
FINE: A Fully Informed aNd Efficient Communication-Induced

Checkpointing Protocol for Distributed Systems

Yi Luo and D.Manivannan
∗

Department of Computer Science, University of Kentucky,

Lexington, KY 40506, USA

Technical Report # TR 492-08

Abstract

Communication-Induced Checkpointing (CIC) protocols are classified into two categories in the literature: Index -based and Model -
based. In this paper, we discuss the intrinsic relation between the two categories and provide our classification of CIC protocols
based on how they achieve the same goal of ensuring Z-Cycle Free (ZCF) property by tracking the checkpoint and communication
pattern (CCP) that can lead to Z-cycles and preventing them. Then, based on our Transitive Dependency Enabled TimeStamp
(TDE TS) mechanism, we present our Fully Informed aNd Efficient (FINE) algorithm which can not only improve the performance
of Fully Informed (FI) CIC protocol proposed by Helary et al. but also decrease the overhead of information piggybacked with
application messages.

Key words: Distributed systems, communication-induced checkpointing protocols, consistent global checkpoints

1. Introduction

Fault-tolerance (or graceful degradation) is the property
that enables a system to continue operating properly in
the event of the failure of some of its components. Check-
pointing and rollback recovery are recognized techniques
for providing fault tolerance for distributed computations.
Depending on saved states of processes in the stable stor-
age during execution, such techniques allow processes to
make progress in spite of failures.

In case of a system failure, it is desirable to restart an ap-
plication from an intermediate state instead of from the be-
ginning since it reduces the amount of recomputation and
saves valuable computing time, especially for long-running,
time-critical applications. However, taking checkpoints in-
dependently in each process can not guarantee that the
whole system can rollback to a consistent global checkpoint
which minimizes the amount of recomputation when fail-
ure happens. Due to the interprocess communication, roll-
back propagation can occur when the rollback of a message
sender leads to the rollback of the corresponding receiver.

∗ Corresponding author.
Email addresses: yiluo@cs.uky.edu (Yi Luo), mani@cs.uky.edu

(D.Manivannan).
URL: http://www.cs.uky.edu/~manivann (D.Manivannan).

Moreover, it is likely to result in unbounded, cascading roll-
back propagation known as domino effect. Therefore, in
case of failures, how to minimize the lost amount of com-
putation due to roll back is a fundamental problem in dis-
tributed computations.

To address this problem, several checkpointing pro-
tocols have been presented in the literature. They can
be classified into three categories: uncoordinated check-
pointing, coordinated checkpointing, and communication-
induced checkpointing[10]. Uncoordinated Checkpointing
Protocols allow each process to take checkpoints at each
process’s own convenience. Coordinated Checkpointing
Protocols require processes to synchronize their check-
pointing procedures so that each checkpoint in each
process is guaranteed to be useful, and the synchroniza-
tion among processes is usually achieved by some kind
of two-phase commit algorithm. Communication-Induced
Checkpointing (CIC) protocols allow processes to take
checkpoints independently and ensure no useless check-
points in the system by forcing processes to take additional
checkpoints when needed. With regard to the possibly
unbounded rollback propagation of uncoordinated check-
pointing protocols and the possibly large latency involved
in some kind of two-phase commit algorithms to form a
consistent global checkpoint of coordinated checkpointing

Preprint submitted to Elsevier 2 January 2008

protocols, Communication-Induced Checkpointing (CIC)
protocols[1,6–8,13,16,18,19,21,24,30,31] have received
more and more attention due to their attractive features:
CIC protocols can not only bound rollback propagation
but also allow each process to take checkpoints indepen-
dently while at the same time guaranteeing that each
checkpoint is useful. This goal is achieved by taking some
forced checkpoints to ensure no useless checkpoint in the
system. Moreover, CIC protocols provide distributed al-
gorithms so that they don’t need any centralized strategy
to collect information from each process then make offline
analysis and decision during recovery.

CIC protocols are classified into two categories: Model -
based and Index -based CIC protocols in the literature.
However, in this paper we argue that this classification of
CIC protocols is not clear enough. The basic idea behind a
classification of protocols is to facilitate and hence to pro-
mote understanding of their features, advantages and dis-
advantages. Thus a clear classification of CIC protocols is
essential to better understand the characteristics of CIC
protocols, which in turn can help us design more efficient
CIC protocols. This leads to the first contribution of this
paper, namely, our classification of CIC protocols from the
point of view of data structures used in these protocols;
moreover we show that Model -based and Index -based pro-
tocols are intuitively derived from the same source by re-
vealing the intrinsic relation between them. Our second
contribution is the Basic Fully Informed aNd Efficient CIC
protocol, which creates the stronger checkpoint-inducing
condition than the Fully Informed CIC protocol presented
in [16] without any extra overhead of piggybacked informa-
tion. It is followed by the proof of its correctness. The last
but not least contribution of this paper is the Advanced
Fully Informed aNd Efficient CIC protocol. Based on the
above intrinsic relation analysis, we apply the Transitive
Dependency Enabled TimeStamp (TDE TS) mechanism
to the Basic FINE protocol to obtain our Advanced FINE
protocol which uses a precise checkpoint-inducing condi-
tion while at the same time decreasing the overhead of pig-
gybacked information. The simulation results show the per-
formance comparison of our proposed FINE protocol with
five other protocols.

The rest of the paper is structured as follows. Section 2
introduces the model of the distributed computation and
background required. In Section 3, we provide our finer clas-
sification of CIC protocols based on the characteristics and
the data structures used in existing CIC protocols. Then,
in Section 4, we present our Basic and Advanced FINE CIC
protocols, followed by the proof of its correctness. We also
compared performance of our protocol with five other CIC
protocols through simulation in Section 5. And Section 6
summaries related work. Finally, we conclude in Section 7.

2. Background

In this section, we introduce the system computational
model, assumptions, definitions, fundamental concepts and
principal theorems which our research is based on.

2.1. System Model

A distributed system consists of a collection of au-
tonomous computers linked by a computer network and
equipped with distributed system softwares. We define
a distributed computation as a finite set of n processes
P0, P1, . . . , Pn−1 running concurrently on a set of comput-
ers in the network. The only way for processes to com-
municate with each other is by passing messages through
a reliable, asynchronous directed channel with uncertain
but finite transmission delays. The failures of processes
follow fail-stop model[26], namely, if a process fails, then
it simply stops.

We can view a process as the occurrence of certain events
within the computation environment and these events can
be among internal, sending and receiving events. An inter-
nal event doesn’t include communication. However a send-
ing event and a receiving event correspond to the execu-
tion of the statements “send(m)” and “receive(m)” respec-
tively. Let H be the set of all the events produced by pro-
cesses in a distributed computation, then the well-known

Lamport’s happened-before relation[20] on events,
hb
−→, is

used to model the distributed computation as a partially

ordered set Ĥ = (H,
hb
−→).

Definition 1 A checkpoint and communication pattern
(CCP) is a 2-tuple (Ĥ, C

Ĥ
), where Ĥ is a partially ordered

set modeling a distributed computation and C
Ĥ

is a set of

local checkpoints involved in Ĥ [10,32].

A local checkpoint of a process is considered as an event
which records the state of the process at a given instance.
Each checkpoint of a process is assigned a unique sequence
number. Ci,x denotes the x-th local checkpoint of process
Pi and Ii,x is called a checkpoint interval which contains
the sequence of events happening at Pi between Ci,x and
Ci,x+1, including Ci,x but excluding Ci,x+1. A global check-
point is a set of local checkpoints, one from each process.

Definition 2 A global checkpoint is consistent if it does not
contain messages received but not sent (orphan messages)
with respect to any pair of local checkpoints in this global
checkpoint.

A consistent global checkpoint (also called a recovery
line) is where the whole system can rollback to in case of
a failure. The latest consistent global checkpoint is always
desirable for reducing the amount of recomputation and
saving valuable computing time in rollback recovery.

2

2.2. Z-Dependency

As we know, two local checkpoints can be causally re-
lated or unrelated according to happened-before relation.
Two causally unrelated checkpoints may belong to the same
consistent global checkpoint, but only causally unrelated
condition is not enough. The truth that a type of “hidden”
dependency between two local checkpoints (even if they are
causally unrelated) can prevent them from being part of
the same consistent global checkpoint was first discovered
by Netzer and Xu[23] based on the notion of Z-path (or
Zigzag path), described below.

Definition 3 A Z-path from Ci,x to Cj,y is said to exist if
there is a sequence of messages [m1, m2, . . . , mq] (q ≥ 1)
such that:

(i) m1 is sent by Pi after taking its checkpoint Ci,x, and
(ii) for each mi, 1 ≤ i < q: receive(mi) ∈ Ik,s ∧

send(mi+1) ∈ Ik,t ∧ s ≤ t, and
(iii) mq is received by Pj before taking its checkpoint Cj,y.

