of files in 1,000 file systems comprising

12 million files and 250 GB of data: 1.9% of the files accounted for

71% of the bytes, and 0.5% accounted for 54% of the bytes.

We performed fitting of the upper tail of the distribution of data

bytes per FTPDATA burst and found that the upper 5% tail fits

well to a Pareto distribution with 0:9 � � � 1:4 [P94a]. As the

Pareto distribution is heavy-tailed (see Appendix B), this agrees

with our findings in Figure 9. In contrast, the upper 0.5% tail of an

exponential distribution always holds about 3% of the entire mass

of the distribution, regardless of the distribution’s mean.

Figures 10 and 11 graphically illustrate the dominance of the

upper FTPDATA-burst tail. The four plots in Figure 10 show the

FTPDATA traffic rate in bytes/minute for the LBL PKT-1, PKT-2,

PKT-3, and PKT-5 datasets, and in Figure 11 the same is shown

for the DEC WRL datasets. The shaded areas represent traffic

contributed by the largest 2% of the bursts, and the black areas

the largest 0.5%. The numbers in parentheses give the number of

bursts and FTPDATA connections comprising the 2% burst upper-

tail. (For example, the upper 2% tail of the PKT-1 bursts was made

up of 7 bursts consisting of a total of 19 FTPDATA connections,

while for WRL-2 this tail was made up of 16 bursts and 1,796

connections.) We see that sometimes bursts contain many sepa-

rate connections and sometimes not. Indeed, the distribution of the

number of connections per burst is well-modeled as a Pareto distri-

bution. For example, a single burst in the LBL-7 dataset was made

up of 979 separate FTPDATA connections.

For PKT-1 (364 bursts) and PKT-3 (552 bursts), the upper 2%

and 0.5% tails hold around 50% and 15% of all the traffic; for

PKT-2 (483 bursts) and PKT-5 (238 bursts), 85% and 60%. The

large degree of difference between PKT-1/PKT-3 and PKT-2/PKT-5

illustrates how volatile the upper-tail behavior is; a trace comprising

400 bursts (and substantially more FTPDATA connections) might

well be completely dominated by 2 of the bursts, or it might not,

since 2 is a very small sample of the upper-tail behavior. Thus we

are left in the difficult position of knowing that upper-tail behavior

dominates traffic, but with such small numbers of bursts that we

cannot reliably use large-number laws to predict what we are likely

to see during any given trace. Furthermore, the PKT-2 and PKT-5

bursts were not geographically anomalous, either: the largest PKT-2

burst was to a government site in Colorado, and the largest PKT-5

burst was to a commercial site in Washington state. These sites are

about 1,500 km and 1,000 km distant from LBL, respectively.

For the DEC datasets, the difference in the size of the burst tails is

not so pronounced: in WRL-1 (971 bursts), WRL-3 (2,161 bursts),

and WRL-4 (2,100 bursts) the 2% and 0.5% tails hold 54-70% and

33-42% of all the traffic, while for WRL-2 (788 bursts) they hold

45% and 18%. The lesser degree of difference between the datasets

is what we would expect: since the datasets have considerably more

bursts than their LBL counterparts, large-number laws become more

reliable in predicting the size of the tails.

We would also like to know whether the arrivals of the upper-tail
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Figure 10: Proportion of LBL PKT FTPDATA traffic due to

largest 2% (shaded) and 0.5% (black) connection bursts.

bursts can be modeled as a Poisson process, as that would provide a

first step toward predicting their effect on network traffic. We ana-

lyzed the 199 upper-0.5%-tail LBL-6 bursts, first removing effects

due to daily variation in traffic rates by looking at interarrivals in

terms of number of intervening bursts instead of seconds. We found

that the dataset failed the statistical test (Appendix A) for exponen-

tial interarrivals at all significance levels. Thus, caution must be

used if approximating large-burst arrivals using a Poisson process;

further analysis is needed to model the burst-clustering.

7 Large-scale correlations and possible

connections to self-similarity

We have argued in the previous sections that on any time-scale

smaller than user-session arrivals, modeling wide-area TCP traffic

using Poisson processes fails to faithfully capture the traffic’s dy-

namics. Recent work [LTWW94] shows that local-area Ethernet

traffic (and perhaps wide-area TCP traffic) is much better modeled

as a self-similar process, which displays substantially more bursti-

ness over a wide range of time scales than do Poisson processes.

In this section we discuss the degree of “large-scale correlation”

present in the LBL PKT traces of TELNET traffic, and the LBL PKT

and DEC WRL traces of FTPDATA traffic and aggregate wide-area

traffic. We also consider the evidence for whether such correla-

tion is well modeled using self-similar processes. We begin with a

discussion of the concepts of “large-scale correlation,” “long-range

dependence,” and “self-similarity.” We next give an overview of

two existing methods for generating truly self-similar traffic, along

with a new method for producing “pseudo-self-similar” traffic. We

then discuss how the traffic models developed in this paper might

match these methods. We finish with a preliminary assessment of

the possible self-similarity of general wide-area traffic. We find the
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Figure 11: Proportion of DEC WRL FTPDATA traffic due

to largest 2% (shaded) and 0.5% (black) connection bursts.

evidence inconclusive, though the traffic clearly exhibits large-scale

correlations inconsistent with Poisson processes.

7.1 Definitions

We use the term “large-scale correlation” as an informal way of

describing correlations that persist across large time scales. For

example, the lower right plot in Figure 10 shows a 40-minute burst

of highly correlated traffic.

A related, more precise notion of sustained correlation is that of

“long-range dependence.” A stationary process is long-range de-

pendent if its autocorrelation function r(k) is nonsummable (i.e.,
P

k

r(k) = 1) [C84]. Thus, the definition of long-range depen-

dence applies only to infinite time series.

The simplest models with long-range dependence are self-similar

processes, which are characterized by hyperbolically-decaying au-

tocorrelation functions. Self-similar and asymptotically self-similar

processes are particularly attractive models because the long-range

dependence can be characterized by a single parameter, the Hurst

parameter (which can be estimated using Whittle’s procedure

[GW94, LTWW94]).

