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Abstract

We analyze 2.5 million TCP connections that occurred during

14 wide-area traffic traces. The traces were gathered at five

“stub” networks and two internetwork gateways, providing a

diverse look at wide-area traffic. We derive analytic models

describing the random variables associated with telnet, nntp,

smtp, and ftp connections, and present a methodology for

comparing the effectiveness of the analytic models with em-

pirical models such as tcplib [DJ91]. Overall we find that the

analytic models provide good descriptions, generally model-

ing the various distributions as well as empirical models and

in some cases better.

1 Introduction

Though wide-area networks have been in use since the early

1970’s, until recently we have known virtually nothing about

the characteristics of the individual connections of different

protocols. In the last few years a number of papers have ap-

peared giving statistical summaries of traffic on a per-protocol

basis [Càceres89, Heimlich90, CW91, EHS92, WLC92], an

important first step. The next step in understanding wide-area

traffic is to form models for simulating and predicting traffic.

One such model, tcplib [DJ91, DJCME92], is now avail-

able. tcplib is an empirical model of wide-area traffic: it

models the distribution of the random variables (e.g., bytes

transferred, duration) associated with different protocols by

using the distributions actually measured for those protocols

at an Internet site.

Ideally we would like to have analytic traffic models: sim-

ple mathematical descriptions rather than empirical distribu-

tions. Such models are easier both to convey and to analyze.

The key question is whether analytic models can describe the

diverse phenomena found in wide-area traffic as well as em-

pirical models. Our previous work [Paxson91] offered such

models but suffered in part from flawed statistical methodol-

ogy.

In this paper we analyze 14 wide-area traffic traces gathered

at seven different sites, five “stub” networks and two inter-

network gateways. We derive analytic models describing the

random variables associated with telnet, nntp, smtp, and ftp

connections, and present a methodology for comparing the

effectiveness of the analytic models with tcplib and with an-

other empirical model constructed from one of the datasets.

Table 1 summarizes our main results. Overall we find that the

analytic models provide good descriptions, generally model-

ing the various distributions as well as the empirical models

and in some cases better. We develop each of these findings

in the remainder of the paper.

In the next section we give an overview of the 14 traffic

traces. We describe the gross characteristics of the traces

including their traffic mix, and discuss how we filtered the

traffic to remove anomalous connections.

The following section presents our statistical methodology.

We discuss how we transformed the data and dealt with out-

liers; our unsuccessful attempts to find “statistically valid”

models; the metric we devised for comparing the fit of two

different models to a dataset; and our methodology for mod-

eling connection interarrivals, which is more complex than

modeling the other random variables associated with a con-

nection.

We then present one section each on modeling telnet, nntp,

smtp, and ftp. These sections can be read independently if

the reader is more interested in one protocol than another,

except that the first section describes how to read the plots

used in all four sections to compare models. By reading the

text accompanying Figures 4, 5, 13, and 30, the reader can if

desired skip the remainder of the telnet section.
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Random variables associated with wide-area network connections can be described as well

by analytic models as by empirical models.

When using either type of model, caution must be exercised due to frequent discrepancies

in the upper 1% tails.

While in general the analytic models do not match the observed distributions identically

in a statistical sense, often a random subsample of hundreds of data points does result in a

statistically valid fit, indicating that the analytic models are often close though not exact.

Bulk-transfer traffic (ftpdata, smtp, nntp, and telnet response) is best modeled using log-

normal distributions.

Bulk-transfer traffic is not strongly bidirectional; the responses to bulk transfers show little

variation relative to the variation in the size of the transfer.

Network traffic varies significantly, both over time and more so from site-to-site, not only

in traffic mix but in connection characteristics.

Scaling usually helps significantly in modeling the bytes transferred by nntp, smtp, rlogin,

and individual ftpdata connections, but is usually not necessary for adequate fits to telnet

connections and full ftp conversations.

Except for nntp, connection interarrivals are well modeled using nonhomogeneous Poisson

processes with fixed hourly rates.

Table 1: Major Findings

In the last section we summarize the different analytic mod-

els and discuss findings in addition to those listed in Table 1.

We also include appendices summarizing how we filtered the

data prior to analysis, and exploring the effectiveness of mod-

eling rlogin traffic using the telnet models.

2 Overview of Network Traffic Traces

To develop and then evaluate our models we acquired a num-

ber of traces of wide-area traffic. Our main data were from six

month-long traces of all wide-area TCP connections between

the Lawrence Berkeley Laboratory (LBL) and the rest of the

world. With the help of colleagues we also were able to study

traces from Bellcore, the University of California at Berke-

ley, the University of Southern California, Digital’s Western

Research Laboratory, the United Kingdom–United States aca-

demic network link, and traffic between the coNCert1 network

and the rest of the world. We discuss the general character-

istics of each of these datasets in turn and then provide sum-

maries of their TCP traffic.

2.1 The LBL Traces

All off-site communication at LBL funnels through a group

of gateways that reside on a network separate from the rest

of the Laboratory. The first two datasets were taken using a

Sun 3/50 residing on the gateway network, using the tcpdump

1Communications for North Carolina Education, Research and

Technology.

packet capture tool [JLM89] running the Berkeley Packet Fil-

ter [MJ93]. The Sun 3/50 had kernel modifications to gain a

clock resolution of 10 msec. These are the traces discussed

in [Paxson91]. When we took the last four traces the monitor

workstation had been upgraded to a Sun SLC with a conse-

quent improvement of clock resolution to 1 microsecond.

We used a tcpdump filter to capture only those TCP packets

with SYN, FIN, or RST flags in their headers, greatly reducing

the volume and rate of data (but at the cost of no analysis of

intra-connection dynamics). From SYN and FIN packets one

can derive the connection’s TCP protocol, connection dura-

tion, number of bytes transferred in each direction (excluding

TCP/IP overhead), participating hosts, and starting time. In

principle we could derive the same information using RST

packets instead of FIN packets, but we found that often the

sequence numbers associated with RST packets were erro-

neous. Since we could not derive reliable byte counts from

RST-terminated connections we excluded them from subse-

quent analysis.

With this packet capture scheme there are two mechanisms

by which packets can be lost. The first is that, if a packet

arrives at the Ethernet controller and the controller has run

out of kernel memory to buffer the packet, it drops the packet

and sets a bit indicating that this event occurred. The Ethernet

driver subsequently reads the bit and increments a correspond-

ing counter. It is possible that more than one packet will be

dropped before the driver is able to read the bit, so the actual

number of dropped packets is unknown but at least as large

as the driver’s counter.

The second packet-drop mechanism occurs when the kernel

determines that the packet filter accepts a packet, but has no
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more buffer space for saving the packet (due to the user-level

program failing to consume previously accepted packets). In

this case the kernel drops the packet and increments a counter.

Values reported by this counter thus correspond to exactly the

number of acceptable packets (in our case, SYN/FIN/RST

packets) dropped.

Dataset Packets (days) Start End Drops

LBL-1 124M (36) 01Nov90 01Dec90 0 + 0

LBL-2 ? 28Feb91 30Mar91 0+?

LBL-3 207M (47) 07Nov91 07Dec91 9 + 24

LBL-4 210M (36) 19Mar92 18Apr92 6 + 233

LBL-5 337M (35) 24Sep92 23Oct92 8 + 1808

LBL-6 447M (31) 24Feb93 26Mar93 3 + 0

Table 2: Summary of LBL Datasets

Table 2 summarizes the LBL datasets. The second column

gives the total number of network packets received by the ker-

nel for each dataset, along with the number of days spanned by

the entire trace. (The statistics missing for the LBL-2 dataset

are due to abnormal termination of the tracing program.) Each

dataset was then trimmed to span exactly 30 days, beginning

at midnight on a Thursday and ending at midnight on a Satur-

day (i.e., just after 11:59PM Friday night), except for LBL-6,

which begins on a Wednesday and ends on a Friday midnight.

The “Drops” column gives the drop count reported by the Eth-

ernet driver followed by the drop count reported by tcpdump;

this last value represents dropped SYN/FIN/RST packets.2

Finally, since the LBL datasets span 2.5 years at roughly

regular intervals, they provide an opportunity to study how

a site’s wide-area traffic evolves over time. Such a study is

reported in [Paxson93].