A Z-path is causal if each receiving event in the sequence
happens before the sending event of the next message in
the sequence[23]. A Z-path is noncausal if it is not causal.
A causal Z-path is also called a causal path (or C-path for
short). A Z-path containing only one message is always
causal. In this paper, the first (resp. last) message of a Z-
path ζ is represented by ζ.first (resp. ζ.last).

Ci,1 Ci,2

Pi

Pj

Pk

Cj,0 Cj,1 Cj,2

Ck,0
Ck,1 Ck,2

m1

m2

m3 m4

m5

Ci,0

Fig. 1. A checkpoint and communication pattern (CCP)

For example, in the checkpoint and communication pat-
tern shown in Fig.1, the message sequence [m1, m2] forms a
noncausal Z-paths from Ci,0 to Ck,1. The message sequence
[m3, m5] forms a causal Z-path from Ci,1 to Ck,2. However,
the message sequence [m3, m2] is not a Z-path from Ci,1 to
Ck,1. To better understand why the “hidden” dependency
exists among checkpoints and how it affects the usefulness
of a checkpoint, the following definitions are presented in
[16]:

Definition 4 A Z-pattern consists of two consecutive mes-
sages mα and mα+1 in a Z-path [m1, m2, . . . , mq] such that

send(mα+1)
hb
−→ receive(mα).

Two local checkpoints can have Z-dependency relation
which is described as follows:

Definition 5 A checkpoint Cj,y Z-depends on a checkpoint

Ci,x (denoted Ci,x
Z
−→ Cj,y) if:

(i) (j = i) ∧ (y > x), or
(ii) a Z-path exists from Ci,x to Cj,y.

Since
Z
−→ is only a partial order defined on C

Ĥ
, it is pos-

sible that a checkpoint Z-depends on itself and becomes
useless because it cannot belong to any consistent global
checkpoint.

Definition 6 A Z-cycle is formed when a checkpoint Ci,x

Z-depends on itself: Ci,x
Z
−→ Ci,x[16].

The main goal of CIC protocols is to allow processes to
take checkpoints whenever they want and also ensure each
checkpoint is useful. To achieve this goal, processes may
be forced to take additional checkpoints to avoid Z-cycles.
Based on the following two corollaries[16], no useless check-
points in the system is equivalent to Z-Cycle Free property.

Corollary 1 A global checkpoint is consistent iff no Z-
dependency exists among the local checkpoints in the global
checkpoint.

Corollary 2 A local checkpoint Ci,x cannot belong to any
consistent global checkpoint (we call Ci,x useless checkpoint)

iff Ci,x
Z
−→ Ci,x.

Hence, if none of the checkpoints is useless, we call such
a system Z-Cycle Free. Theorem 1 provides a necessary
condition to guarantee Z-Cycle Free property based on a
timestamp function.

Theorem 1 Let each checkpoint C be associated with a
timestamp C.ts. If for every pair of checkpoints Ci,x and

Cj,y with Cj,y Z-depending on Ci,x (Ci,x
Z
−→ Cj,y), we have

Ci,x.ts < Cj,y.ts, then there is no Z-cycle[17,21].

Next, we present our classification of CIC protocols.

3. Classification of CIC Protocols

First, we bring to light the intrinsic relation between
Model -based and Index -based CIC protocols, and try to
make a finer classification of CIC protocols.

3.1. Existing Classification of CIC Protocols

CIC protocols are classified into two categories: Model -
based and Index -based CIC protocols[10]. However, check-
pointing algorithms under both these categories try to
achieve the same goal of ensuring no useless checkpoints in
the system by making processes take forced checkpoints, in

3

addition to independently taken basic checkpoints. Based
on Corollary 2, a local checkpoint is useless iff it is involved
in a Z-cycle. Consequently, both types of CIC protocols
basically try to prevent Z-cycles from being formed in or-
der to ensure that each checkpoint is useful. With the same
motivation, some features which make this classification of
CIC protocols ambiguous are:

– Both types of protocols associate a sequence number with
each local checkpoint. The numbers can be treated as In-
dices which represent timestamps or checkpoint-interval
numbers, and need to be piggybacked with application
messages.

– While applying the idea of associating a timestamp of
each local checkpoint to each checkpoint interval, en-
suring ZCF property is equivalent to satisfying Virtual
Precedence (VP) property[17], it shows that timestamp-
ing is not the prerogative of Index -based CIC proto-
cols. Actually Model -based CIC protocols which pre-
vent Z-cycles need to track the transitive dependency
among checkpoint intervals, so that the VP property al-
lows timestamping to be applied to Model -based CIC
protocols as well.

– Model -based CIC protocols track some communication
patterns which may lead to the formation of Z-cycles in
the future. On the other hand, Index -based CIC proto-
cols associate local checkpoints with timestamps in such
a way that any two checkpoints along a non-causal Z-
path (also called Z-pattern[16]) are put in order. In other
words, Index -based CIC protocols also try to track some
communication patterns (Z-pattern) indirectly and en-
sure that two checkpoints involved in such patterns are
indexed in ascending order.

3.2. Our Classification of CIC Protocols

The classification of CIC protocols as Model -based and
Index -based CIC protocols appears to be vague since it is
losing the common intuitive meaning of MODEL and IN-
DEX as the CIC protocols have been more and more stud-
ied in the literature. In this paper, we provide a classifica-
tion of CIC protocols based on how they achieve the same
goal of ZCF property from the point of view of the data
structures used in these protocols.

Two types of Index Numbers are used among CIC proto-
cols: Checkpoint Interval (CI) and TimeStamp (TS). First,
let us distinguish the purpose of these two types of indexing
strategies from the point of view of their management and
usefulness. They both can be scalar integers or n-size vec-
tors (note that n denotes the number of processes involved
in the computation unless otherwise specified). Among CIC
protocols, CI is often used as a vector to track the depen-
dency information among checkpoints of processes, whereas
TS is the Lamport’s scalar clock[20] or the Fidge-Mattern’s
vector time[11,22] and it is used for tracking causal depen-
dency among events in processes. Later in this section, we

discuss how these two Index Numbers in two formats, in-
teger or vector, can be used in detail. While being used
as vectors, their corresponding vectors are called Check-
point Interval vector (CI-vector) and TimeStamp vector
(TS-vector) respectively. The former records the informa-
tion of checkpoint interval sequence numbers and is used
to track the transitive dependency among checkpoint in-
tervals of processes. The latter is used to timestamp the
local checkpoints in each process. CIi[i] is the checkpoint
interval number associated with the checkpoint taken by
Pi and CIi[k] is the latest checkpoint interval of Pk to Pi’s
knowledge. TSi[i] is the timestamp of Pi and TSi[k] is the
highest timestamp of Pk known to Pi. The management
of these two vectors follows different indexing strategies,
which are called the usual way[11] for CI-vector and the
classical way[20] for TS-vector. The corresponding index-
ing strategies are illustrated in Table 1.

As a result, these two Index Numbers CI and TS have
different meanings and play different roles in enforcing ZCF
property. We provide a classification of CIC protocols solely
depending on which Index Number is used to guarantee
the usefulness of all checkpoints in the system. Hence we
classify the CIC protocols into two categories, namely, CI -
CIC and TS -CIC as follows:

(i) CheckpointInterval-based CIC Protocols (CI -
CIC): Protocols in this family[2,3,6,13–15,24,31,33]
try to track the direct dependency or transitive de-
pendency among checkpoints (or checkpoint inter-
vals) of processes. Based on its meaning and man-
agement in Table 1, the data structure CI in each
process takes the successive integer values. So CI is
such an index number that can be used to directly
deduce which checkpoint interval an event belongs to
or depends on from its CI value. Based on its format,
CI index number has different dependency-tracking
abilities:

– Direct Dependency Tracking: CI takes an integer
value. To track direct dependencies, each applica-
tion message is required to piggyback one integer
as CI value. A central observer process is needed to
collect the direct dependency information of local
checkpoints in each process so that it can generate
a consistent global checkpoint that includes a given
set of local checkpoints[3].

– K-dependency Tracking: CI takes the format of a
k-size vector (1 ≤ k ≤ n). k-size vector is called
k-dependency vector, which piggybacks a constant
number k of integers on each application mes-
sage[5]. There is a tradeoff between the size of
CI vector and the dependency-tracking ability. If
k < n, only a subset of the causal dependencies
can be tracked on-the-fly. So a good strategy for
selecting k is needed to fit the specified application
requirements.

