
ABSTRACT OF DISSERTATION

Lengning Liu

The Graduate School

University of Kentucky

2006

COMPUTATIONAL TOOLS FOR SOLVING HARD SEARCH
PROBLEMS

ABSTRACT OF DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements of the degree of Doctor of Philosophy in the

College of Arts and Sciences at the University of Kentucky

By

Lengning Liu

Lexington, Kentucky

Director: Dr. Mirosław Truszczyński, Department of Computer Science

Lexington, Kentucky

2006

Copyright c© Lengning Liu 2006

ABSTRACT OF DISSERTATION

COMPUTATIONAL TOOLS FOR SOLVING HARD SEARCH
PROBLEMS

The goal of this dissertation is to develop computational tools for solving hard search prob-
lems. We focus on a declarative approach in which we write programs to capture constraints
of search problems rather than the step-by-step algorithms that solve the search problems.

Once we write the declarative program that captures a search problem, we want to com-
pute the solutions of the search problem as well. We realize this goal by applying specially
designed software called solvers on the declarative program we have written. Efficient
algorithms and implementations of the solvers make the declarative approach practical in
solving hard search problems.

In the dissertation, we investigate one such declarative programming formalism called
logic programming with stable model semantics. In this formalism, a program is a col-
lection of rules. Rules are built of monotone (or convex) abstract constraint atoms. This
formalism extends the normal logic programming with stable model semantics, which has
been studied by the community for decades and has rich theories and practical applications.
We show in the thesis that the stable model semantics and properties, especially those that
are concerned with computation of stable models, extend to logic programs with monotone
(or convex) abstract constraint atoms.

Lparse programming, a version of logic programming with stable model semantics,
was proposed in 1990’s and has been shown to be an effective programming formalism
for solving search problems. Lparse-programs also extends normal logic programs with
specific constraint atoms: pseudoboolean constraints. We show in the thesis that pseudo-
boolean constraints are convex. Thus the theoretical results we obtain for logic programs
with convex abstract constraint atoms instantiate to lparse-programs. Based on these re-
sults, we design a solver that computes stable models of lparse-programs via pseudo-
boolean solvers.

We also study the propositional logic extended with pseudoboolean constraints, a byprod-
uct of our research on lparse-programs. We designed and implemented a family local
search solvers that compute models of theories in this logic.

We performed experimental study on the solvers we developed. The results show that
our solvers are efficient in solving many NP-hard search problems.

KEYWORDS: Knowledge representation, Answer-set programming, Proposi-
tional satisfiability, Pseudo-boolean satisfiability, Stochastic local
search

COMPUTATIONAL TOOLS FOR SOLVING HARD SEARCH
PROBLEMS

By

Lengning Liu

Dr. Mirosław Truszczyński
Director of Dissertation

Dr. Grzegorz W. Wasilkowski
Director of Graduate Studies

19 May 2006

RULES FOR THE USE OF DISSERTATIONS

Unpublished dissertations submitted for the Master’s and Doctor’s degrees and deposited
in the University of Kentucky Library are as a rule open for inspection, but are to be used
only with due regard to the rights of the authors. Bibliographical references may be noted,
but quotations or summaries of parts may be published only with the permission of the
author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the dissertation in whole or in part requires also the
consent of the Dean of the Graduate School of the University of Kentucky.

A library which borrows this dissertation for use by its patrons is expected to secure the
signature of each user.

Name Date

DISSERTATION

Lengning Liu

The Graduate School

University of Kentucky

2006

COMPUTATIONAL TOOLS FOR SOLVING HARD SEARCH
PROBLEMS

DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements of the degree of Doctor of Philosophy in the

College of Arts and Sciences at the University of Kentucky

By

Lengning Liu

Lexington, Kentucky

Director: Dr. Mirosław Truszczyński, Department of Computer Science

Lexington, Kentucky

2006

Copyright c© Lengning Liu 2006

DEDICATION

To my loving parents,

Qian Situ and Xuhua Liu.

You let me know the meaning of life, family, and love.

ACKNOWLEDGMENTS

First of all, I would like to express eternal gratitude to my adviser, Dr. Mirosław

Truszczyński, for his great advice and kind support throughout my graduate study at the

University of Kentucky. I could not imagine a better adviser and friend for me than Dr.

Truszczyński. He changed me from a student to a researcher. His broad knowledge in

math, logic, and computer science, and deep understanding in the research areas are the

great help and the most significant factor to the success of my dissertation.

I also would like to thank my committee members: Dr. Raphael Finkel, Dr. Carl Lee,

Dr. Victor Marek and Dr. Qiang Ye for reading the drafts of this dissertation and helping

me to revise the thesis to a much better shape.

I want to thank Dr. Alexander Dekhtyar, Dr. Raphael Finkel, Dr. Judy Goldsmith and

Dr. Victor Marek for deep and fruitful discussions on my research during these years. I

always feel lucky to be surrounded by so many talented researchers. I learned a lot from

you. Thank you!

Carol Hannahs, Bryan Crawley, Soumya Singhi, Wenzhong Zhao, Emil Iacob, Gayathri

Namasivayam, Krol Kevin Mathias, Liangrong Yi, and Peng Dai, thank you for sharing six

great years with me. I enjoy the time we spent together, no matter if it is laughing or

fighting (I mean, fighting for our opinions during the discussions).

My special thanks go to my dear little sister, Bingyue Liu. Without you, I cannot imag-

ine I would leave our parents and come here to pursue my PhD. Thank you for taking care

of our family while I am not there.

Last but not least, I want to thank my lovely wife, Yurong He, for her selfless support

and encouragement during these years. Without you, I would not have done this work.

Thank you!

iii

Table of Contents

Acknowledgments iii

List of Tables vi

List of Figures vii

Chapter 1 Introduction 1
1.1 Motivation . 1
1.2 Goals of this thesis . 6
1.3 Related work . 6
1.4 Contributions of the thesis . 8
1.5 Organization of the thesis . 11

Chapter 2 Logic programming with stable-model semantics 12
2.1 Normal logic programming with stable-model semantics 12
2.2 Stable logic programming extended with weight atoms (lparse-programs) . 17

Chapter 3 Lparse-programs, stable models, and their properties 22
3.1 Mac programs — a generalization of logic programs with weight constraints 24

3.1.1 Horn programs and bottom-up computations 26
3.1.2 Stable models . 31

3.2 Equivalence of mac programs . 33
3.2.1 M-maximal models . 33
3.2.2 Strong equivalence and SE-models 34
3.2.3 Uniform equivalence and UE-models 38

3.3 From mac-programs to logic theories . 42
3.3.1 Fages’ Lemma for mac-programs 42
3.3.2 Completion of mac-programs . 45
3.3.3 Loop formulas for mac-programs 47

3.4 Programs with convex constraints . 52
3.5 Computing stable models of lparse-programs via PLwa solvers 57

3.5.1 lparse-programs as convex constraint programs 57
3.5.2 Propositional logic extended with weight constraints 58
3.5.3 Transformation between PB -theories and PLwa-theories 61
3.5.4 Computing stable models of lparse-programs 65

Chapter 4 Stochastic Local Search in logic PLwa-theories 69
4.1 Stochastic local search algorithm in propositional logic 70

4.1.1 Gsat family . 71
4.1.2 Wsat family . 75

4.2 Extending wsat algorithms to logic PLwa 79
4.2.1 Virtual break-count and make-count 80

iv

4.2.2 Double flip procedure . 88

Chapter 5 Experimental results 91
5.1 Experiment setup . 92
5.2 Comparing pbmodels with lparse-program solvers 94
5.3 Comparing wsat(wa) with PB SAT solvers 100

Chapter 6 Conclusions 110

Appendix A Lparse and Logic PLwa encodings of the benchmark problems 114
A.1 Vertex cover problem . 114
A.2 Traveling salesperson problem . 114
A.3 Bounded spanning tree problem . 116
A.4 Weighted k-coloring problem . 118
A.5 W -Dominating set problem . 120
A.6 Weighted n-queens problem . 120
A.7 Weighted n-queens problem with distance constraint 121

Appendix B RTDs: pbmodels v.s. smodels 125

Appendix C RTDs: wsat(wa) v.s. wsat(oip) 129

Appendix D Robustness w.r.t. the noise ratio 133
D.1 On vcov instances . 133
D.2 On wvcov instances . 135
D.3 On tsp instances . 136
D.4 On bst instances . 138
D.5 On wrcol instances . 140
D.6 On wdm instances . 142
D.7 On dwnq instances . 144

Bibliography 146

Vita 162

v

List of Tables

5.1 pbmodels v.s. smodels: Magic square and towers of Hanoi problems 97
5.2 pbmodels v.s. smodels: Summary of Instances 98
5.3 pbmodels v.s. smodels: Summary on all instances 98
5.4 pbmodels v.s. smodels: Summary on SAT instances 99
5.5 wsat(wa) v.s. wsat(oip): summary on all instances 104

vi

List of Figures

1.1 Logic programming paradigm . 4

3.1 Positive dependency graph . 48
3.2 Work-flow of pbmodels . 67
3.3 Algorithm of pbmodels . 68

4.1 Algorithm SLS -generic(T) . 70
4.2 Algorithm Heuristic-gsat(T, I) . 72
4.3 Algorithm Heuristic-gsat-sa(T, I) . 73
4.4 Algorithm Heuristic-gsat-rw(T, I) . 73
4.5 Algorithm Heuristic-gsat-rwtabu(T, I) 74
4.6 Algorithm Heuristic-wsat-G(T, I) . 76
4.7 Algorithm Heuristic-wsat-B(T, I) . 76
4.8 Algorithm Heuristic-wsat-SKC (T, I) . 77
4.9 Algorithm Heuristic-wsat-rnovelty+(T, I) 78
4.10 Algorithm Flip(T, I, a) . 90

5.1 RTDs on the bst problem . 105
5.2 RTDs on the wdm problem . 105
5.3 vcov : wsat(wa)-skc . 107
5.4 vcov : wsat(wa)-rnp . 107
5.5 vcov : wsat(wa)-df . 108
5.6 vcov : wsat(oip) . 109

B.1 pbmodels v.s. lparse: tsp-e . 125
B.2 pbmodels v.s. lparse: tsp-h . 126
B.3 pbmodels v.s. lparse: wnq-e . 126
B.4 pbmodels v.s. lparse: wnq-h . 127
B.5 pbmodels v.s. lparse: wls-e . 127
B.6 pbmodels v.s. lparse: wls-h . 128
B.7 pbmodels v.s. lparse: vtxcov . 128
C.1 wsat(wa) v.s. wsat(oip): vcov . 129
C.2 wsat(wa) v.s. wsat(oip): wvcov . 130
C.3 wsat(wa) v.s. wsat(oip): tsp . 130
C.4 wsat(wa) v.s. wsat(oip): bst . 131
C.5 wsat(wa) v.s. wsat(oip): wrcol . 131
C.6 wsat(wa) v.s. wsat(oip): wdm . 132
C.7 wsat(wa) v.s. wsat(oip): dwnq . 132
D.1 vcov : wsat(wa)-skc . 133
D.2 vcov : wsat(wa)-rnp . 133
D.3 vcov : wsat(wa)-df . 134
D.4 vcov : wsat(oip) . 134

vii

D.5 wvcov : wsat(wa)-skc . 135
D.6 tsp: wsat(wa)-skc . 136
D.7 tsp: wsat(wa)-rnp . 136
D.8 tsp: wsat(oip) . 137
D.9 bst : wsat(wa)-skc . 138
D.10 bst : wsat(wa)-rnp . 138
D.11 bst : wsat(oip) . 139
D.12 wrcol : wsat(wa)-skc . 140
D.13 wrcol : wsat(wa)-rnp . 140
D.14 wrcol : wsat(wa)-df . 141
D.15 wrcol : wsat(oip) . 141
D.16 wdm: wsat(wa)-skc . 142
D.17 wdm: wsat(wa)-rnp . 142
D.18 wdm: wsat(wa)-df . 143
D.19 wdm: wsat(oip) . 143
D.20 dwnq : wsat(wa)-skc . 144
D.21 dwnq : wsat(wa)-rnp . 144
D.22 dwnq : wsat(oip) . 145

viii

Chapter 1

Introduction

The goal of this thesis is to develop computational tools for solving hard search problems

represented as lparse-programs with weight constraints. Specifically, our goal in this thesis

is to develop theories regarding the properties of such programs and investigate effective

ways to compute stable models of lparse-programs.

1.1 Motivation

Computers were created to help humans to solve problems. The problem may be as sim-

ple as evaluating arithmetic expressions or as hard as landing spaceships on moon. In this

thesis, we focus on a particular type of problems called search problems. In a nutshell,

a search problem is defined by a set of conditions (or constraints) that solutions to the

problem must satisfy. Search problems range from theoretical problems such as graph 3-

coloring to practical problems such as scheduling and planning. The difficulty of search

problems varies. We consider NP -hard search problems in this thesis. Since they are NP -

hard, unless NP = P , there do not exist polynomial-time bounded algorithms to solve

arbitrary instances of these problems. However, this result does not imply that the algo-

rithms will be ineffective on every instance of the problems. In fact, there are algorithms

that can solve some instances of NP -hard search problems efficiently.

Since NP -hard search problems appear in many practical applications, modeling and

solving them are important and challenging. In this dissertation, we adopt a declarative

approach to solve search problems. That is, in order to solve a search problem, we first

establish a set of variables, each with its domain of values. These variables represent the

“properties” of solutions to the search problem. Then we represent constraints on solutions

of the problem as constraints on values of those variables. Next, we compute value as-

signments to the variables that satisfy all the constraints we just built. Finally, we recover

solutions to the original search problem from the valid value assignments we find.

1

Based on this general approach, researchers have developed several formalisms for

solving search problems. We list some of them here:

1. Linear programming, integer programming, and 0-1 integer programming, rooted in

operations research. In these formalisms, we represent constraints as linear equalities

or inequalities. Depending on whether linear, integer, or 0-1 integer programming is

used, variables have real, integer, or {0, 1} domains.

2. Constraint satisfaction

3. Propositional satisfiability (or SAT)

4. Logic programming with stable-model semantics, rooted in knowledge representa-

tion and non-monotonic reasoning

We focus on logic-based formalisms in this dissertation. In particular, we study the

formalism of logic programming with stable-model semantics.

Gelfond and Lifschitz define stable-model semantics of normal logic programs, a sub-

class of logic programs that have a simple form (we will introduce it in the next chapter)

[59]. Because of its ability to deal with incomplete knowledge through default negation,

normal logic programming with stable-model semantics has become an effective knowl-

edge representation tool. Marek, Truszczyński [101], and Niemelä [109] propose a pro-

gramming paradigm based on normal logic programming with stable-model semantics. In

this programming paradigm, we represent search problems as logic programs and solve

them by computing the stable models of the logic programs. Simons et al. [125] extend

normal logic programming with explicit constructs to model numerical constraints, called

weight constraints, which occur commonly in search problems. With the help of weight

constraints, we can represent many search problems more concisely in this extended for-

malism, compared to their normal logic-programming representation.

To realize this programming paradigm, researchers have developed software including

programming front-ends and computational back-ends. A typical programming front-end

2

uses a high-level language (usually a fragment of first-order logic) that contains predi-

cates, function symbols, variables and their domains. The language often provides direct

constructs called weight constraints to facilitate modeling numerical constraints. Using

this language, we write the high-level logic program to capture the constraints of a search

problem. The constraints defining a search problem are generic to the search problem and

independent of the specific data instance. One of the benefits of writing logic programs

in a high-level language is that we can separate our programs from data 1. That is, the

program, with the help of predicates and domain variables, models the generic constraints

of a search problem. Then the data that correspond to an instance of the search problem are

given as a set of facts represented as predicates over the domain values of variables. We

ground the program and the data using a specially designed program called the grounder.

In a nutshell, the grounder takes the high-level encoding of the problem and replaces the

variables in the encoding by their possible values defined in the input data. After this step,

we get a ground logic program. Then we can use a solver to compute stable models of the

ground logic program. The solver is the actual back-end computing machinery that solves

the search problem. Finally we can recover the solutions to the original search problem

from the stable models.

To summarize, we take the following steps to solve a search problem using this formal-

ism [34, 101, 109]:

1. modeling: We write a logic program Πs in a high-level logic programming language

that captures the generic constraints of the target search problem s. We also construct

the data set Dd that corresponds to an instance d of problem s.

2. grounding: We execute a grounder program with input (Πs, Dd). The grounder gen-

erates a ground program Ps,d, which is a propositional version of the combination of

logic program Πs and the data Dd. We are guaranteed that stable models of Ps,d cor-

respond to solutions to the instance d of the search problem s. The implementation

1This separation may not be complete for the encodings of certain search problems. Nevertheless, using
the high-level language, we can still exploit the concept of a program and the input data to some degree in
those cases.

3

of the grounder is independent of the search problem s or the instance d.

3. solving: We call a solver program with Ps,d as input. The solver computes the stable

models of Ps,d, from which we can recover solutions to the search problem.

The whole procedure to represent and solve a search problem is shown in Figure 1.1.

In this thesis, we focus on the shaded area in the picture.

ground
program

solver

high-level logic
program

search
problem

grounder

stable
models

solution
recovery
program

solutions

data

instance

Figure 1.1: Logic programming paradigm

One implementation of this logic programming paradigm is SMODELS [114]. The

high-level language in SMODELS allows the use of weight constraints. We denote the

ground programs in SMODELS by lparse-programs. Simons et al. [125] have developed

a solver called smodels for lparse-programs.

4

Lparse-programs have received much attention in the logic programming community.

Several other solvers have emerged in recent years, including cmodels [7] and assat [81].

Another implementation of logic programming with stable-model semantics is DLV

[20, 76]. The high-level language used in DLV provides direct constructs, called aggre-

gates, for modeling numerical constraints. In particular, weight constraints are a class of

aggregates allowed in DLV. Ground programs in DLV are disjunctive logic programs,

which are more general than lparse-programs. In this thesis, we focus on lparse-programs

only 2 and do not discuss disjunctive logic programs.

We now present an example to show how to represent a search problem as an lparse-

program. At this point, the syntax is not important. The idea is to illustrate the declarative

approach we have been discussing so far.

Definition 1. Let G = (V, E) be an undirected graph. A set D ⊆ V of vertices of G is

dominating if for every vertex x ∈ V , either x ∈ D or there exists at least one neighbor y

of x such that y ∈ D. We call such a subset D a dominating set of G.

Problem 1. Given a graph G = (V, E) and an integer k, find a dominating set of G of size

at most k. (The decision problem implied by this problem is NP -complete [58]). 4

Lparse-program. We use the following set of atoms in this encoding: inx for x =

1, . . . , n, where n = |V |. The intended meaning of inx is that vertex x is in the domi-

nating set D. The following lparse-program encodes Problem 1:

1. {in1, . . . , inn}k

This rule ensures that the size of D is at most k.

