
Solving Optimization Problems with Boolean
Combinations of Pseudo-boolean Constraints

(a preliminary report)

Lengning Liu and Mirosław Truszczyński

Department of Computer Science, University of Kentucky,
Lexington, KY 40506-0046, USA

Abstract. We study the optimization problems where the constraints are boolean
combinations of pseudo-boolean constraints and the objective function isa linear
function with integer coefficients and 0-1 variables. We call such optimization
problemsPL(PB) optimization problems.PL(PB) optimization problems gen-
eralize the well known pseudo-boolean optimization problems where eachcon-
straint is a single pseudo-boolean constraint. We propose a method that solves
PL(PB) optimization problems via a stochastic local searchPL(PB) solver
calledwsat(plpb). Our method iteratively runswsat(plpb) to improve the value
of the objective functions. In addition to the linear search, which most methods
that solve pseudo-boolean optimization problems use, our method provides an
option that uses a combination of linear and binary search, which reduces the
number of timewsat(plpb) is executed. We perform experimental study on our
implementation. We compare our method to existing pseudo-boolean optimizers
on a set of instances. Transformation is needed as those optimizers do not accept
boolean combinations of pseudo-boolean constraints. The result shows that, ex-
cept for one instance, our method is uniformly better than existing methodson
the rest of the instances.

1 Introduction

We propose a method that computes optimal (or sub-optimal) solutions to optimiza-
tion problems with boolean combinations of pseudo-boolean(PL(PB) for short) con-
straints.

Informally, an optimization problem consists of an objective function and a set of
constraints. To solve an optimization problem, we need to maximize or minimize the
objective function subject to the constraints. Problems such as finding a minimal domi-
nating set in a graph are optimization problems.

In our setting, we represent the constraints of an optimization problem as boolean
combinations of pseudo-boolean constraints, a formalism proposed by [1]. By apseudo-
boolean constraint(or a PB constraint for short) we mean an integer programming
constraint with only 0-1 variables. By aboolean combination, we mean a disjunction
of PB constraints.

Optimization problems with onlyPB constraints (no disjunctions ofPB constraints)
have received much attention during the past decade. Recently many optimizers that



solvePB optimization problems have emerged, includingwsat(oip) [2], minisat+
[3], pb2sat + zchaff [4], bsolo [5], pueblo [6] andPBS [7].

To obtain an optimal solution, the optimizers we listed above rely on a series of
queries to programs, calledmodel generators, that compute (generate) models of sets
of PB constraints. MostPB optimizers perform the linear search on the value of the
objective function. Other approaches include the binary search (pb2sat + zchaff ) and
a SAT-based branch and bound method (bsolo).

In the linear search, the optimizer first queries the model generator for a solution to
the set ofPB constraints, disregarding the objective function. Then the optimizer iter-
atively improves the value of the objective function, each time introducing a newPB

constraint saying that the value of the objective function should be less than the one
found in the previous step. When the query to the model generator finally results in the
”failed-to-satisfy” answer, the process terminates and the previous value of the objec-
tive function is returned. If the model generator is complete and the “failed-to-satisfy”
answer is the result of a normal termination without finding amodel, the returned value
is optimal. If the model generator terminates due to exhausting the CPU time allocated
(incomplete model generators are covered by this case), the“failed-to-satisfy” message
does not mean that the instance is unsatisfiable. In such cases, the value returned is only
an approximation of the optimal one.

The main reason behind the use of linear search instead of binary search, is that,
deciding unsatisfiability of a set ofPB constraints typically takes longer than deciding
satisfiability. In the first case, the whole search space mustbe considered, in the second
one we can stop as soon as the first model is found. The linear search terminates with
only one “failed-to-satisfy” result. The binary search often needs significantly fewer
iterations to terminate but many of these iterations may return the “failed-to-satisfy”
message, often requiring much more time.

In this paper, we propose an algorithm that computes solutions of PL(PB) opti-
mization problems. Our optimizer uses aPL(PB) model generatorwsat(plpb) [1].
Sincewsat(plpb) is a local-search algorithm, solutions returned by our optimizer are
not guaranteed to be optimal. For the search component that successively improves on
the quality of a solution, our optimizer provides two options: (1) the linear search (most
often used in other optimizers), and (2) a novel combinationof the linear search with a
variant of the binary search. As we noted above, the linear search executes exactly one
call to the model generator which results in the “failed-to-satisfy” message. Our hybrid
method is designed so that there are exactly two calls to the model generator return-
ing the “failed-to-satisfy” message, a significant improvement over the straightforward
binary search approach.