– Transitive Dependency Tracking: CI is an n-size

4

Table 1
Comparison between the two indexing strategies and their maintenance. (where ∀j, j 6= i)

Management of CI-vector and TS-vector of each process Pi

Usual way to maintain vector CIi[11] Classical way to maintain vector TSi[20]

Initialization CIi[i] = 1, CIi[j] = 0 TSi[i] = 1, TSi[j] = 0

Taking a checkpoint CIi[i] = CIi[i] + 1 TSi[i] = TSi[i] + 1

Sending a message m Pi assigns m with its current CIi Pi assigns m with its current TSi

Upon receiving a CIi[i] = max(CIi[i], m.CI[i]), TSi[i] = max(TSi[i],m.TS[k]),

message m from Pk CIi[j] = max(CIi[j],m.CI[j]) TSi[j] = max(TSi[j],m.TS[j])

vector. Baldoni et al.[4] have proved that it is impos-
sible to ensure the Rollback-Dependency Trackabil-
ity property (RDT, introduced by Wang[31]) with
scalar clock. It is also known that the only way to
detect the complete causality relationship among
events in n processes is by using a vector with n en-
tries[9]. The transitive dependency information can
be used not only to detect some communication pat-
terns which may lead to the formation of Z-cycles in
the future[6,13,24,31], but also to ensure a stronger
property, namely RDT property[2,14,15,25].

(ii) TimeStamp-based CIC Protocols (TS-CIC):
Protocols in this family[1,7,8,18,19,21,30] assign
timestamps to local checkpoints such that Theorem 1
is satisfied and hence ensure the ZCF property. The
timestamps of successive checkpoints in each process,
working as index numbers, can skip some integer val-
ues according to the classical way of management in
Table 1. So timestamp is such an index number that
can be used to track the causal relationship among
checkpoints or events in distributed systems, but it
cannot be used to directly deduce, to which check-
point interval an event belongs. The checkpoint-
inducing conditions of protocols in this family can
be abstractly expressed as (m.ts > tsi) ∧ P, where
P is a predicate that depends on each protocol[16].

3.3. Intrinsic Relation between Model-based and
Index-based CIC protocols

In this section, we show that Model -based and Index -
based protocols are intuitively derived from the same
source. We do this by clarifying the assertion “For Model -
based CIC protocols there always exists an equivalent
time-stamping function that would cause the same forced
checkpoints”, made in [17].

First we show how to use the vector timestamp to track
the transitive dependency among checkpoints (or check-
point intervals). As illustrated in Fig.2, a causal path
[m1, m2] makes Ck,z in process Pk depend on Ci,x in pro-
cess Pi. Assume TSi[i] of Ci,x is t1 and the timestamp of
its successive checkpoint Ci,x+1 is t2 (t2 > t1). Upon re-
ceiving m2, TSk[i] of Pk will be updated according to the
classical way in Table 1 to maintain the vector of times-

tamps. Then we get t1 ≤ TSk[i] < t2. The information
about Pi known to Pk is from TSk[i] and the only way we
can track the dependency relation is from the piggybacked
vector of timestamps m1.TS and m2.TS. So the only way
we can obtain the dependency information (i.e., Pk de-
pends on which checkpoint or checkpoint interval of Pi) is
by means of knowing TSk[i] and the timestamp of latest
checkpoint of process Pi. Since the timestamps of consec-
utive checkpoints in each process can have gaps, we can
not get the checkpoint interval numbers directly from the
timestamps. However, we can still obtain the dependency
relation by choosing the checkpoint in Pi, say Ci,w, with
the maximum timestamp TSi[i] among all checkpoints in
Pi whose timestamps are less than or equal to TSk[i]. And
Ck,z transitively depends on Ci,w (e.g., w = x in Fig.2).

Pi

Pj

Pk

Ci,x

m2

m1

Ci,x+1

Ck,z

Fig. 2. The causal path [m1, m2] brings dependency information

Second, we develop a mechanism by which we can not
only timestamp each event but also get the transitive de-
pendency information upon receiving a message (note that
the timestamp of latest checkpoint in each process must be
known by the receiver upon receiving a message if no cen-
tralized mechanism is assumed). In order to satisfy these
two requirements, we propose a mechanism called TDE-
timestamp (Transitive Dependency Enabled) mechanism,
which contains 1) a timestamp function, TDE(A) and 2) a
TDE data structure, an n-size vector TDE TS[i], (0 ≤ i ≤
n−1) and its management. Each event or checkpoint, say A,
is associated with a timestamp and its value is determined
by the function TDE(A). For example, if A is a checkpoint,
say Cj,x, then TDE(Cj,x) is the TDE-timestamp of the
checkpoint Cj,x, denoted by Cj,x.TDE for simplicity; A can
also be an event, e.g., send(m1), then TDE(send(m1)) is
the TDE-timestamp of the sending event for m1, denoted
by m1.TDE. The TDE-timestamp is made up of two com-

5

ponents: TS (timestamp of the last checkpoint) and ∆TS

(the incremental timestamp since the last checkpoint). Its
value is calculated as follows:

TDE(A) = TS(A) + ∆TS(A) (1)

Since this function is used to calculate the TDE-timestamp
of each process known to one process, TDE must be an
n-size vector. Here comes the question: “Can we just pig-
gyback the vector of TDE-timestamp on the application
messages to track the transitive dependency?” The answer
is no, because we also need to know the timestamp of lat-
est checkpoint in each process from the above discussion.
So we design the data structure of TDE-timestamp mech-
anism to be the following one:

TDE TSi[k] = CB × TSi[k] + ∆TSi[k] 1 (2)

Where CB is an arbitrary large constant to combine two
factors TSi[k] and ∆TSi[k], on the other hand it also helps
in easily separating the two factors when we need. It is
preferable to take CB to be 2t and t is large enough so that
TSi[k] + ∆TSi[k] < 2t−2. Each entry of TDE TSi is not
the TDE-timestamp but the combination of two factors of
TDE-timestamp as in Equation (2). In our simulation runs,
we set CB = 210. Because in binary computation, multi-
plying (or dividing) by 2 to the power t is the same as shift-
ing t places left (or right), we can easily combine (or sepa-
rate) the two factors (TSi[k] and ∆TSi[k]) into (or from)
one for each entry of TDE TSi according to Equation (2)
each time when Pi sends (or receives) a message.

Third, we discuss the management of the vector
TDE TSi to maintain its meaning (note that we only con-
sider the management of two factors respectively and the
corresponding entry of TDE TSi can be easily obtained
from Equation (2)). Therefore, we get the following TDE-
indexing strategy, which is different from that in Table 1:

– Each entry of TSi is initialized to be zero, and TSi[i] to
be 1. ∀j, ∆TSi[j] := 0.

– When Pi sends a message m to Pk, it computes TDE TSi

according to Equation (2), and appends the current value
of TDE TSi to m.

– When Pi takes a checkpoint, TSi[i] := TSi[i]+∆TSi[i]+
1, ∆TSi[i] := 0.

– When Pi receives a message m from Pj , Pi first separates
two factors TSi and ∆TSi from each entry of TDE TSi,
then updates them as follows (note that for each entry
of m.TDE TSi, m.TSi and m.∆TSi can be extracted
easily):

· ∀k, do case
m.TS[k] < TSi[k] → skip

m.TS[k] > TSi[k] → TSi[k] := m.TS[k], ∆TSi[k] :=

1 We assume that ∆TSi[k] is much smaller than CB (as in our
simulation, CB = 210) and this assumption is reasonable and safe,
because ∆TSi[k] is a small integer denoting the incremental times-
tamp since the last checkpoint and it will be reset to 0 after taking
a checkpoint.

m.∆TS[k]
m.TS[k] = TSi[k] → ∆TSi[k] := max(∆TSi[k], m.∆TS[k])
end docase

· for i, do case
m.TS[j] + m.∆TS[j] ≤ TSi[i] + ∆TSi[i] → skip

m.TS[j] + m.∆TS[j] > TSi[i] + ∆TSi[i] → ∆TSi[i] :=

m.TS[j] + m.∆TS[j] − TSi[i]
end docase

The advantage of our designed data structure TDE TS
is that a process can get extra information about other pro-
cesses upon receiving a message without increasing mes-
sage overhead. Upon receiving a message m, a process can
get the following information from m.TDE TS:

– The timestamp of last checkpoint in each process known
to the sender, say Pj , while sending m: it can be obtained
from each entry of m.TS and it is necessary for the re-
ceiver to track the transitive dependency.

– The TDE-timestamp value in Equation (1): it works as
the Lamport’s logical clock in distributed systems.

So the TDE TS mechanism helps to timestamp each
event and also get the transitive dependency information
upon receiving a message. Moreover, the first two contribu-
tions of this paper are based on the analysis in Section 3.3.
First, the intrinsic relation between Model -based and In-
dex -based CIC protocols is the primitive motivation to get
our finer classification of CIC protocols in Section 3.2. Sec-
ond, the TDE TS mechanism can be applied to some exist-
ing CIC protocols to decrease the overhead of piggybacked
information without degrading the checkpoint-inducing de-
cision. In the next section, we apply our TDE TS mech-
anism to Fully Informed CIC protocol[16] and develop an
enhanced CIC protocol with better performance.