In the following sections, we look at ways in which long-range

dependence in general, and self-similarity in particular, might arise

in wide-area network traffic. An important point to bear in mind

is that, even if the finite arrival process derived from a particular

packet trace does not appear self-similar, if it exhibits large-scale

correlations suggestive of long-range dependence then that process

is almost certainly better approximated using a self-similar process

than using Poisson processes. Thus, we believe that self-similar

modeling is a promising successor to Poisson modeling. It may not

be exactly right, but given our current understanding of networking

phenomena, it appears in any case a good approximation.

9



7.2 Producing self-similar traffic

There are several methods for producing self-similar traffic that

could account for self-similarity in wide-area TCP traffic. As dis-

cussed in [LTWW94], self-similar traffic can be produced by mul-

tiplexing ON/OFF sources that have a fixed rate in the ON periods

and ON/OFF period lengths that are heavy-tailed (see Appendix B).

A second method for generating self-similar traffic that could

fit TCP traffic is an M/G/1 queue model, where customers arrive

according to a Poisson process and have service times drawn from

a heavy-tailed distribution with infinite variance [C84, LTWW94].

In this model, X
t

is the number of customers in the system at time t.

The count process fX
t

g

t=0;1;2;::: is asymptotically self-similar (see

Appendix D for further discussion). The M/G/1model implies that

multiplexing constant-rate connections that have Poisson connec-

tion arrivals and a heavy-tailed distribution for connection lifetimes

would result in self-similar traffic.

We investigated an additional method of producing arrival pro-

cesses that appear to some extent self-similar. This method involves

constructing arrivals using i.i.d. Pareto interarrivals with � � 1,

and then considering the corresponding count process (the number

of arrivals in consecutive intervals). The goal behind the method

is to explore how a simple model of TELNET traffic might lead to

self-similarity. We refer to this method as “pseudo-self-similar” be-

cause while the traffic it generates has large-scale correlations and

the “visual self-similarity” property [LTWW94] over many time

scales, we show in Appendix C that the traffic generated is not

actually long-range dependent (and thus not self-similar).

7.3 Relating the methods to traffic models

7.3.1 TELNET

As explained in [LTWW94], straight lines on variance-time plots

with slopes more shallow than �1, such as that for the PKT-2

TELNET trace in Figure 5, are suggestive of self-similarity. In

general, the slope of an arrival process’s variance-time plot is a

function of the process’s autocorrelation function [C84], and a long-

range dependent process will exhibit slowly-decaying variances on

such a plot. That is, the variance-time plot will decline in a more

shallow fashion than with slope �1, though not necessarily in a

straight line. An important point is that such slow decline can also

occur due to the presence of non-stationarity.

In addition to looking at variance-time plots of the TELNET

traffic, we also used Whittle’s procedure [GW94, LTWW94] and

Beran’s goodness-of-fit test [B92a] to gauge the agreement between

the traffic and the simplest type of self-similar process, fractional

Gaussian noise [B92b]. All of the results are consistent with self-

similarity on scales of tens of seconds or more.

We postulate that two different mechanisms contribute to the ap-

parent self-similarity of TELNET traffic. On smaller time scales,

apparent self-similarity might arise from the fact that within indi-

vidual TELNET connections, packet interarrivals are well modeled

as i.i.d. Pareto (x 4). Thus, individual TELNET connections match

the i.i.d. Pareto method of generating pseudo-self-similar traffic that

appears self-similar over a range of time scales (Appendix C). On

larger time scales, we note that our source model of TELNET con-

nections presented in x 5 in some respects matches the M/G/1

model described in the previous section. TELNET connection sizes

in packets have a long-tailed [WT92] distribution, in that the tail

function of a log-normal distribution decreases more slowly than

any exponential function. While we show in Appendix E that the

M/G/1 queue with log-normal service times does not result in long-

range dependent or self-similar traffic, the difference in tail weight

between a log-normal distribution and a Pareto distribution may

be small enough that over the time scales of interest (seconds to

minutes) the traffic still appears self-similar.

Put together, these models of TELNET traffic suggest why the

traffic might appear self-similar (or at least long-range dependent)

over many time scales. While individually the models fall short of

proving self-similarity, it could be the case that the combination of

i.i.d. Pareto interpacket times and the M/G/1 effect due to multi-

plexing makes TELNET traffic truly self-similar. At a minimum,

these models explain why the traffic exhibits large-scale correla-

tions. Further work is needed for a definitive statement regarding

actual self-similarity.

7.3.2 FTP

Like the model of TELNET traffic discussed in the previous section,

our model of FTP traffic also fits in some respects to the M/G/1

model of Poisson arrivals with heavy-tailed lifetimes. The distri-

bution of bytes per FTPDATA burst is heavy-tailed (x 6), and FTP

sessions have Poisson arrivals (x 3). Over larger time scales the

packet arrival process within an FTPDATA burst can be plausibly

approximated as constant-rate. If we approximated FTPDATA burst

arrivals as Poisson (a bit of a stretch, as shown in x 3 above), and

assumed that each FTPDATA burst received the same average rate,

then multiplexed FTP traffic would fit the M/G/1 model above,

and should be self-similar.

It turns out, though, that variance-time plots, Whittle’s proce-

dure, and goodness-of-fit tests of our FTP traces all suggest that

our FTPDATA traces are not well-modeled as fractional Gaussian

noise, although the heavy-tailed distribution of FTPDATA bursts

clearly leads to large-scale correlations. The sole exception to this

finding is the DEC WRL-3 trace, for which the tests are consistent

with self-similarity at time scales of 1 second or greater.

One reason the FTP traces might not be well-modeled as frac-

tional Gaussian noise is that the traces exhibit extremely high bursti-

ness, including lengthy periods during which there is no FTP traffic.