2.2 The Additional Traces

As mentioned above, a number of colleagues generously pro-

vided access to traffic traces from other sites. The authors

of [DJCME92] provided their traces of traffic from Bell-

core, U.C. Berkeley, and U.S.C.; Jeffrey Mogul provided

traces from DEC-WRL; Wayne Sung provided traces of traf-

fic to/from the coNCert network in North Carolina; and the

authors of [WLC92] provided their traces of the UK–US

academic network. The first four traces all originate from

“stub” sites, while the latter two represent inter-network traf-

fic (though the authors of [WLC92] characterize the UK side

2In the LBL-4 dataset we observed the heated exchange of nearly 400,000

RST packets sent between a lone remote host and three LBL hosts, separated

by a geometric mean of 1.3 msec. In LBL-5 we observed the exchange of

nearly120,000 RST packets between a single pair of hosts, virtually all occur-

ring during a 98 second period, separated by a geometric mean of 400 �sec.

LBL-6 did not include any RST bursts.

The LBL-5 RST bursts correspond to enough traffic to consume

> 500 kbit/sec. We suspect that the RST bursts are the cause of the relatively

large number of dropped SYN/FIN/RST packets in LBL-4 and LBL-5.

of the UK–US traffic as similar to a large stub site since it

comprises only a few hosts).

Site Starting Time Duration Drops

Bellcore (BC) Tue 14:37 10Oct89 13 days 0

UCB (UCB) Tue 10:30 31Oct89 24 hours 0

USC (USC) Tue 14:24 22Jan91 26 hours � 0:6%�

DEC (DEC-1) Tue 16:46 26Nov91 24 hours ?

DEC (DEC-2) Wed 17:55 27Nov91 24 hours ?

DEC (DEC-3) Mon 15:02 02Dec91 24 hours ?

coNCert (NC) Wed 09:04 04Dec91 24 hours ?

UK-US (UK) Wed 05:00 21Aug91 17 hours 0

Table 3: Summary of Additional Datasets

The additional datasets are summarized in Table 3. Next to

the site name we give in parentheses the abbreviation we will

use to identify the dataset. The drop rates for the first three

datasets correspond to those listed in [DJCME92]; for the

last dataset, to that listed in [WLC92]; and the drop rates for

the remaining datasets were unavailable. The USC dataset’s

drop rate is marked because we found our copy of the trace

plagued throughout by “blackouts” of missing packets, occur-

ring almost exactly a minute apart and each blackout lasting

roughly ten seconds.3 Because of these blackouts, we exclude

the USC dataset from our interarrival models.

2.3 Filtering of non-WAN traffic

Before proceeding with our analysis we filtered out non-wide-

area traffic from the datasets: internal and transit traffic.

The details are given in Appendix A. In addition, we re-

moved from the LBL datasets all traffic between LBL and

U.C. Berkeley4. While traffic with the University forms a

significant fraction of LBL’s off-site traffic (20-40% of all

connections), it is atypical wide-area traffic due to the close

administrative ties and the short, high-speed link between the

institutions.

2.4 Traffic Overview

We now turn to characterizing the different datasets in or-

der to gauge their large-scale similarities and differences. Of

previous traffic studies, only [FJ70], the related [JS69], and

[DJCME92] compare traffic from more than one institution.

The first two papers found significant differences between

their four traffic sites, which they attribute to the fact that the

different sites engaged in different applications and had dif-

ferent hardware. The authors of [DJCME92] found that their

three sites (which correspond to the USC and UCB datasets in

3These blackouts do not correspond to network outages; sequence num-

bers of TCP connections spanning outages show jumps.
4Including nntp, unlike [Paxson93], which keeps the nntp traffic.
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Dataset # Conn nntp smtp ftpdata ftpctrl telnet rlogin finger domain X11 shell other

LBL-1 146,209 40 26 16 3 4 1 4 4 0.2 0.5 0.5

LBL-2 170,718 34 30 16 3 4 1 5 4 0.2 0.2 0.7

LBL-3 229,835 20 33 17 3 4 1 4 11 0.4 0.3 5

LBL-4 449,357 16 21 15 3 2 1 32 5 0.4 0.2 4

LBL-4* 312,429 23 30 21 4 3 1 3 8 0.5 0.3 5

LBL-5 370,397 14 34 22 5 4 1 6 8 0.9 0.2 5

LBL-6 528,784 11 40 23 6 3 0.8 5 5 0.7 0.4 4

BC 17,225 2 49 30 4 4 2 5 0.1 0.1 0.5 2

UCB 37,624 18 45 18 2 2 0.9 12 0.1 0.02 0.2 0.8

USC 13,097 35 27 14 2 3 1 11 2 0.09 0.3 3

DEC-1 72,821 33 35 11 1 0.08 0.05 0.1 20 0 0.001 0.8

DEC-2 49,050 38 22 8 1 0.04 0.06 0.2 29 0 0.02 1

DEC-3 73,440 26 43 9 1 0.07 0.07 0.2 19 0 0.003 1

NC 62,819 1 42 30 4 5 0.3 5 0.8 0.03 0.3 5

UK 25,669 0.02 42 39 7 4 0.4 0.9 1 0.02 0.02 4

Table 4: Percentage Connection Mixes for All Datasets

Dataset MB nntp smtp ftpdata ftpctrl telnet rlogin finger domain X11 shell other

LBL-1 2,852 19 5 65 0.2 6 0.8 0.1 1 3 1 0.1

LBL-2 3,785 14 6 67 0.2 5 1 0.1 0.9 1 3 2

LBL-3 6,710 7 4 67 0.1 4 1 0.1 0.7 3 11 1

LBL-4 11,398 21 4 52 0.1 4 0.9 0.0 0.6 6 10 1

LBL-5 19,269 17 3 57 0.1 3 0.7 0.1 0.4 11 8 1

LBL-6 22,076 22 5 57 0.2 2 0.7 0.1 0.5 8 3 0.8

BC 346 4 8 78 0.3 4 2 0.2 0.1 0.1 2 2

UCB 318 23 16 50 0.3 4 3 0.9 0.0 0.2 0.6 1

USC 362 62 3 18 0.1 2 0.9 0.3 0.3 5 7 2

DEC-1 981 43 17 38 0.2 0.1 0.2 0.0 0.7 0.0 0.0 1

DEC-2 819 54 14 30 0.1 0.0 0.2 0.1 0.6 0.0 0.0 2

DEC-3 1,379 52 16 30 0.1 0.1 0.2 0.1 0.6 0.0 0.0 1

NC 1,553 9 8 68 0.3 5 0.3 0.1 0.3 0.1 0.3 8

UK 625 0.5 11 80 0.4 3 0.5 0.0 0.3 0. 1 0.5 4

Table 5: Percentage Byte Mixes for All Datasets

this paper, as well as part of the BC dataset) had quite different

mixes of traffic, but that the characteristics of any particular

protocol’s traffic were very similar (though they did not quan-

tify the degree of similarity).

Table4 shows the “connection mix” for each of the datasets.

The second column gives the total number of connections

recorded, and the remaining columns the percentage of the to-

tal due to particular TCP protocols. The mixes for BC, UCB,

and USC differ from those given in [DJCME92] because the

latter reports conversation mixes, where multiple related con-

nections have been combined into single conversations. (The

authors also used twenty-minute silences to delimit the end

of connections, instead of FIN packets.)

From the Table it is immediately clear that traffic mixes

for all protocols vary substantially, both from site-to-site and

over time (for LBL). There are also a number of anomalies

which merit comment:

� The huge spike in the LBL-4 finger connections, the large

jump in other connections at LBL-3, and the increasing

proportion of ftpctrl traffic (i.e., the control side of an

ftp conversation), are all due to the use of background

scripts to automate periodic network access. Reference

[Paxson93] explores this phenomenon further. LBL-4*

shows the LBL-4 connection mix with the periodic finger

connections removed, as they significantly skew the mix

profile.

� The large variance of LBL’s nntp mix is due to changes

in LBL’s nntp peer servers and differences in the rate at

which new news arrives. Again, see [Paxson93] for a
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discussion.

� DEC has a “firewall” in place which prohibits traffic

other than nntp, smtp, and ftp, and domain. The little

remaining traffic due to other protocols originated on the

outside of the firewall.

� The DEC-2 dataset includes part of the Thanksgiving

holiday, accounting for the depressed number of con-

nections.

� As mentioned in [WLC92], the United Kingdom re-

ceives its network news from Holland, hence the very

low proportion of nntp connections.

Table 5 shows the total number of data megabytes trans-

ferred (in either direction) for each of the datasets, along with

the “byte mix”—the percentage of the total bytes due to each

protocol. The LBL datasets show striking growth over time,

which we explore further in [Paxson93]. The LBL datasets

naturally total more bytes than the others because they span

30-day periods, as opposed to about 1 day for all the other

datasets except BC (see Table 3).