4. Fully Informed aNd Efficient (FINE) CIC
Protocol

The CIC protocol introduced by Helary et al.[16] is con-
sidered to be one of the best CIC protocols in the literature
since it exploits all possible information available from the
causal past to prevent useless checkpoints while at the same
time minimizing forced checkpoints. So it has been called
Fully Informed (FI) protocol in [27]. However, we observe
that the FI protocol[16] does not fully exploit the collected
information from the causal past to make a precise check-
pointing decision. Hence in this section, first we briefly in-
troduce FI protocol to make our paper self-contained. Then
we propose our Basic FINE protocol whose checkpoint-
inducing condition is stronger than that of FI protocol with-
out increasing the overhead of piggybacked information,
followed by the proof of its correctness. Finally, we apply
our TDE TS mechanism to Basic FINE protocol and ob-
tain our Advanced FINE protocol. And the overhead com-
parison demonstrates that Advanced FINE not only has
better performance than FI protocol but also decreases its
message overhead.

6

4.1. The Fully Informed (FI) Protocol

This section introduces the design principles and
checkpoint-inducing condition of FI protocol[16]. To better
understand its checkpoint-inducing condition, the meaning
and maintenance of data structures used in FI protocol[16]
to are briefly explained below:

– Local logical clock (timestamp). The timestamps of
a checkpoint Ci,x and a message m are denoted by Ci,x.t
and m.t respectively. Each process Pi manages a vector
of timestamps cli in the classical way shown in Table 1.
cli[i] is the current timestamp of Pi and cli[k] denotes
the timestamp of Pk known to Pi.

– Boolean Array sent toi. Each process Pi manages
a boolean array sent toi[1..n]. sent toi[k] has the value
true iff Pi has sent a message to Pk since its last check-
point.

– Array min toi. Each process Pi manages an array of
integers min toi[1..n]. min toi[k] keeps the timestamp of
the first message sent by Pi to Pk since Pi took its last
checkpoint.

– Array ckpti. This array is a vector that counts how
many checkpoints have been taken by each process.
ckpti[k] is the number of checkpoints taken by Pk to
Pi’s knowledge. This vector is managed in the usual
way shown in Table 1. In particular, m.ckpt denotes the
value of this vector appended to m by its sender.

– BooleanArray takeni. It is used to track a causal path
with a checkpoint inside. The entry takeni[k] is true iff
there is a causal Z-path from the last checkpoint of Pk

known to Pi to the next checkpoint of Pi, and this C-path
includes a checkpoint. The array takeni of Pi is managed
in the following way to maintain its meaning[16]:

· When Pi takes a checkpoint, for ∀k 6= i, takeni[k] is
set to true and takeni[i] always remains false.

· When Pi sends a message m to Pk, it merely appends
to m the current value of takeni, denoted by m.taken.

· When Pi receives a message m from Pj , it updates
takeni as follows:

∀k 6= i, do case
m.ckpt[k] < ckpti[k] → skip

m.ckpt[k] > ckpti[k] → takeni[k] := m.taken[k]
m.ckpt[k] = ckpti[k] → takeni[k] := takeni[k] ∨

m.taken[k]
end docase

In FI protocol[16], the forced checkpoints are triggered
in such a way that Theorem 1 is satisfied to ensure the ZCF
property.

In FI protocol[16], the checkpoint-inducing condition C 2
evaluated by a process Pi upon receiving a message is as
follows:

(b)(a)

Pj

Pi

Pk

m1

m2 Ck,z

µ

Cj,y

Pj

Pi

Pk

Cj,y

Ck,z

m2

m1

µ

Fig. 3. Two possible cases to consider if the timestamp restriction is

violated

C 2 ≡ (∃k : sent toi[k] ∧ (m.t > min toi[k]) ∧ (m.t > cli(k) ∨ C
′))

(from [16])

C 2 ≡ C 2 1 ∨ C 2 2 (from the distributive law)

where

C 2 1 ≡ (∃k : sent toi[k] ∧ (m.t > min toi[k]) ∧ (m.t > cli(k)))

C 2 2 ≡ (∃k : sent toi[k] ∧ (m.t > min toi[k]) ∧ C
′)

C
′ ≡ (m.ckpt[i] = ckpti[i]) ∧ m.taken[i] (from [16])

C 2 2 ≡ (m.ckpt[i] = ckpti[i]) ∧ m.taken[i]
(from theorem7.2 in [16])

Conditions C 2 1 and C 2 2 examine any violation under
two cases: the value cli(k) has been brought to Pi by a
causal Z-path that started from Pk 1) before Ck,z as in
Fig.3(a), denoted as case A or 2) after Ck,z as in Fig.3(b),
denoted as case B. The meaning and maintenance of each
data structure in above conditions are given in detail in
FI protocol[16]. We make the following Observation 1 from
the strategy to maintain the meaning of takeni[k]:

Observation 1 Upon receiving a message m, if m.ckpt[k] ≥
ckpti[k], Pi will set takeni[k] to false only if m.taken[k] is
false.

4.2. Basic FINE protocol

We observe that upon receiving a message, although the
receiver has been fully informed about the information from
the causal past, the checkpoint-inducing condition of FI
protocol does not fully exploit all the information. Let us
consider what happens in FI protocol under the situation
shown in Fig.4(a) and (b): the condition C 2 1 of FI protocol
is satisfied under both cases, so before delivering m1, Pi

must take a forced checkpoint, however it is not necessary to
break any Z-cycle. Based on Definition 6 and Corollary 2, a
cycle which doesn’t contain any checkpoint is not a menace
to the usefulness of any checkpoint. Hence it is desirable to
identify these harmless cycles and reduce some unnecessary
forced checkpoints without incurring any extra overhead of
piggybacked information.

In this section, we present our Basic FINE protocol which
recognizes those harmless cycles under each case in Fig.4
and makes precise checkpointing decision. The most attrac-
tive feature of Basic FINE protocol is that it uses exactly
the same data structures as FI protocol without incurring
any extra overhead of piggybacked information, however it

7

does obtain a stronger checkpoint-inducing condition than
that of FI protocol while ensuring the ZCF property.

(b)(a)

Pj

Pi

Pk

Cj,y

Ck,z

m1

m2

µ

Pj

Pi

Pk

m1

µ

m2 Ck,z

Cj,y

Fig. 4. No forced checkpoint should be taken upon receiving m1

Our updated checkpoint-inducing condition CFINE

which is stronger than condition C 2 in FI protocol[16] is
defined as follows:

CF INE ≡ CF INE 1 ∨ CF INE 2

where

CF INE 1 ≡ (∃k : sent toi[k] ∧ (m.t > min toi[k])

∧ (m.t > cli(k)) ∧ m.taken[k])

CF INE 2 ≡ C 2 2

Upon receiving a message m, Pi is forced to take a check-
point only if CFINE is satisfied. Theorem 2 proves that our
Basic FINE protocol guarantees that all checkpoints are
useful.

Theorem 2 The condition CFINE of Basic FINE protocol
is a Z-cycle free checkpoint-inducing condition.

Proof: First, FI protocol[16] is a Z-cycle free checkpointing
protocol and its design is based on Theorem 1. While con-
sidering if each Z-pattern [m1,m2] is consistent with the
assumption of Theorem 1, we need to check if the following
property holds:

(m1.t 6 m2.t) ∨ P,
where P ≡ (Cj,y .t 6 m1.t 6 cli(k) < Ck,z.t)

Second, FI protocol guarantees ZCF by forcing the pro-
cess to take a checkpoint whenever the above property is
violated. In order to track such property violation, two pos-
sible cases illustrated in Fig.3(a) and (b) arise[16].

– Case A. The value cli(k) has been brought to Pi by
a causal Z-path that started from Pk before Ck,z . Any
property violation under this case is captured by C 2 1.

– Case B. The value cli(k) has been brought to Pi by
a causal Z-path that started from Pk after Ck,z . Any
property violation under this case is captured by C 2 2.

Since CFINE 2 ≡ C 2 2, we only need to prove that
CFINE 1 can track all the property violation under case
A. The difference between C 2 1 and CFINE 1 is that the
latter also needs to check whether m.taken[k] is true or
false upon receiving m. If it is true, then under case A, a

forced checkpoint is taken only when C 2 1 is also satisfied;
otherwise no forced checkpoint. Under case A, two sub-
cases can arise: cli(k) is known to Pi through [µ, m1] 1) in
Fig.5(a) and/or 2) in Fig.5(b).

(b)(a)

m1

Cj,y

Pi

Pj

Cj,y

Pi

Pj

PkPk

Ck,z

µ

Ck,z

m1

µ

m2
m2

Fig. 5. Two possible cases to consider when cli(k) is a lower bound
of Ck,z .t

Next, we prove under case A, no Z-cycle can be formed
along Z-path [m1, m2, µ, m1] if m1.taken[k] is false. In other
words, either there is no cycle along Z-path [m1, m2, µ, m1]
or any possible cycle formed along Z-path [m1, m2, µ, m1]
doesn’t contain any checkpoint if m1.taken[k] is false. The
following four cases arise under this condition.

