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Abstract

Catmull-Clark subdivision scheme provides a powerful method for building smooth
and complex surfaces. But the number of faces in the uniformly refined meshes increases
sharply with respect to subdivision depth. This paper presents adaptive subdivision
techniques as a solution to this problem. The adaptive subdivision process is driven by
labels of mesh vertices or error between the mesh faces and the limit surface. A mesh
face is subdivided only to meet precision requirement or to avoid crack. New vertices
are produced by the same Catmull-Clark scheme to ensure that the limit surface of the
adaptively refined meshes is the same as the original limit surface. The resulting meshes
are crack-free, and all the faces are quadrilaterals. Test results show that the number of
faces in the resulting meshes is significantly reduced. The proposed techniques can be
used for cubic Doo-Sabin subdivision surfaces, non-uniform cubic subdivision surfaces
and combined subdivision surfaces as well.

CR Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling —Curve, surface, solid, and object representations.

Additional Keywords: Adaptive refinement, Mesh Generation, Subdivision surfaces

1 Introduction

Subdivision surfaces have become popular recently in graphical modeling, animation and
CAD/CAM [6, 17] because of their stability in numerical computation, simplicity in coding
and, most importantly, their capability in modeling/representing complex shape of arbitrary
topology. Research work for subdivision surfaces has been carried out in several important
areas such as surface evaluation [20], surface trimming [17], boolean operations [2], and mesh
editing [21]. However, the work is far from being complete yet; for instance, research work is
still needed for surface tessellation and shape design. The purpose of this paper is to study
subdivision surface tessellation problem. New techniques that will significantly reduce the
number of faces in the resulting meshes will be presented. These techniques would improve the
efficiency of subsequent data communication, surface operations (trimming/intersection) and
downstream applications (e.g., finite element analysis) for subdivision surfaces significantly.
Research work for reducing the number of faces in a mesh can be classified into three
directions. Mesh simplification [1, 8, 9, 10, 11, 16, et al] is the most popular among the three
directions over the past decade. The aim is to remove over-sampled vertices and produce
approximate meshes with various levels of detail. The second direction focuses on approxi-
mating the limit surface by surfaces that we know of, such as a displaced subdivision surface
[14] or Nurbs patches [18]. The last one is to apply adaptive refinement schemes to subdi-
vision surfaces. Kobbelt has presented methods for adaptively refining triangle meshes for
v/3-subdivision surfaces [13], and balanced nets for interpolatory subdivision surfaces [12].
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The techniques presented in this paper belong to the third direction. Two adaptive sub-
division techniques: label-driven approach and error-driven approach, are presented here.
These techniques will be presented for the Catmull-Clark subdivision process [3]. But they
can be used for cubic Doo-Sabin [7], non-uniform cubic [19], and combined [15] subdivision
surfaces as well. One only needs to replace the Catmull-Clark vertex-computing formulas with
the corresponding vertex-computing formulas of these schemes. The reason that we use the
Catmull-Clark subdivision scheme here is because it is a frequently used subdivision surface
generation technique and it is simple for the presentation so we can focus on the adaptive
subdivision process itself rather than the tedious vertex computation process during the mesh
generation process.

Our work is inspired by [4] and [12] which use unbalanced subdivision and “Y”-element
to avoid crack, respectively. The idea of [4] is followed in the label-driven approach here,
that is, labels are assigned to the faces and vertices of an initial mesh, and used to control
the subdivision process. While [4] works on an m X n rectangular mesh or its subset, the
techniques presented in this paper can work for a mesh of arbitrary topology. This is achieved
by using a greedy algorithm to eliminate illegal vertex labels in the initial mesh. Building
smooth transitions between regions with different subdivision levels is through the unbalanced
subdivision process. The concept is similar to the unbalanced subdivision presented in [4], but
the details are quite different; an auxiliary structure has to be introduced so that the vertex-
computing formulas can still be used in the subsequent subdivision steps. In the error-driven
approach, instead of assigning a label to each face and each vertex at the outset, and then using
the labels of the vertices to drive the adaptive subdivision process, subdivision is performed for
a face only when the error condition is not satisfied or to avoid crack. The testing of the error
condition is performed before each adaptive subdivision iteration. By dynamically testing if a
subdivision step is needed before each iteration, one can avoid unnecessary subdivision steps
that would not be possible for the label-driven approach and, consequently, further reduce the
number of faces generated in the resulting mesh.