2. ← not(inx),not(iny1), . . . ,not(inymx
)

for every 1 ≤ x ≤ n and for every neighbor yj of x (there are mx neighbors)

These rules ensure the defining constraint for a dominating set. Symbol not denotes

the default negation, which we introduce in Chapter 2.

2We actually assume a simplified version of lparse-programs where all weights in the weight constraints
are non-negative. We will discuss this matter in more detail later in the thesis.

5

We stress again that programmers do not write their lparse-programs directly. All

lparse-programs are constructed by the grounder from their high-level representations.

The elegant semantics and the mature logic programming front-end make SMODELS a

practical programming environment. Therefore it is important to study properties of lparse-

programs. It is also important and challenging to develop efficient solvers that compute

stable models of lparse-programs because computing stable models is the key to apply this

approach in practical applications — we not only want to represent a problem, but also

want to solve the problem.

1.2 Goals of this thesis

To this end, this thesis considers a setting that is more general than lparse-programs: logic

programs that are built of abstract constraint atoms. We assume these abstract constraint

atoms satisfy the monotonicity or the convexity property. Under this setting, our first

sub-goal is to extend properties that have been proved for normal logic programs to this

abstract case. Since the weight constraints in lparse-programs are convex 3, all the abstract

properties are valid in lparse-programs as well.

Our second sub-goal is to use the properties of lparse-programs to develop a new

method to compute stable models of lparse-programs. We want to compute stable models

of lparse-programs better than smodels.

1.3 Related work

Our work is related to propositional satisfiability (or SAT) and pseudoboolean satisfiability

(or PB SAT).

Propositional satisfiability tests whether a propositional logic formula in the conjunctive

normal form (CNF) is satisfiable. This decision problem is a well-known NP -complete

problem when each disjunction in the formula contains at least three literals. One research

direction in the SAT community is to develop efficient algorithms for testing satisfiability

of a propositional logic formula.

3with the assumption that all weights in the weight constraints are non-negative

6

Davis et al. [19] first proposed an algorithm (DPLL) based on resolution to compute

models of a formula in CNF. The DPLL algorithm explores an enormous search space.

A naive implementation often has difficulty in solving a CNF formula with as few as 50

propositional atoms. Therefore, early implementations of DPLL algorithm were not suc-

cessful in propositional satisfiability testing.

A performance break-through occurred in the 1990’s. From 1990’s to the present,

researchers have devoted much effort to the development of fast implementations of the

DPLL algorithm. Researchers propose several techniques to improve the performance of

the DPLL algorithm. They includes good heuristics for atom selection [77, 105, 134],

clause learning [105], non-chronological back-tracking [105], and watched literals for

boolean constraint propagation [134]. These techniques, combined with the increased com-

putational power of computers, yield fast implementations that can solve instances having

hundreds or even thousands of atoms and tens of thousands or hundreds of thousands of

clauses.

In 1990’s, Selman et al. [123] proposed a completely different type of algorithms that

also compute models of propositional formulas in CNF. This type of algorithm is known

as stochastic local search (or SLS) algorithms. Unlike DPLL-based algorithms, SLS al-

gorithms are incomplete, meaning that they may not be able to find a model of an input

theory even if there is one. However, their ability to compute models of large satisfiable

theories, which are often beyond the power of DPLL based solvers, makes them attractive.

Current implementations of SLS algorithms are often capable of solving instances that have

hundreds of thousands of variables and millions of clauses.

With these developments, SAT solvers become applicable in many practical applica-

tions such as scheduling and planning, hardware or protocol verification.

A drawback of SAT solvers is that they require an input theory to be in CNF. Con-

straints defining search problems of practical importance often do not have a direct and

compact representation as formulas in CNF and in many cases require large sets of clauses

to be faithfully described. Constraints involving numeric values, typically modeled as lin-

ear inequalities, are such constraints. The large size of CNF theories representing search

7

problems limits the effectiveness of SAT solvers.

To circumvent the size explosion problem in representing numerical constraints as

clauses, researchers have studied constraints that are more general than propositional clauses

and are attuned to constraints commonly appearing in applications. Certain integer pro-

gramming constraints, called pseudoboolean (or PB) constraints, have received particular

attention [11, 12, 28, 67]. This research results in several solvers of pseudo-boolean con-

straints [121, 2, 96, 132].

With the great success of SAT solvers, researchers in the logic programming com-

munity have attempted to use SAT solvers to compute stable models of logic programs

[18, 7, 50, 81]. Specifically, they establish theoretical results that transform a normal logic

program into a SAT instance (a propositional logic formula in CNF) so that models of

the SAT instance are precisely the stable models of the original logic program. This work

makes it possible to use off-the-shelf SAT solvers to compute stable models of normal logic

programs. Lparse-programs extend normal logic programs with weight constraints. Fer-

raris and Lifschitz [52] establish a connection between lparse-programs and SAT instances

by compiling away weight constraints in an lparse-program and obtain a normal logic pro-

gram. The compilation involves a set of additional normal-logic program rules and a set of

auxiliary atoms, helping to avoid a size explosion. Nevertheless, the size of the resulting

normal-logic program is still larger than the original lparse-program. Furthermore, the ad-

ditional logic program rules and atoms complicate the logic program. Both factors have a

negative influence on the underlying SAT solvers in terms of the amount of time needed by

those solvers to find satisfying truth assignments.

1.4 Contributions of the thesis

To achieve the goal of building effective computational tools to solve search problems

represented as logic programs, we follow the general idea implemented in cmodels [7] and

assat [81]. Both cmodels and assat convert logic programs into propositional logic theories

and use SAT solvers to compute models of the propositional logic theories. The way by

which they convert logic programs into propositional logic theories guarantees that models

8

the SAT solvers compute are precisely the stable models of the original logic programs.

As we have mentioned, assat computes stable models only for normal logic programs.

cmodels accepts lparse-programs as input but has to compile away weight constraints in

lparse-programs, which is not efficient.

One of the major contributions of this thesis is a new method to compute stable models

of arbitrary lparse-programs. The key difference between our work and cmodels and assat

is that we use PB SAT solvers instead of SAT solvers to compute stable models of lparse-

programs.

This work is motivated by the active development of PB SAT solvers and the fact that

the PB constraints used in PB SAT instances and the weight constraints used in lparse-

programs are similar. We show a direct transformation from lparse-programs to PB

SAT instances such that stable models of lparse-programs are precisely models of PB

SAT instances. To establish this correspondence, we first need to establish properties of

lparse-programs. In particular, we extend the theoretical results [81] that help converting

a normal logic program into a SAT instance. We propose an extension to propositional

logic in which PB constraints can appear in a clause. We call this logic PLwa . We use this

logic as the counterpart of propositional logic used in cmodels [7] and assat [81]. Finally,

we convert the resulting theory in logic PLwa into PB SAT instances and apply PB SAT

solvers there.

The contributions of this thesis include:

1. We establish properties for logic programs built of abstract constraint atoms [102].

This is a generalization of lparse-programs when the abstract constraints are mono-

tone. We refer to logic programs built of monotone abstract constraint atoms mac-

programs. We develop a collection of theories regarding the properties of mac-

programs. They include:

(a) strong and uniform equivalence of mac-programs

(b) Fages’ Lemma for mac-programs

(c) completion of mac-programs (for this purpose, we propose an extension to

9

propositional logic where formulas are boolean combinations of monotone ab-

stract constraint atoms)

(d) loop formulas of mac-programs

We also propose a syntactical variant of mac-programs where abstract constraints

are convex instead of monotone. The purpose of proposing this variant is that convex

constraints align better with lparse-programs than mac-programs. We show that all

the properties we have proved for mac-programs hold for logic programs built of

convex constraint atoms as well.

2. Weight constraints are convex. Therefore, all properties we proved for logic pro-

grams built of convex constraint atoms project to lparse-programs. Based on these

properties, especially the properties concerned with Fages’ Lemma, completion, and

loop formulas, we design and implement a new method, denoted by pbmodels , to

compute stable models of lparse-programs. This new method uses PB SAT or PLwa

SAT solvers to compute stable models. It differs from cmodels [7] because it does

not compile away weight constraints from lparse-programs.

3. We design and develop the first stochastic local search (SLS for short) algorithms for

arbitrary PLwa-theories. Our algorithms, called wsat(wa), follow the existing work

in the literature [68, 72, 123]. The development of this solver is motivated by the fact

that the completion and loop formulas of lparse-programs are logic PLwa-theories.

We can use wsat(wa) as a back-end solver for pbmodels . However, wsat(wa) is of

interest itself due to the importance of PB -constraints in problem modeling.

4. We perform an extensive experimental study on implementations of the algorithms

we propose in the thesis. We test our solvers, including the new lparse-program

solver — pbmodels , and a family of SLS solvers — wsat(wa) for PLwa-theories. We

compare our implementations to existing solvers in the literature. The experimental

study completes and validates the thesis by showing our algorithms perform better

than other solvers in solving a number of NP -hard search problems.

10

1.5 Organization of the thesis

The thesis is organized as follows: Chapter 2 introduces preliminary definitions for our lat-

ter discussion; Chapter 3 studies properties of lparse-programs and proposes an extension

to propositional logic called logic PLwa . Some of these properties establish the connection

between lparse-programs and logic PLwa theories. Based on the theoretical results in this

chapter, we develop a new solver for lparse-programs with the help of PB SAT solvers;

Chapter 4 proposes a family of SLS algorithms for logic PLwa ; Chapter 5 shows our ex-

perimental results of comparing our work to existing work in the field on several search

problems; finally, Chapter 6 concludes our work and discusses possible future research

directions.

Copyright c© Lengning Liu 2006

11

Chapter 2

Logic programming with stable-model semantics

In this chapter, we introduce basic terminology used throughout this thesis. In particu-

lar, we define logic program and the stable-model semantics of logic programs. These

notions are the basis for this thesis. This chapter is organized as follows: Section 2.1 intro-

duces normal logic programming and Section 2.2 introduces a widely accepted extension

to normal logic programming that represents certain numerical constraints directly. All the

material presented in this chapter was developed by the research community between 1980

and 2002.

2.1 Normal logic programming with stable-model semantics

Logic programming with stable-model semantics is a declarative programming formalism

for knowledge representation and for solving search problems.

Definition 2. A normal logic program rule is an expression r of the form:

a← b1, . . . , bm,not(c1), . . . ,not(cn). (2.1)

where a, bi and cj are all propositional atoms. A normal logic program is a collection of

rules of the form (2.1).

We call a the head of r, and the set {b1, . . . , bm,not(c1), . . . ,not(cn)} the body of r1.

Let I be a set of atoms. The set I can be regarded as a representation of the following

truth assignment:

1. atom a gets value true (or I satisfies a), written I |= a, if a ∈ I;

2. atom a gets value false (or I does not satisfy a), written I 6|= a, if a 6∈ I .

1Sometimes we view the body of a rule as the conjunction of its literals.

12

We say that I is a model of (or satisfies) a rule r of the form (2.1), written I |= r, if

a ∈ I whenever bi ∈ I (i = 1, . . . ,m) and cj 6∈ I (j = 1, . . . , n). Next, I is a model of (or

satisfies) a program P , denoted by I |= P , if I is a model of every rule in P .

In the setting of propositional logic, a propositional logic theory can be viewed as a

concise representation of all of its models. For example, a theory consisting of the single

clause {a ∨ b ∨ c} represents seven models that satisfy this clause. In this case, we say the

meaning, or more formally the semantics, of a propositional logic theory is given by the

set of all its models.

In normal logic programming, we often view a normal logic program as a representa-

tion of a subset of its models. Different semantics may adopt different subsets of models.

Stable-model semantics is one of the mostly studied and widely accepted semantics for

normal logic programs.

In stable-model semantics, symbols ← and not are not the same as the material im-

plication→ and the logical negation ¬ in propositional logic. In particular, not is called

negation as failure. Intuitively, not(a) is true if we cannot derive (or prove) a is true.

We first introduce a special class of normal logic programs. A normal logic program

rule (2.1) is Horn if n = 0. A normal logic program is Horn if every rule in it is Horn.

Horn normal logic programs have the following properties.

Let P be a normal logic program and M a set of atoms. We write P (M) to denote the

set of rules in P whose bodies are satisfied by M . Then we have the following proposition.

Proposition 1. Let P be a Horn normal logic program and M1, M2 two sets of atoms. If

M1 ⊆M2, then P (M1) ⊆ P (M2).

Proof. Let r be an arbitrary rule in P (M1). Therefore, M1 satisfies the body of r. Since

M1 ⊆M2 and the body of r does not have not, M2 satisfies the body of r as well. That is,

r ∈ P (M2).

We define a bottom-up computation 〈Xn〉∞n=0 of a Horn normal logic program P as

follows:

1. Let X0 = ∅;

13

2. Xn+1 = {a : there exists r ∈ P (Xn) such that a is the head of r}

It is clear that the bottom-up computation of a Horn normal logic program is unique.

The bottom-up computation has the following property.

Proposition 2. Let P be a Horn normal logic program and 〈Xn〉∞n=0 its bottom-up compu-

tation. Then M =
⋃∞

n=0 Xn is a model of P .

Proof. Let r be an arbitrary rule in P . If M does not satisfy the body of r, then M satisfies

r. Therefore, we assume M satisfies the body of r. Since

M =
∞⋃

n=0

Xn

there exists an Xn such that Xn satisfies the body of r. Then by the definition of the bottom-

up computation, Xn+1 contains the head of r. Therefore M |= r as well. It follows that M

is a model of P .

Theorem 1. Every Horn normal logic program P has a least model.

Proof. We show that the union of all Xn’s in the bottom-up computation of P is the least

model. Let 〈Xn〉∞n=0 be the bottom-up computation of P and M =
⋃∞

n=0 Xn. By Proposi-

tion 2, M is a model of P . To show it is the least model of P , it is sufficient to show that,

for an arbitrary model M ′ of P , M ⊆M ′.

Assume it is not the case. That is, there exists a model M ′ of P such that M 6⊆ M ′.

Let X = M \ M ′. Since M =
⋃∞

n=0 Xn, for every a ∈ X , there exists Xn for some

n = 0, 1, . . . , infty such that a ∈ Xn. Let a0 be the atoms in X such that its corresponding

Xm has the smallest index in the sequence 〈Xn〉∞n=0.

That is, for every i = 0, 1, . . . ,m− 1, Xi ⊆ M and Xi ⊆ M ′. Furthermore, Xm ⊆ M

and Xm 6⊆M ′.

Therefore, there exists a rule r ∈ P such that r ∈ P (Xm−1) and a is the head of r.

Since Xm−1 ⊆M ′ and P is Horn, r ∈ P (M ′) as well. Since M ′ is a model of P , M ′ |= a.

It contradicts the assumption that a 6∈M ′. Therefore, the theorem follows.

14

We denote this least model of P by lm(P).

Next, we consider the case of arbitrary normal logic programs. Gelfond and Lifschitz

[59] introduced the notion of a reduct, which is the key to the definition of a stable model

of an arbitrary normal logic program.

Definition 3. Let P be a normal logic program and M a set of atoms. The reduct of P

with respect to M , denoted by PM , is a normal logic program obtained by:

1. removing from P all rules (2.1) such that ci ∈M for some i = 1, . . . , n; and

2. removing from the remaining rules all not(ci)’s, i = 1, . . . , n.

Clearly the reduct of any normal logic program P with respect to M is Horn. Therefore

there exists a least model lm(PM) of the reduct.

Definition 4. Let P be a normal logic program. The set M of atoms is a stable model of

P if M = lm(PM).

The following theorem shows that the definition of stable models is valid.

Theorem 2. Let P be a normal logic program. Then stable models of P are models of P .

Proof. Let M be a stable model of P . Then M = lm(PM). Let r be an arbitrary rule of

the form 2.1 in P . There are two cases:

1. The body of r contains some ci such that ci ∈M . Then it is clear M |= r.

2. Every ci in the body of r does not belong to M . Then r′ = a ← b1, . . . , bm (the

rule got from r by removing all not(ci)’s) belongs to PM . Since M = lm(PM),

M |= PM . Since r′ ∈ PM , M |= r′. It follows that M |= r.

Since r is arbitrary, M |= P .

We note, however, the converse implication of this theorem does not hold. Here is an

example:

15

Example 3. Let P be the normal logic program consisting of the following rule:

p← p.

Clearly both ∅ and {p} are models of P . However, the only stable model of P is ∅. We can

verify that the reduct P {p} = P . The least model of the reduct is ∅ 6= {p}. 4

For Horn programs, the least model coincides with the unique stable model.

Theorem 4. Let P be a Horn normal logic program. Then lm(P) is the only stable model

of P .

Proof. If P is a Horn normal logic program, then P = PM for any M since the rules in P

do not contain not. Then M is a stable model of P if and only M = lm(PM) = lm(P).

Since the least model is unique, it is the only stable model of P .

We now give an example of stable models of a normal logic program.

Example 5. Let P = {a ← not(b). b ← not(a).}. Let M1 = {a}. We can verify that

PM1 = {a← .}. Therefore, M1 is a stable model of P since the least model of PM1 is M1.

We also observe that M1 is a model of P . On the other hand, M2 = {a, b} is not a stable

model of P (note that PM2 = {}), even though it is a model of P . 4

Finally we note that, if a normal logic program P contains a rule r of the form:

f ← b1, . . . , bm,not(c1), . . . ,not(cn),not(f) (2.2)

where f is an atom that does not appear anywhere else in P , then if M is a stable model of

P , M cannot satisfy b1, . . . , bm,not(c1), . . . ,not(cn). Assume it is not the case. That is

M is a stable model of P such that bi ∈M for i = 1, . . . ,m, and cj 6∈M for j = 1, . . . , n.

If f ∈ M , then f ← b1, . . . , bm 6∈ PM . Then f cannot belong to the least model of the

reduct since f does not appear anywhere else in P . This result contradicts the fact that

M = lm(PM). If f 6∈ M , then since cj 6∈ M for j = 1, . . . , n, f ← b1, . . . , bm ∈ PM .

Since M = lm(PM) and M |= b1, . . . , bm, f ∈ lm(PM). However, f 6∈ M . It is also a

contradiction. Therefore, no stable model of P satisfies b1, . . . , bm,not(c1), . . . ,not(cn).

16

We write rules of the form (2.2) as

← b1, . . . , bm,not(c1), . . . ,not(cn)

and call them constraint rules.

Example 6. Let us continue with Example 5. Let

P ′ = P ∪ {← a}.

Then P ′ has only one stable model now: {b}. Indeed, P has two stable models {a} and

{b}. Since {a} satisfies the body of the constraint rule in P ′, {a} cannot be a stable model

of P ′. The other stable model of P does not satisfy the body of the constraint rule in P ′.

Therefore, it is the only stable model of P ′. 4

2.2 Stable logic programming extended with weight atoms (lparse-
programs)

Normal logic programming allows only propositional atoms in rules. To capture constraints

in problems that involve numerical values, several normal logic program rules are often

needed, and constructing them is not straightforward. To facilitate modeling and, later,

solving problems that involve such constraints, Simons et al. [125] introduced and studied

an extension of normal logic programming with weight atoms. We call logic programs in

the extended syntax lparse-programs 2.