– Case I. Z-path [m1, m2] doesn’t contain any check-
point.
Because Z-path [m1, m2] forms a Z-pattern[1] and no
checkpoint inside this Z-path trivially holds.

– Case II. Z-path [m2, µ.first] doesn’t contain any
checkpoint.
No checkpoint can exist between m2 and µ since 1) un-
der the case in Fig.5(a), no checkpoint can exist after
receive(m2) and before send(µ.first) (Recall that Ck,z

is the first checkpoint taken by Pk after the delivery of
m2), otherwise it falls into case B. 2) under the case in
Fig.5(b), if a checkpoint exists after send(µ.first) and
before receive(m2), [m2, µ] is no longer a zigzag path.

– Case III. Z-path [µ.last, m1] doesn’t contain any
checkpoint.
If m1.taken[k] is false, it means takenj[k] is false when Pj

sends m1 (Note that Pj is the sender, so m1.taken[k] =
takenj[k]). Hence no checkpoint can exist between
receive(µ.last) and send(m1), otherwise m1.taken[k]
must be true.

– Case IV. Causal path µ doesn’t contain any check-
point.
Let us denote µ.last as m′. We first prove that upon
receiving m′, we can only have m′.ckpt[k] > ckptj [k],
otherwise if m′.ckpt[k] < ckptj [k] it will fall into case
B. We prove it by contradiction. Assume m′.ckpt[k] <
ckptj[k] upon receiving m′, and there must exist a causal
path ν from Pk to Pj which brings the dependency in-
formation about Ik,x of Pk to Pj where x > z and

ν.last
hb
−→ µ.last. It is illustrated in Fig.6. Then the

causal path [ν, m1] forms a causal path from Pk to Pi

after Ck,z , which falls into case B. So upon receiving
m′, Pj will update takenj[k] according to the condition
m′.ckpt[k] > ckptj [k]. If takenj[k] is false after being up-

8

dated, m′.taken[k] must be false according to Observa-
tion 1. Since µ is a causal path from Pk to Pj and m′ =
µ.last and m′.taken[k] is false, no checkpoint can be in-
side µ in order to maintain m′.taken[k] being false.

Pj

Pi

Pk

m1

Ck,z

m2
ν

µ

Cj,y

Fig. 6. A causal path ν from Pk to Pj after Ck,z makes CCP fall
into case B

After verifying all the possible situations, we conclude:
under case A, no Z-cycle can be formed along Z-path
[m1, m2, µ, m1] if m1.taken[k] is false. In other words, un-
der case A, there is potential for Z-cycles to be formed
only if m1.taken[k] is true. So if C 2 1 can guarantee ZCF
property under case A, the stronger condition CFINE 1 ≡

C 2 1 ∧ m1.taken[k] can also guarantee ZCF property un-
der case A. Moreover since CFINE 2 ≡ C 2 2 under case
B, CFINE 2 can guarantee ZCF property under case B.
Therefore CFINE can capture all the property violation
under both case A and B, hence the checkpoint-inducing
condition CFINE can guarantee ZCF property.

�Theorem 2

4.3. Advanced FINE protocol

In order to get a precise checkpoint-inducing condition,
each process needs to collect enough information about
others which can only come from information piggybacked
with messages. Therefore, in an effort towards obtaining
efficient CIC protocols, it is desirable to decrease message
overhead without weakening the checkpoint-inducing de-
cision. In this section, we introduce our Advanced FINE
protocol using the TDE TS mechanism introduced in Sec-
tion 3.3. TDE TS mechanism provides a good balance
between message overhead and computation overhead in
each process. When receiving (resp. sending) a message,
the receiver (resp. sender), say Pi, needs to do a small
amount of computation (e.g., several shift operations in
binary computation) and gets (resp. transfers) both the
transitive dependency information and timestamps from
the piggybacked n-size vector TDE TSi.

We now describe the Advanced FINE protocol briefly.
The line numbers refer to the detailed protocol description
in Pseudocode 1.

As noted earlier, upon receiving a message, each process
can easily separate the values of TS and ∆TS from each

1: procedure take checkpoint at Pi

2: for k = 0, . . . , n − 1 do
3: sent toi[k] := false
4: end for
5: for ∀k 6= i do
6: takeni[k] := true
7: end for
8: TSi[i] := TSi[i] + ∆TSi[i] + 1; ∆TSi[i] := 0
9: Save state to stable storage

10: initialization of Pi

11: for k = 0, . . . , n − 1 do
12: TSi[k] := 0; ∆TSi[k] := 0
13: end for
14: takeni[i] := false
15: take checkpoint

16: when Pi sends a message m to Pk

17: if ¬sent toi[k] then
18: sent toi[k] := true
19: end if
20: for l = 0, . . . , n − 1 do
21: TDE TSi[l] := 210 × TSi[l] + ∆TSi[l]
22: end for
23: send (m, TDE TSi, takeni) to Pk

24: when Pi receives (m, TDE TS, taken) from Pj

25: % Pi separates two factors TSj and ∆TSj from
TDE TSj %

26: if ((∃k : sent toi[k] ∧ (m.TS[j] + m.∆TS[j]) >
(m.TS[k] + m.∆TS[k]) ∧ (m.TS[j] + m.∆TS[j]) >
(TSi[i]+∆TSi[i])∧m.taken[k])∨ (m.TS[i] = TSi[i]∧
m.taken[i])) then

27: take checkpoint % forced checkpoint %
28: end if
29: ∀k, do case
30: m.TS[k] < TSi[k] → skip
31: m.TS[k] > TSi[k] → TSi[k] := m.TS[k];

∆TSi[k] := m.∆TS[k]; takeni[k] := m.taken[k]
32: m.TS[k] = TSi[k] → ∆TSi[k] :=

max(∆TSi[k], m.∆TS[k]);
takeni[k] := takeni[k] ∨ m.taken[k]

33: end docase
34: for i, do case
35: m.TS[j] + m.∆TS[j] ≤ TSi[i] + ∆TSi[i] → skip
36: m.TS[j] + m.∆TS[j] > TSi[i] + ∆TSi[i] →

∆TSi[i] := m.TS[j] + m.∆TS[j] − TSi[i]
37: end docase
38: deliver message m

Pseudocode 1: Advanced FINE protocol

9

Table 2
Overhead Comparison

FI-1 FI-2 FINE

Each process maintains
3n integers n + 1 integers n integers

2n booleans 3n booleans 2n booleans

Each message piggybacks
2n integers n + 1 integers n integers

n booleans 2n booleans n booleans

entry of m.TDE TS with div and mod operations (line
25 of Pseudocode 1) according to Equation (2). Followed
by a decision whether a forced checkpoint is taken based
on the checkpoint-inducing condition in line 26. Then vec-
tors TSi, ∆TSi and takeni are updated (line 29–line 37) to
maintain their meaning. When sending a message, the pro-
cess combines the corresponding entry of TSi and ∆TSi

into TDE TSi (line 21) and appends the current vector
TDE TSi to the message (line 23). The meaning of TSi[k]
is the timestamp of last checkpoint of Pk, known to Pi, so
that it records the information about the last checkpoint (or
interval) of each process known to Pi. On the other hand,
the value of (TSi[k] + ∆TSi[k]) is the latest timestamp of
Pk, known to Pi.

In the Advanced FINE protocol, each process Pi main-
tains three n-dimensional vectors: a vector of TDE-
timestamps (TDE TSi) and two boolean vectors (sent toi

and takeni). Among these three vectors, only TDE TSi

and takeni need to be piggybacked on each message sent
by Pi. Table 2 compares our Advanced FINE protocol
with FI-1 and FI-2 protocols in terms of data structures
maintained in each process and piggybacked information
(Note: FI-1 is the original protocol described in Fig.7 of
[16] and FI-2 is FI protocol with reduced data structures,
given in Fig.8 of [16]).

5. Performance Evaluation

In this section we present the performance evaluation
of both Basic and Advanced FINE protocols compared
with some existing CIC protocols: BCS, FI, VP-accordant,
RDTPartner and RDTMinimal. We choose these protocols
mainly because (1)BCS[7,8,19] is the first algorithm pro-
posed to ensure ZCF property even before the concept of
ZCF was known, and its checkpoint-inducing condition sat-
isfies the abstract expression of checkpoint-inducing con-
ditions for TS -CIC protocols ((m.ts > tsi) ∧ P, shown in
Section 3.2); (2)the comparison between our protocol and
FI[16] is to illustrate the improvement of our FINE pro-
tocol over FI protocol based on simulation results; (3)VP-
accordant[6] was chosen to represent the protocol in the
class of CI -CIC protocols; (4)both RDTPartner[15] and
RDTMinimal[14] ensure RDT property and the compari-
son with them reflects the tradeoff between checkpointing
overhead and property of CCP. Our performance evalua-
tion reveals that FINE protocol performs better than the
FI protocol both in terms of the number of forced check-
points and message overhead.