These “lulls” mean that the marginal distribution function of the ar-

rival process has a large peak at zero arrivals. Since fractional

Gaussian noise is a form of Gaussian process, its marginal distri-

bution is normal, and cannot accommodate such a peak. It is still

possible that FTP traffic is well-modeled using different self-similar

processes; or that it instead is not well-modeled as self-similar. In

this paper we do not try to resolve this issue, but limit our discussion

to the interplay between mechanisms affecting FTP traffic dynamics

and large-scale correlations in the traffic.

Unlike TELNET traffic, where the timing of packets generated

at the source is reasonably close to the timing of the same packets

transmitted on the network, the timing of FTPDATA packets trans-

mitted on the network is intimately related to the dynamics of TCP’s

congestion control algorithms. The following paragraphs discuss

several ways that, due in part to the effects of TCP, multiplexed

FTP traffic differs from the M/G/1 model of self-similar traffic

with constant-rate connections. While these factors could account

for our FTP traces not appearing statistically self-similar, they do

not imply the absence of long-range dependence.

Unlike the M/G/1 model, which best fits an environment where

all connections have the same fixed constant rate, different FTP

connections have quite different average rates, and within a single
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Figure 12: Variance-time plot for all TCP / all link-level

packet arrivals in the LBL PKT datasets.

FTP connection the average rate varies over time. TCP’s congestion

control algorithms increase the TCP congestion window to probe for

additional bandwidth, and reduce the congestion window again in

response to congestion (packet drops). TCP’s window flow control

has several separate effects on the traffic pattern for an individual

FTP connection. First, over intervals less than a roundtrip time

the FTP connection does not have a constant rate; each packet is

sent only after the TCP source receives an acknowledgement for

an earlier packet. Second, if there is congestion in the network,

then an FTP connection does not have a constant rate even over

longer time intervals; the average rate over a roundtrip time varies

as the TCP congestion control window varies. Third, whether or not

there is congestion in the network, different FTP connections will

have different average rates, depending on such factors as the TCP

window and packet sizes, the connection’s roundtrip time, and the

congestion encountered in the network. These factors give rise to

serious discrepancies between our trace data and the M/G/1model.

One way to incorporate the effect of limited bandwidth into the

M/G/1 model would be to explore a model of an M/G/k queue

instead of an M/G/1 queue. In an M/G/k queue, because there

are only k servers, the actual arrival times of individuals at a server

would occasionally have to be delayed until there was available ca-

pacity. While this limited capacity would have the effect of reduc-

ing the fit of the multiplexed traffic to a self-similar model, it does

not eliminate the underlying large-scale correlations in the M/G/1

model. However, the M/G/k model as applied to FTP connections

assumes that all active connections have the same constant rate, and

this is not the case in actual FTP traffic.

Another discrepancy between the M/G/1 model and our link

traces concerns the effect of FTP traffic competing with other fami-

lies of traffic on a congested link. The four main classes of traffic in

our link traces were TCP, Mbone (primarily multicast UDP audio

traffic), Domain Name System requests and replies (UDP-based),
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Figure 13: Variance-time plot for all link-level packet ar-

rivals in the DEC WRL datasets.

and DECnet. Unlike TCP, the UDP protocol does not incorporate

congestion-avoidance mechanisms. Therefore, when TCP-based

FTP traffic is competing for bandwidth with Mbone UDP sources,

only the FTP traffic will adjust to fit the available bandwidth. The

UDP traffic will continue unimpeded. The effect of this interaction

on the overall structure of FTP traffic remains an open question.

7.4 Large-scale correlations in general wide-

area traffic

We finish with a preliminary look at whether wide-area traffic mul-

tiplexed over different protocols appears self-similar. Figure 12

shows variance-time plots for all of the LBL PKT traces listed in

Table 2. Here, the unaggregated process (M = 1) corresponds to

observing the packets arriving during each 0.01 second interval.

Recall that the first three LBL PKT traces captured all TCP pack-

ets for two hours, and the last two captured all wide-area packets

appearing on the gateway Ethernet for one hour. The first three

traces consist of between 1.7 and 2.4 million packets, and the last

two traces each have around 1.3 million packets. The correspond-

ing rates of packets/hour are above those of the “low hours” in

[LTWW94], so we would hope to find that the traces exhibit exact

self-similarity.

We see in Figure 12 that PKT-4 and PKT-5, the full link-level

traces, both yield straight lines with shallow slope, consistent with

asymptotic self-similarity for M � 10 (0.1 second). For the TCP

traces, PKT-1 is concave down for small and largeM , inconsistent

with exact self-similarity, PKT-2 appears consistent with asymptotic

self-similarity forM � 103 (10 seconds), and PKT-3 has a straight

section between M = 10 and M = 103, but not before or after,

also inconsistent with exact self-similarity.

In contrast, use of Whittle’s procedure and goodness-of-fit tests

suggest that the link-level PKT-4 trace and the TCP PKT-1 and
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PKT-3 traces are consistent with fractional Gaussian processes,

while the link-level PKT-5 trace and the TCP PKT-2 trace are not.

As Figure 10 shows, the FTP traffic in the PKT-5 and PKT-2 traces

is heavily dominated by a few large FTPDATA bursts. Thus, while

large-scale correlations are clearly present in these traces, it might

be difficult to characterize the correlations over the entire trace with

a single Hurst parameter.

Figure 13 shows the same sort of variance-time plot for the DEC

WRL datasets listed in Table 2. The least active of the WRL datasets

exceeds the most active in [LTWW94], so we would again expect to

find exact self-similarity. The variance-time plots for WRL-2 and

WRL-4 are encouraging in this regard, lying in essentially straight

lines for time scales of 0.1 seconds and higher. WRL-3 lies in a

straight line at time scales of 1 second and higher, while WRL-

1 does so only at 10 seconds and higher. But of these datasets,

Whittle’s procedure and Beran’s goodness-of-fit test indicate that

only WRL-3 is consistent with fractional Gaussian noise (at time

scales of 1 second and greater). The others, while clearly exhibiting

large-scale correlations, do not appear to be well-modeled by a

simple self-similar process. This could be due to distorting effects

of short-range dependence, better fits to other self-similar models

such as fractional ARIMA processes [B92b], or the presence of non-

stationarity. WRL-3 was also the only dataset whose FTP traffic

appears consistent with fractional Gaussian noise, though we have

not assessed whether this coincidence is significant. Clearly, further

work is required to fully understand the correlational structure of

wide-area traffic.