We perform an experimental study on the algorithm we proposeand compare it
to existing optimizers forPB optimization problems. Results show that our method
performs better thanPB optimizers in the benchmark instances we use, except for just
one instance that is highly structured.

The paper is organized as follows: Section 2 gives definitions and examples for
PL(PB) optimization problems. Section 3 describes our method of computing optimal
solutions toPL(PB) optimization problems. Section 4 shows the experimental results.
Section 5 concludes the paper and gives possible future research directions.



2 Preliminaries

A pseudo-boolean (orPB ) constraintis an integer inequality of the form
∑

aixi ≥ b,

whereai’s andb are integers andxi’s are 0-1 variables. APB theoryis a finite collec-
tion of PB constraints. A value assignmentv that assigns0 or 1 to all variables in the
PB constraintsatisfies(or is amodelof) the constraint if

∑
ai × v(xi) ≥ b holds. An

expression
5x1 + (−6)x2 + 2x3 ≥ 2

is an example of aPB constraint. One can verify thatx1 = 1, x2 = 0, x3 = 1 is a
satisfying value assignment of thePB constraint. A value assignmentsatisfiesa PB

theory if it satisfies allPB constraints in the theory.
We now define a formalism [1] that generalizesPB theories. APL(PB) constraint

is a disjunction ofPB constraints. APL(PB) theoryis a finite collection ofPL(PB)
constraints. A value assignmentsatisfiesaPL(PB) constraint if it satisfies at least one
PB constraint in the disjunction. A value assignmentsatisfiesa PL(PB) theory if it
satisfies allPL(PB) constraints in the theory. As pointed out in [1], many practical
constraints involve disjunctions of numerical propertieson sets of weighted elements.
Thus allowing boolean combinations ofPB constraints facilitates modeling this type
of constraint.

A PL(PB) optimization problemis a pair(O,P ), whereO is an objective function
of the form

∑
aixi, ai’s are integersxi’s are 0-1 variables, andP is aPL(PB) theory.

An optimal solutionto a PL(PB) optimization problem is a value assignment that
minimizes the value of the objective function while satisfying thePL(PB) theory.

A PL(PB) optimization problem(O,P ) is aPB optimization problemif P consists
of PB constraints (is aPB theory).

We can encode many practical optimization problems intoPL(PB) optimization
problems so that optimal solutions to thePL(PB) optimization problem correspond
to optimal solutions to the original problem. In other words, we can viewPL(PB)
optimization as a modeling formalism that captures other optimization problems. For
example, we consider the following variant of the dominating set problem:

Example 1.Let G = (V,E) be a directed graph, whereV is the set of vertices and
E is the set of directed edges. Each edge(u, v) in E has an associated integer weight
w(u, v). A k-dominating setU is a subset ofV such that for everyv ∈ V , one of the
following three conditions hold:

1. v ∈ U
2.

∑
u∈U :(u,v)∈E w(u, v) ≥ k

3.
∑

u∈U :(v,u)∈E w(v, u) ≥ k.

The objective is to find a minimalk-dominating set for a given weighted graphG.

In order to represent the minimalk-dominating set problem for a graphG as a
PL(PB) optimization problem, we use 0-1 variablesUv, wherev ∈ V . Intuitively, by
assigning 1 toUv we represent the fact that vertexv belongs to ak-dominating set.



The objective function in thisPL(PB) optimization problem is:

∑

v∈V

Uv

For a vertexv ∈ V , we define threePB constraints:

W 1
v = Uv ≥ 1,

W 2
v =

∑

w:(w,v)∈E

Uw ≥ k

and
W 3

v =
∑

w:(v,w)∈E

Uw ≥ k,

ThePL(PB) constraintsW 1
v ∨ W 2

v ∨ W 3
v , v ∈ V , capture the defining constraints for

ak-dominating set, with the three disjuncts representing theconditions (1), (2) and (3),
respectively.

We note that if onlyPB constraints were allowed, the defining constraints ofk-
dominating sets would require a more complex representation.