We see immediately that, much as with the connection mix,

the byte mix also varies considerably both from site-to-site

and over time. Some sites (the first three LBL datasets, BC,

NC, and UK) are wholly dominated by ftp traffic, while others

(the last three LBL datasets, UCB, and the DEC datasets)

show more of a balance between nntp and ftp traffic; and

USC is dominated by nntp traffic. For some sites (UCB,

DEC), smtp traffic contributes a significant volume, and for

others (LBL, USC), traffic due to X11 and shell far outweighs

the almost negligible proportion of connections due to those

protocols (see Table 4).

We now turn to the development of the statistical methodol-

ogy that we will use to characterize the individual connections

that make up the data shown in Tables 4 and 5.

3 Statistical Methodology

As noted in [Pawlita89], one weakness of many traffic stud-

ies to date has been in their use of statistics. Often the stud-

ies report only first or perhaps second moments, and distri-

butions are summarized by eye. Frequently they omit dis-

cussion of dealing with outliers, and rarely do they report

goodness-of-fit methodologies and results. The few cases

where goodness-of-fit issues have been discussed are some-

what unsatisfying (the authors of [FJ70] developed their own,

apparently never-published goodness-of-fit measure; and in

our own previous work [Paxson91] we used the Kolmogorov-

Smirnov goodness-of-fit test as a goodness-of-fit metric, an

inferior choice). We endeavor in this work to address these

statistical shortcomings and to present a general statistical

methodology that might serve future work as well.

Our initial goal was to develop “statistically valid” analytic

models of the characteristics of wide-area network use. By

statistically valid we mean models whose distributions for

random variables could not be distinguished in a statistical

sense from the actual observed distributions of the variables.

In this attempt we failed. Most of the models we present do

not reflect the underlying data in a statitistically valid sense;

that is, we cannot say that our analytic distributions do indeed

precisely give the distributions of the random variables they

purport to model. We discuss our failure in Section 3.8 below,

and then in Section 3.9 develop a “metric” for determining

which of two statistically invalid models better fits a given

dataset. But first we discuss the value of statistically valid

analytic models and our methodology for developing them,

as these issues remain fundamental to putting our results in

perspective.

3.1 Analytic vs. Empirical Models

For our purposes we define an analytic model of a random

variable as a mathematical description of that variable’s dis-

tribution. Ideally the model has few bound parameters (mak-

ing it easy to understand) and no free parameters (making it

predictive), in which case it fully predicts the distribution of

similar random variables derived from datasets other than the

ones used to developed the model. But typically the model

might include free offset and scale parameters, in which case

it predicts the general shape of future distributions but not the

exact form. If those parameters are known for a future dataset,

then the model becomes fully predictive for that dataset.

In contrast, an empirical model such as tcplib describes a

random variable’s distribution based on the observed distri-

bution of an earlier sample of the variable. The empirical

model includes a great number of bound parameters, one per

bin used to characterize the variable’s distribution function; it

may be predictive but not easy to understand.

There are a number of advantages of an analytic model

compared to an empirical model for the same random variable:

� analytic models are often mathematically tractable, lend-

ing themselves to greater understanding;

� analytic models are very concise and thus easily com-

municated;

� with an analytic model, different datasets can be eas-

ily compared by comparing their fitted values for the

model’s free parameters.

A key question, though, is whether an analytic model fully

captures the essence of the quantity measured by a random

variable. An empirical model perfectly models the dataset

from which it was derived; the same cannot be said of an an-

alytic model. If the analytic model strays too far from reality,

then, while the above advantages remain true, the model no
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longer applies to the underlying phenomena of primary in-

terest, and becomes useless (or misleading, if one does not

recognize that the model is inaccurate).

The key question then is how to tell that an analytic model

accurately reflects reality as represented by a dataset of sam-

ples. One approach is to require that the random variable

distributions predicted by the model and those actually ob-

served be indiscernable in a statistical sense. To test for such

agreement we turn to goodness-of-fit techniques.

3.2 Goodness-of-fit Tests

The random variables we model (amount of data transferred,

connection duration, interarrival times, and ratios of these

quantities) all come from distributions with essentially un-

bounded maxima. Furthermore, these distributions are either

continuous or, in the case of data transferred, continuous in

the non-negative integers. As such the values of the variables

do not naturally fall into a finite number of categories, which

makes using the well-known chi-squared test less than ideal

because it requires somewhat arbitrary choices regarding bin-

ning [Knuth81, DS86].

The goodness-of-fit test commonly used with continuous

data is the Kolmogorov-Smirnov test. The authors of [DS86],

however, recommend the Anderson-Darling (A2) test [AD54]

instead. They state that A2 is often much more powerful than

either Kolmogorov-Smirnov or chi-squared, and that A2 is

particularly good for detecting deviations in the tails of a dis-

tribution, often the most important to detect. We followed

their recommendation and, in attempting to develop statisti-

cally valid models, always used A2 in assessing goodness-of-

fit.

3.3 Logarithmic Transformations

When analyzing data drawn from distributions unbounded

in one direction and bounded in the other, often it helps to

re-express the data by applying a logarithmic transformation

[MT77]. We found that for many of our models logarithmic

transformations were required to discern patterns in the large

range of values in the data.

For convenience we developed and tested our models us-

ing a log2 x transformation. Note that, when converting from

logarithmic models back to untransformed models, arithmetic

means of transformed values become geometric means of the

untransformed values, and standard deviations become fac-

tors instead of additive values. For example, a log-normal

model with x̄ = 4:0 and � = 2:5 specifies that any ob-

servation within a factor of 5.66 (22:5) of 16 (24:0) lies within

one standard deviation of the geometric mean. Thus, 2.83

(= 16=5:66) and 90.56 (= 16 � 5:66) are the boundaries of

values lying within one standard deviation of the geometric

mean, which is 16.

3.4 Dealing with Outliers

When applying a logarithmic transformation to non-negative

data, one immediately runs into the problem of what to do

with data equal to zero. Fortunately for us, in our data such

values are rare (and confined to values representing number of

data bytes transferred), so we decided to eliminate any con-

nections in which the number of bytes transferred in either

direction was zero. We report in Appendix B the number of

connections thus eliminated for each dataset; in the worst case

they comprised 0.5% of the total connections. An alternative

approach would have been to bias our logarithms, by using

log2(x+1) rather than log2 x; we rejected this approach as be-

ing error-prone when converting to and from the logarithmic

models.

Some of our datasets also exhibited values so anomalously

large that we removed their associated connections from our

study. These outliers were much rarer than those discussed

above. Often the values were clearly due to protocol errors

(for example, connections in which the sequence numbers

indicated 232
�1 bytes transferred). We discuss these outliers

also in Appendix B.

Finally, we restricted our analysis to datasets with at least

100 connections of interest, to prevent small, anomalous

datasets from skewing our results.

3.5 Censored Data

Some of our models describe only a portion of the distribution

of a random variable (such as the upper 80% of the distri-

bution). Reference [DS86] discuss modified goodness-of-fit

tests (includingA2) to use with such censored distributions, in

which a known fraction of either tail has been removed from

the measurements prior to applying the test. In addition, they

describe a method (due to Gupta [Gupta52]) for estimating

the mean and variance of such a censored distribution, which

can be used to derive estimated parameters of a model from

censored data.

3.6 Deriving Model Parameters from Datasets

Often a model has free parameters that must be estimated

from a given dataset before testing the model for validity in

describing that dataset. For example, a log-normal model may

require that the geometric mean and standard deviation be

estimated from the dataset. The authors of [DS86] make the

important point that estimating free parameters from datasets

alters the significance levels corresponding to statistics such

as A2 computed from the fitted model. They then provide

both methods to estimate free parameters from datasets, and

the required modifications for interpreting the significance

of the resulting A2 (and other) statistics. We followed their

approach.
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3.7 Model Development vs. Testing

To know if a model is truly predictive, we must test it on data

other than that used to develop the model. To this end, we

developed all of our models using the first half of the LBL-1

through LBL-4 datasets. We refer to these below as the “test

datasets”. We then tested the models against the second half

of these LBL datasets along with the entirety of the remaining

datasets (including all of LBL-5 and LBL-6).

Below we compare our analytic models with two empirical

models: one derived from the UCB dataset, which is essen-

tially the same as the tcplib model, and one derived from all

of LBL-2. Thus, in keeping with our goal of testing models

only on data other than that used to develop them, we do not

report results for fits to these datasets. An exception is for our

interarrival models, which in general we do not compare to

the empirical models (see Section 3.11 below).