We end with a comment regarding the balance between link-

level modeling and protocol-specific modeling. One approach to

investigating self-similarity is to model multiplexed link traffic as

self-similar, without attempting to model individual connections.

This approach could have many uses in simulations and in analysis.

For example, self-similar traffic could be used instead of Poisson

traffic to model cross-traffic, or self-similar traffic could be used in

simulations investigating link-sharing between two different classes

of traffic.

However, for many simulations, the simulator needs to model

individual sources. In particular, it is only from modeling of in-

dividual sources, and a direct implementation of TCP’s congestion

control algorithms, that a simulation can take into account the ef-

fects of the TCP algorithms in different environments. TCP’s con-

gestion control algorithms contribute long-term oscillations to the

traffic pattern for a particular connection, as the TCP congestion

window changes over the lifetime of the connection. In addition,

TCP’s window flow control contributes a shorter-term periodicity

to the traffic pattern, as each packet is transmitted in response to

an acknowledgement returned for an earlier packet [FJ92]. It is

particularly important to take into account these effects in simula-

tions investigating changes to either TCP, the gateway scheduling

algorithms, or the network’s packet-dropping algorithms.

8 Implications

This paper’s findings are summarized in the Introduction. In this

section we conclude with a look at the implications of our results.

Several researchers have previously discussed the implications

of long-range dependence (burstiness across different time scales)

in network traffic. Modeling TCP traffic using Poisson or other

models that do not accurately reflect the long-range dependence in

actual traffic will result in simulations and analyses that significantly

underestimate performance measures such as average packet delay

or maximum queue size.

[FL91] examines the burstiness of data traffic over a wide range of

time scales, and discusses the impact of this burstiness for network

congestion. Their conclusions are that congested periods can be

quite long, with losses that are heavily concentrated; that, in contrast

to Poisson traffic models, linear increases in buffer size do not result

in large decreases in packet drop rates; and that a slight increase in

the number of active connections can result in a large increase in

the packet loss rate. They suggest that, because the level of busy

period traffic is not predictable, it would be difficult to efficiently

size networks to reduce congestion adequately. They observe that,

in contrast to Poisson models, in reality “traffic ‘spikes’ (which

cause actual losses) ride on longer-term ‘ripples’, that in turn ride

on still longer-term ‘swells’.” They suggest that a filtered variable

can be used to detect the low-frequency component of congestion,

giving some warning before packet losses become significant.

[LTWW94]discusses some additional implications of long-range

dependence of packet traffic. These include an explanation of the

inadequacy of many commonly-used notions of burstiness, and the

somewhat counter-intuitive observation that the modeling of indi-

vidual connections can gain insight from an understanding of the

fundamental characteristics of multiplexed traffic. In this paper, ob-

servations of the characteristics of multiplexed traffic motivated our

revisitation of models for individual connections; indeed, we origi-

nally set out to challenge the notion that wide-area traffic might be

self-similar, and have come full circle.

[GW94] examines the long-range dependence of variable-bit-

rate (VBR) video traffic. Their empirical measurements of VBR

traffic show strong low-frequency components, and they propose

source models for video traffic that display the same long-range de-

pendence. Given the likelihood that VBR traffic will soon comprise

a significant fraction of Mbone traffic, we soon will have wide-area

traffic of which a substantial portion is perforce self-similar, simply

due to the source characteristics of its individual connections.

There are some additional respects in which the burstiness and

long-range dependence of aggregate traffic can affect traffic perfor-

mance. Consider a link with priority scheduling between classes of

traffic, where the higher-priority class has no enforced bandwidth

limitations (other than the link bandwidth itself). In such a par-

tition, interactive traffic such as TELNET might be given priority

over bulk-data traffic such as FTP. If the higher-priority class has

long-range dependence and a high degree of variability over long

time scales, then the bursts from the higher-priority traffic could

starve the lower-priority traffic for long periods of time.

A second impact of the long-range dependence of packet traf-

fic concerns classes with admissions control procedures that are

based on measurements of recent traffic, rather than on policed traf-

fic parameters of individual connections [CSZ92]. As has been

shown by numerous researchers, such admissions control proce-

dures could lead to a much more effective use of the available

bandwidth [YKTH93]. Nevertheless, if the measured class has

high burstiness consisting of both a high variance and significant

long-range dependence, then an admissions control procedure that

considers only recent traffic could be easily mislead following a

long period of fairly low traffic rates. (This is similar to a situa-

tion in California geology some decades ago. Because there hadn’t

been a large earthquake for a long time, people began to believe it

unlikely that there would be another one.)

In summary: we should abandon Poisson-based modeling of
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wide-area traffic for all but user session arrivals. For TELNET

traffic, we offer a faithful model of originator traffic parameterized

by only the hourly connection arrival rate. Modeling the TELNET

responder remains to be done. For FTP traffic, we have shown that

modeling should concentrate heavily on the extreme upper tail of

the largest bursts. A wide-area link might have only one or two such

bursts an hour, but they tend to strongly dominate that hour’s FTP

traffic. Finally, our look at multiplexed TCP and all-protocol traffic

suggests that anyone interested in accurate modeling of wide-area

traffic should begin by studying self-similarity.
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A Methodology for testing for Poisson

arrivals

To test whether a trace of connection arrivals corresponds to a non-

homogeneous Poisson process, we first pick an interval length I

over which we hypothesize that the arrival rate does not change. If

the trace spans a total of T time units, we divide the entire trace

into N = T=I intervals each of length I . We then separately test

each interval to see whether the arrivals during the interval are con-

sistent with arrivals from a Poisson process with rate fixed so that

the expected number of arrivals is the same as the number actually

observed. Thus, we reduce the problem of testing for nonhomoge-

neous Poisson arrivals to that of testing a number of intervals for

homogeneous Poisson arrivals.