3 Local search based optimizer for PL(PB) optimization
problems

To solvePL(PB) optimization problems, we use a method that iteratively improves
the quality of models of thePL(PB) theory with respect to the objective function, until
no further improvements are possible. To be precise, our method consists of aPL(PB)
model generatorS and a search algorithm. Given aPL(PB) optimization problem
(O,P ), we use thePL(PB) model generator to compute a model (or, as we will also
say, afeasible solution) of P (ignoring the objective function). If no model is found, we
terminate the search (either there are no feasible solutions or, if the model generator is
incomplete, it fails to find any). Otherwise, we take the feasible solution computed as
the starting point and use the search algorithm organized ina series of iterations to find
feasible solutions with successively better objective-function values. When improve-
ment is no longer possible, we stop and return the most recently computed feasible
solution.

The method we implemented following this general pattern differs from existing
PB optimizers in two ways. First, it deals withPL(PB) optimization problems, which
are syntactically more general thanPB optimization problems1. Second, in addition
to linear search it also supports a new search strategy,LBS . The LBS algorithm is
obtained by combining the linear search and a variant of the binary search. We describe
all these methods below.

1 Formally, the two formalisms have the same expressive power. That is,there exist polynomial-
time algorithms to convert aPL(PB) optimization problem into an equivalentPB optimiza-
tion problem and vice versa.



The linear and binary search methods differ in the way they improve on the feasible
solution found in the first call to the model generator (as pointed out above, if no feasible
solution is found by that call, the whole process terminates).

Let us assume(O,P ) is thePL(PB) optimization problem andv is the current
feasible solution found by the model generator. We writev(O) to denote the value ofO
under the assignmentv.

In the linear search, in each iteration we add toP thePL(PB) constraint

−O ≥ −⌊v(O) − 1⌋,

wherev is the present feasible solution. With exception of the firstiteration, this con-
straint subsumes the one added in the previous one, which nowcan be removed. The
new constraint ensures that all feasible solutions found inthe future will have a smaller
objective-function value thanv. When the model generator fails, we terminate the
search and return the last feasible solution computed.

In the binary search, we maintain both the lower and the upperbounds on the
objective-function values for feasible solutions. The upper bound is provided byv(O),
wherev is the present feasible solution. We denote the lower bound by l(O). Initially,
we setl(O) to the sum of all negative coefficients inO (if there are none,l(O) = 0).

If l(O) = v(O), we terminate the search. Otherwise, we havel(O) < v(O) and we
add toP the constraint

−O ≥ −⌊l(O) + c × (v(O) − l(O))⌋,

wherec is a real number between0 and1. It is easy to check that

l(O) ≤ ⌊l(O) + c × (v(O) − l(O))⌋ < v(O).

We then run the model generator. If it fails, we update the lower bound to⌊l(O) + c ×
(v(O)−l(O))⌋+1 and continue. Otherwise, we continue with the new feasible solution
replacing the old one.

For both the linear and binary search methods, the objective-function value of each
next solution is better than that of the previous one. If a complete model generator is
used in the search, the returned feasible solution is an optimal one. If an incomplete
model generator is used, it is not guaranteed to be an optimalone.

The reason why the linear search is might be preferred to the binary search is that
establishing that aPB (or PL(PB)) theory is unsatisfiable often requires much more
CPU time than establishing that aPB (or PL(PB)) theory is satisfiable. Indeed, in the
first case, we must explore the entire search space to make sure no models exist, while
the latter task can be completed as soon as the first solution is found (which may happen
quite early in the search).

Let (O,P ) be aPL(PB) optimization problem(O,P ) and letv0 be a feasible
solution to the search problemP 2. Let n = v0(O) − l(O). In such case, the binary
search queries a model generatorlog(n) times to find the optimal solution, while the

2 If P has no solutions, the optimization problem has no solutions either, and all methods per-
form in the same way. Thus, we will consider only optimization problems where solutions
exist.



linear search, in the worst case may require as many asn queries. However, all model-
generator calls made by the binary search afterv0 is found may (in the worst case)
involve unsatisfied instances. On the other hand, if we use linear search, then only the
last call requires the model generator to run on an unsatisfiable instance. This is the
reason why most optimizers employ the linear search.

Our search algorithmLBS combines the linear search and the binary search and
balances between the number of iterations and the CPU time needed during each it-
eration.LBS starts with the binary search algorithm. The binary-searchphase stops
immediately after the model generator fails to find a feasible solution for the first time.
ThenLBS switches to the linear search phase, starting with the best feasible solution
found in the binary-search phase. This method guarantees that at most two unsuccessful
calls to the model generator are made in the process.