3.8 Failure to Find Statistically Valid Models

Using the methodology described above, we attempted to de-

velop models for a number of random variables for TCP con-

nections of various protocols. While we often could find fairly

simple analytic models that appeared to the eye to closely

match the distributions of the random variables for a given

dataset, these models rarely proved valid at a significance

level of 5%, or even 1%, when tested against other datasets.5

What we found tantalizing, though, is that often, when we

subsampled the dataset, we did find valid fits to the smaller

sample. This pattern held whether the subsamples were con-

structed randomly or chronologically (for example, testing

each day in the LBL datasets separately). We tested whether

the pattern was due to daily variations in the model’s param-

eters by using autocorrelation plots. We found such patterns

only in the arrival process and bytes transferred of nntp, and

bytes transferred by smtp connections. We discuss these find-

ings below in Sections 5.2 and 6.2. We did not find any con-

sistent patterns in the LBL telnet or ftp test datasets, ruling

out simple hourly, daily, or weekly patterns in the parameters.

These findings are consistent with our models being close

to describing the distributions but not statistically exact. In

such a case it will take a large number of sample points for a

goodness-of-fit test to discern a difference between the distri-

butions. When we subsample we present the test with fewer

points and the fit is then more likely to be found valid.

Figure 1 illustrates the problem. Here we see the dis-

tribution of log2 of the bytes sent by the telnet responder

(i.e., not the host that began the connection) for the first half

of the LBL-4 dataset. Fitted against the distribution is our

responder-bytes model, which uses a normal distribution for

5A significance level of 5% indicates a 5% probability that the A2 test

erroneously declares the analytic model to not fit the dataset. A 5% test is

more stringent than a 1% test; it errs more often because it demands a closer

correspondence between the model and the dataset before declaring a “good

fit.” See [Ross87, pp. 205-206] for further discussion of significance levels.

lg Responder Bytes

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1: Censored Log-Normal Fit to Upper 80% of LBL-4

TELNET Responder Bytes

the upper 80% of the data (and ignores the lower 20%). The

horizontal line indicates the 20th percentile; the goodness-of-

fit test applied only to the agreement above this line. While

judging visually we might be tempted to call the fit “good”, it

fails the A2 test even at the 1% level.

This sample consisted of 5,448 points. Wethen subsampled

1,000 points randomly, tested the validity of the model’s fit to

the subsample, and repeated the process 100 times. Of these

100 tests, 79 were valid at the 1% level and 55 at the 5%

level. Thus we feel confident that the model is close, though

we know it is not exact.

3.9 Comparing Analytic and Empirical

Models

While we must abandon our initial goal of producing statisti-

cally valid, “exact” models, we still can produce useful ana-

lytic models by building on the work of [DJ91, DJCME92] in

the following way. In those papers the authors argue that their

empirical models are valuable because the variation in traffic

characteristics from site-to-site and over time is fairly small.

Therefore the tcplib models, which were taken from the UCB

dataset, faithfully reproduce the characteristics of wide-area

TCP connections. If we can develop analytic models that fit

other datasets as well as tcplib does, then the analytic models

are just as good at reproducing the characteristics of wide-

area TCP connections; a network researcher is just as well

off using either set of models, and may prefer the analytic

descriptions for the advantages discussed in Section 3.1.

The question then remains how to compare an analytic

7



model with an empirical one. Rather than a goodness-of-

fit test, we need some sort of goodness-of-fit metric. While

under certain conditions one can apply tests likeA2 as metrics

[DS86], they are not appropriate metrics for measuring the fit

of an empirical model; the tests are designed for comparing

a continuous distribution (an analytic one) with an empirical

distribution.

We chose as our metric a measure of “bin” frequencies,

similar to a chi-squared test. A chi-squared test computes:

X

2
=

M

X

i=1

(N

i

� np

i

)

2

np

i

whereM is the number of bins, p
i

the fraction of all observa-

tions predicted to fall into the ith bin, n the total number of ob-

servations, andN
i

the number of observations actually falling

into the ith bin. We make one important change, though. If

a chi-squared test is used to compare non-identical distribu-

tions, then the resulting X2 increases with n, making it diffi-

cult to compare X2 values when testing a distribution against

different-sized datasets to see which it more closely matches.

If two distributions are different, then for large values of n,

N

i

=(np

i

) will approach some fixed factor �
i

, and the squared

term in the X2 computation approaches (�
i

� 1)(np
i

). We

then see that the metric:

K

2
=

M

X

i=1

(N

i

� np

i

)

2

(np

i

)

2

remains invariant with increasing n. If the bins have equal

width, then we have:

K

2
=

M

X

i=1

(�

i

� 1)2

which allows us to compute�, the “average deviation” in each

bin:

� =

q

K

2
=M (1)

We interpret � as follows: the value of K2 we observed is

consistent with what we would observe if in each bin the pro-

portion of observations deviates from the predicted proportion

by �, i.e., jN
i

�np

i

j=(np

i

) = �. While in general the devia-

tion will vary from bin to bin, we can use � to summarize the

“average” deviation.

We are faced with several problems when using this metric:

� Similar to the problems using chi-squared tests men-

tioned in Section 3.2 above, we are forced to make a

somewhat arbitrary choice as to how many bins to use.

We chose to use ten equal-sized bins, so as to measure

the deviation from the predicted distribution within each

10th percentile.6

6In one case below we use nine bins, to accommodate censored data.

� The metric does not inform us of deviations in the distri-

bution tails, often the most important type of deviation.

We address this shortcoming in the next section.

� The metric does not inform of us interesting, localized

spikes or clumps. Within a single bin we may miss con-

siderable departure from a model; the danger is partic-

ularly acute when testing analytic models, since their

continuous nature does not usually allow for clumping.

Empirical models, on the other hand, may exactly predict

the clumping.

We do not believe this problem to be major because in

our studying of the LBL test datasets to form our models

we rarely encountered consistent clumping (we make

mention below of those occasions when we did). We

also note that if clumping exists and is not accompanied

by nearby sparseness, then the clump will “pull” more

values into the bin than a model without the clump would

predict, which will raise the � value. So a major clump

may be detected as an overall poor fit by the model.

� An empirical model does not always allow us to cre-

ate equal-sized bins. It may be that the model has a

single-valued spike straddling a bin boundary (for an

exaggerated example, suppose that the lower 20% of an

empirical distribution are all equal and we want to create

bins 10% wide). We deal with this case by placing the

entire spike in the lower bin and adjusting the bin widths

accordingly. If the spike is substantial and not aberrant,

then this procedure will aid the fit of the empirical model

more than that of an analytic model.

� Since an empirical model has bounds on the range of

values it allows for, the tested dataset may have values

not corresponding to any bin. We removed such values

from the dataset prior to computing its fit to the model.

We did, however, include these values in the summary

of deviation in the tails (see Section 3.10 below).

We use the � metric to gauge how closely the distribu-

tions of different models match that of a particular observed

distribution. We deem the model distribution with the low-

est � value as corresponding to the best-fitting model for

the observed distribution. In general we tested each dataset

against three model distributions: one produced by our an-

alytic model, one produced using the empirical distributions

found in the UCB dataset, and one drawn from the LBL-2

dataset. As mentioned in Section 2.4, the distributions in

tcplib come from the UCB dataset, with some minor differ-

ences in the data reduction. Thus, how well the UCB dataset

fits the other datasets should closely match the fit of tcplib

to those datasets. If the analytic models fit the datasets as

well or better, then we argue that the analytic models provide

as good or better an overall model. Finally, to guard against

the possibility that the UCB dataset is atypical and that better
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empirical models might exist, we also constructed and tested

an empirical model consisting of the entire LBL-2 dataset.

We developed and settled on this metric prior to observing

the values it gave for the different models. We tested two

versions of each model. In the first version all parameters

were fixed; none were derived from the dataset being tested.

When developing our analytic models we picked for each

free parameter a round value lying somewhere in the range

the parameter exhibited in the LBL test datasets. We chose

round values as reminders that there is in general consider-

able range in the possible values of the parameters, and that

our choice was therefore somewhat arbitrary (nearby choices

would work just as well).

In the second version of each model we derived the model’s

free parameters from the dataset being tested. For empirical

models we applied a linear transformation to the empirical

distribution so that its mean and standard deviation matched

that computed for the tested dataset. We refer to this second

type of model as scaled.

3.10 A Metric for Deviation in the Tails

We summarize each model’s fit to the extreme tails as follows.

Suppose we test the model against n datasets. For the ith

dataset, let x
i

be the number of observations predicted to lie

in the tail, and y

i

be the number actually found to do so.

Define:

� =

1

n

n

X

i=1

log
x

i

y

i

(2)

� then gives the mean of the natural logarithm of the propor-

tion by which the model overestimates the population of the

tail. Positive values of � indicate that the model overestimates

the tail, either consistently or in a few cases grossly. Simi-

larly, negative values indicate the model underestimates the

tail.