Definition 5. A weight atom (w-atom, for short) is an expression W of the form lXu,

where X is a set of weighted propositional atoms of the form [a1 = w1, . . . , ak = wk], and

l, u and wi’s are non-negative integers.

We call the set {a1, . . . , ak} of atoms the domain of the w-atom, denoted by Dom(W).

Integer wi is the weight of the atom ai in this weight atom. We call l and u the lower bound

and the upper bound of W respectively. Intuitively, a w-atom represents the constraint that

the sum of wi’s (or weights) where ai’s are true should be between l and u. Bounds l or
2The name comes from the lparse grounder program in SMODELS [125].

17

u may be missing, which means we do not constrain the sum of weights from below or

above, respectively.

A w-atom lXu is called a cardinality atom (c-atom, for short) if all wi’s in X are

1. We write a c-atom as l[a1, . . . , ak]u by omitting all the weights 3. We observe that we

can represent a propositional atom a by the c-atom 1[a] and a proposition literal ¬a by

the c-atom [a]0, so weight atoms generalize cardinality atoms, which in turn generalize

propositional literals.

A truth assignment I satisfies a w-atom l[a1 = w1, . . . , ak = wk]u if

l ≤
∑
{wi : I |= ai} ≤ u.

We call a w-atom tautological if it is satisfied by every truth assignment. In particular, if

both bounds of a w-atom are missing, then it is tautological. We call a w-atom contradic-

tory if no truth assignment satisfies it.

Next, we give the definitions of lparse-rules and lparse-programs.

Definition 6. An lparse-rule (called a weight constraint rule in Simons et al. [125]) r is

an expression of the following form:

A← A1, . . . , An (2.3)

where A, A1, . . . , An are w-atoms.

The negation as failure operator not in normal logic programming is hidden in the

upper bound constraints of w-atoms. For example, the c-atom [a]0 represents not(a). We

will discuss this matter in more detail in Chapter 3.

We call A the head of r, denoted by hd(r), and the set {A1, . . . , An} the body of r,

denoted by bd(r). We use hset(r) to denote the set of atoms that occur in the head of r. An

lparse-program P is a collection of rules of form (2.3). We denote by At(P) the set of

propositional atoms in program P . In the rule, commas “,” can be viewed as conjunctions.

Similar to the normal logic programming case, an interpretation I satisfies a rule of form
3For uniformity, we do not use the syntax specified in SMODELS, where c-atoms are written as

l{a1, . . . , ak}u.

18

(2.3) if it satisfies A whenever it satisfies A1, . . . , An. If the head A is missing, the rule

becomes a constraint rule, which is satisfied by I if and only if I does not satisfy some

Ai, 1 ≤ i ≤ n, in the body.

We give an example of an lparse-program:

Example 7.

P = {2[a = 2, b = 3]3← [a, b]2}

The program P contains one rule. The head of the rule is a w-atom 2[a = 2, b = 3]3. The

body of the rule is a c-atom [a, b]2. 4

We now define the stable models of lparse-programs. The following definitions come

from Simons et al. [125].

Definition 7. A rule of the form (2.3) is a definite Horn rule if the domain of A has the

form 1[a] and all Ai’s in the body do not have upper bounds. A definite Horn program is

a logic program in which every rule is a definite Horn rule.

In a definite Horn program P , there is always a unique smallest model, denoted by

lm(P) [125]. The existence of the unique smallest model is implied by the fact that rules

in a definite Horn constraint program are monotone. By monotone we mean that if the

body of a rule is satisfied by I , then it is also satisfied by any superset of I . Therefore, we

can define a consistent bottom-up computation of a definite Horn program P as we did for

a Horn normal logic program. Then the union of all Xn’s in this bottom-up computation

forms the unique smallest model of P as well.

Now let us take an arbitrary lparse-program P . We first define the reduct of P with

respect to a set of atoms M , denoted by PM .

Definition 8. Let P be an lparse-program and M a set of atoms. The reduct of P with

respect to M , PM , is defined by

1. removing from P all constraint rules;

2. removing from P all rules whose bodies contain a w-atom Ai such that the upper

bound constraint of Ai is not satisfied by M ;

19

3. for each remaining rule r whose head is lXu (l or u may be missing), replacing it

with the following set of rules: 1[p]← bd(r), where p ∈ hset(r) ∩M

4. for each rule r we get after the previous step, for every w-atom lXu in the body of

r, replacing it with a new w-atom lX ′, where X ′ = [ai = wi : ai = wi ∈ X and

M |= ai].

Example 8. We continue with Example 7. Let

P = {2[a = 2, b = 3]3← [a, b]2}

Let M = {a}. The program P contains one rule. The rule is not a constraint rule. More-

over, the upper bound constraint of the body w-atom is not violated by M . Therefore, the

reduct of P w.r.t. M is the following definite Horn program:

PM = {1[a]← [a]}.

Let M ′ = {a, b}. Then

PM ′
= {1[a]← [a, b] 1[b]← [a, b]}

4

It is clear that the reduct of an lparse-program with respect to a set of atoms is always

a definite Horn program. Therefore, there exists a unique smallest model in the reduct.

If this model coincides with the original set of atoms, and the original set of atoms is a

model of the program, then it is called a stable model of the program. Formally we have

the following definition.

Definition 9. Let P be an lparse-program and M a set of atoms. Then M is a stable model

of P if 1) M |= P ; and 2) M = lm(PM).

Example 9. Let us take the lparse-program P in Example 7 and M = {a}. The reduct

PM is given in Example 8. Since the c-atom [a] in the body is satisfied by the empty set ∅,

the smallest model of the reduct is {a}. Therefore, M is a stable model of P . Similarly we

can verify that {b} and {a, b} are both stable models of P .

20

If we change the c-atom [a, b]2 in P to [a, b]1, then {a, b} is no longer a stable model of

the resulting program P ′. The reason is {a, b} does not satisfy the upper bound constraint of

the c-atom [a, b]1. Therefore, the reduct becomes an empty program, in which the smallest

model is the empty set ∅. Since {a, b} 6= ∅, {a, b} is not a stable model of P ′. 4

In Chapter 3, we present a different but equivalent definition for stable models of an

lparse-program.

Finally, we note that the syntax of programs, in particular the syntax of weight atoms,

introduced by Simons et al. [125] is more general. It allows both atoms and negated atoms

to appear within weight atoms, as well as negative weights (we call such weight atoms sw-

atoms). As Simons et al. [125] showed, negated atoms and negative weights are closely

related. In particular, one can use negated atoms to represent negative weights in a w-

atom. Then, by introducing new propositional variables, one can also remove occurrences

of negated atoms while preserving stable models (modulo newly introduced variables, of

course).

Copyright c© Lengning Liu 2006

21

Chapter 3

Lparse-programs, stable models, and their properties

In this chapter, we study properties of lparse-programs. We pursue it in a more general set-

ting of programs with abstract constraints. In this setting, abstract constraints play the role

of w-atoms in lparse-programs. To be precise, we focus on a special class of constraints

called monotone abstract constraints. We refer to these logic programs as mac-programs.

This class of logic programs was proposed by Marek et al. [97, 102]. We also introduce

a related class of programs with convex abstract constraints. Both formalisms allow con-

straints to appear in the heads of program rules, which sets them apart from other recent

proposals for integrating constraints into logic programs [26, 21, 49, 117, 118] and makes

them suitable as an abstract basis for formalisms such as lparse-programs.

Under this abstract setting, we generalize several results from normal logic program-

ming to programs with monotone constraints. We also discuss how these techniques and

results can be extended further to the setting of programs with convex constraints.

We show that the notions of uniform and strong equivalence of programs [47, 80, 79,

129] extend to programs with monotone constraints, and that their characterizations [47,

129] generalize, too.

We adapt the notion to programs with monotone constraints of a tight program [48]

and generalize Fages Lemma [50].

We introduce extensions of propositional logic with monotone constraints. We define

the completion of a monotone-constraint program with respect to this logic, and generalize

the notion of a loop formula. We then prove the loop-formula characterization of sta-

ble models of programs with monotone constraints, extending to the setting of monotone-

constraint programs results obtained for normal logic programs by Clark [18] and Lin and

Zhao [81].

Programs with monotone constraints make explicit references to the default negation

operator. We show that a more general class of constraints, called convex, can eliminate

22

default negation from the language. We argue that all results extend to programs with

convex constraints.

Finally we show that programs with monotone and convex constraints have a rich the-

ory that closely follows that of normal logic programming. It implies that programs with

monotone and convex constraints form an abstract generalization of extensions of normal

logic programs. In particular, all results we obtain in the abstract setting of programs with

monotone and convex constraints specialize to lparse-programs and, in most cases, yield

results that are new.

These results have practical implications. The properties of the program completion

and loop formulas, when specialized to the class of lparse-programs, yield a method to

compute stable models of lparse-programs by means of pseudoboolean satisfiability (or

PB SAT) solvers [1, 45, 82, 96, 132]. This method follows the path explored by cmod-

els [7] and assat [81]. The difference between those two methods and our approach is

that those two methods rely on SAT solvers to compute stable models. Assat only accepts

normal logic programs as the input, so no w-atoms occur in programs. Cmodels accepts,

theoretically, the full version of lparse-programs. However, in practice, it only works when

all w-atoms in input programs are c-atoms. Moreover, since cmodels relies on compiling

away w-atoms in the lparse-program (that is, converting an lparse-program into an equiv-

alent normal logic program), the extra overhead caused by the compilation greatly affects

the effectiveness of the underlying SAT solvers in some cases.

This chapter is organized as follows: in Section 3.1, we introduce mac-programs, the

abstraction of lparse-programs, and basic concepts such as stable models of mac-programs;

in Section 3.2 we prove the equivalence results for mac-programs; in Section 3.3 we extend

Fages’ Lemma to mac programs. Then we introduce completion and loop formulas of mac

programs; in Section 3.4 we introduce a syntactical variant of monotone abstract constraints

called convex constraints. Convex constraints align better to w-atoms and do not use

explicit default negations. We show that all results we proved for mac-programs are also

valid in convex constraint programs; finally in Section 3.5, we describe the algorithm

of pbmodels , a new method that computes stable models oflparse-programs via PB SAT

23

solvers.

Our work in this chapter has been published in [86, 85].

3.1 Mac programs — a generalization of logic programs with weight
constraints

The definitions and results we present in this section come from the work by Marek and

Truszczyński [102]. Some of them here are more general than their work because we allow

constraints with infinite domains and programs with inconsistent constraints in the heads.

Definition 10. A constraint is an expression A = (X, C), where X ⊆ At and C ⊆ P(X)

(P(X) denotes the powerset of X).

We call the set X the domain of the constraint A = (X, C) and denote it by Dom(A).

Informally speaking, a constraint (X, C) describes a property of subsets of its domain, with

C consisting precisely of these subsets of X that satisfy the constraint (have property) C.

As we have mentioned in Chapter 2, we identify truth assignments (interpretations)

with the sets of atoms they assign the truth value true. That is, given an interpretation

M ⊆ At , we have M |= a if and only if a ∈ M . We say that an interpretation M ⊆ At

satisfies a constraint A = (X, C) (M |= A), if M ∩X ∈ C. Otherwise, M does not satisfy

A, (M 6|= A).

A constraint A = (X, C) is consistent if there exists M such that M |= A. Clearly, a

constraint A = (X, C) is consistent if and only if C 6= ∅.

We note that propositional atoms can be regarded as constraints. Let a ∈ At and

M ⊆ At . We define C(a) = ({a}, {{a}}). It is evident that M |= C(a) if and only if

M |= a. Therefore, in the thesis we often write a as a shorthand for the constraint C(a). In

fact, constraints also generalize weight atoms as well. For example, a weight atom W =

l[a1 = w1, . . . , ak = wk]u is the constraint of the form (Y, Z), where Y = {a1, . . . , ak}

and Z contains all subsets M of Y such that M satisfies W .

Constraints are building blocks of rules and programs. The following definition follows

that in Marek and Truszczyński [102]

24

Definition 11. A constraint rule is an expression of the following form:

A← A1, . . . , Ak,not(Ak+1), . . . ,not(Am) (3.1)

where A, A1, . . . , An are constraints and not is the default negation operator. A con-

straint programs are sets of constraint rules.

In the context of constraint programs, we refer to constraints and negated constraints as

literals. Given a rule r of the form (3.1), the constraint (literal) A is the head of r and the

set {A1, . . . , Ak, . . . ,not(Ak+1), . . . ,not(Am)} of literals is the body of r1. We denote

the head and the body of r by hd(r) and bd(r), respectively. We define the the headset of

r, written hset(r), as the domain of the head of r. That is, hset(r) = Dom(hd(r)).

For a constraint program P , we denote by At(P) the set of atoms that appear in the

domains of constraints in P . We define the headset of P , written hset(P), as the union of

the headsets of all rules in P .

The concept of satisfiability extends in a standard way to literals not(A) (M |= not(A)

if M 6|= A), to sets (conjunctions) of literals and, finally, to constraint programs.

Definition 12. Let M ⊆ At be an interpretation. A rule (3.1) is M-applicable if M satisfies

every literal in bd(r). We denote by P (M) the set of all M -applicable rules in P .

Supportedness is a property of models. Intuitively, every atom a in a supported model

must have “reasons” for being “in”. Such reasons are M -applicable rules whose heads

contain a in their domains. Formally, we have the following definition.

Definition 13. Let P be a constraint program. A model M of P is supported if M ⊆

hset(P (M)).

Definition 14. Let P be a constraint program and M a set of atoms. A set M ′ is non-

deterministically one-step provable from M by means of P , if M ′ ⊆ hset(P (M)) and

M ′ |= hd(r), for every rule r in P (M).

1As before, sometimes we view the body of a rule as the conjunction of its literals.

25

The nondeterministic one-step provability operator T nd
P for a program P is an oper-

ator on P(At) such that for every M ⊆ At , T nd
P (M) consists of all sets that are nondeter-

ministically one-step provable from M by means of P .

The operator T nd
P is nondeterministic as it assigns to each M ⊆ At a family of subsets

of At , each being a possible outcome of applying P to M . In general, T nd
P is partial, since

there may be sets M such that T nd
P (M) = ∅ (no set can be derived from M by means of P).

For instance, if P (M) contains a rule r such that hd(r) is inconsistent, then T nd
P (M) = ∅.

Now we introduce a special type of constraints.

Definition 15. A constraint (X, C) is monotone if C is closed under superset, that is, for

every W, Y ⊆ X , if W ∈ C and W ⊆ Y then Y ∈ C.

W-atoms are examples of monotone constraints. For instance, the w-atom W = l[a1 =

w1, . . . , ak = wk] is monotone. Indeed, let M be a model of W . That means l ≤
∑

ai∈M wi.

Now we take an arbitrary N ⊇ M . If ai ∈ M , then ai ∈ N as well. Since all wi’s are

non-negative,
∑

ai∈M wi ≤
∑

ai∈N wi. Therefore, l ≤
∑

ai∈N wi. That is, N |= W as well.

We call constraint programs built of monotone constraints monotone-constraint pro-

grams or programs with monotone constraints. That is, monotone-constraint programs

consist of rules of the form

A← A1, . . . , Ak,not(Ak+1), . . . ,not(Am) (3.2)

where A, A1, . . . , Am are monotone constraints. If constraint A is inconsistent, we simplify

the rule to the following one:

← A1, . . . , Ak,not(Ak+1), . . . ,not(Am)

From now on, unless explicitly stated otherwise, programs we consider are monotone-

constraint programs.

3.1.1 Horn programs and bottom-up computations

Since we allow constraints with infinite domains and inconsistent constraints in heads

of rules, the results given in this subsection are more general than their counterparts in the

literature [97, 102]. Thus, for the sake of completeness, we present them with proofs.

26

A rule (3.2) is Horn if k = m (no occurrences of the negation operator in the body or,

equivalently, only monotone constraints). A constraint program is Horn if every rule in the

program is Horn.

With a Horn constraint program we associate bottom-up computations, generalizing

the corresponding notion of a bottom-up computation for a normal Horn program.

Definition 16. Let P be a Horn program. A P-computation is a (transfinite) sequence

〈Xα〉 such that

1. X0 = ∅,

2. for every ordinal number α, Xα ⊆ Xα+1 and Xα+1 ∈ T nd
P (Xα),

3. for every limit ordinal α, Xα =
⋃

β<α Xβ .

Let t = 〈Xα〉 be a P -computation. Since for every β < β′, Xβ ⊆ Xβ′ ⊆ At , there is

a least ordinal number αt such that Xαt = Xβ for all αt < β. In other words, there exists

a least ordinal when the P -computation stabilizes. Indeed, if the P -computation never

stabilizes, then the cardinality of Xα grows monotonically as α grows. Since P is fixed,

therefore, At(P) is fixed. Hence |Xα| ≤ |At(P)| for all ordinal α. There is contradiction.

We refer to αt as the length of the P -computation t.

Here is a simple example showing that some programs have computations of length

exceeding ω and so transfinite induction in the definition cannot be avoided.

Example 10. Let P be the program consisting of the following rules:

({a0}, {{a0}})← .

({ai}, {{ai}})← (Xi−1, {Xi−1}), for i = 1, 2, . . .

({a}, {{a}})← (X∞, {X∞}),

where Xi = {a0, . . . ai}, 0 ≤ i, and X∞ = {a0, a1, . . .}. Since the body of the last

rule contains a constraint with an infinite domain X∞, it does not become applicable in

any finite step of computation. However, it does become applicable in the step ω and so

a ∈ Xω+1. Consequently, Xω+1 6= Xω. 4

27

For a P -computation t = 〈Xα〉, we call
⋃

α Xα the result of the computation and

denote it by Rt. Directly from the definitions, it follows that Rt = Xαt .

Proposition 3. Let P be a Horn constraint program and t a P -computation. Then Rt is a

supported model of P .

Proof. Let M = Rt be the result of a P -computation t = 〈Xα〉. We need to show that: (1)

M is a model of P ; and (2) M ⊆ hset(P (M)).

(1) Let us consider a rule r ∈ P such that M |= bd(r). Since M = Rt = Xαt (where αt is

the length of t), Xαt |= bd(r). Thus, Xαt+1 |= hd(r). Since M = Xαt+1, M is a model of

r and, consequently, of P , as well.

(2) We prove by induction that, for every set Xα in the computation t, Xα ⊆ hset(P (M)).

The base case holds since X0 = ∅ ⊆ hset(P (M)).

If α = β + 1, then Xα ∈ T nd
P (Xβ). It follows that Xα ⊆ hset(P (Xβ)). Since

P is a Horn program and Xβ ⊆ M , hset(P (Xβ)) ⊆ hset(P (M)). Therefore, Xα ⊆

hset(P (M)).

If α is a limit ordinal, then Xα =
⋃

β<α Xβ . By the induction hypothesis, for every β <

α, Xβ ⊆ hset(P (M)). Thus, Xα ⊆ hset(P (M)). By induction, M ⊆ hset(P (M)).