We expect thatLBS will outperform the linear search when the range of the objec-
tive function is large and the quality improvement in each iteration is small. On the other
hand, when the range of the objective function is small or theimprovement of the qual-
ity of the feasible solutions is large, the linear search mayoutperformLBS . Our, still
preliminary and non-comprehensive experiments, support this expectation. We come
back to these issues in the experimentation section.

The pseudo code ofLBS is given in Figure 1.

Algorithm 1 LBS

INPUT: P - aPL(PB) theory
O - an objective function
S - aPL(PB) model generator

OUTPUT: v - a value assignment that optimizesf subject toT
BEGIN
1. CallS with P ; If S fails, return “unsatisfiable”;
2. While S returns a value assignmentv;
3. Letm bel(O) + c × (v(O) − l(O));
4. LetP ′ beP ∪ {−O ≥ −⌊m⌋};
5. CallS with P ′;
6. End While
7. Letv be the last value assignmentS returns;
8. Do
9. Letm bev(O) − 1;
10. LetP ′ beP ∪ {−O ≥ −⌊m⌋};
11. CallS with P ′;
12. While S returns a value assignmentv;
13. return the last value assignmentS returns;
END

Line 1 says whenS fails the optimizer will halt and report the set ofPL(PB)
constraints alone is unsatisfiable. In the case whenS is an incomplete solver, as is in
our implementation, this message meansS fails to find a model given the amount of



resource allocated toS. It may be the case thatT is indeed satisfiable. This limitation
comes from the fact thatS is incomplete.

From line 2 to line 6, we first perform a variant of the binary search with the constant
valuec set between 0 and 1. In practice, we setc to 2/3. From line 8 to line 12, we
perform a linear search, starting with the value off found from the binary search step.
It is clear thatLBS search needs to test exactly two unsatisfiable instances: one at the
end of the binary search and the other at the end of the linear search.

In our implementation, as the model generator we use the onlyexistingPL(PB)
solver that we are aware of,wsat(plpb) [1]. Sincewsat(plpb) is an incomplete solver,
our optimizer does not guarantee optimality of solutions itreturns. However, our method
is general in that it works with any model generator for the sets ofPL(PB) constraints.
When used with a completePL(PB) solver (and without any time-out limits on calls
to the model generator), our method returns optimal solutions.

4 Experimental results

Our implementation has two options:LBS -wsat(plpb) andLS -wsat(plpb), using the
LBS search and pure linear search respectively (our experiments showed that the pure
binary search often performs worse than the linear and theLBS methods). We compare
the performance of the two implementations to existingPB optimizers,minisat+ [3]
andbsolo [5], on a set ofPL(PB) optimization problems. Since thePB optimizers do
not acceptPL(PB) constraints, we apply the transformation fromPL(PB) constraints
to PB constraints proposed in [1].

We now describe thePL(PB) optimization problem instances used in our exper-
iments. We considered three categories of instances generated for the traveling sales-
person problem, the minimumk-dominating set problem, and a variant of the NQueens
problem, respectively.

Traveling salesman problem (tsp). Given a complete undirected graphG = (V,E),
where each edge(u, v) ∈ E has an associated weightw(u, v), the goal is to find a
Hamiltonian cycle inG such that the sum of the weights of the edges in the cycle is
minimized. For testing, we randomly generated 10 weighted complete graphs with 70
vertices. The edge weight ranges from1 to 9.

Minimum k-dominating set problem (dms). We have defined this problem in Sec-
tion 2. To generatePL(PB) optimization instances for testing, we randomly generated
10 weighted graphs of 500 vertices and 2000 edges. The range of the edge weight is
[1..19]. Finally, we setw to 4.

Weighted n-queens problem (wnq). Squares of ann×n chess-board have integer
weights. Given two integersw andd, find an arrangement ofn queens on the board
so that 1) no two queens attack each other; 2) the sum of weights of the squares with
queens does not exceedw; and 3) for each queenQ, there is at least one queenQ′

in a neighboring row or column such that the Manhattan distance betweenQ andQ′

exceedsd. For testing, we randomly generated 10 weighted chessboards. The weights
of the blocks on the chessboards range from1 to 29.

The first problem yieldsPB optimization instances while the other two yield gen-
eralPL(PB) optimization instances. We use the transformation proposed in [1] to con-



vert thePL(PB) instances into equivalentPB instances when we test thePB optimiz-
ers.