2 Label-Driven Adaptive Subdivision

Given a control mesh of arbitrary topology, the goal here is to construct a sequence of adap-
tively refined meshes that would converge to the same Catmull-Clark subdivision surface,
but with much fewer vertices and faces than one would get in the traditional Catmull-Clark
subdivision process. The mesh refining process will be driven by labels of mesh vertices. We
need a few definitions first.

The given control mesh will be referred to as My if all of its faces are quadrilaterals.
Otherwise, My refers to the result of applying the Catmull-Clark subdivision one time. In
either case, all faces of My are quadrilaterals. For each positive integer k, M, refers to the
result of applying the Catmull-Clark subdivision £ times on Mgy. My, £ > 0, and the limit
surface F are parametrized using the techniques presented in [20]. Each face in these meshes
is considered as a bilinear polynomial surface. The error of a face f in My, k > 0, is defined
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& = mazyer [ Mg (u) — F(u)], - (1)

The initial label of a face f in My, denoted Ly(f), is set to k if all the faces descended
from f after £ Catmull-Clark subdivision steps satisfy the given error tolerance ¢, i.e. errors
of these faces are smaller than e. Consequently, labels of the faces in M, 0 < [ < k, who are
descendants of f would be k£ — [. The label of a vertex v in My is defined by

L,(v) = maz {L;(f) |f € My and v is a vertex of f } . (2)

The label of a face f can be determined as follows. If f is the center piece of a 4 x 4
rectangular grid in My, the label of f can be computed using the technique presented in [5]
directly. Otherwise, keep performing Catmull-Clark subdivision on Mj until each descendent
face of f is the center piece of a 4 x 4 rectangular grid and a label is computed using [5]
for that descendent face. If the descendent face is generated by applying the Catmull-Clark
subdivision 7 times, the label of the descendent face is added to 7 to get an adjusted label
for the descendent face. The label of f is then the maximum of the adjusted labels of all
the descendent faces. If a vertex of the face is an extraordinary point of the limit surface,
one needs to estimate the label of a small neighborhood (face) of this point using convex hall
property and the chordal deviation computation technique.

The adaptive refinement procedure requires the vertex labels of M to satisfy the consistent
condition. A face of My is said to be an illegal face if it satisfies the following conditions:

1. two vertices of the face have non-zero labels, and
2. these vertices are on the same edge.

The vertex labels of My are said to satisfy the consistent condition if My contains no illegal
faces. The consistent condition ensures that the adaptively refined meshes are crack free [4].
Usually L,(v) does not satisfy the consistent condition. The easiest way to make the vertex
labels to satisfy the consistent condition is to set all the zero labels to 1. But this would
unnecessarily increase the number of faces generated in the resulting meshes since the number
of faces in the refined meshes is determined by the labels of the vertices. A better way is to
construct an extension function E,(v) of L,(v),

Ly(v), if L,(v)
Ev(v) = { 0or 1, if Lv(v)

v

0;
) )
which satisfies the consistent condition but with as many zero labels as possible.

A greedy algorithm for the construction of E,(v) via a connection supporting graph Gy, is
presented here. The vertices of Gy, are those of the illegal faces whose labels are zero. The
edges of Gy, are those of M, that connect vertices of Gy. The extension function E,(v) is

constructed by repeatedly selecting a vertex from Gy, changing its label to 1 and then updating
Gy, accordingly. This process continues until Gy, is empty. The complexity of this process is
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that changing the label of a vertex from 0 to 1 would change the status of adjacent faces: some
illegal faces would become legal and some legal faces would become illegal. Therefore, one
needs to remove some old vertices and edges from Gy, as well as to introduce some new vertices
and edges into Gy,. Obviously, the greedy algorithm should remove as many old vertices from
Gy, and introduce as few new vertices into Gy, as possible during each cycle. This is achieved
by using the following rule in selecting a vertex from Gy, to change label. Let D(v) denote
the degree of v in Gy, and let N(v) be the number of new vertices introduced into Gy, if the
label of v is changed from 0 to 1. If the number of D(v) = 1 vertices is not zero then, in
the pool of vertices which are adjacent to a D(v) =1 vertex, select any one with a minimum
N(v) among those with maximum D(v). Otherwise, select any vertex with a minimum N(v)
among the vertices of Gy, with maximum D(v).