With this definition, an underestimate by a factor of two

(x
i

=y

i

= 1=2) is just as bad as an overestimate by the same

factor (x
i

=y

i

= 2), though if the two occur in different

datasets they will cancel out one another. Values of � close

to 0.0 indicate that either the model consistently does well

in modeling the tail, or overestimates for some datasets and

underestimates for others. In the latter case there probably

is great diversity in the distribution’s tail across the differ-

ent datasets, and the model’s estimate of the tail is a good

compromise.

One problem arises when using this definition of �: if y
i

is 0 then � becomes undefined. We address this problem by

replacing x
i

=y

i

with 100 in these cases.

In comparing models we summarize how well each model

does in the 10% and 1% tails. For models describing bytes

transferred, we only summarize the upper tails, as in these

cases disagreement in the lower tails is a matter of predicting

a few bytes too many (or few) in small connections, while

disagreement in the upper tails can result in large connections

that are megabytes too big or small. For other models we

summarize both the upper and lower tails.

3.11 Modeling Interarrivals

The final aspect of our methodology is how we model con-

nection interarrivals. Our hope was to successfully model in-

terarrivals as Poisson processes, as these have many attractive

properties and a natural interpretation (uncorrelated, memo-

ryless arrivals).

We cannot hope for much success, though, if we simply

model the interarrival distribution directly: we expect that

the arrival process will vary over the course of each day, since

computer users tend to work during daylight hours, take lunch

breaks, and so on; we do not expect a homogeneous Poisson

arrival process. Instead we first look at the relative rate of

connection arrivals over the course of a day in order to develop

a nonhomogeneous Poisson model.

Figure 2 shows the mean, normalized, hourly connection

rate for the test datasets. For each hour we plot the fraction

of the entire day’s connections that occurred during that hour.

We see, for example, that telnet connections are particularly

prominent during the 8AM-6PM working hours, with a lunch-

related dip at noontime; this pattern has been widely observed

before. ftp file transfers have a similar hourly profile, but

they show substantial renewal in the evening hours, when

presumably users take advantage of lower networking delays.

The nntp traffic hums along at a fairly constant rate, only

dipping somewhat in the early morning hours (but the mean

size of each connection varies over the course of the day;

see Section 5.2). The smtp traffic is interesting because it

shows more of a morning bias than either telnet or nntp. To

explore this bias we have also plotted the hourly rates for

the BC dataset’s smtp connections. Here we see a significant

afternoon bias. As LBL lies on the west coast of the United

States and Bellcore to the east, three time zones away, we can

interpret this difference as being due to cross-country mail:

mail sent by east-coast users arrives early in the day for west-

coast users, and mail sent by west-coast users late in the day

for east-coast users.

We can then use this data to attempt to model interarrivals

as Poisson processes. First we compress datasets consisting

of more than one day into a single “superday” by grouping

together all connections beginning during each hour of the

day. For example, all connections arriving between 9:00AM

and 9:59AM are placed in one 9AM “superhour”, regardless

of during which day the connection arrived. The hope is that

the daily variations are considerably less than the hourly vari-

ations, which is true in general except for weekends, during

which much less traffic is generated. But because weekends

have many fewer arrivals, the effect of aggregating them with

weekday connections of the same hour is small.

Next we predict the number of connections occurring dur-

9



Hour

F
ra

c
ti
o

n
 o

f 
T

o
ta

l 
C

o
n

n
e

c
ti
o

n
s

0 5 10 15 20

0
.0

0
.0

2
0

.0
4

0
.0

6
0

.0
8 Telnet

FTP
NNTP
SMTP
BC SMTP

Figure 2: Mean Daily Variation in the Test Dataset Connection Rate

ing each hour by multiplying that hour’s fraction as given in

Figure 2 by the total number of connections during the super-

day. Call this quantity a
h

, for the number of arrivals during

hour h. If we have a
h

arrivals from a Poisson process during

a single hour, then we expect the mean interarrival time in

seconds to be

m

h

= 3600sec=a
h

(3)

and if we divide the interarrival times bym
h

, then they should

be exponentially distributed with a mean of 1. Now that each

hour’s interarrivals have been normalized to the same mean,

we test the distribution of all of the superday’s normalized ar-

rivals together against that predicted by an exponential model

with mean 1.

We can also test a “scaled” version of this model which does

not rely on the rates given by Figure 2. Instead of computing

m

h

as given in Equation 3, we simply compute each super-

hour’s interarrival mean directly and divide by that value,

guaranteeing a resulting mean of 1.

tcplib does not presently include empirical models for in-

terarrivals, probably because creating such empirical models

requires a fair amount of transformation to the raw interarrival

times. We therefore do not compare the performance of the

analytic interarrival model against that of empirical models,

but instead compare the scaled version of the model against

the unscaled. If we find that for both versions � is quite low,

then the analytic model is successful and the rates given by

Figure 2 are widely applicable. If � is only low for the scaled

model, then the arrivals are indeed from a nonhomogeneous

Poisson process, but with rates different from those given in

Figure 2. If � is high for both versions, then the arrivals are

not from a Poisson process with a fixed hourly rate. If �

were to be high for the scaled model but low for the unscaled

model, then we would be left with a puzzle, but fortunately

this never happened.

Note that we do not model the arrival of a site’s inbound

and outbound connections separately, though the two might

well have different hourly rates; nor do we model the correla-

tions between inbound and outbound arrivals. We leave these

important refinements to future work.

4 TELNET

We now turn to analyzing the characteristics of individual

protocols and developing models to describe them. We begin

with telnet.7

7Appendix C presents a similar overview for rlogin traffic, along with

results of modeling it with the telnet models developed in this section.
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Dataset # Conn # Rej x̄orig �orig maxorig x̄resp �resp maxresp x̄dur �dur maxdur

LBL-1 5,734 9 199B �4:4 207KB 4.2KB �7:9 1.9MB 266 s �6:8 90.5 h

LBL-2 7,582 12 199B �4:6 282KB 4.3KB �7:5 3.2MB 237 s �6:8 78.2 h

LBL-3 9,607 23 214B �4:7 537KB 4.1KB �7:6 5.5MB 226 s �6:9 167.9 h

LBL-4 10,897 58 237B �4:3 613KB 5.3KB �7:4 86.6MB 271 s �6:8 270.0 h

LBL-5 14,922 81 237B �3:9 215KB 5.2KB �6:8 19.3MB 248 s �7:1 386.8 h

LBL-6 17,425 52 147B �7:3 777KB 3.8KB �8:7 14.0MB 256 s �6:9 102.9 h

LBL-6* 15,437 52 242B �4:5 777KB 5.7KB �7:3 14.0MB 270 s �7:7 102.9 h

BC 744 2 145B �4:1 9.7KB 2.9KB �8:7 0.6MB 193 s �6:4 8.1 h

UCB 655 4 155B �4:7 27KB 2.5KB �9:1 0.7MB 166 s �6:9 7.9 h

USC 405 0 184B �4:3 12KB 4.1KB �7:2 0.6MB 168 s �6:5 5.5 h

NC 3,023 34 112B �3:9 146KB 2.6KB �10:6 3.4MB 106 s �7:4 6.8 h

UK 962 35 143B �3:6 30KB 2.5KB �9:3 0.7MB 175 s �5:2 7.2 h

Table 6: Summary of TELNET Connections

4.1 Overview of TELNET Connections

Table 6 summarizes some basic statistics of the datasets’ telnet

connections. The Table is read as follows.

The second column gives the number of “valid” connec-

tions recorded for the dataset and the third column the num-

ber of “rejected” connections; Appendix B details the rejected

connections. As discussed in [Paxson93], the LBL-6 tel-

net traffic included 1,988 connections due to periodic traffic.

LBL-6* summarizes the LBL-6 traffic with these connections

removed. For the remainder of this section we use LBL-6*

instead of LBL-6.

The 4th through 6th columns summarize the number of

data bytes transmitted by the originator (the user end of the

remote-terminal connection). The values given are the geo-

metric mean, the geometric standard deviation, and the max-

imum. As noted in Section 3.3, except for interarrival times

we applied logarithmic transformations to the data prior to

analysis. This transformation is also important for summary

statistics such as those presented in this Table, because arith-

metic means and standard deviations are quickly dominated

by upper-tail outliers; compare the figures given in this paper

with those of our previous work [Paxson91]. The latter tend

to be much larger.

The 7th through 9th columns give the same summary for

the number of bytes transmitted by the responder (remote

computer), and the 10th through 12th columns the same for the

duration of the connections, with ‘s’ used to indicate seconds

and ‘h’ for hours.