Poisson arrivals have two key characteristics: the interarrival

times are both exponentially distributed, and independent. We dis-

cuss testing for each in turn.

For each interval, we test the interarrivals for an exponential

distribution using the Anderson-Darling (A2) test, recommended

by Stephens in [DS86] because it is generally much more powerful

than either of the better-known Kolmogorov-Smirnov or �2 tests.

A

2 is also particularly good for detecting deviations in the tails of

a distribution. A2 is an empirical distribution test; it looks at the

entire observed distribution, rather than reducing the distribution

into bins as is required by �2.

We associate a significance level with eachA2 test. For example,

a test with a significance level of 5% will correctly confirm the null

hypothesis (if it is correct) with probability 0.95; with probability

0.05, the test will erroneously declare the hypothesis false. Thus,

the significance level indicates the proportion of “false negatives”

(in general it is difficult to assess the corresponding percentage of

“false positives”). We can use significance-level testing as follows.

Suppose we test N intervals for exponential interarrivals and K

of them pass the A2 test at the 5% significance level. If the null

hypothesis is correct, then the probability ofK successes inN trials

will be given by a binomial distribution with parameter p = :95. If

we find that the probability of observing K successes was less than

5%, then we conclude with 95% confidence that the arrival process

is inconsistent with exponential interarrivals.

There are two important details for correctly applying and inter-

preting theA2 test. The first is that estimating the parameters of our

model from the data to be tested alters the significance levels of the

A

2 test (this applies to our null hypothesis above, in which we derive

the mean of the exponential fit from the data rather than knowing it

a priori). The second is that the number of data points tested also

alters the significance levels. In general, the more points tested, the

more likely the test will detect an incorrect null hypothesis. [DS86]

gives procedures for incorporating both of these considerations into

A

2 tests.

We also need to test the interarrivals for independence. One indi-

cation of independence is an absence of significant autocorrelation

among the interarrivals. Autocorrelation can be significant in two

different ways: it can be too strong in magnitude, or it can be too

frequently positive or negative. We address each of these in turn.

Given a time series of n samples from an uncorrelated white-

noise process, the probability that the magnitude of the autocorre-

lation at any lag will exceed 1:96=
p

n is 5%. Thus we can test

for independence by observing how often this occurs and using a

binomial test similar to the one outlined above. (Because for many

non-Poisson processes autocorrelation among interarrivals peaks at

lag one, to keep our test tractable we restrict it to just the lag one

autocorrelation.)

We also apply one further test for independent interarrivals. If

the interarrivals are truly independent, then we would expect their

autocorrelation to be negative with probability 0.5 and positive with

probability 0.5. For Poisson arrivals, then, the number of positive

lag one autocorrelation values should be binomially distributed with

parameter p = 0:5. Given this assumption, we assess the proba-

bility of at least the observed number of positive values occurring.

If its probability is too low (< 2:5%) then we conclude that the

interarrivals are significantly positively correlated. Similarly, if the

observed number of negative values has probability < 2:5%, then

the interarrivals are significantly negatively correlated.

B Pareto distributions

In this paper the Pareto distribution plays a role both in TELNET

packet interarrivals and in the size of FTPDATA bursts. This ap-

pendix discusses the Pareto distribution and its occurrence in the

physical world.

The classical Pareto distribution with shape parameter � and lo-

cation parametera has the cumulative distribution function [HK80]:

F (x) = P [X � x] = 1 � (a=x)

�

; a; � � 0; x � a;

with the corresponding probability density function:

f(x) = �a

�

x

���1
:
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If � � 2, then the distribution has infinite variance, and if � � 1,

then it has infinite mean.

The Pareto distribution (also referred to as the power-law dis-

tribution, the double-exponential distribution, and the hyperbolic

distribution) has been used to model distributions of incomes ex-

ceeding a minimum value, and sizes of asteroids, islands, cities and

extinction events [K93, M63]. Leland and Ott also found that a

Pareto distribution with 1:05 < � < 1:25 is a good model for the

amount of CPU time consumed by an arbitrary process [LO86].

In communications, heavy-tailed distributions have been used to

model telephone call holding times [DMRW94] and frame sizes for

variable-bit-rate video [GW94]. The discrete Pareto (Zipf) distri-

bution [A83, p.95]:

P [x = n] = 1=((n+ 1)(n+ 2)) for n � 0:

arises in connection with platoon lengths for cars at different speeds

traveling on an infinite road with no passing [A83, p.95] [F66, p.40],

a model suggestively analogous to computer network traffic.

Following [LTWW94], we define a distribution as heavy-tailed

if:

P [X � x] � cx

��

; as x!1; � � 0: (1)

By this, we mean that for some � and some constant c, the ratio

P [X � x]=(cx

��

) tends to 1 as x !1. This definition includes

the Pareto and Weibull distributions [DMRW94].

A more general definition of heavy-tailed defines a distribution

as heavy-tailed if the conditional mean exceedance (CMEx) of the

random variable X is an increasing function of x [HK80], where

CMEx = E[X � xjX � x]:

Using this second definition of heavy-tailed, consider a random

variable X that represents a waiting time. For waiting times with

a light-tailed distribution such as the uniform distribution, the con-

ditional mean exceedance is a decreasing function of x. For such

a light-tailed distribution, the longer you have waited, the sooner

you are likely to be done. For waiting times with a medium-tailed

distribution such as the (memoryless) exponential distribution, the

expected future waiting time is independent of the waiting time so

far. In contrast, for waiting times with a heavy-tailed distribution,

the longer you have waited, the longer is your expected future wait-

ing time. For the Pareto distribution with � > 1 (that is, with finite

mean), the conditional mean exceedance is a linear function of x

[A83, p.70]:

CMEx = x=(� � 1):

The Pareto distribution is scale-invariant, in that the probability

that the wait is at least 2x seconds is a fixed fraction of the probability

that the wait is at least x seconds, for any x � a.