The adaptive subdivision process is driven by vertex labels and is performed on individual
mesh faces independently. After each subdivision step, labels should be assigned to the newly
generated vertices so they can drive the next subdivision step. The resulting meshes are
guaranteed to be crack free. We shall assume that labels of the vertices of M, are defined by
an extension function Ey. In the following, My, £k = 1,2, --, stand for the meshes generated
by the adaptive refinement process. Also, variables without a bar refer to those of Mj_;, and
variables with a bar refer to those of M.

The adaptive subdivision of My_;, k£ > 1, is performed as follows. If a face has two or
more nonzero vertex labels, a balanced Catmull-Clark subdivision is performed on that face (see
Figure 1). A balanced Catmull-Clark subdivision is a standard Catmull-Clark subdivision.
However, coordinates of the new vertices will not be computed yet. The new vertices will be
marked “UPDATE” though. Labels of the new vertices are defined as follows. For each new
vertex point, E(V;) = maz {0, E,(v;) —1},i = 1,2,3,4. For each new edge point, E.(V;)
is the minimum of labels of the new vertex points adjacent to v;, ¢ = 5,6,7,8. For the face
point,

o 0, if EE(V5) - Ev(v(i) = EU_(V7) :E’U(VS) i 3
E,(ve) = q 1, if some but not all of { E,(Vs), Ey,(Vs), Ey(V7), Ey(Vs) } are zero;
min { Fy(V) | V € {¥5,V6,V7, Vs, } }, otherwise.

If a face has only one nonzero vertex label, an unbalanced Catmull-Clark subdivision with
respect to the vertex with nonzero label is performed (see Figure 2). An unbalanced Catmull-
Clark subdivision generates three new faces only, as shown in Figure 2(c). But ¥vg, vy and
the auxiliary structure shown in Figure 2(b) will still be computed and recorded; they are
needed in the computation of the vertices of My, ;. Again, coordinates of the new vertices
are not computed at this moment. These vertices, except V3, are marked with an “UPDATE”
to indicate that they will be evaluated later. The labels of all the new points are set to zero
except E,(¥;) which is defined as E,(v;) — 1. Those faces without non-zero vertex labels will
not be adaptively subdivided, but will be inherited topologically.

After all the faces of M_; are processed, vertices marked with an “UPDATE” in M, are
computed using the Catmull-Clark subdivision scheme to find their new coordinates in M.
Note that the vertices of My _; required in the computation process for the new vertices are
available because they are stored with the auxiliary structure (see Figure 2(b)) even though
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Figure 1: Balanced Catmull-Clark subdivision (a) before; (b) after.
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v3; = v; @ face point
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Figure 2: Unbalanced Catmull-Clark subdivision with respect to v; (a) before subdivision;
(b) auxiliary structure stored after subdivision; (c) structure output after subdivision

not output. Other vertices (vertices not marked with an “UPDATE”) of M, will be inherited
from My _; directly. Setting up the status of a vertex with the mark “UPDATE” is necessary
because whether a vertex should be inherited or updated depends on all its adjacent faces.

3 Error-Driven Adaptive Subdivision
The idea here is to avoid as many unnecessary subdivision steps as possible by examining the
error between the current mesh faces and the limit surface more thoroughly. A face f € My_;

is subdivided only if it does not satisfy the error condition or to avoid crack. The procedure
is as follows. The notations used here follow those of Section 2.
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Step 1: k =1; /* k is the subdivision step */
Step 2: for each face f € Mj_q, define:
Ls(f) =1 if f does not satisfy the error condition;
otherwise, L(f) = 0.
Step 3: if no face satisfies the condition L;(f) = 1, output My_;, and exit this procedure;
Step 4: calculate L,(v), following Equation (2);
Step 5: calculate E,(v);
Step 6: adaptively subdivide My_;, based on E,(v), to get My;
Step 7: k=k+1, and go to Step 2; /* start a new subdivision step */

The error computation process of Step 2 is performed as follows. If f € M;_; is a face
descended from a face g € My_, and Ls(g) = 0 in My_,, then L(f) is automatically set to
zero. This is based on the assumption that new faces generated by a subdivision step would
be closer to the limit surface than the parent face. For other faces, the error is computed
using Equation (1).