We use computations to define derivable models of Horn constraint programs.

Definition 17. A set M of atoms is a derivable model of a Horn constraint program P if

for some P -computation t, we have M = Rt.

By Proposition 3, derivable models of P are supported models of P and, therefore, also

models of P .

Since inconsistent monotone constraints may appear in the heads of Horn rules, there

are Horn programs P and sets X ⊆ At , such that T nd
P (X) = ∅. Thus, some Horn constraint

programs have no computations and no derivable models. However, if a Horn constraint

program has models, the existence of computations and derivable models is guaranteed.

To see this, let M be a model of a Horn constraint program P . We define a canonical

computation tP,M = 〈XP,M
α 〉 by specifying the choice of the next set in the computation

28

in part (2) of Definition 16. Namely, for every ordinal β, we set

XP,M
β+1 = hset(P (XP,M

β)) ∩M.

That is, we include in XP,M
α all those atoms occurring in the heads of XP,M

β -applicable rules

that belong to M . We denote the result of tP,M by Can(P, M). Canonical computations

are indeed P -computations.

Here is an example of the canonical computation:

Example 11. Let P be the following Horn program:

({a, b}, {{a}, {b}, {a, b}})←

We can verify that M = {a} is a model of P . Moreover, the canonical computation tP,M =

〈XP,M
α 〉, where X0 = ∅, Xα = {a} for α > 1. 4

Proposition 4. Let P be a Horn constraint program. If M ⊆ At is a model of P , the

sequence tP,M is a P -computation.

Proof. As P and M are fixed, to simplify the notation in the proof we write Xα instead of

XP,M
α .

To prove the assertion, it suffices to show that for every ordinal α, (1) hset(P (Xα)) ∩

M ∈ T nd
P (Xα), and (2) Xα ⊆ hset(P (Xα)) ∩M

(1) Let X ⊆ M and r ∈ P (X). Since all constraints in bd(r) are monotone, and X |=

bd(r), M |= bd(r), as well. From the fact that M is a model of P it follows now that

M |= hd(r). Consequently, M ∩ hset(P (X)) |= hd(r) for every r ∈ P (X). Since

M ∩ hset(P (X)) ⊆ hset(P (X)),

M ∩ hset(P (X)) ∈ T nd
P (X).

Directly from the definition of the canonical computation for P and M we obtain that for

every ordinal α, Xα ⊆M . Thus, (1), follows.

(2) We proceed by induction. The basis is evident as X0 = ∅. Let us consider an ordinal

α > 0 and let us assume that (2) holds for every ordinal β < α. If α = β + 1, then

29

Xα = Xβ+1 = hset(P (Xβ)) ∩M . Thus, by the induction hypothesis, Xβ ⊆ Xα. Since P

is a Horn constraint program, it follows that P (Xβ) ⊆ P (Xα). Thus

Xα = Xβ+1 = hset(P (Xβ)) ∩M ⊆ hset(P (Xα)) ∩M.

If α is a limit ordinal then for every β < α, Xβ ⊆ Xα and, as before, also P (Xβ) ⊆ P (Xα).

Thus, by the induction hypothesis for every β < α,

Xβ ⊆ hset(P (Xβ)) ∩M ⊆ hset(P (Xα)) ∩M,

which implies that

Xα =
⋃
β<α

Xβ ⊆ hset(P (Xα)) ∩M.

Canonical computations have the following fixpoint property.

Proposition 5. Let P be a Horn constraint program. For every model M of P , we have

hset(P (Can(P, M))) ∩M = Can(P, M).

Proof. Let α be the length of the canonical computation tP,M . Then, XP,M
α+1 = XP,M

α =

Can(P, M). Since Xα+1 = hset(Xα) ∩M , the assertion follows.

We now gather properties of derivable models that extend properties of the least model

of normal Horn logic programs.

Proposition 6. Let P be a Horn constraint program. Then:

1. For every model M of P , Can(P, M) is a greatest derivable model of P contained

in M

2. A model M of P is a derivable model if and only if M = Can(P, M)

3. If M is a minimal model of P then M is a derivable model of P .

30

Proof. (1) Let M ′ be a derivable model of P such that M ′ ⊆ M . Let T = 〈Xα〉 be a

P -derivation such that M ′ = Rt. We want to prove that for every ordinal α, Xα ⊆ XP,M
α .

We proceed by transfinite induction. Since X0 = XP,M
0 = ∅, the basis for the induction

is evident. Let us consider an ordinal α > 0 and assume that for every ordinal β < α,

Xβ ⊆ XP,M
β .

If α = β + 1, then Xα ∈ T nd
P (Xβ) and so Xα ⊆ hset(P (Xβ)). By the induction

hypothesis and by the monotonicity of the constraints in the bodies of rules in P , Xα ⊆

hset(P (XP,M
β)). Thus, since Xα ⊆ Rt = M ′ ⊆M ,

Xα ⊆ hset(P (XP,M
β)) ∩M = XP,M

β+1 = XP,M
α .

The case when α is a limit ordinal is straightforward as Xα =
⋃

β<α Xβ and XP,M
α =⋃

β<α XP,M
β .

(2) (⇐) If M = Can(P, M), then M is the result of the canonical P -derivation for P and

M . In particular, M is a derivable model of P .

(⇒) if M is a derivable model of P , then M is also a model of P . From (1) it follows

that Can(P, M) is the greatest derivable model of P contained in M . Since M itself is

derivable, M = Can(P, M).

(3) From (1) it follows that Can(P, M) is a derivable model of P and that Can(P, M) ⊆

M . Since M is a minimal model, Can(P, M) = M and, by (2), M is a derivable model of

P .

3.1.2 Stable models

In this section, we recall and adapt the definition of stable models proposed in by Marek

et al. [97, 102] to our monotone-constraint programs. Let P be a monotone-constraint

program and M a subset of At(P). The reduct of P , denoted by PM , is a program obtained

from P by:

1. removing from P all rules whose body contains a literal not(B) such that M |= B;

2. removing literals not(B) for the bodies of the remaining rules.

31

The reduct of a monotone-constraint program is Horn since it contains no occurrences

of default negation. Therefore, the following definition is sound.

Definition 18. Let P be a monotone-constraint program. A set of atoms M is a stable

model of P if M is a derivable model of PM . We denote the set of stable models of P by

St(P).

The definitions of the reduct and stable models follow and generalize those proposed for

normal logic programs, since in the setting of Horn constraint programs, derivable models

play the role of a least model.

As in normal logic programming and its standard extensions, stable models of monotone-

constraint programs are supported models and, consequently, models.

Proposition 7. Let P be a monotone-constraint program. If M ⊆ At(P) is a stable model

of P , then M is a supported model of P .

Proof. Let M be a stable model of P . Then, M is a derivable model of PM and, by

Proposition 3, M is a supported model of PM . It follows that M is a model of PM . Then

directly from the definition of the reduct it follows that M is a model of P .

It also follows that M ⊆ hset(PM(M)). For every rule r in PM(M), there is a rule

r′ in P (M), which has the same head and the same non-negated literals in the body as r.

Thus, hset(PM(M)) ⊆ hset(P (M)) and, consequently, M ⊆ hset(P (M)). It follows

that M is a supported model of P .

If a normal logic program is Horn then its least model is its (only) stable model. Here

we have an analogous situation.

Proposition 8. Let P be a Horn monotone-constraint program. Then M ⊆ At(P) is a

derivable model of P if and only if M is a stable model of P .

Proof. For every set M of atoms P = PM . Thus, M is a derivable model of P if and only

if it is a derivable model of PM or, equivalently, a stable model of P .

In the following sections, we show that several fundamental results concerning normal

logic programs extend to the class of monotone-constraint programs.

32

3.2 Equivalence of mac programs

Program equivalence [47, 80, 79, 129] is an important concept due to its potential uses in

program rewriting and optimization. Turner [129] presents an elegant characterization of

strong equivalence of lparse-programs. Eiter and Fink [47] describe a similar characteriza-

tion of uniform equivalence of normal and disjunctive logic programs. We show that both

characterizations can be adapted to the case of monotone-constraint programs.

3.2.1 M-maximal models

A key role in our approach is played by models of Horn constraint programs satisfying a

certain maximality condition.

Definition 19. Let P be a Horn constraint program and let M be its model. A set N ⊆M

such that N is a model of P and M ∩ hset(P (N)) ⊆ N is an M-maximal model of P ,

written N |=M P .

Intuitively, N is an M -maximal model of P if N satisfies each rule r ∈ P (N) “max-

imally” with respect to M . That is, for every r ∈ P (N), N contains all atoms in M that

belong to hset(r) — the domain of the head of r.

Example 12. To illustrate this notion, let us consider a Horn constraint program P con-

sisting of a single rule:

1{p, q, r} ← 1{s, t}.

Let M = {p, q, s, t} and N = {p, q, s}. One can verify that both M and N are models of

P . Moreover, since the only rule in P is N -applicable, and M ∩ {p, q, r} ⊆ N , N is an

M -maximal model of P . On the other hand, N ′ = {p, s} is not M -maximal even though

N ′ is a model of P and it is contained in M . 4

There are several similarities between properties of models of normal Horn programs

and M -maximal models of Horn constraint programs. We state and prove here one of them

that turns out to be especially relevant to our study of strong and uniform equivalence.

33

Proposition 9. Let P be a Horn constraint program and let M be a model of P . Then M

is an M -maximal model of P and Can(P, M) is the least M -maximal model of P .

Proof. The first claim follows directly from the definition. To prove the second one, we

simplify the notation: we write N for Can(P, M) and Xα for XP,M
α .

Let N ′ be any M -maximal model of P . We now show by transfinite induction that

N ⊆ N ′. Since X0 = ∅, the basis for the induction holds. Let us consider an ordinal α > 0

and let us assume that Xβ ⊆ N ′, for every β < α.

Let us assume that α = β + 1 for some β < α. Then, since Xβ ⊆ N ′ and P is a Horn

constraint program, we have P (Xβ) ⊆ P (N ′). Consequently,

Xα = Xβ+1 = hset(P (Xβ)) ∩M ⊆ hset(P (N ′)) ∩M ⊆ N ′,

the last inclusion follows from the fact thatN ′ is an M -maximal model of P .

If α is a limit ordinal, then Xα =
⋃

β<α Xβ and the inclusion Xα ⊆ N ′ follows directly

from the induction hypothesis.

To complete the proof, it is now enough to show that N is an M -maximal model of P .

Clearly, N ⊆ M . Moreover, by Proposition 5, hset(P (N)) ∩M = N . Thus, N is indeed

an M -maximal model of P .

3.2.2 Strong equivalence and SE-models

Monotone-constraint programs P and Q are strongly equivalent, denoted by P ≡s Q, if

for every monotone-constraint program R, P ∪ R and Q ∪ R have the same set of stable

models.

To study the strong equivalence of monotone-constraint programs, we generalize the

concept of an SE-model from Turner [129].

Definition 20. Let P be a monotone-constraint program and let X, Y be sets of atoms. We

say that (X, Y) is an SE-model of P if the following conditions hold: (1) X ⊆ Y ; (2)

Y |= P ; and (3) X |=Y P Y (that is, X is Y -maximal). We denote by SE(P) the set of all

SE-models of P .

34

SE-models yield a simple characterization of strong equivalence of monotone-constraint

programs. To state and prove this characterization, we need several auxiliary results.

Lemma 3.2.1. Let P be a monotone-constraint program and let M be a model of P . Then

(M, M) and (Can(PM , M), M) are both SE-models of P .

Proof. The requirements (1) and (2) of an SE-model hold for (M, M). Furthermore, since

M is a model of P , M |= PM . Finally, we also have hset(P (M)) ∩ M ⊆ M . Thus,

M |=M PM .

Similarly, the definition of a canonical computation and Proposition 3, imply the first

two requirements of the definition of SE-models for (Can(PM , M), M). The third require-

ment follows from Proposition 9.

Lemma 3.2.2. Let P and Q be two monotone-constraint programs such that SE(P) =

SE(Q). Then St(P) = St(Q).

Proof. If M ∈ St(P), then M is a model of P and, by Lemma 3.2.1, (M, M) ∈ SE(P).

Hence, (M, M) ∈ SE(Q) and, in particular, M |= Q. By Lemma 3.2.1 again,

(Can(QM , M), M) ∈ SE(Q).

By the assumption,

(Can(QM , M), M) ∈ SE(P)

and so Can(QM , M) |=M PM or, in other terms, Can(QM , M) is an M -maximal model of

PM . Since M ∈ St(P), M = Can(PM , M). By Proposition 9, M is the least M -maximal

model of PM . Thus, M ⊆ Can(QM , M). On the other hand, we have Can(QM , M) ⊆M

and so M = Can(QM , M). It follows that M is a stable model of Q. The other inclusion

can be proved in the same way.

Lemma 3.2.3. Let P and R be two monotone-constraint programs. Then SE(P ∪ R) =

SE(P) ∩ SE(R).

Proof. The assertion follows from the following two simple observations.

35

1. For every set Y of atoms, Y |= (P ∪R) if and only if Y |= P and Y |= R.

2. For every two sets X and Y of atoms, X |=Y (P ∪R)Y if and only if X |=Y P Y and

X |=Y RY .

For (1), we observe, from the definition of a model of a program, that

Y |= (P ∪R)

if and only if

Y |= r for every r ∈ P ∪R

if and only if

Y |= r for every r ∈ P

and

Y |= r′ for every r′ ∈ R

if and only if

Y |= P and Y |= R.

For (2), we assume X and Y are both models of (P ∪ R)Y since, otherwise, (2) holds

trivially.

X |=Y (P ∪R)Y

if and only if

Y ∩ hset((P ∪R)Y (X)) ⊆ X

if and only if

Y ∩ hset(P Y (X)) ⊆ X and Y ∩ hset(RY (X)) ⊆ X

if and only if

X |=Y P Y and X |=Y RY

Lemma 3.2.4. Let P , Q be two monotone-constraint programs. If P ≡s Q, then P and Q

have the same models.

36

Proof. Let M be a model of P . By r we denote a constraint rule (M, {M}) ← . Then,

M ∈ St(P ∪ {r}). Since P and Q are strongly equivalent, M ∈ St(Q ∪ {r}). It follows

that M is a model of Q ∪ {r} and, therefore, also a model of Q. The converse inclusion

can be proved in the same way.

Theorem 13. Let P and Q be monotone-constraint programs. Then P ≡s Q if and only if

SE(P) = SE(Q).

Proof. (⇐) Let R be an arbitrary monotone-constraint program. Lemma 3.2.3 implies that

SE(P ∪ R) = SE(P) ∩ SE(R) and SE(Q ∪ R) = SE(Q) ∩ SE(R). Since SE(P) =

SE(Q), we have that SE(P ∪R) = SE(Q∪R). By Lemma 3.2.2, P ∪R and Q∪R have

the same stable models. Hence, P ≡s Q holds.

(⇒) Let us assume SE(P) \ SE(Q) 6= ∅ and let us consider (X, Y) ∈ SE(P) \ SE(Q).

It follows that X ⊆ Y and Y |= P . By Lemma 3.2.4, Y |= Q. Since (X, Y) /∈ SE(Q),

X 6|=Y QY . It follows that X 6|= QY or hset(QY (X)) ∩ Y 6⊆ X . In the first case, there

is a rule r ∈ QY (X) such that X 6|= hd(r). Since X ⊆ Y and QY is a Horn constraint

program, r ∈ QY (Y). Let us recall that Y |= Q and so we also have Y |= QY . It

follows that Y |= hd(r). Since hset(r) ⊆ hset(QY (X)), Y ∩ hset(QY (X)) |= hd(r).

Thus, hset(QY (X)) ∩ Y 6⊆ X (otherwise, by the monotonicity of hd(r), we would have

X |= hd(r)).

The same property holds in the second case. Thus, it follows that (hset(QY (X))∩Y)\

X 6= ∅. We define X ′ = (hset(QY (X)) ∩ Y) \X .

Let R be a constraint program consisting of the following rules:

(x, {x})←

(y, {y})← (z, {z}),

for every x ∈ X , y ∈ Y , and z ∈ X ′.

Let us consider a program Q0 = Q ∪ R. Since Y |= Q and X ⊆ Y , Y |= Q0.

Thus, Y |= QY
0 and, in particular, Can(QY

0 , Y) is well defined. Since R ⊆ QY
0 , X ⊆

Can(QY
0 , Y). Thus, the following holds.

hset(QY
0 (X)) ∩ Y ⊆ hset(QY

0 (Can(QY
0 , Y))) ∩ Y = Can(QY

0 , Y)

37

(the last equality follows from Proposition 5). We also have Q ⊆ Q0 and so

X ′ ⊆ hset(QY (X)) ∩ Y ⊆ hset(QY
0 (X)) ∩ Y.

Thus, X ′ ⊆ Can(QY
0 , Y). Consequently, by Proposition 5 again, Y ⊆ Can(QY

0 , Y). Since

Can(QY
0 , Y) ⊆ Y , Y = Can(QY

0 , Y) and so Y ∈ St(Q0).

Since P and Q are strongly equivalent, Y ∈ St(P0), where P0 = P ∪ R. Let us recall

that (X, Y) ∈ SE(P). By Proposition 9, Can(P Y , Y) is a least Y -maximal model of

P Y . Since X is a Y -maximal model of P (as X |=Y P Y), it follows that Can(P Y , Y) ⊆

X . Since X ′ 6⊆ X , Can(P Y
0 , Y) ⊆ X . Finally, since X ′ ⊆ Y , Y 6⊆ X . Thus, Y 6=

Can(P Y
0 , Y), a contradiction.

It follows that SE(P) \ SE(Q) = ∅. By symmetry, SE(Q) \ SE(P) = ∅, too. Thus,

SE(P) = SE(Q).

3.2.3 Uniform equivalence and UE-models

Let D be a set of atoms. By rD we denote a monotone-constraint rule

rD = (D, {D})← .

Adding a rule rD to a program forces all atoms in D to be true (independently of the rest

of the program).

Monotone-constraint programs P and Q are uniformly equivalent, denoted by P ≡u

Q, if for every set of atoms D, P ∪ {rD} and Q ∪ {rD} have the same stable models.

An SE-model (X, Y) of a monotone-constraint program P is a UE-model of P if for

every SE-model (X ′, Y) of P with X ⊆ X ′, either X = X ′ or X ′ = Y holds. We

write UE(P) to denote the set of all UE-models of P . Our notion of a UE-model is

a generalization of the notion of a UE-model from Eiter and Fink [47] to the setting of

monotone-constraint programs.

We now present a characterization of uniform equivalence of monotone-constraint pro-

grams under the assumption that their sets of atoms are finite. One can prove a characteri-

zation of uniform equivalence of arbitrary monotone-constraint programs, generalizing one

38

of the results by Eiter and Fink [47]. However, both the characterization and its proof are

more complex and, for brevity, we restrict our attention to the finite case only.