We also test all optimizers on an instance, normalized-fast0507, from thepseudo-
boolean evaluation 05[8]. The objective function of this instance has a range[0, 122411].
Instances like this one can be used to study our conjecture onthe cases whenLBS per-
forms better than the linear search.

We use the following parameters forwsat(plpb), the underlyingPL(PB) solver of
our optimizers: 1 restart, 200000 flips per restart. We use default values for the other
parameters required bywsat(plpb) [1].

All experiments are conducted on machines with P4 3.2GHz CPUs, 1GB memory,
and running Linux with kernel version 2.6.15. We allocate 200 seconds to each opti-
mizer on each instance.

We write LS -wsat(plpb) andLBS -wsat(plpb) to denote our linear search opti-
mizer andLBS search optimizer respectively. Both optimizers usewsat(plpb) as the
PL(PB) model generator. None of the optimizers we tested (even those based on com-
plete solversminisat+ andbsolo) can prove the optimality of the solutions they find
within the 200-second time limit. Therefore, we only reportthe best value for the ob-
jective function found by each optimizer in the following tables.

We first present the results on thetsp problem in Figure 1. We observe that both of

tsp LS -wsat(plpb) LBS -wsat(plpb) minisat+ bsolo

I1 138 140 245 299
I2 133 138 255 256
I3 142 136 262 279
I4 135 132 248 302
I5 133 135 246 291
I6 143 144 272 251
I7 140 144 267 292
I8 150 133 272 266
I9 140 144 240 225
I10 139 143 275 274

Fig. 1. Best value found —tsp

our optimizers find significantly better values for the objective functions than thePB

optimizers in this category of instances. Among our two optimizers,LS -wsat(plpb)
performs better thanLBS -wsat(plpb).

Figure 2 shows the results on thedms problem instances. In this category of in-
stances,LS -wsat(plpb) is a clear winner.LBS -wsat(plpb) loses tominisat+ in one
instance, but is the second best optimizer in the rest of the instances. We examined the
log file of theLBS -wsat(plpb) in this experiment and found thatLBS -wsat(plpb) did
not even start the linear search phase when the 200-second time limit was reached. This
result shows that the performance of local-search solvers may be improved if multiple
tries are used.



dmsLS -wsat(plpb) LBS -wsat(plpb) minisat+ bsolo

I1 98 115 121 127
I2 93 112 119 118
I3 95 111 119 127
I4 96 121 119 125
I5 96 118 121 128
I6 95 116 120 118
I7 94 117 123 122
I8 95 119 123 124
I9 97 112 122 126
I10 98 112 122 127

Fig. 2. Best value found —dms

Figure 3 shows the results from thewnq problem. In this category of instances,

wnqLS -wsat(plpb) LBS -wsat(plpb) minisat+ bsolo

I1 161 137 275 303
I2 190 175 314 386
I3 228 162 308 365
I4 250 162 301 360
I5 200 190 268 431
I6 176 110 316 350
I7 188 174 282 325
I8 242 224 302 438
I9 146 119 279 324
I10 242 131 312 359

Fig. 3. Best value found —wnq

we observe thatLBS -wsat(plpb) performs better than all the other optimizers. The
LS -wsat(plpb) is the second best among these optimizers.

Finally, in Figure 4 we present the result of testing all fouroptimizers on the instance
from [8]. As we mentioned earlier, this instance has an objective function with the range
from 0 to 122411. The instance consists of 63009 0-1 variables and 490PB constraints.

It is clear that theLBS search performs much better than the linear search in this
instance. Within similar amount of time, theLBS improves the value of the objective
function to8038, almost7.5 times better than what the linear search could achieve.
minisat+ caused a segmentation fault on this instance. Therefore we could not report
the result ofminisat+.

bsolo is the best optimizer on this instance (the only instance when our optimizers
were outperformed). We think the reason is the high degree ofstructure in this instance.
Local-search based model generators are known to perform poorly on such instance.



normalized-fast0507LS -wsat(plpb) LBS -wsat(plpb) minisat+ bsolo

Best value 59947 8038 N/A 251
Time to best value 173 165 N/A 71

Fig. 4. Instance from PB competition ’05

5 Conclusions and future work

Many practical optimization problems can be encoded in a concise way asPL(PB)
optimization problems. We propose a method to deal with problems in this class. Our
method relies on aPL(PB) model generator and a search algorithm that iteratively im-
proves the quality of the feasible solutions found by the model generator. Our method
differs from the existingPB optimizers in two ways: (1) it accepts optimization prob-
lems whose constraints are encoded as disjunctions ofPB constraints; and (2) our
method uses a combination of the linear and the binary searchto improve the quality of
the feasible solutions.