A related result shows that the Pareto distribution is the only

distribution that is “invariant under truncation from below” [M83,

p.383] [A83, p.81]. That is, for the classical Pareto distribution, for

y � x0,

P [X > yjX > x0] = P [(x0=a)X > y]: (2)

Hence the conditional distribution is also a Pareto distribution, with

the same shape parameter � and new location parameter a0 = x0.

We make use of this property in the next section.

Finally, we note that Mandelbrot argues that because the asymp-

totic behavior of Pareto distributions with � � 2 is unchanged for

a wide variety of filters (including aggregation, maximums, and the

weighted mixture of distributions), and because this is true of no

other distribution, this invariance could in some respects explain

the widespread observance of Pareto distributions in the social sci-

ences [M63] [M83, p.344].

C Pareto interpacket times

In this section we give some intuition for the observed long-range

dependence of traces of TELNET traffic. Recall that the main body

of the distribution of TELNET interpacket times fits a Pareto dis-

tribution with shape parameter 0.9, while the upper 3% tail fits a

Pareto distribution with shape parameter 0.95. In this section we

consider packets generated by a single connection using i.i.d. Pareto

interpacket times, for a Pareto distribution with shape parameter �

and location parameter a. We then consider the associated count

process X = fX

i

g

i=0;1;2;:::, where X

i

is the number of packets

arriving during the ith time interval, each time interval being a bin

of width b. We give an intuitive explanation for the observed long-

range dependence of the count process by looking at the properties

of the point process of packet arrivals, concentrating on the inter-

packet times. We show that while this process is not truly long-range

dependent, when observed over a finite time scale it exhibits prop-

erties we associate with self-similar processes. In particular, we

show that aggregating the process by increasing b does not change

the dominant features of the process.

Let fX
(b)

i

g denote the count process associated with counting

arrivals using bins of size b. We are interested in the behavior of

fX

(b)

i

g for different sizes of b.

Rather than analyzing relationships between the precise values of

different bins, we simplify the problem by just looking at whether,

for a given i, X
(b)

i

= 0 or X
(b)

i

> 0. We refer to the former as an

empty bin and the latter as an occupied bin. Further, for j � i, we

call X
(b)

i;:::;j

a burst of occupied bins if for all k, i � k � j, bin k

is occupied. Similarly, X
(b)

i;:::;j

is a lull if all the corresponding bins

are empty. Sample paths of X are made up of alternating bursts

and lulls.

We are interested in the relative predominance of bursts vs. lulls,

as we change the bin size b and the Pareto shape parameter �.

Suppose bin i is occupied and bin i � 1 is empty. Then bin i

begins a burst. Associated with each bin is a set of Pareto inter-

arrival times, beginning with I

n

, the arrival that first fell into the

bin. For bin i, we know that I
n

> b because the previous bin is un-

occupied. Consider now the subsequent interarrivals I
n+1 : : : In+l

contributing to the burst of consecutive occupied bins. Clearly each

of these interarrivals must be < 2b, as otherwise they will skip a

bin and end the burst. Furthermore, any interarrival in the range

b < I < 2b has the potential of skipping a bin, depending on where

we are positioned in the current bin prior to the arrival. Thus, any

interarrival I > 2b definitely will end the burst, and I > b possibly

will end the burst.

Since the interarrivals are independent, we have a situation simi-

lar to that of a geometric random variable: for any given interarrival,

it will with probability p

t

terminate the burst, and with probability

1 � p

t

continue the burst. Here p

t

is a function of exactly where

we are in the current bin, but is bounded as follows:
�

a

2b

�

�

� p

t

�

�

a

b

�

�

; (3)

where a and � are the Pareto location and shape parameters, and b

is the bin width.

We can then bound the expected length of a burst using the ex-

pected value of the geometric random variables that correspond to
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Figure 14: Count process for i.i.d. Pareto interarrivals, bin

size b = 103 (� = 1; a = 1), 9 different seeds.

the lower and upper bounds in Equation 3. Let B be the expected

number of bins spanned by a burst. It can be shown that:

B �

(

b=a; if � = 2; b� a,

log(b=a); if � = 1; b� a, and

2 [1::
p

2] if � =

1
2
,

where b� a holds if b� a � b.

Thus, for � = 2, as we “widen” our view by choosing b larger

and larger, we will observe longer and longer bursts; for � = 1, the

bursts grow longer with increasing bin size, but only very slowly;

and for � =

1
2
, the bursts have a constant length regardless of the

size of the bins (!).

Consider now the length of the lulls separating bursts. Let L

be the length of a lull, and L

b

be the number of bins (of size b)

spanned by the lull. Each lull is due to a single interarrival that is

possibly greater than 2b and definitely greater than b. Due to the

Pareto distribution’s invariance to truncation from below (Equa-

tion 2), this means that the distribution of L will be stochastically

bounded betweenP(b; �) andP(2b; �), whereP(a; �) denotes the

Pareto distribution with parameters a and �.

From this observation, it follows that:

1�

�

2

k

�

�

� P [L

b

� k] � 1 �

�

1

k

�

�

:

Thus, the distribution of L
b

is invariant with respect to b. That is,

regardless of the time scale over which we view the count process,

the lulls between bursts will “look” the same.

We now can summarize the behavior of the count process for

varying values of �:

� For � = 2, the number of bins spanned by the bursts grows

linearly with b, while bins spanned by the lulls remains con-

stant, so aggregation fairly quickly smoothes out the main

variations of the count process.