We start with an auxiliary result, which allows us to focus only on atoms in At(P) when

deciding whether a pair (X, Y) of sets of atoms is an SE-model of a monotone-constraint

program P .

Lemma 3.2.5. Let P be a monotone-constraint program, X ⊆ Y two sets of atoms. Then

(X, Y) ∈ SE(P) if and only if (X ∩ At(P), Y ∩ At(P)) ∈ SE(P).

Proof. Since X ⊆ Y is given, and X ⊆ Y implies X ∩ At(P) ⊆ Y ∩ At(P), the first

condition of the definition of an SE-model holds on both sides of the equivalence.

Next, we note that for every constraint C, Y |= C if and only if Y ∩ Dom(C) |= C.

Therefore, Y |= P if and only if Y ∩ At(P) |= P . That is, the second condition of the

definition of an SE-model holds for (X, Y) if and only if it holds for (X ∩ At(P), Y ∩

At(P)).

Finally, we observe that P Y = P Y ∩At(P) and P (X) = P (X ∩ At(P)). Therefore,

Y ∩ hset(P Y (X)) = Y ∩ hset(P Y ∩At(P)(X ∩ At(P))).

Since hset(P Y ∩At(P)(X ∩ At(P))) ⊆ At(P), it follows that

Y ∩ hset(P Y (X)) ⊆ X

if and only if

Y ∩ At(P) ∩ hset(P Y ∩At(P)(X ∩ At(P))) ⊆ X ∩ At(P).

Thus, X |=Y P Y if and only if X ∩At(P) |=Y ∩At(P) P Y ∩At(P). That is, the third condition

of the definition of an SE-model holds for (X, Y) if and only if it holds for (X∩At(P), Y ∩

At(P)).

Lemma 3.2.6. Let P be a monotone-constraint program such that At(P) is finite. Then

for every (X, Y) ∈ SE(P) such that X 6= Y , the set

{X ′ : X ⊆ X ′ ⊆ Y, X ′ 6= Y, (X ′, Y) ∈ SE(P)} (3.3)

has a maximal element.

39

Proof. If At(P) ∩ X = At(P) ∩ Y , then for every element y ∈ Y \ X , Y \ {y} is

a maximal element of the set (3.3). Indeed, since (X, Y) ∈ SE(P), by Lemma 3.2.5,

(X ∩ At(P), Y ∩ At(P)) ∈ SE(P). Since X ∩ At(P) = Y ∩ At(P) and y 6∈ At(P),

X ∩At(P) = (Y \ {y})∩At(P). Therefore, ((Y \ {y})∩At(P), Y ∩At(P)) ∈ SE(P).

Then from Lemma 3.2.5 and the fact Y \ {y} ⊆ Y , we have (Y \ {y}, Y) ∈ SE(P).

Therefore, Y \ {y} belongs to the set (3.3) and so it is a maximal element of this set.

Thus, let us assume that At(P)∩X 6= At(P)∩Y . Let us define X ′ = X∪(Y \At(P)).

Then X ⊆ X ′ ⊆ Y and X ′ 6= Y . Moreover, no element in X ′ \X belongs to At(P). That

is, X ′ ∩ At(P) = X ∩ At(P). Thus, by Lemma 3.2.5, (X ′, Y) ∈ SE(P) and so X ′

belongs to the set (3.3). Since Y \X ′ ⊆ At(P), by the finiteness of At(P) it follows that

the set (3.3) contains a maximal element containing X ′. In particular, it contains a maximal

element.

Theorem 14. Let P and Q be two monotone-constraint programs such that At(P)∪At(Q)

is finite. Then P ≡u Q if and only if UE(P) = UE(Q).

Proof. (⇐) Let D be an arbitrary set of atoms and Y be a stable model of P ∪ {rD}. Then

Y is a model of P ∪ {rD}. In particular, Y is a model of P and so (Y, Y) ∈ UE(P). It

follows that (Y, Y) ∈ UE(Q), too. Thus, Y is a model of Q. Since Y is a model of rD,

D ⊆ Y . Consequently, Y is a model of Q ∪ {rD} and thus, also of (Q ∪ {rD})Y .

Let X = Can((Q ∪ {rD})Y , Y). Then D ⊆ X ⊆ Y and, by Proposition 9, X is a

Y -maximal model of (Q ∪ {rD})Y . Consequently, X is a Y -maximal model of QY . Since

X ⊆ Y and Y |= Q, (X, Y) ∈ SE(Q).

Let us assume that X 6= Y . Then, by Lemma 3.2.6, there is a maximal set X ′ such that

X ⊆ X ′ ⊆ Y , X ′ 6= Y and (X ′, Y) ∈ SE(Q). It follows that (X ′, Y) ∈ UE(Q). Thus,

(X ′, Y) ∈ UE(P) and so X ′ |=Y P Y . Since D ⊆ X ′, X ′ |=Y (P ∪{rD})Y . We recall that

Y is a stable model of P ∪ {rD}. Thus, Y = Can((P ∪ {rD})Y , Y). By Proposition 9,

Y ⊆ X ′ and so we get X ′ = Y , a contradiction. It follows that X = Y and, consequently,

Y is a stable model of Q ∪ {rD}.

By symmetry, every stable model of Q ∪ {rD} is also a stable model of P ∪ {rD}.

40

(⇒) First, we note that (Y, Y) ∈ UE(P) if and only if Y is a model of P . Next, we note

that P and Q have the same models. Indeed, the argument used in the proof of Lemma

3.2.4 works also under the assumption that P ≡u Q. Thus, (Y, Y) ∈ UE(P) if and only if

(Y, Y) ∈ UE(Q).

Now let us assume that UE(P) 6= UE(Q). Let (X, Y) be an element of (UE(P) \

UE(Q)) ∪ (UE(Q) \ UE(P)). Without loss of generality, we can assume that (X, Y) ∈

UE(P) \ UE(Q). Since (X, Y) ∈ UE(P), it follows that

1. X ⊆ Y

2. Y |= P and, consequently, Y |= Q

3. X 6= Y (otherwise, by our earlier observations, (X, Y) would belong to UE(Q)).

Let R = (Q ∪ {rX})Y . Clearly, R is a Horn constraint program. Moreover, since

Y |= Q and X ⊆ Y , Y |= R. Thus, Can(R, Y) is defined. We have X ⊆ Can(R, Y) ⊆ Y .

We claim that Can(R, Y) 6= Y . Let us assume to the contrary that Can(R, Y) = Y . Then

Y ∈ St(Q ∪ {rX}). Hence, Y ∈ St(P ∪ {rX}), that is, Y = Can((P ∪ {rX})Y , Y).

By Proposition 9, Y is the least Y -maximal model of (P ∪ {rX})Y and X is a Y -maximal

model of (P ∪ {rX})Y (since (X, Y) ∈ SE(P), X |=Y P Y and so X |=Y (P ∪ {rX})Y ,

too). Consequently, Y ⊆ X and, as X ⊆ Y , X = Y , a contradiction.

Thus, Can(R, Y) 6= Y . By Proposition 9, Can(R, Y) is a Y -maximal model of

R. Since QY ⊆ R, it follows that Can(R, Y) is a Y -maximal model of QY and so

(Can(R, Y), Y) ∈ SE(Q). Since Can(R, Y) 6= Y , from Lemma 3.2.6 it follows that

there is a maximal set X ′ such that Can(R, Y) ⊆ X ′ ⊆ Y , X ′ 6= Y and (X ′, Y) ∈ SE(Q).

By the definition, (X ′, Y) ∈ UE(Q). Since (X, Y) /∈ UE(Q). X 6= X ′. Consequently,

since X ⊆ X ′, X ′ 6= Y and (X, Y) ∈ UE(P), (X ′, Y) /∈ UE(P).

Thus, (X ′, Y) ∈ UE(Q) \ UE(P). By applying now the same argument as above to

(X ′, Y) we show the existence of X ′′ such that X ′ ⊆ X ′′ ⊆ Y , X ′ 6= X ′′, X ′′ 6= Y and

(X ′′, Y) ∈ SE(P). Consequently, we have X ⊆ X ′′, X 6= X ′′ and Y 6= X ′′, which

contradicts the fact that (X, Y) ∈ UE(P). It follows then that UE(P) = UE(Q).

41

Example 15. Let P = {1{p, q} ← not(2{p, q})}, and Q = {p← not(q), q ← not(p)}.

Then P and Q are strongly equivalent. We note that both programs have {p}, {q}, and

{p, q} as models. Furthermore, we can verify that ({p}, {p}), ({q}, {q}), ({p}, {p, q}),

({q}, {p, q}), ({p, q}, {p, q}) and (∅, {p, q}) are “all” SE-models of the two programs 2.

Thus, by Theorem 13, P and Q are strongly equivalent.

We also observe that the first five SE-models are precisely UE-models of P and Q.

Therefore, by Theorem 14, P and Q are also uniformly equivalent.

It is possible for two monotone-constraint programs to be uniformly but not strongly

equivalent. If we add rule p ← to P , and rule p ← q to Q, then the two resulting pro-

grams, say P ′ and Q′, are uniformly equivalent. However, the two new programs are not

strongly equivalent. The programs P ′ ∪ {q ← p} and Q′ ∪ {q ← p} have different stable

models. Another way to show that P ′ and Q′ are not strongly equivalent is by observing

that (∅, {p, q}) is an SE-model of Q′ but not an SE-model of P ′. 4

3.3 From mac-programs to logic theories

3.3.1 Fages’ Lemma for mac-programs

In general, supported models and stable models of a logic program (both in the normal

case and the monotone-constraint case) do not coincide. Fages Lemma [50] (later extended

by Erdem and Lifschitz [48]), establishes a sufficient condition under which a supported

model of a normal logic program is stable. In this section, we show that Fages Lemma

extends to programs with monotone constraints.

Definition 21. A monotone-constraint program P is called tight on a set M ⊆ At(P)

of atoms if there exists a mapping λ from M to ordinals such that for every rule r =

A ← A1, . . . , Ak,not(Ak+1), . . . ,not(Am) in P (M), if X is the domain of A and Xi the

domain of Ai, 1 ≤ i ≤ k, then for every x ∈ M ∩ X and for every a ∈ M ∩
⋃k

i=1 Xi,

λ(a) < λ(x).

2From Lemma 3.2.5 and Theorem 13, it follows that only those SE-models that contain atoms only from
At(P) ∪At(Q) are the ones that decide if P and Q are strongly equivalent.

42

We now show that tightness provides a sufficient condition for a supported model to be

stable. In order to prove a general result, we first establish it in the Horn case.

Lemma 3.3.1. Let P be a Horn monotone-constraint program and let M be a supported

model of P . If P is tight on M , then M is a stable model of P .

Proof. Let M be an arbitrary supported model of P such that P is tight on M . Let λ be a

mapping showing the tightness of P on M . We show that for every ordinal α and for every

atom x ∈M such that λ(x) ≤ α, x ∈ Can(P, M). We proceed by induction.

For the basis of the induction, let us consider an atom x ∈ M such that λ(x) = 0.

Since M is a supported model for P and x ∈ M , there exists a rule r ∈ P (M) such

that x ∈ hset(r). Moreover, since P is tight on M , for every A ∈ bd(r) and for every

y ∈ Dom(A) ∩M , λ(y) < λ(x) = 0. Thus, for every A ∈ bd(r), Dom(A) ∩M = ∅.

Since M |= bd(r) and since P is a Horn monotone-constraint program, it follows that

∅ |= bd(r). Consequently, hset(r) ∩M ⊆ Can(P, M) and so x ∈ Can(P, M).

Let us assume that the assertion holds for every ordinal β < α and let us consider x ∈

M such that λ(x) = α. As before, since M is a supported model of P , there exists a rule

r ∈ P (M) such that x ∈ hset(r). By the assumption, P is tight on M and, consequently,

for every A ∈ bd(r) and for every y ∈ Dom(A) ∩ M , λ(y) < λ(x) = α. By the

induction hypothesis, for every A ∈ bd(r), Dom(A)∩M ⊆ Can(P, M). Since P is a Horn

monotone-constraint program, Can(P, M) |= bd(r). By Proposition 5, hset(r) ∩M ⊆

Can(P, M) and so x ∈ Can(P, M).

It follows that M ⊆ Can(P, M). By the definition of a canonical computation, we

have Can(P, M) ⊆ M . Thus, M = Can(P, M). By Proposition 8, M is a stable model

of P .

Given this lemma, the general result follows easily.

Theorem 16. Let P be a monotone-constraint program and let M be a supported model

of P . If P is tight on M , then M is a stable model of P .

Proof. One can check that if M is a supported model of P , then it is a supported model

of the reduct PM . Since P is tight on M , the reduct PM is tight on M , too. Thus, M is

43

a stable model of PM (by Lemma 3.3.1) and, consequently, a derivable model of PM (by

Proposition 8). It follows that M is a stable model of P .

We give a tight mac-program in the following example.

Example 17. Let P be the following mac-program:

({a, b}, {{a}, {b}, {a, b}})← ({b}, {{b}})

({a}, {{a}})←.

Let M = {a}. It is clear that M is a supported model of P : 1) M is a model of P ;

and 2) M is supported by the second rule. Moreover, we can check that P is tight on M .

Indeed, we take λ(a) = 0, and λ(b) = 1. Then it is the mapping that satisfies the conditions

in Definition 21. Therefore, by Theorem 16, M is a stable model of P .

Now by the definition of a stable model of an mac-program, we can also verify that M

is indeed a stable model of P . 4

However, Theorem 16 is only a sufficient condition of supported models being stable.

Here is an example in which the program is not tight on a supported model M . Yet M is a

stable model of the program.

Example 18. Let P be the following mac-program:

A← B

C ←

B ←

where A = ({a, b}, {{a}, {b}, {a, b}}), B = ({b}, {{b}}), and C = ({a}, {{a}}).

Let M = {a, b}. Then we can check that M is a supported model and a stable model

of P . However, since atom b occurs both in M ∩Dom(A) and M ∩ dom(B), no mappings

could satisfy all the conditions in Definition 21 for the first rule. Therefore, P is not tight

on M . 4

44

3.3.2 Completion of mac-programs

A completion of a normal logic program [18] is a propositional theory whose models

are precisely the supported models of the program. Thus, supported models of normal

logic programs can be computed by means of SAT solvers. Under some conditions, for

instance, when the assumptions of Fages Lemma hold, supported models are stable. Thus,

computing models of the completion can yield stable models, an idea implemented in the

first version of cmodels software [7].

Our goal is to extend the concept of the completion to programs with monotone con-

straints. The completion, as we define it, retains much of the structure of monotone-

constraint rules. In this section we define the completion and prove a result relating sup-

ported models of programs to models of the completion. We discuss extensions of this

result in the next section and their practical computational applications in Section 3.5.

To define the completion, we first introduce an extension of propositional logic with

monotone constraints, a formalism we denote by PLmc . A formula in the logic PLmc is an

expression built from monotone constraints by means of boolean connectives ∧, ∨ and their

infinitary counterparts (we show why we need infinitary conjunctions and disjunctions in

a moment), → and ¬. The notion of a model of a constraint, which we discussed earlier,

extends in a standard way to the class of formulas in the logic PLmc . We use two symbols

> and ⊥ to denote PLmc formulas that are satisfied by every truth assignment and that

cannot be satisfied by any truth assignment, respectively.

For a set L = {A1, . . . , Ak,not(Ak+1), . . . ,not(Am)} of literals, we define

L∧ = A1 ∧ . . . ∧ Ak ∧ ¬Ak+1 ∧ . . . ∧ ¬Am.

Let P be a monotone-constraint program. We form the completion of P , denoted Comp(P),

as follows:

1. For every rule r ∈ P we include in Comp(P) a PLmc formula

[bd(r)]∧ → hd(r)

45

2. For every atom x ∈ At(P), we include in Comp(P) a PLmc formula

({x}, {x})→
∨
{[bd(r)]∧ : r ∈ P, x ∈ hset(r)}

(When the set of rules in P is infinite, the disjunction may be infinitary).

The following theorem generalizes a fundamental result on the program completion

from normal logic programming [18] to the case of programs with monotone constraints.

Theorem 19. Let P be a monotone-constraint program. A set M ⊆ At(P) is a supported

model of P if and only if M is a model of Comp(P).

Proof. (⇒) Let us suppose that M is a supported model of P . Then M is a model of P ,

that is, for each rule r ∈ P , if M |= bd(r) then M |= hd(r). Since M |= bd(r) if and only

if M |= [bd(r)]∧, it follows that all formulas in Comp(P) of the first type are satisfied by

M .

Moreover, since M is a supported model of P , M ⊆ hset(P (M)). That is, for every

atom x ∈ M , there exists at least one rule r in P such that x ∈ hset(r) and M |= bd(r).

Therefore, all formulas in Comp(P) of the second type are satisfied by M , too.

(⇐) Let us now suppose that M is a model of Comp(P). Since M |= bd(r) if and only if

M |= [bd(r)]∧, and since M satisfies formulas of the first type in Comp(P), M is a model

of P .

Let x ∈ M . Since M satisfies the formula x →
∨
{[bd(r)]∧ : r ∈ P, x ∈ hset(r)}, it

follows that M satisfies
∨
{[bd(r)]∧ : r ∈ P, x ∈ hset(r)}. That is, there is r ∈ P such that

M satisfies [bd(r)]∧ (and so bd(r), too) and x ∈ hset(r). Thus, x ∈ hset(P (M)). Hence,

M is a supported model of P .

We observe that for the material in this section it is not necessary to require that con-

straints appearing in the bodies of program rules be monotone. However, since we are only

interested in this case, we adopt the monotonicity assumption here, as well.

We now give an example of the completion of an mac-program.

Example 20. Let P be the mac-program containing the following rules:

A← B,not(C)

46

B ← D,not(E)

where A = ({a, b, c}, {{a, b}, {a, b, c}}), B = ({a, b}, {{a}, {b}, {a, b}}), C = ({d, e},

{{d, e}}), D = ({b, d}, {{b, d}}), and E = ({c, d, e}, {{c, d}, {c, e}, {c, d, e}}).

Atom a and b occur in the heads of both rules. Atom c only occurs in the head of the

first rule. Atom d and e do not occur in the heads of either rule.

Therefore, the completion Comp(P) contains the following PLmc formulas:

B ∧ ¬C → A

D ∧ ¬E → B

({a}, {a})→ (B ∧ ¬C) ∨ (D ∧ ¬E)

({b}, {b})→ (B ∧ ¬C) ∨ (D ∧ ¬E)

({c}, {c})→ (B ∧ ¬C)

({d}, {d})→ ⊥

({e}, {e})→ ⊥

Since d and e do not occur in the heads of either rule of P , the disjunctions on the

right-hand side of the last two formulas are empty. Since empty disjunctions cannot be

satisfied by any truth assignment, we replace them with ⊥ in those two formulas. 4

3.3.3 Loop formulas for mac-programs

The completion alone is not quite satisfactory as it relates supported, not stable, models

of monotone-constraint programs with models of PLmc theories. Loop formulas, proposed

by Lin and Zhao [81], provide a way to eliminate those supported models of normal logic

programs that are not stable. Thus, they allow us to use SAT solvers to compute stable

models of arbitrary normal logic programs and not only those for which supported and

stable models coincide.