5.1. Simulation Model

The behavior of our FINE protocol has been carefully
analyzed and compared with other protocols through sim-
ulation using the Distributed Checkpointing Simulator,
ChkSim[28]. ChkSim has the property of reproducibility
which is ensured by a completely deterministic simulation
model[29]. Only with this property, the comparison among
different CIC algorithms in the simulation is ensured to be
correct and persuasive.

Simulation Scenarios We conducted the simulation
under five simulation scenarios (described below), namely,
SP, SI, AP, AI and AD conditions which represent ma-
jor Checkpointing and Communication Patterns and mimic
closely the bahavior of real distributed applications[29].
The topology of the distributed system under each sce-
nario of our simulation is set to be a complete graph 1 , in
which each pair of processes is directly connected by a bidi-
rectional communication channel. Other common features
shared by all scenarios include that the channels do not lose,
corrupt or change the order of the messages sent. Hence the
message latency can be ignored, compared to the check-
point interval length[29]. The difference among these five
scenarios is described as follows: (note under five scenar-
ios, “symmetric” stands for the assumption that the com-
munication events are homogeneously distributed among
all processes involved in the distributed computation; and
“asymmetric” stands for the assumption that the number
of communication events in one of the processes is different
from others and among other processes the communication
events are homogeneously distributed.)

SP (Symmetric Processes) Under this scenario,
we assume that the communication events are homoge-
neously distributed among all processes involved in the
distributed computation. For our simulation we assume
that each process has an average of 50 communication
events in each basic checkpoint interval. The simulated
distributed computation consists of processes ranging
from 10 to 100.
SI (Symmetric Intervals) Under this scenario, we

assume that the communication events are homoge-
neously distributed among all processes involved in the
distributed computation. For our simulation we assume
that the systems is composed of 20 processes. Each pro-
cess has the number of communication events ranging
from 10 to 200 in each basic checkpoint interval.
AP (Asymmetric Processes) Under this scenario,

we assume that the number of communication events
in one process is different from others and among other
processes the communication events are homogeneously
distributed. For our simulation we assume that the av-
erage number of communication events in each basic
checkpoint interval for one particular process is 20, while

1 Each directed communication channel can be defined individually
in a network definition file, which generates flexible topologies on
demand.

10

the average number of communication events for each of
other processes is 50. The simulated distributed compu-
tation consists of processes ranging from 10 to 100.
AI (Asymmetric Intervals) Under this scenario, we

assume that the communication events in one process are
different from others and among other processes the com-
munication events are homogeneously distributed. For
our simulation we assume that the system is composed
of 20 processes. The average number of communication
events in each basic checkpoint interval for one particu-
lar process is 30 less than the average number for each
of other processes. This particular process has the num-
ber of communication events ranging from 10 to 200 in
each basic checkpoint interval and others have the num-
ber of communication events ranging from 40 to 230 in
each basic checkpoint interval accordingly.
AD (Asymmetric Difference) Under this scenario,

we assume that the communication events in one process
are different from others and among other processes the
communication events are homogeneously distributed.
For our simulation we assume that the system is com-
posed of 20 processes. Except for one particular process,
the average number of communication events in each
basic checkpoint interval for all other processes is the
fixed number 50. Only this particular process changes
the number of communication events in its basic check-
point intervals and the different number of communica-
tion events in each basic checkpoint interval with other
processes ranges from 2 to 40.
A complete simulation run to compare our chosen algo-

rithms is configured using a run definition file. This file sets
up the different parameters to evaluate the performance of
algorithms under different simulation environments. In our
simulation, we compare the chosen algorithms under the
following configurations in the run definition files: Itera-
tions, denotes the number of times the simulation needs to
be run for each data point and the collected data for each
metric computed as the average of each iteration. We set
iteration = 10 for each run. Events, indicates the overall
duration of each execution in terms of the number of com-
munication events per process. We set events = 12000 in
most of our simulation runs, in order to display the stability
of the algorithms’ behavior in a long enough run. We also
run our simulation with events = 6000 and 24000 to check
if the overall duration has great effect on the behavior of
those algorithms.

5.2. Performance Metrics

One of the metrics used in the evaluation of CIC pro-
tocols is the number of forced checkpoints induced by
the protocols, since taking unnecessary checkpoints incurs
runtime and resource overhead. Therefore, the checkpoint-
inducing condition becomes very important due to its key
role in inducing forced checkpoints. In order to get a pre-
cise checkpoint-inducing condition, each process needs to

collect enough information about others which can only
come from the information piggybacked with messages.
Hence the number of forced checkpoints and the overhead
of piggybacked information are two most important met-
rics for evaluating the performance of CIC protocols. Since
we have compared the overhead of piggybacked informa-
tion among FI-1, FI-2 and FINE in table 2, we only focus
on the number of forced checkpoints in our simulation
and we measure the two metrics: 1)the number of forced
checkpoints per process (#f ckpt/process); 2)the ratio
of forced checkpoints with respect to the number of basic
checkpoints (#f ckpt/#b ckpt).

5.3. Simulation Results

We observe that the six algorithms can be classified into
two groups according to their behavior under five simu-
lation scenarios proposed above. We place RDTPartner,
RDTMinimal and VP-accordant algorithms in group I due
to their similar behavior under all five scenarios and their
simulation results are shown in Fig.7; while BCS, FI and
AdvancedFINE belong to group II due to their similar be-
havior under five scenarios. As expected, under each sce-
nario of our simulation, algorithms in group I always take
more forced checkpoints than those in group II. Fig.8 shows
the result under the AD scenario. This is due to the follow-
ing two reasons. First, the algorithms ensuring RDT prop-
erty have to satisfy two requirements: 1) Z-cycle free, and
2) the existence of a causal sibling for every non-causal Z-
path. Hence the stronger property than ZCF, namely RDT,
obtains its high efficiency in rollback recovery at the ex-
pense of taking more forced checkpoints in the system. Sec-
ond, since VP-accordant algorithm belongs to CI-CIC pro-
tocols and it ensures ZCF property by taking forced check-
points to break all suspect Z-cycles and our simulation re-
sults match the general hypothesis that TS-CIC protocols
often have less forced checkpoints than CI-CIC protocols.
Fig.7 also exhibits that the two protocols, RDTPartner and
RDTMinimal, behave similar under all five scenarios. The
message overhead and computation complexity of both pro-
tocols are O(n).

Since each data point in all figures is the result of the
average over 10 executions for each simulation run, we also
calculated the standard deviation of each run. Our results
show that for all simulation scenarios the standard devi-
ation (SD) for all the 10 executions are always less than
3.5% of the average. In this paper we only show the ratio of
SD/average under SP scenario in Fig.9 as an example, and
the maximum value is shown to be less than 2.2% under SP.

The simulation results of algorithms in group II are
depicted in Fig.10. Under all five scenarios, our Ad-
vancedFINE algorithm always performs better than FI
algorithm by inducing an average of 2%− 5.5% less forced
checkpoints. As expected, the #f ckpt/process increases
with increase in the number of processes for all three al-

11

 2100

 2150

 2200

 2250

 2300

 2350

 2400

 2450

 10 20 30 40 50 60 70 80 90 100

#f
_c

kp
t

/
pr

oc
es

s

Processes

RDTPartner
RDTMinimal

VP-accordant

(a) Sym, var. process # (SP)

 2100

 2150

 2200

 2250

 2300

 2350

 2400

 2450

 10 20 30 40 50 60 70 80 90 100

#f
_c

kp
t

/
pr

oc
es

s

Processes

RDTPartner
RDTMinimal

VP-accordant

(b) Asym, var. process # (AP)

 2220

 2240

 2260

 2280

 2300

 2320

 2340

 2360

 2380

 200 170 150 130 110 90 70 50 30 10

#f
_c

kp
t

/
pr

oc
es

s

Interval size (comm. events)

RDTPartner
RDTMinimal

VP-accordant

(c) Sym, var. interval length (SI)

 2325

 2330

 2335

 2340

 2345

 2350

 2355

 2360

 2365

 2370

 200 170 150 130 110 90 70 50 30 10

#f
_c

kp
t

/
pr

oc
es

s

Interval size (comm. events)

RDTPartner
RDTMinimal

VP-accordant

(d) Asym, var. interval length (AI)

 2320

 2325

 2330

 2335

 2340

 2345

 2350

 40 35 30 25 20 15 10 5 2

#f
_c

kp
t

/
pr

oc
es

s

Diff. interval size (comm. events)

RDTPartner
RDTMinimal

VP-accordant

(e) Asym, var. diff interval length (AD)

Fig. 7. The behavior of the algorithms in group I under five scenarios

 2320

 2330

 2340

 2350

#f
_c

kp
t

/
pr

oc
es

s

RDTPartner
RDTMinimal

VP-accordant

 800

 900

 1000

 1100

 40 35 30 25 20 15 10 5 2

#f
_c

kp
t

/
pr

oc
es

s

Diff. interval size (comm. events)