We note that the geometric mean duration of telnet connec-

tions ranges from 2 to 4 minutes, while Jackson and Stubbs

[JS69] reported average connection lengths for local logins of

17 to 34 minutes, and [Bryan67] gives a local-login median

of 20 minutes and a mean of 45-50 minutes. Jackson and

Stubbs infer that connection time “may be considerably re-

duced by providing a high-speed channel from the computer

to the user”, so we might suspect the difference between their

measurements and the telnet data is due to the higher commu-

nication speeds of today’s computers. More recently (1985),

Marshall and Morgan found that local-area remote logins had

an average duration of 45 minutes [MM85], and non-network

logins had an average duration of 150 minutes. Thus the dis-

tance between the user and the computer appears inversely

correlated with the login duration. Since bandwidth usually

decreases with distance, we appear to be seeing Jackson and

Stubbs’ effect but rescaled to reflect today’s range of commu-

nication speeds.

The LBL telnet connections were on average substantially

longer and consisted of more bytes than those at other sites.

We would expect slightly longer average durations for LBL

connections since the datasets span several weeks, giving an

opportunity to detect long-lived connections that would be

missed by the short spans of the other datasets (except for

BC, which spans 13 days and has the next highest average).

But this effect is small: if we eliminate from LBL-1 all con-

nections spanning more than one day (i.e., crossing midnight),

then x̄orig drops to 197B, x̄resp drops by 53B, and x̄dur drops

to 260 s. Given the difference in these parameters even after

this adjustment, we are forced to conclude that, at least with

regard to mean bytes transferred and duration, the LBL telnet

traffic is significantly different from that at other sites.

We also note a definite trend over the LBL datasets towards

increasing values of x̄orig, and a similar though less convinc-

ing trend in x̄resp, too, indicating that telnet connections are

growing larger with time. Connection durations, on the other

hand, are not growing longer, suggesting that higher network

bandwidths are enabling users to engage in more work during

each session.

Finally, we note that the data provide support for the obser-

vation in [DJCME92] that “interactive applications can gen-

erate 10 times more data in one direction than the other,” and

actually suggest the factor is around 20:1. The observation

that the computer end of a terminal session generates an order-

of-magnitude more data than the user end can be found as far

back as reference [JS69], though [Bryan67] found the ratio to
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be 2.85:1 on a line-by-line basis (the author also states, how-

ever, that the studied system was substantially different from

a general-purpose, on-line, time-shared system). Marshall

and Morgan found ratios as high as 35:1 for teletypewriters

in technical use, with half that being a representative average,

and as low as 3:1 for teletypewriters used for word processing

[MM85].

In Section 4.5 below we present a model for this ratio.

4.2 TELNET Originator Bytes

With the bulk transfer protocols we examine in subsequent

sections, we usually are only interested in modeling the num-

ber of bytes transferred and the connection interarrival pro-

cess. With interactive applications, on the other hand, we not

only are interested in the bytes transferred in both directions

but also the connection duration and the relationships between

these variables.

We begin by modeling the number of bytes sent by the

originator of a telnet connection (typically a human typing

at a keyboard). The best fit we found to the LBL telnet test

datasets came using the extreme distribution:

F (x) = exp

�

� exp

�

�

(x� �)

�

��

(4)

Reference [DS86] gives a procedure for estimating � and

� for a given dataset. For our originator-bytes model, x in

Equation 4 is log2 of the number of bytes transmitted by the

connection originator.
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Figure 3: TELNET Originator-Bytes Model for LBL-2: Log-

Extreme Distribution

Figure 3 shows the distribution for the first half of the

LBL-2 dataset, along with the fitted model. We see appar-

ently good agreement except in the tails, but when tested with

A

2 the fit fails to be valid; the same holds for the other LBL

half-datasets.

For the four test datasets, � varied from 6.55 to 6.93; we

chose � = log2 100 � 6:64. � varied from 1.74 to 1.92. For

our fixed model we chose � = log2 3:5 � 1:81.
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Figure 4: Empirical vs. Analytic Models for TELNET Origi-

nator Bytes

Figure 4 shows the computed values of � for this analytic

model plotted against both the UCB and LBL-2 empirical

models, where � is defined as in Equation 1. The X axis gives

the value of � corresponding to one of the empirical models,

and the Y axis the value corresponding to the analytic model.

We read the plot as follows. Each point on the plot is

labeled with the name of the corresponding dataset. “L1”

through “L6” represent the LBL datasets and “D1” through

“D3” the DEC datasets (not present in this particular plot).

Labels written in lower case (e.g., “usc”) reflect � values for

unscaled models; that is, using the raw UCB or LBL-2 data

for an empirical model, and the fixed version (no fitted param-

eters) for the analytic model. Labels in upper case (“USC”)

reflect the scaled models.

We plot the text label at the point corresponding to compar-

ing the UCB empirical model, on the X axis, with the analytic

model, on the Y axis. We then draw a line from that point

to the corresponding point comparing the LBL-2 empirical

model with the analytic model. This line is always horizontal

because the two comparisons share the same � value, for the

analytic model, on the Y axis.

Thus for each dataset four different points are plotted: the

unscaled analytic model vs. the UCB empirical model (e.g.,
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“usc”); the scaled version of the same (“USC”); the unscaled

analytic model vs. the LBL-2 empirical model (the line drawn

from “usc”); and the scaled version of the same (line drawn

from “USC”).

Forexample, the lowest pair of points indicate that the UCB

empirical model had � � 0:3; the LBL-2 model, � � 0:1;

and the analytic model, � = 0:1. Since the line drawn from

“usc” goes to the left, the LBL-2 empirical model provided

a better fit to the unscaled USC dataset than did the UCB

empirical model. In general, if the lines head to the left of

the labels then the LBL-2 empirical model surpasses the UCB

model; and vice versa if the lines go to the right.

The diagonal line indicates where�analy = �emp, i.e., where

the analytic and empirical models yield the same closeness-

of-fit metric. Points below and to the right of this line indicate

datasets for which the analytic model fitted better than the em-

pirical model; points above and to the left, where the empirical

model fitted better. For example, from this plot we see that

the unscaled analytic fit to the LBL-5 dataset was much better

than that of the UCB empirical model (“l5”) but about the

same as that of the LBL-2 empirical model.

We see in this plot that the LBL-2 empirical model almost

always does better than the UCB empirical model, and that

the analytic model performs comparably. The points tend to

lie either just above the diagonal, indicating a slightly better

empirical fit, or a bit further away from and below the diag-

onal, indicating a better analytic fit. For this model, scaling

sometimes results in a big improvement (NC, LBL-4), no im-

provement (BC), or an improved empirical model but wors-

ened analytic model (USC, UK). Thus in this case it makes

sense to scale the empirical models when predicting traffic,

but not the analytic model.

Closer observation reveals that for every dataset except UK

and NC (two extreme cases), the analytic model fits the dataset

better than the UCB model, while the LBL-2 model fits best

in every case except for a few points very close to the line of

equality. Thus we can order the models: the LBL-2 empirical

model is better than the analytic model, which in turn is better

than the UCB model.

The overall fit of the model to the datasets does not tell the

entire story, however. As is generally the case with bytes-

transferred models, for telnet originator bytes the models’ fits

to the upper tail are much more important than fits to the

lower tail. Figure 5 summarizes the upper-tail fits. The plot

is labeled with “a” for the unscaled analytic model, “u” for

the unscaled empirical UCB model, and “l” for the unscaled

empirical LBL-2 model. The upper-case versions of these

letters correspond to the tails for the scaled versions of these

models. The X axis gives the � value for the upper 10% tail,

and the Y axis the value for the upper 1% tail, where � is

computed as given in Equation 2. In this plot we see that

scaling had little effect on fitting the upper tails, as all of the

uppercase letters are near their lowercase counterparts.

A letter close to the origin, such as “u”, indicates excellent
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Figure 5: Tail Summary for TELNET Originator Bytes

modeling in both the upper 10% tail and the upper 1% tail.

That all of the models are clustered around the Y-axis indicates

they all model the upper 10% tail well. But we see that both

the analytic model and the LBL-2 model have high values of

� for the upper 1% tail. As explained in Section 3.10 above,

this indicates that those models overestimate the distribution

in the 1% tail. That is, they tend to predict more values in

the 1% tail than were actually present in the datasets. As the

axes are scaled logarithmically, the deviations shown are quite

large. Indeed, the unscaled analytic model overestimates the

upper 1% tail for every single dataset, and for all except the

LBL and NC datasets not a single observation actually resided

in the predicted tail. Thus a value of � � 2 corresponds to

exceptionally poor tail fitting.