We now extend this idea to monotone-constraint programs. In this section, we restrict

our considerations to programs P that are finitary, that is, At(P) is finite. This restriction

implies that monotone constraints that appear in finitary programs have finite domains.

47

Let P be a finitary monotone-constraint program. The positive dependency graph of

P is the directed graph GP = (V, E), where V = At(P) and 〈u, v〉 is an edge in E if there

exists a rule r ∈ P such that u ∈ hset(r) and v ∈ Dom(A) for some monotone constraint

A ∈ bd(r). We note that positive dependency graphs of finitary programs are finite.

Example 21. Let P be the following mac-program:

({a, b}, {{a}, {b}, {a, b}})← ({b, c}, {{b, c}})

({c}, {{c}})← ({a, d}, {{a, d}})

({d}, {{d}})← ({e}, {{e}})

({e}, {∅, {e}})←

The positive dependency graph of P is shown in Figure 3.1. 4

a

b c

de

Figure 3.1: Positive dependency graph

Let G = (V, E) be a directed graph. A set L ⊆ V is a loop in G if the subgraph of G

induced by L is strongly connected. A loop is maximal if it is not a proper subset of any

other loop in G. Thus, maximal loops are vertex sets of strongly connected components of

G. A maximal loop is terminating if there is no edge in G from L to any other maximal

loop.

48

Following Example 21, we observe that (b), (a, b, c), and (a, c) are the loops in the

positive dependency graph of P . Loop (a, b, c) is a maximal and terminating loop as well.

These concepts can be extended to the case of programs. By a loop (maximal loop,

terminating loop) of a monotone-constraint program P , we mean the loop (maximal loop,

terminating loop) of the positive dependency graph GP of P . We observe that every finitary

monotone-constraint program P has a terminating loop, since GP is finite.

Let X ⊆ At(P). By GP [X] we denote the subgraph of GP induced by X . We observe

that if X 6= ∅ then every loop of GP [X] is a loop of GP .

Let P be a monotone-constraint program P . For every model M of P (in particular, for

every model M of Comp(P)), we define M− = M \ Can(PM , M). Since M is a model

of P , M is a model of PM . Thus, Can(PM , M) is well defined and so is M−.

Lemma 3.3.2. Let P be a monotone-constraint program and M a model of Comp(P). If

M− 6= ∅, then there is a terminating loop contained in GP [M−].

Proof. Let a ∈ M−. Since M− ⊆ M and M is a supported model of P , there is a rule

r ∈ P (M) such that a ∈ hset(r) and M |= bd(r). Let r′ be a rule obtained from r by

removing from the body of r all negated constraints. Since r ∈ P (M), r′ ∈ PM .

We have a ∈ M \ Can(PM , M). By Proposition 5, Can(PM , M) 6|= bd(r′). Let

A ∈ bd(r′) be such that Can(PM , M) 6|= A. Since M |= A, M ∩ Dom(A) 6= Dom(A) ∩

Can(PM , M). Thus, Dom(A) ∩M− 6= ∅ and so the outdegree of a in GP [M−] is greater

than 0.

Since a is an arbitrary element of M− and since GP [M−] has only finitely many ver-

tices, there exists a loop in GP [M−]. By finiteness of GP [M−] again, there also exists a

terminating loop in GP [M−].

For every loop in the graph GP we now define the corresponding loop formula. First,

for a constraint A = (X, C) and a set L ⊆ At , we set A|L = (X, {Y ∈ C : Y ∩ L = ∅})

and call A|L the restriction of A to L. Next, let r be a monotone-constraint rule, say

r = A← A1, . . . , Ak,not(Ak+1), . . . ,not(Am).

49

If L ⊆ At , then define a PLmc formula βL(r) by setting

βL(r) = A1|L ∧ . . . ∧ Ak |L ∧ ¬Ak+1 ∧ . . . ∧ ¬Am.

Let L be a loop of a monotone-constraint program P . Then, the loop formula for L,

denoted by LP (L), is the PLmc formula

LP (L) =
∨
{C(a) : a ∈ L} →

∨
{βL(r) : r ∈ P and L ∩ hset(r) 6= ∅}

(we recall that we use the convention to write a for the constraint C(a) = ({a}, {{a}}). A

loop completion of a finitary monotone-constraint program P is the PLmc theory

LComp(P) = Comp(P) ∪ {LP (L) : L is a loop in GP}.

In Example 21, we take M = {a, b, c, d, e}. Clearly M is a model of P . Can(PM , M) =

{d, e}. Therefore, GP [M−] is not empty. Moreover, (a, b, c) forms a terminating loop in

GP [M−]. The loop formula for L = {a, b, c} is

LP (L) = (C(a) ∨ C(b) ∨ C(c))→ ((∅, {∅}) ∨ ({d}, {∅}))

where C(a), C(b), and C(c) in the formula denote constraints ({a}, {{a}}), ({b}, {{b}}),

and ({c}, {{c}}) respectively. We observe that ((∅, {∅}) ∨ ({d}, {∅})) cannot be satisfied

since both constraints are inconsistent. Therefore, in order to satisfy this formula, we must

not satisfy a ∨ b ∨ c. Since any supported model of P that contains atoms a, b, and c is

not stable, this loop formula actually excludes all such supported models. This observation

motivates us to use loop formulas to filter out non-stable supported models of P .

Formally, we have the following theorem, which exploits the concept of a loop formula

to provide a necessary and sufficient condition for a model being a stable model.

Theorem 22. Let P be a finitary monotone-constraint program. A set M ⊆ At(P) is a

stable model of P if and only if M is a model of LComp(P).

Proof. (⇒) Let M be a stable model of P . Then M is a supported model of P and, by

Theorem 19, M |= Comp(P).

50

Let L be a loop in P . If M ∩ L = ∅ then M |= βL(r). Thus, let us assume that

M ∩ L 6= ∅. Since M is a stable model of P , M is a derivable model of PM , that is,

M = Can(PM , M). Let (Xn)n=0,1,... be the canonical PM -derivation with respect to M

(since we assume that P is finite and each constraint in P has a finite domain, P -derivations

reach their results in finitely many steps). Since Can(PM , M) ∩ L = M ∩ L 6= ∅, there is

a smallest index n such that Xn ∩ L 6= ∅. In particular, it follows that n > 0 (as X0 = ∅)

and L ∩Xn−1 = ∅.

Since Xn = hset(P (Xn−1) ∩ M and Xn ∩ L 6= ∅, there is a rule r ∈ PM(Xn−1)

such that hset(r) ∩ L 6= ∅, that is, such that L ∩ hset(r)) 6= ∅. Let r′ be a rule in P ,

which contributes r to PM . Then, for every literal not(A) ∈ bd(r′), M |= not(A). Let

A ∈ bd(r′). Then A ∈ bd(r) and so Xn−1 |= A. Since Xn−1 ∩ L = ∅, Xn−1 |= A|L,

too, By the monotonicity of A|L, M |= A|L. Thus, M |= βL(r′). Since hset(r′) ∩ L 6= ∅,

L ∩ hset(r)) 6= ∅ and so M |= LP (L). Thus, M |= LComp(P).

(⇐) Let us consider a set M ⊆ At(P) such that M is not a stable model of P . If M is not a

supported model of P that M 6|= Comp(P) and so M is not a model of LComp(P). Thus,

let us assume that M is a supported model of P . It follows that M− 6= ∅. Let L ⊆ M− be

a terminating loop for GP [M−].

Let r′ be an arbitrary rule in P such that L ∩ hset(r′)) 6= ∅, and let r be the rule ob-

tained from r′ by removing negated constraints from its body. Now, let us assume that

M |= βr′(L). It follows that for every literal not(A) ∈ bd(r′), M |= not(A). Thus,

r ∈ PM . Moreover, since L is a terminating loop for GP [M−], for every constraint

A ∈ bd(r′), Dom(A) ∩M− ⊆ L. Since M |= A|L, it follows that Can(PM , M) |= A.

Consequently, hset(r′)∩L ⊆ hset(r′)∩M ⊆ Can(PM , M) and so L∩Can(PM , M) 6= ∅,

a contradiction. Thus, M 6|=
∨
{βr′(L) : r′ ∈ P and L ∩ hset(r′)) 6= ∅}. Since M |=

∨
L,

it follows that M 6|= LP (L) and so M 6|= LComp(P).

The following result follows directly from the proof of Theorem 22 and provides us

with a way to filter out specific non-stable supported models from Comp(P).

Theorem 23. Let P be a finitary monotone-constraint program and M a model of Comp(P).

51

If M− is not empty, then M violates the loop formula of every terminating loop of GP [M−].

Finally, we point out that, Theorem 22 does not hold when a program P contains in-

finitely many rules. Here is a counterexample:

Let P be the set of following rules:

({a0}, {{a0}})← ({a1}, {{a1}})

({a1}, {{a1}})← ({a2}, {{a2}})

· · ·

({an}, {{an}})← ({an+1}, {{an+1}})

· · ·

Let M = {a0, . . . , an, . . .}. Then M is a supported model of P . The only stable model

of P is ∅. However, M− = M \ ∅ does not contain any terminating loop. The problem

arises because there is an infinite simple path in GP [M−]. Therefore, GP [M−] does not

have a sink, yet it does not have a terminating loop either.

3.4 Programs with convex constraints

We now discuss programs with convex constraints, which are closely related to programs

with monotone constraints. Programs with convex constraints are of interest as they do

not involve explicit occurrences of the default negation operator not, yet are as expres-

sive as programs with monotone-constraints. Moreover, they directly subsume an essential

fragment of the class of lparse-programs [125].

A constraint (X, C) is convex if for every W, Y, Z ⊆ X such that W ⊆ Y ⊆ Z and

W, Z ∈ C, we have Y ∈ C. A constraint rule (3.1) built of convex constraints only is a

convex-constraint rule. Similarly, a constraint program built of convex-constraint rules is

a convex-constraint program.

The concept of a model discussed in Section 3.1 applies to convex-constraint programs.

To define supported and stable models of convex-constraint programs, we view them as

special programs with monotone constraints.

52

To this end, we define the upward and downward closures of a constraint A = (X, C)

to be constraints A+ = (X, C+) and A− = (X, C−), respectively, where

C+ = {Y ⊆ X : for some W ∈ C, W ⊆ Y }, and

C− = {Y ⊆ X : for some W ∈ C, Y ⊆ W}.

We note that the constraint A+ is monotone. We call a constraint (X, C) antimonotone if

C is closed under subset, that is, for every W, Y ⊆ X , if Y ∈ C and W ⊆ Y then W ∈ C.

It is clear that the constraint A− is antimonotone.

The upward and downward closures allow us to represent any convex constraint as the

“conjunction” of a monotone constraint and an antimonotone constraint.Namely, we have

the following property of convex constraints.

Proposition 10. A constraint (X, C) is convex if and only if C = C+ ∩ C−.

Proof. (⇐) Let us assume that C = C+ ∩ C−and let us consider a set M such that M ′ ⊆

M ⊆ M ′′, where M ′, M ′′ ∈ C. it follows that M ′ ∈ C+ and M ′′ ∈ C−. Thus, M ∈ C+

and M ∈ C−. Consequently, M ∈ C, which implies that (X, C) is convex.

(⇒) The definitions directly imply that C ⊆ C+ and C ⊆ C−. Thus, C ⊆ C+ ∩ C−.

Let us consider M ∈ C+ ∩ C−. Then there are sets M ′, M ′′ ∈ C such that M ′ ⊆ M and

M ⊆M ′′. Since C is convex, M ∈ C. Thus, C+ ∩ C− ⊆ C and so C = C+ ∩ C−.

This proposition suggests an encoding of convex-constraint programs as monotone-

constraint programs. To present it, we need more notation. For a constraint A = (X, C),

we call the constraint (X, C), where C = P(X)\C, the dual constraint for A. We denote

it by A. It is a direct consequence of the definitions that a constraint A is monotone if and

only if its dual A is antimonotone.

Let C be a convex constraint. We set mc(C) = {C} if C is monotone. We set mc(C) =

{not(C)}, if C is antimonotone. We define mc(C) = {C+,not(C−)}, if C is neither

monotone nor antimonotone. Clearly, C and mc(C) have the same models.

Let P be a convex-constraint program. By mc(P) we denote the program with mono-

tone constraints obtained by replacing every rule r in P with a rule r′ such that

hd(r′) = hd(r)+ and bd(r′) =
⋃
{mc(A) : A ∈ bd(r)}

53

and, if hd(r) is not monotone, also with an additional rule r′′ such that

hd(r′′) = (∅, ∅) and bd(r′′) = {hd(r)−} ∪ bd(r′).

By our observation above, all constraints appearing in rules of mc(P) are indeed monotone,

that is, mc(P) is a program with monotone constraints.

It follows from Proposition 10 that M is a model of P if and only if M is a model of

mc(P). We extend this correspondence to other semantics by defining M to be a supported

(stable) model of a convex-constraint program P if M is a supported (stable) model of

mc(P).

With these definitions, monotone-constraint programs are (almost) directly convex-

constraint programs. Namely, we note that monotone and antimonotone constraints are

convex. Next, we observe that if A is a monotone constraint, the expression not(A) has

the same meaning as the antimonotone constraint A in the sense that for every interpretation

M , M |= not(A) if and only if M |= A.

Let P be a monotone-constraint program. By cc(P) we denote the program obtained

from P by replacing literals not(A) in the bodies of rules in P with constraints A. One

can show that programs P and cc(P) have the same models, supported models and stable

models. In fact, for every monotone-constraint program P we have P = mc(cc(P)).

Remark. Another consequence of our discussion is that we can eliminate the default nega-

tion operator from the syntax at the price of allowing antimonotone constraints and using

antimonotone constraints as negated literals. 2

Due to the correspondences established above, one can extend to convex-constraint pro-

grams all concepts and results we discussed earlier in the context of monotone-constraint

programs. In many cases, we can state these concepts and results directly in the language

of convex-constraints. The most important for us are the notions of the completion and loop

formulas, as they lead to new algorithms for computing stable models of lparse-programs.

Therefore, we now discuss them in some detail.

As we just mentioned, we could use Comp(mc(P)) as a definition of the completion

Comp(P) for a convex-constraint logic program P . Under this definition Theorems 25 ex-

54

tends to the case of convex-constraint programs. However, Comp(mc(P)) involves mono-

tone constraints and their negations and not convex constraints that appear in P . Therefore,

we propose another approach, which preserves convex constraints of P .

To this end, we first extend the logic PLmc with convex constraints. In this extension,

which we denote by PLcc and refer to as the propositional logic with convex-constraints,

formulas are boolean combinations of convex constraints. The semantics of such formulas

is given by the notion of a model obtained by extending over boolean connectives the

concept of a model of a convex constraint.

Thus, the only difference between the logic PLmc , which we used to define the comple-

tion and loop completion for monotone-convex programs and the logic PLcc is that the for-

mer uses monotone constraints as building blocks of formulas, whereas the latter is based

on convex constraints. In fact, since monotone constraints are special convex constraints,

the logic PLmc is a fragment of the logic PLcc .

Let P be a convex-constraint program. The completion of P , denoted by Comp(P), is

the following set of PLcc formulas:

1. For every rule r ∈ P we include in Comp(P) a PLcc formula

[bd(r)]∧ → hd(r)

(as before, for a set of convex constraints L, L∧ denotes the conjunction of the con-

straints in L)

2. For every atom x ∈ At(P), we include in Comp(P) a PLcc formula

x→
∨
{[bd(r)]∧ : r ∈ P, x ∈ hset(r)}

(again, we note that when the set of rules in P is infinite, the disjunction may be

infinitary).

One can now show the following theorem.

Theorem 24. Let P be a convex-constraint program and let M ⊆ At(P). Then M is a

supported model of P if and only if M is a model of Comp(P).

55

Proof. (Sketch) By the definition, M is a supported model of P if and only if M is a

supported model of mc(P). It is a matter of routine checking that Comp(mc(P)) and

Comp(P) have the same models. Thus the assertion follows from Theorem 19.

Next, we restrict attention to finitary convex-constraint programs, that is, programs

with finite set of atoms, and extend to this class of programs the notions of the positive

dependency graph and loops. To this end, we exploit its representation as a monotone-

constraint program mc(P). That is, we define the positive dependency graph, loops and

loop formulas for P as the positive dependency graph, loops and loop formulas of mc(P),

respectively. In particular, L is a loop of P if and only if L is a loop of mc(P) and the

loop formula for L, with respect to a convex-constraint program P , is defined as the loop

formula LP (L) with respect to the program mc(P)3. We note that since loop formulas

for monotone-constraint programs only modify non-negated literals in the bodies of rules

and leave negated literals intact, there seems to be no simple way to extend the notion of

a loop formula to the case of a convex-constraint program P without making references to

mc(P).

We now define a loop completion of a finitary convex-constraint program P as the

PLcc theory

LComp(P) = Comp(P) ∪ {LP (L) : L is a loop of P}.

We have the following theorem that provides a necessary and sufficient condition for a

set of atoms to be a stable model of a convex-constraint program.

Theorem 25. Let P be a finitary convex-constraint program. A set M ⊆ At(P) is a stable

model of P if and only if M is a model of LComp(P).

Proof. (Sketch) Since M is a stable model of P if and only of M is a stable model of

mc(P), Theorem 22 implies that M is a stable model of P if and only if M is a stable

model of LComp(mc(P)). It is a matter of routine checking that LComp(mc(P)) and

LComp(P) have the same models. Thus, the result follows.

3There is one minor simplification one might employ. For a monotone constraint A, ¬A and A are
equivalent and A is antimonotone and so convex. Thus, we can eliminate the operator ¬ from loop formulas
of convex-constraint programs by writing A instead of ¬A.

56

In a similar way, Theorem 23 implies the following result for convex-constraint pro-

grams.

Theorem 26. Let P be a finitary convex-constraint program and M a model of Comp(P).

If M− is not empty, then M violates the loop formula of every terminating loop of GP [M−].

We emphasize that one could simply use LComp(mc(P)) as a definition of the loop

completion for a convex-constraint logic program. However, our definition of the comple-

tion component of the loop completion retains the structure of constraints in a program P ,

which is important when using loop completion for computation of stable models, the topic

we address in the next section.

3.5 Computing stable models of lparse-programs via PLwa solvers

In this section, we show how to use the theoretical results we present in Section 3.3.2,

3.3.3 and 3.4 to design and implement a new system for computing stable models of logic

programs with weight atoms. The idea came from the development of solvers such as

cmodels [7] and assat [81]. The difference between our implementation and cmodles/assat

is that, we do not compile away weight atoms from the program. Our approach is sound

because we have established the relationship between convex constraint programs and the

logic PLcc . Furthermore, existing implementations that can deal with theories in some

instantiation of the logic PLcc make our approach feasible in practice.