The construction of the extension function F,(v) in Step 5, when k& = 1, is the same as
the greedy algorithm in the previous section. However, when k£ > 1, the construction of E,(v)
is different from the greedy algorithm on the selection of a vertex to change label from 0 to 1.
The vertex selection part of the construction process in this case depends on a vertex group
called forbidden verter set Vi as well. Vi, consists of all the vertices that are not marked
“UPDATE?” in the (k — 1)st subdivision step. For an unbalanced subdivision in step k& — 1,
as shown in Figure 2, v; € Vy, for ¢ = 2,3,---,7. If v € V}, is a vertex point, and is
marked “UPDATE” in subdivision step & — 1, then all the edge points, which are adjacent to
v and having zero vertex label in subdivision step k, belong to Vy, as well. The rule for vertex
selection when £ > 1 is as follows. If f is an illegal face with v; and v, being its zero label
vertices (i.e., vi,vy € Gyp) and vy € Vy,, then vy is selected to change its label from 0 to 1
(note that v; and v, can never be in V3, at the same time). Otherwise, the selection process
is the same as the greedy algorithm in the previous section.

The adaptive subdivision process performed in Step 6 is the same as that in the previous
section.

4 Implementation and Results

The above adaptive refinement techniques have been implemented on SUN Ultra 10 worksta-
tions using OpenGL as the graphics system. Figures 3-4 show some of the test results. In these
figures (and Table 1 as well), “CC” stands for the Catmull-Clark scheme, “ACC1” (adaptive
Catmull-Clark 1) stands for the label-driven approach, and “ACC2” (adaptive Catmull-Clark
2) stands for the error-driven approach, respectively. The tested cases shown in Figure 3 are
a heart, a cup, a ball and a hollow pyramid. The tested cases shown in Figure 4 are the
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Stanford bunny!'® and the Powerflip cow?3. As one can see in these figures, the unbalanced

subdivision provides a way to build a smooth, crack-free transition between faces with differ-
ent subdivision levels, therefore, avoid the need of performing the same level of subdivision
on all the faces.

Comparison on the numbers of faces generated by different approaches is given in Table
1(a~f), where € is the given error tolerance, Ms is the maximum subdivision level of vertices
in the resulting mesh, “Sx” is the number of faces generated in the resulting mesh by scheme
“X”, and “Rx” is the ratio of the number of faces in the resulting mesh produced by adaptive
subdivision approach “X” to the number of faces in the mesh produced by the corresponding
standard subdivision scheme. For instance, the second line in Table 1(a) should be interpreted
as follows: if 0.7 is the given error tolerance, then 2 is the maximum subdivision level for all
the vertices in the resulting mesh to satisfy the error requirement. In this case, the number
of faces in the resulting mesh generated by the standard CC scheme is 698, the numbers of
faces in the resulting meshes generated by ACC1 and ACC2 are 284 and 212, respectively, and
the ratio of ACC1 to CC is 0.47 and the ratio of ACC2 to CC is 0.35. As can be seen from
the table, both adaptive subdivision techniques reduce the numbers of faces in the resulting
meshes significantly. However, the error-driven approach produces much fewer faces in the
resulting meshes if € is small. This is because smaller € requires larger subdivision levels to
reach the required precision. Therefore, by dynamically testing if a subdivision step is needed
before each iteration, one can avoid more unnecessary subdivision steps in such a case and,
consequently, further reduce the number of faces generated in the resulting mesh.

The presented techniques can be used for cubic Doo-Sabin subdivision surfaces (Figure
5(a~d)), non-uniform cubic subdivision surfaces (Figure 5(e~h)) and combined subdivision
surfaces (not implemented in this paper) as well. In Figure 5, “DS” and “NU’ stand for Doo-
Sabin and non-uniform subdivision schemes, respectively. “ADS1” (adaptive Doo-Sabin 1)
and “ADS2” (adaptive Doo-Sabin 2) stand for the label-driven approach and the error-driven
approach, respectively. “ANU1” and “ANU2” are defined similarly. The input mesh is the
control mesh for the hollow pyramid shown in Figure 3, where “0.3”, “0.9” and “0.3” are knot
spacings, and the other knot spacings, not shown here, are 1. The performance of the adaptive
approaches for these two cases is shown in Table 1(g) and (h). The results are similar to those
of the Catmull-Clark surfaces.