While the UCB empirical model does poorly versus the

other models in fitting the datasets over the entire distribution

of originator bytes, it is the obvious champion when it comes

to fitting the upper 1% tail. Thus predicting telnet originator

bytes leaves us in a quandary: we must decide which is more

important to us, the overall fit to the distribution, in which case

LBL-2 or the analytic model is recommended, or the upper

1% tail, in which case UCB is recommended. If fitting just

the upper 10% tail well is adequate, then either the analytic

model or LBL-2 is recommended.

In the interest of conserving space, for the remaining mod-

els we relegate their outlier summaries to Appendix D.

4.3 TELNET Responder Bytes

We next turn to modeling the bytes transferred by the telnet

responder. Figure 6 shows a log-normal fit to the upper 80%
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Figure 6: TELNET Responder-Bytes Model for LBL-2: Log-

Normal Fit to Upper 80%

of the responder bytes in the LBL-1 test dataset. This fit is

excellent; it passes the A2 test at the 25% significance level

(compare with Figure 1, which shows the same fit for the

LBL-4 dataset and fails A2 even at 1% significance). We

see, however, that the lower 20% (below the horizontal line,

corresponding to less than 1 KB transferred) is not smoothly

distributed, making it unlikely we might find a simple analytic

model encompassing it. We speculate that this roughness is

due to the varying sizes of log-in dialogs and message-of-the-

day greetings. Fortunately the lower tail is the least important

part of this distribution.

We found in the test datasets that the log-mean (x̄) varied

from 12.0 to 12.4, generally closer to 12.0, and we chose for

our fixed model x̄ = log2 4500 � 12:1. �
x

varied from 2.79

to 2.89; we chose �
x

= log2 7:2 � 2:85.

For this one model we evaluated the metric � using 9 bins,

from 0.2 to 1.0, instead of 10 bins (0.1 to 1.0), because the an-

alytic model only fits the upper 80% of the data and it did not

seem worthwhile to develop a separate model for the lower

20%. Figure 7 summarizes the fits. Except for NC, the an-

alytic model uniformly performs well, with � always � 0:2.

The LBL-2 model also fares quite well, while the UCB model

is not as good except for UK and BC. Scaling these models

does not always improve things (USC in particular) but in

general helps. Figure 8 explains the terrible performance fit-

ting NC: the distribution suffers from two large clusterings,

one between 240 and 265 bytes, and the other between 400

and 425 bytes. The first consumes 13% of all the connections,

the second 5%. A single host originated virtually all of the

connections in the first cluster, but to a number of different
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Figure 8: Distribution of NC TELNET Responder Bytes
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Figure 9: Empirical vs. Analytic Models for TELNET Dura-

tion

hosts, and two other hosts originated almost all of the connec-

tions in the second cluster, primarily to two remote hosts. We

were unable to find obvious patterns in the interarrivals (see

Figure 18 below for an example of clear one-minute patterns

in connection arrivals); therefore, unlike many of the spikes

discussed in [Paxson93], the connections were probably not

generated by background scripts. Perhaps they correspond

to cracking attempts, or more benign searches. Overall they

remain puzzling.

Figure 28 in Appendix D shows the performance of the

models with regard to the upper tails. Each model except

for unscaled UCB does well in the upper 10% tail. All of

the models overestimate the upper 1% tail somewhat; the

unscaled UCB model surprisingly doing the best. On the

basis of these plots we would prefer the empirical models

if the upper 1% tail is important to us; otherwise either the

analytic model or LBL-2 is preferable. LBL-2 provides the

best overall model.

4.4 TELNET Duration

We model telnet connection durations using a simple log-

normal distribution. For the test datasets we found x̄ ranging

from 7.67 to 8.03 and chose x̄ = log2 240 � 7:91. �
x

ranged

from 2.83 to 3.02; we chose �
x

= log2 7:8 � 2:96.

Figure 9 shows the fits for the duration models. In general

the models are fairly good, with the metric � falling between

0.1 and 0.3. NC again proves troublesome, though not so

when scaled. No model emerges a clear winner, and, while

the analytic model appears to do worst, it is not considerably
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Figure 10: Empirical vs. Analytic Models for TELNET

Resp./Orig. Ratio

worse than the other two.

Figure 28 in Appendix D summarizes the tail performance

of the models. In general the models do well in the upper 10%

tail, though the unscaled analytic and LBL-2 models overes-

timate somewhat. In the upper 1% tail these same models do

quite poorly, while the UCB models are excellent in both tails.

Because the UCB model did well in the general fitting shown

in Figure 9, its good performance here makes it the model of

choice for telnet duration.

4.5 TELNET Responder/Originator Ratio

If we wish to use these models to generate or predict telnet

traffic, then we also need models giving the relationships be-

tween the various distributions. In particular, we would like

to know how many responder bytes to expect given a partic-

ular number of originator bytes, and how long a connection

will last given how many bytes it transfers.

We model the ratio between the number of responder bytes

and originator bytes using a simple log-normal distribution.

For the test datasets we found x̄ ranged from 4.17 to 4.46,

tending toward the high end, and �
x

from 1.77 to 1.89, also

tending to the larger value. For the fixed model we chose

x̄ = log2 21 � 4:39 and �
x

= log2 3:6 � 1:85.

Figure 10 shows the performance of each model. Other

than the unscaled UK and NC datasets, the analytic model

does quite well, with � � 0:2 except for the scaled NC, with

� = 0:25. In general the LBL-2 empirical model does a little

better than the analytic model, and almost always better than

UCB. Scaling improves some fits considerably and has only
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marginal effect on others. The overall success of the unscaled

analytic model gives solid evidence that the ratio between the

bytes generated by the computer in a remote login session

and those generated by the user is about 20:1, since the fixed

model uses a ratio of 21:1.

For the responder/originator ratio we are interested in

agreement in both the upper and lower tails, as disagreement

in either could result in skewed predictions when the number

of originator bytes is large. Figure 28 in Appendix D shows

the performance for the upper and lower tails. All of the mod-

els do fairly well for the upper tails except for the unscaled

UCB model, which underestimates both upper tails. The ana-

lytic model does best. With the LBL-2 model, scaling trades

off better performance in the 10% tail for worse in the 1% tail.

In the lower tail for both the analytic and LBL-2 models

scaling helps the 10% tail but worsens the 1% tail, indicating

that the 1% tail is distributed differently than the other 99%.

The UCB model does well in the lower tails, though. All in all

we are left with no clear best model, and none of the models

is really bad.

One might wonder whether the responder/originator ratio’s

distribution itself varies according to the number of bytes

transferred; for example, perhaps when many originator bytes

are transferred, the ratio tends to be low, because relatively

speaking not so many responder bytes are transferred. For

the test datasets we found that the correlation coefficient be-

tween log2 of the originator bytes and log2 of the respon-

der/originator ratio varied from 0.07 to 0.10, indicating at

most a mild positive correlation.

Whenusing the responder/originator ratio to generate telnet

traffic, a subtle point arises: one can either derive the origi-

nator bytes and the ratio, and multiply to obtain the responder

bytes, or one can proceed in the opposite fashion, generat-

ing the responder bytes and the ratio, and dividing to ob-

tain the originator bytes. While these two approaches appear

equivalent, they are not, and the former (deriving the respon-

der bytes from the originator) is preferable. The difference

arises because while both the responder bytes and the ratio

are log-normal distributed, the originator bytes are extreme

distributed. Multiplying the originator byte’s extreme distri-

bution by the ratio’s log-normal distribution yields a distri-

bution close to log-normal; but dividing the responder byte’s

log-normal distribution by the ratio’s log-normal distribution

yields exactly a log-normal distribution (since the difference

of two normal distributions is a normal distribution), and not

an extreme distribution. Alternatively, we can think of the

originatorbytes as having a somewhat skewed log-normal dis-

tribution. Multiplying this distribution by another log-normal

distribution smears out the deviations, and the result is close

to log-normal; but chances are dividing two log-normal dis-

tributions will never reproduce the skewed distribution.

Thus, to generate traffic we should begin by generating the

number of originator bytes and the responder/originator ra-

tio, and then multiply to derive the responder bytes. This ap-

Responder (bytes) / Duration (secs)

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 11: Responder/Duration Distributions for LBL-1: Ex-

ponential Fits

proach is not ideal, however, because it ignores the responder-

bytes model we outlined above, which is more successful than

the originator-bytes model.

4.6 TELNET Responder/Duration Ratio

Just as we want a way to relate the originator bytes sent with

the responder bytes, we also would like to relate these random

variables to the connection duration. We investigated analytic

models for three different ratios: originator bytes to duration,

responder bytes to duration, and total bytes to duration. We

found the best fits came using the responder/duration model.