Our experimental results show that, our optimizers, perform uniformly better than
existingPB optimizers we tested, except for one instance which is highly structured.
We believe there are two reasons for this. First, we use a local-search model generator
while thePB optimizers use DPLL-based model generators. Selmanet al.[9] and Hoos
et al. [10] have shown that local-search based methods often scalebetter than DPLL
methods in solving propositional satisfiability problems.Since the satisfiability testing
of PL(PB) andPB theories is closely related to propositional satisfiability testing, this
phenomenon also appears in the case ofPL(PB) andPB model generators. Second,
two optimization problems we test involve disjunctions of constraints. Therefore, it is
natural to encode them usingPL(PB) theories. In order to testPB solvers on those
instances, one needs to transform thesePL(PB) theories into equivalentPB theories,
which makes the theories larger andPB optimizers less effective.

However, our preliminary implementation of theLBS method is not uniformly bet-
ter than the linear search method. In fact, the linear searchmethod won in a slightly
larger number of instances thanLBS .

There are several research directions we intend to investigate in the future:

1. Refinement of theLBS strategy. We feel it can be improved significantly by allow-
ing dynamic adjustments in the selection of the constantc. Furthermore, for easy
problems, linear search has an advantage as it may happen that all iterations are fast
except for the last one. The cost of two calls to the model generator failing to find
a solution in theLBS -search method may negate all the savings coming from the
fewer number of iterations it makes. We will study dynamic strategies to select be-
tween the linear and binary search depending on the instanceand the characteristics
of search, possibly using machine learning approaches.

2. We will study how to generate randomPL(PB) optimization problems and the
distribution of the optimal solutions of these random instances. Experimenting with
random instances will provide us with insights into the properties of solutions of
such problems and may give us methods to guide the selection of the constantc.



3. A comparison of the linear search with theLBS with complete model generators.
Since local-search based model generators are incomplete their running time may
show a significant variability from run to run even on the sameinstance. We intend
to integrateLBS with DPLL model generators and systematically compare the the
linear search with theLBS method for this class of solvers.

References

1. Liu, L., Truszczýnski, M.: Local search techniques for boolean combinations of pseudo-
boolean constraints. In: Proceedings of The Twentieth National Conference on Artificial
Intelligence (AAAI-06), AAAI Press (2006) to appear

2. Walser, J.: Solving linear pseudo-boolean constraints with local search. In: Proceedings
of the 11th National Conference on Artificial Intelligence (AAAI-97), AAAI Press (1997)
269–274

3. Eén, N., S̈orensson, N.: Translating pseudo-boolean constraints into sat. Journal on Satisfi-
ability, Boolean Modeling and Computation2 (2006) 1–25

4. Bailleux, O., Boufkhad, Y., Roussel, O.: A translation of pseudo boolean constraints to sat.
Journal on Satisfiability, Boolean Modeling and Computation2 (2006) 191–200

5. Manquinho, V., Marques-Silva, J.: Effective lowerbounding techniques for pseudo-boolean
optimization. In: Proceedings of the Design and Test in Europe Conference. (2005) 660–665

6. Sheini, H., Sakallah, K.: Pueblo: a modern pseudo-boolean sat solver. In: Proceedings of the
Design and Test in Europe Conference. (2005) 684–685

7. Aloul, F., Ramani, A., Markov, I., Sakallah, K.: PBS v0.2, incremental pseudo-boolean
backtrack search SAT solver and optimizer (2003)http://www.eecs.umich.edu/
˜faloul/Tools/pbs/ .

8. Manquinho, V., Roussel, O.: Pseudo boolean evaluation 2005 (2005) http://www.
cril.univ-artois.fr/PB05/ .

9. Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search. In: Proceed-
ings of the 12th National Conference on Artificial Intelligence (AAAI-1994), Seattle, USA,
AAAI Press (1994) 337–343

10. Hoos, H.H., Sẗutzle, T.: Stochastic Local Search Foundations and Applications. Morgan
Kaufmann, San Francisco (CA), USA (2004)