5 Conclusions

This paper presents two adaptive mesh refinement techniques for cubic subdivision surfaces.
The techniques are presented for the cubic Catmull-Clark subdivision surfaces. But they can
be used for cubic Doo-Sabin subdivision surfaces [7], non-uniform cubic subdivision surfaces
[19], and combined subdivision surfaces [15] as well. These techniques avoid uniform subdivi-

'"Downloaded from “http://graphics.cs.uiuc.edu/~garland/class/model /bunny.mmf”.

2Downloaded from “http://www.watson.org/~tesla/projects/decimate/doc/cow.smf”.

3The data set is simplified using the program: “http://www.watson.org/-tesla/projects/decimate/
doc/SimplifySurface.exe”. The method used in this program is presented in [8, 9].
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(a) input mesh  (b) limit surface

Figure 3: Heart (e = 0.7), cup (e = 2), ball (¢ = 0.6) and hollow pyramid (e = 1).
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(b) limit surface (c) CC (d) ACC1 and ACC2
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(a) input mesh

Figure 4: Stanford bunny (¢ = 0.006) and Powerflip cow (e = 0.014).

(a) DS limit surface

AN
illlll\%;
I

(e) NU limit surface (f) NU (g) ANU1 (h) ANU2

Figure 5: Cubic Doo-Sabin surface (¢ = 0.8) and non-uniform surface (e = 3).
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Table 1: Comparison on numbers of faces generated by different approaches

€ Ms Scc Sacci Raccr Saccz Raccs| e Ms Scc Saccr Raccr Sacc2 Raccez
0.7 2 608 284 0.47 212 0.35 2 3 1888 268 0.14 268 0.14
0.068 4 9728 3514 0.36 2232 0.23 1 4 7488 704 0.094 656 0.088
0.014 6 155648 39264 0.25 9700 0.062 |0.15 7 475648 4768 0.010 4680 0.0098
0.0035 8 2490368 485356 0.19 38567 0.015 |0.06 8 1901568 11264 0.0059 10256 0.0054
(a) heart (b) cup
€ Ms Scc Sacct Raccr Sacc2 Racer ‘ € Ms Scc Sacct Racci Sacca Racce
0.6 2 1792 960 0.54 688 0.38 1 3 1536 1200 0.78 696 0.45
0.3 3 7168 2368 0.33 928 0.14 0.5 4 6144 4320 0.70 1656 0.27
0.1 5 114688 22400 0.20 2816 0.025 0.1 6 98304 63360 0.64 6273 0.064
004 7 1835008 287488 0.16 8384 0.0046 0.025 8 1572864 990720 0.63 17676 0.011
(c) ball (d) hollow pyramid
€ Ms Scc Sacct Raccr Sacce Racer || € M:s Scc  Sacct Racci  Sacca Raccer
0.015 1 11863 3020 0.25 3020 0.25 0.014 1 12000 3072 0.26 3072 0.26
0.006 2 47079 3553 0.075 3524 0.075 | 0.004 3 192000 19380 0.10 16250 0.085
0.0027 3 187447 4735 0.025 4673 0.025 |0.0024 4 768000 51865 0.068 31170 0.041
0.0015 5 2987863 8871 0.0030 8195 0.0027 | 0.0013 5 3072000 197125 0.064 101062 0.033
(e) Stanford bunny (f) Powerflip cow
€ Ms Sps  Sapsi Rapsi Sapsz Rapsa | €  Ms Svu Sanvi Ranvi Sanva Rawuve
0.8 3 1536 1200 0.78 696 0.45 3 3 1536 1032 0.67 466 0.30
0.3 4 6144 4320 0.70 1896 0.31 1 5 24576 12000 0.49 2415 0.098
0.08 6 98304 63360 0.64 6576 0.067 08 6 98304 42210 0.43 3328 0.034
0.025 8 1572864 990720 0.63 18777 0.012 04 8 1572864 432568 0.28 10008 0.0064
(g) Cubic Doo-Sabin surface (h) Non-uniform cubic subdivision surface
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sion of all the faces by using labels of the mesh vertices or error between the mesh faces and
the limit surface to drive the refinement process.