We consider two instantiations of logic PLcc: one extends propositional logic with

weight atoms; the other is the logic of pseudo-boolean constraints that roots in integer

programming.

3.5.1 lparse-programs as convex constraint programs

We define the semantics of a w-atom in Chapter 2. It follows that a w-atom l[a1 =

w1, . . . , ak = wk]u can be identified with a constraint (X, C), where X = {a1, . . . , ak}

and

C = {Y ⊆ X : l ≤
∑
{wi : ai ∈ Y } ≤ u}.

57

Since wi’s are all non-negative, (X, C) is convex. Therefore, weight atoms represent a

class of convex constraints and lparse-programs syntactically are a class of programs with

convex constraints.

Marek, Niemelä and Truszczyński [97] and Marek and Truszczyński [102] have showed

that we can encode lparse-programs as programs with monotone constraints so that the con-

cept of a stable model is preserved. The transformation used there coincides with the en-

coding mc described in the previous section, when we restrict the latter to lparse-programs.

Thus, we have the following theorem.

Theorem 27. Let P be an lparse-program. A set M ⊆ At is a stable model of P according

to Definition 9 if and only if M is a stable model of P according to Definition 18 (when P

is viewed as a convex-constraint program).

It follows that to compute stable models of lparse-programs we can use the results

obtained earlier in this chapter, specifically the results on program completion and loop

formulas for convex-constraint programs.

3.5.2 Propositional logic extended with weight constraints

In Section 3.4, we extend the notions of completion and loop formulas to convex-constraint

programs. Both completion and loop formulas are formulas in logic PLcc . When we instan-

tiate convex-constraint programs to lparse-programs, correspondingly we need to define an

instantiation of logic PLcc where convex constraints are w-atoms. We refer to this logic the

propositional logic with weight atoms (or PLwa , for short).

While it can be given a more general treatment, in this thesis we focus only on a certain

class of formulas and theories.

Definition 22. A clause in logic PLwa is an expression of the form

A1 ∨ . . . ∨ An (3.4)

where each Ai is a w-atom.

58

We point out that, even though we do not explicitly use negations in a clause, a c-atom

[a]0 is equivalent to the negative literal ¬a.

A theory of the logic PLwa is any set of clauses.

The notion of satisfiability extends in a standard way to clauses and theories. We write

interchangingly “is a model of” and “satisfies”. We also write I |= E, when I is a model

of an atom, w-atom, clause or theory E.

We propose logic PLwa not only because the completion and loop formulas of lparse-

programs are given in this logic, but also because some problems can be naturally and

concisely represented as theories in this logic. Allowing boolean combinations of w-atoms

in this logic is particularly useful.

The following problem, a slight generalization of the dominating-set problem we have

discussed in Chapter 1, illustrates the usefulness of PLwa-clauses in modeling.

Weighted dominating-set problem. Let G = (V, E) be a directed weighted graph, where

each edge (x, y) has a weight wx,y ≥ 0. Given an integer w, a set D ⊆ V of vertices of G

is w-dominating for G if for every vertex x ∈ V at least one of the conditions listed below

holds.

1. x ∈ D

2. the sum of weights of edges “from x to D” is at least w:

w ≤
∑

(x,y)∈E,y∈D wx,y

3. the sum of weights of edges “from D to x” is at least w:

w ≤
∑

(z,x)∈E,z∈D wz,x.

The following PLwa-theory encodes the problem of the existence of a w-dominating

set with at most k vertices. In the encoding we use atoms inx, x ∈ V , with the intended

meaning: vertex x is in a w-dominating set. The clauses of the theory are:

1. 1{inx} ∨W1 ∨W2, for every x ∈ V , where

W1 = w[iny = wx,y : (x, y) ∈ E], and

59

W2 = w[inz = wz,x : (z, x) ∈ E].

These clauses enforce the defining constraint for a w-dominating set.

2. {inx : x ∈ V }k.

This clause guarantees that a selected subset has at most k vertices. The constraint

that forms it is a cardinality constraint.

Pseudo-boolean constraint logic

Closely related to logic PLwa is the pseudo-boolean constraint logic, denoted by logic

PB , which roots in integer programming and operation research.

A pseudo-boolean constraint (PB-constraint, for short) is an integer-programming

constraint of the form

w1x1 + . . . + wkxk op u, (3.5)

where xi are integer variables, each with the domain {0, 1}, wi are integers, which we refer

to as weights, and l and u are integers called the bounds. Possible operators for op are

{≤,≥, =}.

An assignment v of 0s and 1s to x′is is a model of (or satisfies) the constraint (3.5) if

w1v(x1) + . . . + wkv(xk) op u holds.

By establishing the correspondence between integer values 0 and 1 on the one hand, and

truth values f and t, respectively, on the other, we can view integer 0-1 variables as proposi-

tional atoms. Furthermore, we can view PB -constraints as representations of propositional

formulas. Specifically, we say that a constraint (3.5) represents a propositional formula ϕ

(built of the same variables xi, but now interpreted as propositional atoms) if (3.5) and ϕ

have the same models (modulo the correspondence between {0, 1} and {f , t}). In particu-

lar, a PB -constraint

x1 + . . . + xk − y1 − . . .− ym ≥ 1−m

represents a propositional clause

x1 ∨ . . . ∨ xk ∨ ¬y1 ∨ . . . ∨ ¬ym.

60

Thus, PB -constraints generalize clauses, and sets of PB -constraints generalize proposi-

tional CNF theories. We call a set of PB constraints a pseudoboolean satisfiability (or

PB SAT) instance.

3.5.3 Transformation between PB-theories and PLwa -theories

Both logic PLwa and logic PB are our targets logic for the completion and loop formulas

of lparse-programs. Logic PLwa aligns better to lparse-programs since disjunctions of w-

atoms are allowed. On the other hand, more solvers are developed for theories in logic PB .

Therefore, it is useful to transform a PLwa-theory into a PB -theory and vice versa.

In this section, we define transformations between PB and PLwa theories. We set two

goals for the transformations: 1) they must transform theories from one side to “equivalent”

theories on the other side; and 2) they must not increase the size of theories “significantly”.

For the second goal, formally, we mean, if T is a theory and τ(T) is its translation, then

|τ(T)| = O(|T |c) for some constant c. In other words, the size of the transformation is

bounded by a polynomial in the size of the input theory. We define |T | as the sum of length

of all clauses/constraints in T .

Sometimes, in order to bound the growth of the size polynomially, we need to introduce

auxiliary new atoms into τ(T). Therefore, by “equivalence”, we mean the equivalence with

respect to At(T) That is, we discard the new atoms in models of τ(T) and use the projected

models to define equivalence. Formally we have the following definition.

Definition 23. Let T1 and T2 be two theories and A a set of atoms. We say T1 and T2 are

logically equivalent with respect to A, denoted by T1 ≡A T2, if {M ∩ A : M |= T1} =

{M ∩ A : M |= T2}.

From PB theories to PLwa theories

Given a PB -theory T , which consists of a set of PB -constraints of the form (3.5), we define

a transformation τ(T), whose result is a PLwa-theory that is equivalent to T with respect

to At(T). We note that we overload the variable symbols in the PB theory T so that they

represent propositional atoms in τ(T).

61

We rewrite a PB -constraint of the form (3.5) as follows:

− w1 × a1 + . . . +−wh × ah + wh+1 × ah+1 + . . . + wk × ak op b, (3.6)

where wi’s are positive integers, b is an integer, ai’s are propositional atoms, and op stands

for an element of {≤, <, >,≥}.

We take every PB -constraint of the form (3.6) from T . Let N =
∑h

i=1 wi and W =∑k
i=1 wi. We add to τ(T) the following set of PLwa-clauses:

l[a1 = w1, . . . , ak = wk]u, (3.7)

where

l =


0 if op ∈ {≤, <}

b + N if op ∈ {≥}
b + N + 1 if op ∈ {>}

u =


W if op ∈ {>,≥}

b + N if op ∈ {≤}
b + N − 1 if op ∈ {<}

and

1{ai, ai}1 (3.8)

for every i = 1, . . . , h.

In the transformation, atoms ai’s are new atoms. The last set of cardinality atoms define

these new atoms so that ai is true if and only if ai is false. In other words, ai represents the

dual literal of ai. With the help of the new atoms, we can remove all negative weights from

the original PB -constraint. Indeed, we observe that

−w1 × a1 + . . . +−wh × ah + wh+1 × ah+1 + . . . + wk × ak op b

is equivalent to

w1 × (1− a1) + . . . + wh × (1− ah) + wh+1 × ah+1 + . . . + wk × ak op (b +
h∑

i=1

wi).

Moreover, we can view (1 − ai) as a 0-1 variable whose value is always the dual of the

value of ai. Now we use ai, which are new variables that do not occur in T , to represent

(1− ai), we get the following PB -constraint, which again is equivalent to the original one:

w1 × a1 + . . . + wh × ah + wh+1 × ah+1 + . . . + wk × ak op (b +
h∑

i=1

wi).

62

Now all the weights in this PB -constraint are positive. It is clear that such a PB -constraint

is equivalent to the w-atom

l[a1 = w1, . . . , ak = wk]u,

where l and u are defined in (3.7). Then (3.8) defines the new atoms ai via a set of cardi-

nality atoms.

Finally, we observe that, for each PB -constraint in T , we introduce h + 1 unit clauses

that contain w-atoms in (3.7) and (3.8) into τ(T). Since h is bounded by |T |, the number of

clauses in τ(T) that represent one PB -constraint in T is bounded by |T |. Thus, the overall

size of τ(T) is bounded by |T |2.

From the argument above, the correctness of the following theorem is evident.

Theorem 28. Let T be a PB -theory. Then T and τ(T) are logically equivalent with respect

to At(T). Moreover, |τ(T)| = O(|T |2). When the size of PB -constraints in T is bounded

by a constant, then |τ(T)| = O(|T |).

We note that we use the term “equivalent” loosely here because logic PLwa and logic

PB use different assignments to define their semantics: interpretations for logic PLwa and

value assignments for logic PB . However, we can easily transform an interpretation into a

value assignment from variables to values 0 or 1 and vice versa: a variable receives value

1 if and only if the corresponding atom receives truth value t. Therefore, we use the term

“equivalent” based on this correspondence between interpretations and value assignments.

From PLwa theories to PB theories

Given a PLwa-theory T , we define the transformation δ(T), whose result is a PB theory

that is equivalent to T with respect to At(T), as follows. Again we overload propositional

atom symbols to represent 0-1 variables in PB -constraints.

For every PLwa-clause of the form (3.4) in T , where each Ai is a w-atom of the form

li[ai,1 = wi,1, . . . , ai,ki
= wi,ki

]ui, we include in δ(T) the following set of PB -constraints.

We use Wi =
∑ki

j=1 wi,j to denote the sum of all weights in the w-atom Ai.

63

x1 + · · ·+ xn ≥ 1 (3.9)

− xi + yi ≥ 0 (3.10)

− xi + zi ≥ 0 (3.11)

− yi +−zi + xi ≥ −1 (3.12)

− li × yi + wi,1 × ai,1 + · · ·+ wi,ki
× ai,ki

≥ 0 (3.13)

(li − 1−Wi)× yi + wi,1 × ai,1 + · · ·+ wi,ki
× ai,ki

≤ (li − 1) (3.14)

(Wi − ui)× zi + wi,1 × ai,1 + · · ·+ wi,ki
× ai,ki

≤ Wi (3.15)

(ui + 1)× zi + wi,1 × ai,1 + · · ·+ wi,ki
× ai,ki

≥ (ui + 1) (3.16)

for i = 1, . . . , n

In the PB -constraints, xi, yi and zi are auxiliary new atoms that do not occur in At(T)

(they also do not occur as auxiliary atoms for other PLwa-clauses).

The intuition is that, we first introduce atoms xi for w-atoms Ai in a PLwa-clause of the

form (3.4). Thus, clause (3.4) becomes the following one:

x1 ∨ . . . ∨ xn

where xi’s are propositional atoms. It is clear that such a propositional logic clause is

equivalent to the PB -constraint given in (3.9).

Next, we need to define the equivalence between xi and Ai. It is realized through PB -

constraints (3.10) to (3.16). To this end, we first introduce two new variables yi and zi

for each w-atom Ai in clause (3.4). The intuitive meaning of yi (and zi) is to represent the

lower bound (and upper bound) constraint of Ai. In other words, we establish the following

equivalence:

xi ≡ yi ∧ zi,

which translates to PB -constraints (3.10), (3.11), and (3.12).

64

Constraints (3.13) and (3.14) define the equivalence between yi and the lower bound

part of Ai. Constraint (3.13) becomes trivial (any valuation satisfies it) when yi gets value

0. On the other hand, when yi gets value 1, constraint (3.13) becomes

wi,1 × ai,1 + · · ·+ wi,ki
× ai,ki

≥ l.

Therefore, (3.13) ensures the following relationship

yi ⇒ l[ai,1 = wi,1, . . . , ai,ki
= wi,ki

].

Similarly, constraint (3.14) ensures that

l[ai,1 = wi,1, . . . , ai,ki
= wi,ki

]⇒ yi.

Thus, two together ensure that

yi ≡ l[ai,1 = wi,1, . . . , ai,ki
= wi,ki

].

That is, yi is equivalent to the lower bound part of Ai.

With similar reasoning, we see that zi is equivalent to the upper bound part of Ai.

Therefore, we capture the w-atom Ai by those PB -constraints.

Finally, let us take look at the size of δ(T). It is clear that the number of PB -constraints

we have in δ(T) for each PLwa-clause is 7×n+1. Since n is bounded by |T | (n is bounded

by the size of the longest clause in T), our translation is bounded by |T |2.

With the argument above, we prove the following theorem.

Theorem 29. Let T be a PLwa-theory. Then T and δ(T) are logically equivalent with

respect to At(T). Moreover, |δ(T)| = O(|T |2). When the size of clauses in T is bounded

by a constant, then |δ(T)| = O(|T |).

3.5.4 Computing stable models of lparse-programs

In this section we present an algorithm for computing stable models of lparse-programs.

We have shown that lparse-programs are convex constraint programs and their comple-

tions and loop formulas are theories in logic PLwa or logic PB . We now combine all these

65

theoretical results and create a new solver that computes stable models of lparse-programs

via PLwa or PB SAT solvers.

The SLS solvers that we present in Chapter 4 fit in this task well. Moreover, many

off-the-shelf PB SAT solvers can be applied as well [1, 45, 82, 96, 132].

The algorithm of pbmodels

We follow the approach proposed by Lin and Zhao [81]. As in that paper, we first compute

the completion of an lparse-program. Then, we iteratively compute models of the comple-

tion using a PB solver. Whenever a model is found, we test it for stability. If the model is

not a stable model of the program, we extend the completion by loop formulas identified in

Corollary 26. Often, adding a single loop formula filters out several models of Comp(P)

that are not stable models of P .

The work-flow is shown in Figure 3.2

The results given in the previous section ensure that our algorithm is correct. We present

it in Figure 3.3. We note that it may happen that in the worst case we need exponentially

many loop formulas [81] before we find the first stable model or we determine that no

stable models exist. However, that problem arises only rarely in practical situations4.

The implementation of pbmodels supports several PB solvers including satzoo [45],

pbs [1], wsatoip [132]. It also supports a program wsatcc [82] for computing models of

PLwa-theories. When this last program is used, the transformation, from “clausal” PLwa-

theories to pseudo-boolean theories is not needed. The first two of these four programs are

complete PB solvers. The latter two are local-search solvers based on wsat [123].

We output the message “no stable model found” in the first line of the loop and not

simply “no stable models exist” since in the case when A is a local-search algorithm, failure

to find a model of the completion (extended with loop formulas in iteration two and the

subsequent ones) does not imply that no models exist.

Copyright c© Lengning Liu 2006

4In fact, in many cases programs turn out to be tight with respect to their supported models. Therefore,
supported models are stable and no loop formulas are necessary at all.

66

completion
builder

PLwa / PB
solver

loop formula
constructor

stable model

PLwa theory

model

loop formula

lparse-program

pbmodels

stable

not stable

Figure 3.2: Work-flow of pbmodels

67

Input: P — an lparse-program;
A — a PB (or PLwa) solver

BEGIN
1. compute the completion Comp(P) of P ;
2. convert comp(P) to CNF theory T ;
3. if A is a PB solver, convert T to PB -theory;
4. do
5. if (solver A finds no models of T) output “no stable models found” and terminate;
6. M := a model of T found by A;
7. if (M is stable) output M and terminate;
8. compute the reduct PM of P with respect to M ;
9. compute the greatest stable model M ′, contained in M , of PM ;
10. M− := M \M ′;
11. find all terminating loops in M−;
12. compute loop formulas and convert them into the set T ′ of PLwa-clauses;
13. if A is a PB solver, convert T ′ into PB -constraints;
14. T := T ∪ T ′;
15. while (true);
END

Figure 3.3: Algorithm of pbmodels

68

Chapter 4

Stochastic Local Search in logic PLwa-theories

In this chapter, we focus on algorithms that find satisfying truth assignments for a PLwa-

theory. To be precise, we focus on stochastic local search algorithms. This research was

motivated by the results we obtained in Chapter 3, which lead us to a new solver that com-

putes stable models of lparse-programs via PB SAT solvers. We observe that the com-

pletion formula and the loop formulas of an lparse-program are defined in logic PLwa . In

order to deploy PB SAT solvers to compute models of PLwa-theories, we need to transform

PLwa-formulas into PB -theories, which are sets of PB -constraints. We use the transforma-

tion presented in Chapter 3. This transformation involves auxiliary new variables. In fact,

to avoid size explosion, this type of transformation often introduces new variables as well

as new clauses that correctly capture the connection between these new variables and the

concepts they represent. The extra variables and clauses cause overhead to the underlying

PB SAT solvers, especially local search solvers, to compute models. Therefore, we want

to design solvers that compute models of logic PLwa-theories directly. Moreover, because

PB -constraints have been used to model search problems directly in the formalism of 0-

1 integer programming and logic PLwa subsumes this formalism, developing direct PLwa

solvers has its own interest.

This Chapter is organized as follows: Section 4.1 introduces the stochastic local search

algorithm for theories in propositional logic. It is the basis on which our algorithms were

developed. Section 4.2 presents our stochastic local search algorithms that directly target

on PLwa theories.

Our work present in this chapter appears in Proceedings of CP-03 [82] and AAAI-06

[87].

69

INPUT: T - a logic theory
OUTPUT: I - a satisfying assignment of T , or no output
BEGIN
1. For i← 1 to Max -Tries , do
2. I ← randomly generated truth assignment;
3. For j ← 1 to Max -Flips , do
4. If I |= T then return I;
5. a← Heuristic(T, I);
6. I ← Flip(T, I, a);
7. End For of j
8. End For of i
END

Figure 4.1: Algorithm SLS -generic(T)

4.1 Stochastic local search algorithm in propositional logic

In this section we describe a class of stochastic local-search (or SLS for short) algorithms

designed to test satisfiability of theories in propositional logic. Stochastic local search was

first proposed by Selman et al. [123] and has received much attention in SAT community

because of its exceptional performance in solving some large satisfiable instances, which

are beyond the power of solvers based on DPLL algorithms. One limitation of SLS solvers

is that, they are incomplete, which means they may not be able to find a satisfying truth

assignment if there is indeed one. We want to point out that SLS solvers are sound, which

means whenever they report a satisfying truth assignment, it is a correct satisfying truth

assignment.