BCS
HMNR(FI)

AdvancedFINE

Fig. 8. Six Algorithms

 0
 0.5

 1
 1.5

 2

 10 20 30 40 50 60 70 80 90 100

R
at

io
(%

)

Processes

BCS
HMNR(FI)

AdvancedFINE

 600

 800

 1000

 1200

#f
_c

kp
t

/
pr

oc
es

s

BCS
HMNR(FI)

AdvancedFINE

Fig. 9. Standard Deviation

gorithms under SP and AP scenarios (Fig.10(a) and (b)).
This is due to the fact that the increase in the number
of processes results in the accumulation in dependency
information which increases the chances of satisfying the
checkpoint-inducing condition, which triggers more forced
checkpoints to ensure ZCF property in each of the three al-
gorithms. Fig.10(c) and (d) show that the number of forced
checkpoints in each process decreases as the checkpoint
interval increases both under SI and AI scenarios. An ex-
planation for this is that longer checkpoint intervals mean
lower basic checkpoints, which slows down the frequency
at which timestamp in each process increases and this is
the major factor in checkpoint-inducing conditions of these
three algorithms. However, from the results in our further

investigation, the ratio of #f ckpt to #b ckpt under both
SI and AI scenarios increases as the checkpoint interval
increases (Fig.11(c) and (d)). The asymmetry under AD
scenario is obtained in such a way that it is caused by one
process taking basic checkpoints faster than other pro-
cesses and the different number of communication events
in each of its basic checkpoint interval with other processes
gets bigger (different range from 2 to 40 communication
events) with the simulation run. As a result, the number
of forced checkpoints increases (Fig.11(e)). It is due to the
fact that the time for different processes to “catch up”
with each other’s timestamp decreases and it increases the
frequency of satisfying the checkpoint-inducing condition
in each of these three algorithms.

12

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 10 20 30 40 50 60 70 80 90 100

#f
_c

kp
t

/
pr

oc
es

s

Processes

BCS
HMNR(FI)

AdvancedFINE

(a) Symmetric, var. process # (SP)

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 10 20 30 40 50 60 70 80 90 100

#f
_c

kp
t

/
pr

oc
es

s

Processes

BCS
HMNR(FI)

AdvancedFINE

(b) Asymmetric, var. process # (AP)

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 200 170 150 130 110 90 70 50 30 10

#f
_c

kp
t

/
pr

oc
es

s

Interval size (comm. events)

BCS
HMNR(FI)

AdvancedFINE

 490

 510

 530

 550

 570

 150 160 170 180 190 200

(c) Symmetric, var. interval length (SI)

 400

 500

 600

 700

 800

 900

 1000

 1100

 200 170 150 130 110 90 70 50 30 10

#f
_c

kp
t

/
pr

oc
es

s

Interval size (comm. events)

BCS
HMNR(FI)

AdvancedFINE

 460

 480

 500

 520

 540

 150 160 170 180 190 200

(d) Asymmetric, var. interval length (AI)

 800

 850

 900

 950

 1000

 1050

 40 35 30 25 20 15 10 5 2

#f
_c

kp
t

/
pr

oc
es

s

Diff. interval size (comm. events)

BCS
HMNR(FI)

AdvancedFINE

(e) Asymmetric, var. difference in interval length (AD)

Fig. 10. The behavior of the algorithms in group II under five scenarios

13

Let us consider the relationship between basic check-
points and forced checkpoints. Basic checkpoints are taken
to provide saved intermediate states of processes for roll-
back recovery in case of failures. However, allowing pro-
cesses to take basic checkpoints independently without co-
ordination can not guarantee the basic checkpoints are use-
ful. Hence, forced checkpoints are taken to make sure that
the whole system can rollback to a consistent global check-
point which minimizes the amount of recomputation when
failure occurs. Given that ChkSim has the feature of repro-
ducibility and it can deterministically generate the same
sequence of events using two statistic load generators with
the same seed[29], it provides the deterministic model for
evaluating the performance of algorithms with respect to
the ratio #f ckpt/#b ckpt. Thus, we further investigate
the cost of forced checkpoints based on the pattern of basic
checkpoints under the five scenarios and show the results
in Fig.11. As the number of processes increases, both for
symmetric and asymmetric scenarios (Fig.11(a) and (b)),
#f ckpt/#b ckpt increases. It is quite reasonable because
the more processes involved in the computation, the more
will be the propagated dependency among processes. Our
simulation reveals that performance of all algorithms gets
worse as the size of the system increases. #f ckpt/#b ckpt
also increases as the number of communication events in a
basic checkpoint interval increases (Fig.11(c),(d) and (e)).
The results make it clear that even though it is possible
to decrease the number of forced checkpoints by increasing
the checkpointing interval (as shown in Fig.10(c) and (d)),
we have to consider both absolute and relative measures
(#f ckpt and #f ckpt/#b ckpt) while calculating the cost
of checkpoints in the system. Taking either of these two
measure in isolation gives us an incomplete picture. In par-
ticular, deciding the relative rankings of these two mea-
surements is quite important. For example, under the case
when the basic checkpoint intervals are predetermined by
the system, only the absolute measurement is needed to
evaluate the performance of a CIC protocol; on the other
hand, while considering how to set the checkpointing inter-
val, both measurements should be taken into consideration
and it is one of the topics in our future work.

6. Related Work

Communication-Induced Checkpointing (CIC) protocols
work by evaluating a checkpoint-inducing condition upon
message reception and a forced checkpoint must be taken if
such condition is satisfied. So the checkpoint-inducing con-
dition used for determing when to take forced checkpoints
plays a very important role in the design of efficient CIC
protocols.

Model -based CIC protocols[6,13,24,31] track some spe-
cial communication models/patterns which may lead to the
formation of Z-cycles in the future and prevent these po-
tential Z-cycles from being formed. Baldoni et al.[6] present
VP-accordant algorithm which ensures no useless check-

point by preventing the formation of suspect Z-cycles based
only on available information from the causal past. A “sus-
pect Z-cycle” in [6] is a checkpoint and communication pat-
tern satisfying several constraints. Although a suspect Z-
cycle is not necessarily a part of real Z-cycle to be formed in
the future, VP-accordant ensures that by preventing sus-
pect Z-cycles, the system is guaranteed to be Z-Cycle Free.
The PRL protocol presented in [13] decreases the complex-
ity of the piggybacked information from O

(

n2
)

of the al-
gorithm in [6] to O(n) and it brings “progressive view”[12]
of the restricted order for the sequence of consistent global
checkpoints being observed. Moreover, it has been proved
in [13] that “if PRL takes a force checkpoint, VP-accordant
must also induce a forced checkpoint.”

Index -based CIC protocols[1,7,8,16,18,19,21,30] ensure
that checkpoints are taken in such a way that Theorem 1
is satisfied, thereby ensuring the ZCF property. These pro-
tocols make sure that the timestamps of checkpoints al-
ways increase along any Z-path and a forced checkpoint is
taken if any violation to Theorem 1 happens. Essentially
the checkpoint-inducing conditions of CIC protocols in this
approach can be expressed as “(m.ts > tsi) ∧ P”, where
m.ts is the timestamp of the message m upon receiving m,
tsi is the current timestamp of the receiver, and P is a pred-
icate that depends on each protocol [16]. MS algorithm [21]
checks if the condition “m.ts > tsi” is satisfied upon receiv-
ing a message and it ensures the existence of a consistent
global checkpoint containing the latest checkpoint of any
process all the time. Helary et al.[16] present a CIC proto-
col which tries to capture all possibly available information
from the causal past and use these information to gener-
ate a precise checkpoint-inducing condition which is bene-
ficial to the system in terms of the number of forced check-
points. It is considered to be one of the best CIC protocols
in the literature. Two checkpoint-inducing conditions (C 1
and C 2) corresponding to two CIC algorithms are found in
[16]. Condition C 1 is “(sendi == TRUE)∧ (m.ts > tsi)”.
And the much more restrictive condition C 2 exactly core-
sponds to Fully Informed (FI) protocol. The behavior of
our proposed FINE protocol has been carefully analyzed (in
Section 4) and compared with FI protocol[16] through sim-
ulation (in Section 5). Under all five simulation scenarios,
FINE protocol performs better than the FI protocol both
in terms of the number of forced checkpoints and message
overhead.