The strengths of the new techniques include: (1) significantly reduce the number of faces in
the refined meshes in just a few (3-5) subdivision steps, (2) conformity (crack-free condition)
of the resulting mesh is automatically guaranteed, (3) the refined meshes converge to the same
limit surface, and (4) the input mesh could have arbitrary topology.

The limitation of this work is that the proposed adaptive subdivision techniques currently
work on subdivision surfaces of the Catmull-Clark style only. A future work is to extend the
new techniques to cover other subdivision surfaces such as quadratic Doo-Sabin subdivision
surfaces. For such an extension, other shapes, rather than only quadrilaterals, should also be
allowed as faces in the resulting meshes.

References

[1] Alliez, P. and Desbrun, M. Progressive Compression for Lossless Transmission of Triangle
Meshes. In Proceedings of SIGGRAPH 2001, 195-202.

[2] Biermann, H., Kristjansson, D., and Zorin, D. 2001. Approximate Boolean Operations
on Free-Form Solids. In Proceedings of SIGGRAPH 2001, 185-194.

[3] Catmull, E., and Clark, J. 1978. Recursively Generated B-spline Surfaces on Arbitrary
Topological Meshes. Computer-Aided Design 10, 6, 350-355.

[4] Cheng, F., Jaromczyk, J.W., Lin, J.-R., Chang, S.-S., and Lu J.-Y. 1989. A Parallel
Mesh Generation Algorithm Based on the Vertex Label Assignment Scheme. International
Journal for Numerical Methods in Engineering 28, 1429-1448.

[6] Cheng, F. 1992. Estimating Subdivision Depths for Rational Curves and Surfaces. ACM
Trans. on Graphics 11, 2 140-151.

[6] DeRose, T., Kass, M., Truong, T. 1998. Subdivision Surfaces in Character Animation. In
Proceedings of SIGGRAPH 1998, 85-94.

[7] Doo, D., and Sabin, M. 1978. Behavior of Recursive Division Surfaces near Extraordinary
Points. Computer-Aided Design 10, 6, 356-360.

[8] Garland, M., and Heckbert, P. 1997. Surface Simplification Using Quadric Error Metrics.
In Proceedings of SIGGRAPH 1997, 209-216.

[9] Garland, M. 1999. Quadric-Based Polygonal Surface Simplification. PhD thesis, Carnegie
Mellon University.

[10] Hoppe, H. 1996. Progressive Meshes . In Proceedings of SIGGRAPH 1996, 99-108.

[11] Khodakovsky, A., Schréoder, P., and Sweldens, W. 2000. Progressive Geometry Compres-
sion. In Proceedings of SIGGRAPH 2000, 271-278.

Online Number: papers_0132 Page: 11



[12]

[13]
[14]

[15]

[16]

[17]

18]
[19]

[20]

[21]

Kobbelt, L. 1996. Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary
Topology. Computer Graphics Forum 15, 3, 409-420.

Kobbelt, L. 2000. v/3 Subdivision. In Proceedings of SIGGRAPH 2000, 103-112.

Lee, A., Moreton, H., and Hoppe, H. Displaced Subdivision Surfaces. In Proceedings of
SIGGRAPH 2000, 85-94.

Levin, A. 1999. Interpolating Nets of Curves by Smooth Subdivision Surfaces. In Pro-
ceedings of SIGGRAPH 1999, 57-64.

Lindstrom, P. 2000. Out-of-Core Simplification of Large Polygonal Models. In Proceedings
of SIGGRAPH 2000, 259-262.

Litke, N., Levin, A., and Schroder, P. 2001. Trimming for Subdivision Surfaces. Computer
Aided Geometric Design 18, 5, 463-481.

Peters, J. Patching Catmull-Clark Meshes. In Proceedings of SIGGRAPH 2000, 255-258.

Sederberg, T.W. 1998. Non-Uniform Recursive Subdivision Surfaces. In Proceedings of
SIGGRAPH 1999, 387-394.

Stam, J. 1998. Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary
Parameter Values. In Proceedings of SIGGRAPH 1998, 395-404.

Zorin, D., Schroder, P., and Sweldens, W. Interactive Multiresolution Mesh Editing. In
Proceedings of SIGGRAPH 1997, 259-268.

Online Number: papers_0132 Page: 12