Bin

Co
un

t  
x1

00
0

0 200 400 600 8001000

0
20

0
40

0
60

0
80

0

Bin

Co
un

t  
x1

00
0

0 200 400 600 8001000

0
20

0
40

0
60

0
80

0

Bin

Co
un

t  
x1

00
0

0 200 400 600 8001000

0
20

0
40

0
60

0
80

0

Bin

Co
un

t  
x1

00
0

0 200 400 600 8001000

0
20

0
40

0
60

0
80

0

Bin

Co
un

t  
x1

00
0

0 200 400 600 8001000

0
20

0
40

0
60

0
80

0

Bin

Co
un

t  
x1

00
0

0 200 400 600 8001000

0
20

0
40

0
60

0
80

0

Bin

Co
un

t  
x1

00
0

0 200 400 600 8001000

0
20

0
40

0
60

0
80

0

Bin

Co
un

t  
x1

00
0

0 200 400 600 8001000

0
20

0
40

0
60

0
80

0

Bin

Co
un

t  
x1

00
0

0 200 400 600 8001000

0
20

0
40

0
60

0
80

0

Figure 15: Count process for i.i.d. Pareto interarrivals, bin

size b = 107 (� = 1; a = 1), 9 different seeds.

� For � =

1
2
, the burst lengths are constant across all time

scales, as are the lull lengths: the process appears self-

similar over all time scales.

� For � = 1, the burst lengths (in bins) grow only very slowly

(logarithmically). This means that over a large time scale,

the predominance of bursts vs. lulls remains virtually un-

changed: the process appears self-similar over many time

scales.

Figures 14 and 15 illustrate the “visual self-similarity”

[LTWW94] of this process. Each figure plots 1,000 observations

of the count process corresponding to i.i.d. Pareto interpacket times

for � = 1 and a = 1. Nine different random seeds were used

in generating each figure. The first figure corresponds to using a

bin-width of b = 103, while the second figure uses b = 107. To

the eye, the two sets of arrivals exhibit the same general activity

in terms of alternations of bursts and lulls and the fairly regular

ceiling of activity, though the occupied bins of the b = 107 arrivals

appear to have a higher mean than those of the b = 103 arrivals.

As predicted by the analysis above, the average number of bins in

a burst for b = 107 is somewhat higher than for b = 103 (a factor

of 2.6), while the average lull size is virtually the same (a factor

of 1.2). Overall, the sustained variation even when the process is

aggregated by a factor of 104 is striking.

In general, the process associated with � = 1 is similar to that of

a single TELNET connection’s traffic, which we model using i.i.d.

Pareto interpacket times with � = 0:95 for the upper tail of the

distribution. Thus this model explains in part why TELNET traffic

appears self-similar.

We finish with an explanation of why the count processes asso-

ciated with � = 1 and � =

1
2

are not, in fact, self-similar, even

though the balance they exhibit between bursts and lulls suggests

they might be. We have shown that the lull lengthL is stochastically

bounded between two Pareto distributions with the same shape pa-

rameter �. But for � � 1, the mean of a Pareto-distributed random

variable is infinite. The expected burst size, on the other hand, is
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finite. Using these facts, and viewing the count process’s bursts and

lulls as an alternating renewal process, it follows that, for � � 1,

once the process reaches steady-state, each bin is empty with prob-

ability 1 (regardless of the value of b). The autocorrelation function

of the process is thus 0 everywhere, and hence summable, so the

process is not long-range dependent (and so cannot be self-similar).

Even though the count processes are not strictly self-similar, an

important point remains that, when viewed over a finite time scale

(i.e., before settling into steady-state), the count process associated

with i.i.d. Pareto interarrivals (with � � 1) appears in many ways

like a self-similar process. Assuming that this likeness persists when

the process is multiplexed, this finding gives an understanding as to

why observed TELNET traffic appears self-similar. The fact that the

count process is not truly long-range dependent does not imply that

TELNET traffic is not truly self-similar. It may be that TELNET

traffic is truly self-similar but the simplifying assumptions in our

argument (i.i.d. arrivals; no multiplexing) fail to faithfully model

the traffic properties necessary for true self-similarity.

This argument also shows that it is possible for a process which is

not long-range dependent to appear to be so over many time scales.

This illustrates some of the dangers of arguing for true self-similarity

(or, more generally, long-range dependence) based on (necessarily

finite) measurements alone, without a corresponding model from

which to argue for self-similarity analytically.

At the same time, the question of whether a particular (infinite)

model based on a finite process is long-range dependent is only one

of the questions we are exploring. Equally important is whether

or not long-range dependent models in general are useful as par-

simonious approximations to particular finite processes arising in

network traffic. Finally, we should not underestimate the value of

the fundamental insights and shifts in focus that come from consid-

ering questions of self-similarity and long-range dependence.

D The M/G/1 model for generating

self-similar traffic

This section briefly discusses the M/G/1model for generating self-

similar traffic [CI80, p.136] [C84, p.67]. The M/G/1 queue model

considers customers that arrive at an infinite-server queue according

to a Poisson process with rate �. In the count process fX
t

g

t=0;1;2;:::

produced by the M/G/1 queue model, X
t

gives the number of

customers in the system at time t. From [CI80, p.139], for customers

with a service time with distribution functionF , the autocorrelation

function r(k) for the count process is as follows:

r(k) = covfX(t);X(t+ k)g = �

Z

1

k

(1� F (x))dx: (4)

D.1 The M/G/1 model and the Pareto distri-

bution

Consider customers with independent service times (or lifetimes)

drawn from the Pareto distribution with location parameter a and

shape parameter �, for 1 < � < 2. From Equation 4, the autocor-

relation function r(k) is as follows:

r(k) = �

Z

1

k

�

a

x

�

�

dx:

=

�a

�

� � 1
k

(1��)
:

Following [BSTW94], the process fX
t

g

t=0;1;2;::: is asymptoti-

cally self-similar if

r(k) � k

�D

L(k) as k !1; (5)

for 0 < D < 1 and L a slowly-varying function.2 Thus, for a � 0

and 1 < � < 2, the count process of the M/G/1model with Pareto

lifetimes is asymptotically self-similar, and therefore long-range

dependent.