For most connections the responder/duration ratio was

well modeled by an exponential distribution, but “large”

connections—those whose responder bytes were in the up-

per 10% of all connections—had a different distribution. For

these, the ratio was fairly well modeled by a log-normal dis-

tribution.

Figure 11 shows the responder/duration ratio for both the

lower 90% of the LBL-1 connections (in terms of responder

bytes) and the upper 10%. The distribution on the left is

for the lower 90%; though it is hard to tell due to scaling,

an exponential with the same mean has been drawn and lies

squarely on top of it. This fit is very good; it passes A2 at

the 5% level. To the right we show the distribution of the

upper 10%, plotted with an exponential with the same mean.

We see that the distribution is qualitatively different, and the

corresponding exponential not a good fit.

We find the bimodality shown in this figure a bit puzzling.

It says that very large connections (in terms of bytes trans-
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Figure 12: Empirical vs. Analytic Models for TELNET

Resp./Duration Ratio

ferred) occur over relatively short durations: while the geo-

metric mean of the responder bytes in these large connections

is 45 times that of the smaller (lower 90%) connections, the

geometric mean of their durations is only 16 times that of the

smaller connections. This phenomenon was also observed

by the authors of [SC92], who found that “users transmitting

large amounts of data over a link tend to transmit that data

within 15 minutes.” We do not have a good explanation for

this phenomenon.

For the lower-90% model, the test datasets gave x̄ ranging

from 27 to 33 for the responder/duration ratio; we chose x̄ =

30. For the upper-10% model, x̄ ranged from 5.19 to 5.41 and

�

x

from 1.38 to 1.61; we chose x̄ = 5:3 and �
x

= 1:5.

Figure 12 shows the fit of the models for the lower 90% of

the responders. The analytic fit is good, with � � 0:3 and

often � � 0:2; in general it fits better than either empirical

model.

For the upper 10% of the responders we compared con-

siderably fewer datasets. Our requirement that each dataset

include at least 100 measurements ruled out any dataset with

fewer than 1,000 telnet connections, leaving just the LBL

and NC datasets. The fit remains good, though: the analytic

model does well, with � � 0:3 except for the unscaled NC

dataset (where � � 0:6 for all three models), quite a bit better

than the UCB model and about equal to the LBL-2 model.

Figure 28 in Appendix D summarizes the upper and lower

tail distributions for the fit to the lower 90% of the responders.

In the upper tails the analytic model does best, only mildly un-

derestimating the upper 1% tail; only the scaled LBL-2 model

is roughly comparable. In the lower tails the scaled analytic
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Figure 13: Interarrivals for TELNET

model does very well, with the unscaled version overestimat-

ing the 1% tail somewhat. Again the empirical models do

considerably worse and the scaled UCB model is completely

inadequate, though the unscaled model is acceptable.

For the models of the upper 10% of the responders, every

model underestimates the upper 1% tail somewhat, with the

analytic models and the scaled LBL-2 model about the same

at � � �0:5. The unscaled empirical models fare poorly

in the 10% tail, too, considerably underestimating it, while

analytic models and the scaled empirical models match the

10% tail well. In the lower tails the unscaled models do fairly

well with the 10% tail, and the scaled models do quite well.

Except for the scaled UCB and analytic models, though, the

lower 1% tail is considerably underestimated.

4.7 TELNET Interarrivals

We now turn to modeling telnet interarrivals, using the

methodology discussed in Section 3.11 above. Figure 13

compares the � values for the unscaled and scaled arrival

models. As explained in Section 3.11, instead of comparing

the analytic model to the empirical models, we compare the

analytic model’s scaled version with its unscaled version. We

plot � for the scaled analytic model on the Y axis vs. � for

the unscaled model on the X axis. Also, as mentioned in

Section 2.2, we omit the USC dataset from our interarrival

models because of the trace’s periodic blackouts.

As expected, the scaled model in general does uni-

formly better, but we note that even for the unscaled model,

� � 0:25, which, when compared to the fits of other mod-

els above, we see is quite good. The arrivals are thus well-

17



Dataset # Conn # Rej % Failures x̄orig �orig maxorig x̄resp �resp maxresp

LBL-1 57,898 2 38 % 2.0KB �9:2 4.2MB 305B �2:0 923KB

LBL-2 57,997 1 36 % 2.4KB �7:8 1.1MB 328B �2:1 584KB

LBL-3 46,167 6 19 % 2.4KB �6:2 1.9MB 384B �1:9 128KB

LBL-4 73,179 39 2 % 6.0KB �8:5 5.6MB 398B �2:2 1.4MB

LBL-5 50,969 161 8 % 14.5KB �8:5 16.5MB 633B �2:9 9.5MB

LBL-6 55,176 1048 8 % 28.4KB �6:8 15.7MB 888B �2:2 1.3MB

BC 345 116 25 % 15.5KB �6:2 2.4MB 1005B �3:0 81KB

UCB 6,899 0 1 % 2.1KB �7:2 720KB 307B �2:0 1.7MB

USC 4,615 15 4 % 11.5KB �10:3 3.6MB 709B �2:3 74KB

DEC-1 23,864 5 2 % 1.1KB �11:6 5.8MB 264B �2:2 75KB

DEC-2 18,819 88 3 % 1.3KB �11:7 26MB 292B �2:4 356KB

DEC-3 19,244 7 7 % 2.2KB �14:1 18MB 339B �2:7 223KB

NC 904 206 9 % 12.9KB �12:3 12MB 1182B �4:5 3.2MB

Table 7: Summary of NNTP Connections

modeled as a non-homogeneous Poisson process with hourly

rates given by Figure 2. This finding is at odds with that of

[MM85], who found that “user interarrival times look roughly

lognormal”. Perhaps the discrepancy is due to the authors

characterizing all interarrivals lumped together, rather than

postulating separate hourly rates.

Figure 30 in Appendix D summarizes the tail distributions

for the scaled and unscaled arrival models. (See the text in

Appendix D for an explanation of the symbols in the figure.)

Note the range shown in the figure: even the worst fits have

j�j � 0:25. Thus both the unscaled and scaled models do

quite well, and the scaled model does exceptionally well.

5 NNTP

5.1 Overview of NNTP Connections

Table 7 summarizes nntp connections. As nntp is non-

interactive, the connection duration is not of much interest

and has been omitted. Appendix B discusses the connections

we rejected due to protocol errors.

We expect nntp connections to show considerable varia-

tion because they can come in at least three modes: a server

contacts a peer and is informed that the peer presently can-

not talk to the server; the server offers the peer news articles

but the peer already has the articles; the server offers articles

and the peer does not have the articles. Each of these modes

will result in significantly different distributions of the bytes

transferred during the connection. Furthermore, the second

and third modes are somewhat indistinct, since the remote

peer may have some but not all of the offered articles.

The first mode is easy to detect. If upon initially being

contacted a responder peer is unable to communicate with the

originating peer, it sends a message with response code 400

(“service discontinued”) as per [RFC977]. When the origi-

nating peer then replies with “QUIT” followed by a carriage-

return and a line-feed, it will send a total of 6 bytes during the

connection. Indeed, we find large spikes of 6 originator bytes

in the nntp datasets, as did the authors of [DJCME92]. Thus

we can recognize a connection in which the originating host

sent 6 bytes as a “failure”.

Not surprisingly, the failure rate varies greatly from site to

site and from time to time, since it is often due to transient

phenomena such as full disks. These failure rates are given

in the “% Failures” column. Note that even over a period

of 7 days, the DEC failure rate moved from 2% to 7%. To

compute the remaining statistics in the Table, we first removed

all failure connections from the datasets.

Not only can the failure rate vary significantly, but so can

the bytes transferred during non-failure connections. For

example, as can be seen by the large increase in x̄orig be-

tween LBL-3 and LBL-4, the LBL nntp server became much

more effective in propagating news over a five month period.

LBL-5 and LBL-6 continue the impressive growth in x̄orig. A

similar effect can be seen between DEC-1 and DEC-3, only a

week apart. Such changes can be due in part to circumstances

wholly outside of the local site. Whether the articles a server

attempts to propagate to its peers are accepted depends on

whether those peers already have the articles; a subtle change

in the nntp peer topology can swing a server’s position from

one of holding mostly “stale” news to holding mostly “fresh”

news. The steadily increasing x̄orig value for the last four

LBL datasets, though, is most likely simply a reflection of

the global growth in USENET nntp traffic, which increases in

volume about 75%/year (see [Paxson93]).

5.2 NNTP Originator Bytes

Figure 14 shows the distributions of bytes sent by the orig-

inator in non-failure nntp connections at LBL, DEC, and

coNCert. The distributions show a large degree of variance
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