7. Conclusion

In this paper, first we propose a finer classification of CIC
protocols based on the data structures used in these pro-
tocols to achieve the goal of ensuring ZCF property. Sec-
ond, based on the analysis of the intrinsic relation between
Model -based and Index -based CIC protocols, we design a
data structure for use in piggybacked messages, namely,
TDE-TS vector, which helps to get both timestamps and
transitive dependency information upon receiving a mes-

14

 2.5

 3

 3.5

 4

 4.5

 5

 10 20 30 40 50 60 70 80 90 100

#f
_c

kp
t

/
#b

_c
kp

t

Processes

BCS
HMNR(FI)

AdvancedFINE

(a) Symmetric, var. process # (SP)

 2.5

 3

 3.5

 4

 4.5

 5

 10 20 30 40 50 60 70 80 90 100

#f
_c

kp
t

/
#b

_c
kp

t

Processes

BCS
HMNR(FI)

AdvancedFINE

(b) Asymmetric, var. process # (AP)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 200 170 150 130 110 90 70 50 30 10

#f
_c

kp
t

/
#b

_c
kp

t

Interval size (comm. events)

BCS
HMNR(FI)

AdvancedFINE

(c) Symmetric, var. interval length (SI)

 2

 3

 4

 5

 6

 7

 8

 9

 10

 200 170 150 130 110 90 70 50 30 10

#f
_c

kp
t

/
#b

_c
kp

t

Interval size (comm. events)

BCS
HMNR(FI)

AdvancedFINE

(d) Asymmetric, var. interval length (AI)

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

 3.9

 4

 2 4 6 8 10 12 14 16 18 20

#f
_c

kp
t

/
#b

_c
kp

t

Diff. interval size (comm. events)

BCS
HMNR(FI)

AdancedFINE

(e) Asymmetric, var. difference in interval length (AD)

Fig. 11. The ratio of #f ckpt to #b ckpt under five scenarios

15

sage. Hence it is possible to decrease the overhead of pig-
gybacked information at the expense of a little computa-
tion overhead. Then, we propose our Basic and Advanced
FINE CIC protocols which fully exploit the collected infor-
mation from the causal past to make intelligent checkpoint-
inducing decision and at the same time decrease the over-
head of piggybacked information using TDE TimeStamp-
ing mechanism we designed. The simulation results show
the performance comparison of our proposed FINE proto-
col with other five protocols. Last, a review of the related
work shows us the major research directions and contribu-
tions related to our research area.

References

[1] L. Alvisi, E. N. Elnozahy, S. Rao, S. A. Husain, A. D.
Mel, An analysis of communication induced checkpointing, in:
Proceedings of the 1999 International Symposium on Fault-
Tolerant Computing, 1999.

[2] R. Baldoni, A communication-induced checkpointing protocol
that ensures rollback-dependency trackability, FTCS ’97: 27th
International Symposium on Fault-Tolerant Computing 00

(1997) 68.

[3] R. Baldoni, G. Cioffi, J.-M. Hélary,
M. Raynal, Direct dependency-based determination of consistent
global checkpoints, International Journal of Computer Systems
Science and Engineering 16 (1).

[4] R. Baldoni, J.-M. Hélary, A. Mostéfaoui, M. Raynal,
Impossibility of scalar clock-based communication-induced
checkpointing protocols ensuring the rdt property, Inf. Process.
Lett. 80 (2) (2001) 105–111.

[5] R. Baldoni, G. Melideo, k-dependency vectors: A scalable
causality-tracking protocol., in: Proceedings of the 11th
Euromicro Workshop on Parallel, Distributed and Network-
Based Processing, IEEE Computer Society, 2003.

[6] R. Baldoni, F. Quaglia, B. Ciciani, A vp-accordant checkpointing
protocol preventing useless checkpoints, in: SRDS ’98:
Proceedings of the The 17th IEEE Symposium on Reliable
Distributed Systems, IEEE Computer Society, Washington, DC,
USA, 1998.

[7] R. Baldoni, F. Quaglia, P. Fornara, An index-based
checkpointing algorithm for autonomous distributed systems,
IEEE Transactions on Parallel and Distributed Systems 10 (2)
(1999) 181–192.

[8] D. Briatico, A. Ciuffoletti, L. Simoncini, A distributed domino-
effect free recovery algorithm, in: Proc. of IEEE Symposium on
Reliability in Distributed Software and Database Systems, Silver
Spring (Maryland), 1984.

[9] B. Charron-Bost, Concerning the size of logical clocks in
distributed systems, Inf. Process. Lett. 39 (1) (1991) 11–16.

[10] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, D. B. Johnson,
A survey of rollback-recovery protocols in message-passing
systems, ACM Comput. Surv. 34 (3) (2002) 375–408.

[11] C. Fidge, Logical time in distributed computing systems,
Computer 24 (8) (1991) 28–33.

[12] I. Garcia, L. E. Buzato, Progressive construction of consistent
global checkpoints, in: ICDCS ’99: Proceedings of the 19th IEEE
International Conference on Distributed Computing Systems,
IEEE Computer Society, Washington, DC, USA, 1999.

[13] I. C. Garcia, L. E. Buzato, Checkpointing using local knowledge
about recovery lines, Tech. Rep. IC-99-22, Univ. of Campinas,
Brazil (Nov. 1999).

[14] I. C. Garcia, L. E. Buzato, An efficient checkpointing protocol for
the minimal characterization of operational rollback-dependency

trackability, SRDS ’04: 23rd Symposium on Reliable Distributed
Systems (2004) 126–135.

[15] I. C. Garcia, G. M. D. Vieira, L. E. Buzato, RDT–
partner: An efficient checkpointing protocol that enforces
rollback-dependency trackability, in: Proc. 19th Brazilian Symp.
Computer Networks, 2001.

[16] J.-M. Hélary, A. Mostéfaoui, R. Netzer, M. Raynal,
Communication-based prevention of useless checkpoints in
distributed computations, Distributed Computing 13 (1) (2000)
29–43.

[17] J.-M. Hélary, A. Mostéfaoui, M. Raynal, Virtual precedence in
asynchronous systems: Concept and applications, in: WDAG ’97:
Proceedings of the 11th International Workshop on Distributed
Algorithms, Springer-Verlag, London, UK, 1997.

[18] J.-M. Hélary, A. Mostéfaoui, M. Raynal,
Communication-induced determination of consistent snapshots,
IEEE Transactions on Parallel and Distributed Systems 10 (9)
(1999) 865–877.

[19] R. Koo, S. Toueg, Checkpointing and rollback-recovery for
distributed systems, IEEE Trans. Softw. Eng. 13 (1) (1987) 23–
31.

[20] L. Lamport, Time, clocks, and the ordering of events in a
distributed system, Commun. ACM 21 (7) (1978) 558–565.

[21] D. Manivannan, M. Singhal, A low-overhead recovery technique
using quasi-synchronous checkpointing, in: Proc. 16th IEEE Int’l
Conf. Distributed Computing Systems, 1996.

[22] F. Mattern, Virtual time and global states of distributed
systems, in: Proceedings of the International Workshop on
Parallel and Distributed Algorithms, 1989.

[23] R. H. B. Netzer, J. Xu, Necessary and sufficient conditions for
consistent global snapshots, IEEE Transactions on Parallel and
Distributed Systems 06 (2) (1995) 165–169.

[24] F. Quaglia, R. Baldoni, B. Ciciani, On the no-z-cycle property
in distributed executions, Journal of Computer and System
Sciences 61 (3) (2000) 400–427.

[25] T. C. Sakata, I. C. Garcia, Non-blocking synchronous
checkpointing based on rollback-dependency trackability, in:
SRDS ’06: Proceedings of the 25th IEEE Symposium on
Reliable Distributed Systems (SRDS’06), IEEE Computer
Society, Washington, DC, USA, 2006.

[26] R. D. Schlichting, F. B. Schneider, Fail-stop processors: an
approach to designing fault-tolerant computing systems, ACM
Trans. Comput. Syst. 1 (3) (1983) 222–238.

[27] J. Tsai, J.-W. Lin, On the fully-informed communication-
induced checkpointing protocol, PRDC ’05: 11th Pacific Rim
International Symposium on Dependable Computing (2005)
151–158.

[28] G. M. D. Vieira, L. E. Buzato, Chksim: A distributed
checkpointing simulator, Tech. Rep. IC-05-34, University of
Campinas (Dec. 2005).

[29] G. M. D. Vieira, L. E. Buzato, Distributed checkpointing:
Analysis and benchmarks, in: SBRC ’06: Proceedings of the 24th

Brazilian Symposium on Computer Networks, Curitiba, Paraná,
Brazil, 2006.

[30] G. M. D. Vieira, I. C. Garcia, L. E. Buzato, Systematic analysis
of index-based checkpointing algorithms using simulation, in:
Proc. IX Brazilian Symp. Fault-Tolerant Computing, 2001.

[31] Y.-M. Wang, Consistent global checkpoints that contain a given
set of local checkpoints, IEEE Trans. Comput. 46 (4) (1997)
456–468.

[32] Y.-M. Wang, A. Lowry, W. K. Fuchs, Consistent global
checkpoints based on direct dependency tracking, Inf. Process.
Lett. 50 (4) (1994) 223–230.

[33] J. Wu, Y. Luo, D. Manivannan, An enhanced model-based
checkpointing protocol, in: Proc. 25th Parallel and Distributed
Computing and Networks (PDCN 2007), Innsbruck, Austria,
2007.

16