From [BSTW94], the process fX
t

g

t=0;1;2;::: is exactly self-

similar only if

r(k) = 1=2
�

(k + 1)
2H
� 2k

2H
+ (k � 1)

2H
�

for 1=2 < H < 1 [BSTW94] [C84, p.59]. In this case the process

fX

t

g and the aggregated process fX
(m)

t

g have the same autocor-

relation function. From this result, for Pareto service times and an

arbitrary arrival rate �, the count process of the M/G/1 model is

not exactly self-similar.

From [CI80, p.138], fX
t

g has a Poisson marginal distribution

with mean ��, where � is the expected service time. For the

M/G/1 model with Pareto service times, the expected service time

is �a=(� � 1), for � > 1. Thus, in this case fX
t

g has a Poisson

marginal distribution with mean ��a=(� � 1).

E Log-normal distributions

From [WT92], the log-normal distribution is called sub-exponential

because, along with the Pareto and Weibull distributions, the tail

function is subexponential (i.e., decreases slower than any expo-

nential function). In that paper, the Pareto, log-normal, and Weibull

distributions are all defined as long-tailed. In this section we show

that the log-normal distribution is not heavy-tailed, according to the

definition given in Equation 1.

We use the estimate of the upper tail function for a standard

normal random variable N as

P [N � y] �

1
p

2�y
e

�y

2
=2

[F50, p.175]. Thus for X a log-normal random variable with scale

parameter 1 and shape parameter 1,

P [X � x] �

1
p

2� log x
e

� log2
x=2

: (6)

Thus, for some constant c,

P [X � x] � c

e

� log2
x=2

logx
:

So X is only heavy-tailed if for some constant c1 and some � � 0,

x

�

� c1 logx e
log2

x=2
:

But we can show that for any n,

log x e

log2
x=2

> x

n

2For a slowly-varying function L, lim
t!1

L(tx)=L(t) = 1 for all

x > 0. Constants and logarithms are examples of slowly-varying functions.
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for x sufficiently large. (This follows because log x > n, there-

fore log2
x > n logx, and therefore e

log2
x

> x

n.) So the log-

normal distribution is not heavy-tailed. Note that the log-normal

distribution is not heavy-tailed even if we expand our definition of

heavy-tailed to include slowly-varying functions, as in Equation 5.

E.1 The M/G/1 model and the log-normal

distribution

We consider the M/G/1 model for service times with distribu-

tion function F . It is already known (Appendix D) that if F is a

Pareto distribution, then the count process from the M/G/1 model

is asymptotically self-similar, and therefore long-range dependent.

In this section we show that if the lifetimes have a log-normal dis-

tribution, then the count process from the M/G/1 model is not

long-range dependent.

From Equations 4 and 6, we have:

r(k) � �

Z

1

k

log
�1

x

1

(2�)1=2
e

� log2
x=2

dx

�

�

(2�)1=2

Z

1

k

1

log x x(logx)=2
dx

The count process from the M/G/1 model with log-normal life-

times is long-range dependent only if
P

1

k=K

r(k) is infinite. For

large K,

1

X

k=K

r(k) �

1

X

k=K

�

(2�)1=2

Z

1

k

1

log x x(logx)=2
dx

�

�

(2�)1=2

1

X

k=K

1

X

x=k

1

log x x(log x)=2

�

�

(2�)1=2

1

X

x=K

(x�K + 1)

logx x(logx)=2
:

Because
P

1

x=1
1=x2 is finite and

(x�K + 1)

logx x(logx)=2
�

x

x

(log x)=2
�

1

x

2

for x sufficiently large, then
P

1

k=K

r(k) is finite, and the count

process of the M/G/1model with log-normal lifetimes is not long-

range dependent.

This analysis shows that, in the limit, the behavior of the M/G/1

queue completely changes if the service times are log-normal and

not Pareto. An important open question, however, is over what sort

of finite time scales are these differences actually significant?

References

[A83] B. Arnold., Pareto Distributions, International Co-

operative Publishing House, Maryland, 1983.

[B92a] J. Beran, “A Goodness-of-fit Test for Time Series with

Long Range Dependence,” Journal of the Royal Statistical

Society B, 54(3), pp. 749-760, 1992.

[B92b] J. Beran, “Statistical Methods for Data with Long-Range

Dependence”, with discussion, Statistical Science, 7(4),

pp. 404-427, 1992.

[BSTW94] J. Beran, R. Sherman, M. Taqqu, and W. Willinger,

“Variable-Bit-Rate Video Traffic and Long-Range Depen-

dence,” to appear in IEEE Transactions on Communica-

tions.

[B90] D. Borman, “Telnet Linemode Option,” RFC 1184, Net-

work Information Center, SRI International, Menlo Park,

CA, October, 1990.

[CBP93] K. Claffy, H.-W. Braun and G. Polyzos, “Long-term traf-

fic aspects of the NSFNET,” Proceedings of INET ’93,

SDSC Report GA-A21238, San Diego Supercomputer

Center, 1993.

[CSZ92] D. Clark, S. Shenker, and L. Zhang, “Supporting Real-

Time Applications in an Integrated Services Packet Net-

work: Architecture and Mechanism,” Proceedings of SIG-

COMM ’92, pp. 14-26, August, 1992.

[CI80] D. Cox and V. Isham, Point Processes, Chapman and Hall,

1980.

[C84] D. R. Cox, “Long-Range Dependence: A Review,” in

Statistics: An Appraisal, Proceedings 50th Anniversary

Conference, Iowa State Statistical Library, H. A. David

and H. T. David, editors, Iowa State University Press, pp.

55-74, 1984.

[DS86] R. B. D’Agostino and M. A. Stephens, editors, Goodness-

of-Fit Techniques, Marcel Dekker, Inc., 1986.

[DJ91] P. Danzig and S. Jamin, “tcplib: A Library of TCP In-

ternetwork Traffic Characteristics,” Report CS-SYS-91-01,

Computer Science Department, University of Southern

California, 1991. Available via FTP to catarina.usc.edu as

pub/jamin/tcplib/tcplib.tar.Z.

[DJCME92] P. Danzig, S. Jamin, R. Cáceres, D. Mitzel, and D.
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