Now we introduce the basic structure of algorithms behind SLS solvers. The algorithm

executes Max -Tries independent tries. Each try starts in a randomly generated complete

truth assignment and consists of a sequence of up to Max -Flips flips, that is, local changes

to the current truth assignment. The algorithm terminates with a truth assignment that is a

model of the input theory, or with no output at all (even though the input theory may in fact

be satisfiable). We provide a detailed description of the algorithm SLS -generic in Figure

4.1.

70

The input T is a theory in some logic. In this section, we assume T is a theory in

propositional logic.

We point out that in the algorithm we use several parameters that, in the implementa-

tions, we enter from the command line. They are Max -Tries and Max -Flips . All these

parameters affect the performance of the program. We come back to this matter later in

Chapter 5.

The procedure Heuristic picks an atom from the theory. A typical heuristic function

has a greedy part and a random part. It uses some probability to determine whether to

follow the greedy part or the random part. It has been shown that the existence of a random

move is essential for the local search solvers to escape from the local minima.

The procedure Flip then flips the truth assignment to the atom returned from Heuristic.

We note that the procedure Flip may, in general, depend on the input theory T . It is not the

case in wsat and other similar algorithms but it is so in one of the algorithms we propose

later. Thus, we include T as one of the arguments of the procedure Flip.

To obtain a concrete implementation of the algorithm SLS -generic, the key is to define

a heuristic. Later in Section 4.2, we show that we can also extend the meaning of a flip. In

the following, we first introduce several implementations of SLS -generic that have been

proposed in the literature for CNF theories. They are categorized into two major families.

Namely, the gsat family and the walksat (wsat for short) family. They differ from each

other only in how they pick the atom to flip.

4.1.1 Gsat family
Gsat

Gsat was the first successful local search algorithm [123]. Gsat uses only a greedy strategy

to choose the atom to flip. Formally, gsat uses the procedure given in Figure 4.2.

Intuitively, when ∆w(x) < 0 (see Figure 4.2 for the definition of ∆w(x)), the smaller

the value of ∆w(x) is, the “better” the atom is, in a sense that flipping this atom improves

the overall “degree” of satisfiability of the theory. This is a pure greedy strategy. The

drawback of using such a strategy is that the algorithm may be trapped in local minima

71

INPUT: T - a CNF theory
I - a truth assignment

OUTPUT: x - an atom chosen for flipping
BEGIN
1. For each atom x in T , do
2. u1 ← current number of unsat clauses;
3. u2 ← the number of unsat clauses after flipping x;
4. ∆w(x)← u2 − u1;
5. End For
6. If minargx({∆w(x) : ∆w(x) ≤ 0}) exits then
7. return a random x from minargx({∆w(x) : ∆w(x) ≤ 0});
8. Else
9. halt;
10. End If
END

Figure 4.2: Algorithm Heuristic-gsat(T, I)

(that is, the situation in which there is no x such that ∆w(x) < 0) and not be able to get

out. In gsat , even if we use sideways moves when ∆w(x) = 0 is the greatest decrease,

gsat may still be stuck on a plateau.

In order to escape from local minima or plateaus, researchers have proposed several

randomized techniques in Heuristic procedure.

Simulated annealing (gsat-sa)

Simulated annealing introduces uphill moves when the algorithm ends up in local minima

or plateaus.

In Figure 4.3, t is a parameter usually called temperature. The temperature can either be

a constant or slowly decrease from a high one to near zero according to a cooling schedule.

Random walk (gsat-rw)

In simulated annealing, the random uphill move only depends on the probability e−∆w(x)/t.

Arbitrary atoms could be chosen if they have positive change in the number of unsatisfied

clauses. With random walk, however, random moves are closely related to the atoms that

appear in some unsatisfied clause. Given the property of the CNF formula that any unsat-

72

INPUT: T - a CNF theory
I - a truth assignment

OUTPUT: x - an atom chosen for flipping
BEGIN
1. x← randomly chosen atom from T ;
2. Compute ∆w(x) as it is done in Heuristic-gsat ;
3. If ∆w(x) ≤ 0, then
4. return x;
5. Else
6. with probability e−∆w(x)/t, return x;
7. with probability 1− e−∆w(x)/t, goto step 1;
8. End If
END

Figure 4.3: Algorithm Heuristic-gsat-sa(T, I)

INPUT: T - a CNF theory
I - a truth assignment

OUTPUT: x - an atom chosen for flipping
BEGIN
1. With probability p, return a randomly chosen atom occurring in some unsat clause;
2. With probability 1− p, follow Heuristic-gsat ;
END

Figure 4.4: Algorithm Heuristic-gsat-rw(T, I)

isfied clause can be fixed by flipping a single arbitrary literal in that clause, such a random

walk at least fixes one clause. The random walk strategy is given in Figure 4.4.

Random walk with TABU (gsat-rwtabu)

In both the basic GSAT algorithm or the simulated annealing algorithm, we may observe

the oscillating phenomenon. That is, after flipping one atom, in the next iteration, the

algorithm may flip it back.

For example,

Example 30. Let T be a CNF theory consisting of the following eight clauses:

a ∨ b ∨ c (4.1)

73

INPUT: T - a CNF theory
I - a truth assignment

OUTPUT: x - an atom chosen for flipping
BEGIN
1. Repeatedly call Heuristic-gsat-rw(T, I) until the returned atom a is not in TABU ;
2. Add a to TABU ;
3. return a;
END

Figure 4.5: Algorithm Heuristic-gsat-rwtabu(T, I)

a ∨ ¬b (4.2)

a ∨ ¬c (4.3)

a ∨ c (4.4)

b ∨ ¬a (4.5)

b ∨ ¬c (4.6)

b ∨ c (4.7)

¬a ∨ ¬b (4.8)

Let I = {a, b, c}. Truth assignment I does not satisfy T since it does not satisfy clause

(4.8). We can verify that ∆(a) = ∆(b) = 1 and ∆(c) = 0. Therefore, both gsat and

gsat-sa choose atom c to flip.

Then we get a new truth assignment I ′ = {a, b}. In this case, we can compute that

∆(a) = ∆(b) = 1 and ∆(c) = 0. Therefore, c will be chosen to flip again. 4

We see from the example that the oscillation is common in gsat and gsat-sa.

Even though with random walk technique, we can escape from this oscillation, it would

be better that it could be prevented explicitly. By using a TABU, a finite FIFO list that stores

all recent atoms the algorithm has chosen, we can implement this idea. The algorithm is

given in Figure 4.5

74

4.1.2 Wsat family

Gsat, gsat-rw, and gsat-rwtabu all suffer from a problem when making a greedy move.

That is, they all have to evaluate ∆w(x) for every atom x that occurs in the given formula

T . This is a time consuming procedure. Even though in gsat-sa, it does not examine every

atom, it does not perform the best move every time either. Thus gsat-sa, in general, may

require much more flips than the other algorithms in gsat family. Experimental study [123]

has showed the performance of gsat family is not good enough.

Wsat family was introduced in order to solve the problem [123]. The main difference

between gsat family and wsat family lies in the set of atoms that should be examined. In

wsat family, the algorithms only examine a subset of atoms, instead of all the atoms. Thus,

the performance is improved.

There are at least four different algorithms in wsat family:

Wsat-G

Wsat-G is a counterpart of gsat. While we add randomness into a greedy strategy in gsat,

we add greediness into a random walk strategy. Figure 4.6 shows this algorithm.

Wsat-B

So far, all the introduced algorithms always use the difference between the number of

unsatisfied clauses before the flip and after the flip as the weight function in the greedy

strategy. However, it is not the only possible weight function that could be used. In Wsat-

B, the algorithm only uses so called break-count as the weight function.

By break-count of an atom x, we mean the number of already satisfied clauses that will

receive truth value f , if atom x is flipped. The idea of Wsat-B is that, among a set of atoms,

we want to pick the one that has the least break-count. Figure 4.7 gives the pseudo-code

for Wsat-B:

Wsat-SKC

Wsat-SKC was proposed by Selman et al. [123]. It is one of the most effective algorithms

75

INPUT: T - a CNF theory
I - a truth assignment

OUTPUT: x - an atom chosen for flipping
BEGIN
1. C ← randomly selected unsatisfied clause in T ;
2. For each atom x in C, do
3. compute ∆w(x) as it is done in Heuristic-gsat ;
4. End For
5. If minargx{∆w(x) : ∆w(x) ≤ 0} exists, then
6. with probability p,

return a randomly chosen atom in minargx{∆w(x) : ∆w(x) ≤ 0};
7. with probability 1− p, return a randomly chosen atom in C;
8. Else
9. return a randomly chosen atom in C;
10. End If
END

Figure 4.6: Algorithm Heuristic-wsat-G(T, I)

INPUT: T - a CNF theory
I - a truth assignment

OUTPUT: x - an atom chosen for flipping
BEGIN
1. C ←randomly selected unsatisfied clause in T ;
2. For each atom x in C, do
3. compute break -count(x);
4. End For
5. With probability p, return a randomly chosen atom in minargx{break -count(x)};
6. With probability 1− p, return a randomly chosen atom in C;
END

Figure 4.7: Algorithm Heuristic-wsat-B(T, I)

76

INPUT: T - a CNF theory
I - a truth assignment

OUTPUT: x - an atom chosen for flipping
BEGIN
1. C ←randomly selected unsatisfied clause in T ;
2. For each atom x in C, compute break -count(x);
3. If any of these atoms has break -count = 0 then
4. randomly choose an atom from these atoms and return it;
5. Else
6. with probability p, return a randomly chosen atom in C;
7. with probability 1− p,

return randomly an atom x with minimum break -count(x);
8. End If
END

Figure 4.8: Algorithm Heuristic-wsat-SKC (T, I)

in wsat family. Similar to wsat-B, wsat-SKC also relies on the notion of the break-count

of an atom.

The heuristic function in wsat-SKC is given in Figure 4.8.

The difference between wsat-B and wsat-SKC is that, in wsat-SKC, we always per-

form a free move when there is one. By a free move we mean flipping an atom that has

zero break-count. Intuitively, free move means we will not break (or unsatisfy) any already

satisfied clauses by taking such a move. Moreover, since flipping such an atom will fix all

the broken (or unsatisfied) clauses that contain this atom, we actually will have a very good

move towards the goal, that is to satisfy all the clauses.

wsat-rnovelty+

Wsat-rnovelty+ is another effective algorithm in wsat family. It was introduced by Hoos

[68]. Wsat-rnovelty+ uses both the break- and the make-count values. The make-count

of an atom denotes the number of clauses that will become satisfied if the atom’s value is

flipped to its dual value.

We present a pseudo-code description in Algorithm 4.9.

To help search escape loops, with probability wp the heuristics chooses a random atom

77

INPUT: T - a CNF theory
I - a truth assignment

OUTPUT: x - an atom chosen for flipping
BEGIN
1. C ←randomly selected unsatisfied clause in T ;
2. With probability wp, return a random atom from C;
3. For each atom x in C, w(x)← break -count(x)−make-count(x);
4. agemax ← the maximum age of atoms in C;
5. best← the list of atoms x with the least w(x);
6. second← the list of atoms x with the second least w(x);
7. diff ← w(x)− w(y), where x ∈ best and y ∈ second;
8. If ∃a ∈ best such that its age < agemax, return a;
9. If diff > 1, then
10. with probability min{2− 2p, 1}, return a random atom from best;
11. with probability 1−min{2− 2p, 1}, return a random atom from second;
12. End If
13. With probability max{1− 2p, 0}, return a random atom from best;
14. With probability 1−max{1− 2p, 0}, return a random atom from second;
END

Figure 4.9: Algorithm Heuristic-wsat-rnovelty+(T, I)

78

from the input clause C to return as the next atom to flip 1. Otherwise, the algorithm selects

an atom to flip based on the quality of atoms (the quality of an atom is a difference between

its virtual break- and make-counts), the age of atoms (the age of an atom is defined as the

time, measured in flips, when the atom was last flipped; initially all atoms have age 0 and

their ages are updated by the flip procedure each time they are flipped), and a probability p,

which determines whether an atom with the best or the second best quality value is selected.

Even though the role of the parameter p is different here than it is in the case of the SKC

heuristics, we call this value the noise ratio, as well. We also note that if all atoms in C

have the same value of w , then one is selected randomly.

Finally, one consideration in implementing these algorithms is that, it is time consum-

ing to calculate the break-count and the make-count of an atom. Therefore, researchers

often use cached break-count and make-count of an atom in the heuristic function. Ini-

tially, the break-count and the make-count of each atom is computed with respect to the

initial truth assignment using their definitions and stored in the cache. Then, within each

try, the cache will be updated each time after an atom x is flipped. To be precise, we

update, in the cache, the two counts of an atom by their changes, ∆break -count(x) and

∆make-count(x), assuming x is the atom flipped.

4.2 Extending wsat algorithms to logic PLwa

We have seen various stochastic local search algorithms in Section 4.1. The main difference

between the algorithms introduced in Section 4.1 and the ones we propose is that, our

algorithms work on logic PLwa-theories, which contain w-atoms in clauses. Because of

this difference, the concept of the break-count or the make-count of an atom, or even the

flip procedure becomes more complicated.

In this section, we work on the generic SLS algorithm SLS -generic, assuming that the

input theory T is in logic PLwa . To instantiate SLS -generic, we, again, need to decide

how procedure Heuristic and Flip work. We follow two basic directions. In the first of

1Hoos [68] set wp to 0.01. We do not perform an extensive study on how the value of wp affects the
wsat-rnovelty+ algorithm.

79

them, we use a simple notion of a flip, that is, we always flip just one atom. We introduce,

however, a more complex concept of the break-count and make-count, which we call the

virtual break-count and the virtual make-count. We implement two instantiations of

wsat(cc)-generic: wsat(wa)-skc and wsat(wa)-rnp. In the second approach, in addition

to the virtual counts, we introduce a more complex concept of a flip, which we call the

double-flip. In the case when the input theory T has some special property, the computa-

tion of the two counts becomes straightforward and do not involve virtual counts compu-

tation at all. We implement one instantiation of wsat(cc)-generic following this direction:

wsat(wa)-df . We discuss the three implementations in detail in the following subsections.

For the other possible instantiation using the RNovelty+ heuristic, our first implementa-

tion does not yield good results in the experiments. Therefore, we do not include it in our

discussion.

4.2.1 Virtual break-count and make-count

These two concepts depend on a particular representation of a PLwa-theory T as a multiset

of propositional clauses, cl(T). We allow repetitions of clauses in sets and repetitions of

literals in clauses, as by doing so we simplify some calculations.

We recall that we view w-atoms as propositional formulas. Given a w-atom W , by TW

we denote a certain CNF formula (which we also view as a multiset of its clauses) such

that TW is logically equivalent to W . We will specify TW later.

Let us consider a PLwa-clause C of the form (3.4). We define cl(C) to be the multiset

of propositional clauses that are disjuncts in the CNF formula obtained by replacing in C

each w-atom Wi with the CNF formula TWi
and by applying the distributivity law. For a

PLwa-theory T we then set

cl(T) =
⋃
{cl(C) : C ∈ T}.

Let I be a truth assignment. We define the virtual break- and make-counts of an atom

x in a PLwa-theory T with respect to I as the break- and make-counts of x in cl(T) with

respect to I . We denote these two quantities as break -countT (x) and make-countT (x),

80

respectively (we again drop the reference to I from the notation, as I is always determined

by the context). It follows that

break -countT (x) = break -countcl(T)(x) =
∑
{break -countcl(C)(x) : C ∈ T}.

Similarly,

make-countT (x) = make-countcl(T)(x) =
∑
{make-countcl(C)(x) : C ∈ T}.

We now estimate break -countcl(C)(x) and make-countcl(C)(x). To this end we need

more notation. Let W be a w-atom, I an interpretation and x a propositional atom. By I x̄

we denote the truth assignment obtained from I by flipping the truth value of x. Next, we

define three sets of clauses that are relevant for break -countcl(C)(x) and make-countcl(C)(x)

(we once again omit I in the notation):

1. EW (x) = the set of clauses in TW that are satisfied by I but not by I x̄

2. FW (x) = the set of clauses in TW that are not satisfied by I but are satisfied by I x̄

3. GW (x) = the set of clauses in TW that are not satisfied by I nor by I x̄.

We observe that EW (x) = FW (x) = ∅ if x does not appear in W . We set e(x) =

|EW (x)|, f(x) = |FW (x)| and g(x) = |GW (x)|.

We now have the following theorem:

Theorem 31. Let C be a PLwa-clause of the form (3.4). Let cl be the transformation we

define above. Let ei(x), fi(x), and gi(x)’s be three cardinalities of the three sets EWi
(x),

FWi
(x) and GWi

(x) with respect to an atom x and cl . Then we have the following equa-

tions:

break -countcl(C)(x) =
n∏

i=1

(ei(x) + gi(x))−
n∏

i=1

gi(x). (4.9)

and

make-countcl(C)(x) =
n∏

i=1

(fi(x) + gi(x))−
n∏

i=1

gi(x). (4.10)

81

Proof. Equation (4.9): indeed, every clause in cl(C) is of the form D1 ∨ . . . ∨Dn, where

Di ∈ TWi
, 1 ≤ i ≤ n. For a clause in cl(C) to get “unsatisfied” with the flip of x, all Di’s

in cl(C) must satisfy the following two conditions:

1. each Di is chosen from EWi
(x) ∪GWi

(x); and

2. at least one Di is chosen from EWi
(x).

Since EWi
(x) ∩ GWi

(x) = ∅, the number of clauses in cl(C) such that each Di is chosen

from EWi
(x) ∪GWi

(x) is given by

n∏
i=1

(ei(x) + gi(x)).

Then among these clauses, the ones in which each Di is chosen from GWi
(x) do not con-

tribute to the break-count of x. The number of such clauses is given by

n∏
i=1

gi(x).

Then the equation (4.9) follows.

Equation (4.10) holds for the similar reason.

Estimating e, f and g

To make formulas (4.9) and (4.10) complete, we need to specify a CNF representation TW

of a w-atom W and, given this representation and a truth assignment I , for each atom x

find formulas for e, f and g (in this section, we omit x in e(x), f(x) and g(x) as x always

exists in the context).

Let us then consider a w-atom W :

W = l[a1 = w1, . . . , ak = wk]u,

where all wi are non-negative. For each atom ai we introduce new atoms aj
i , 1 ≤ j ≤ wi.

We then define a cardinality constraint

W ′ = l[a1
1, . . . , a

w1
1 , . . . , a1

k, . . . , a
wk
k]u,

82

and a set of formulas

EQ = {ai ≡ aj
i : 1 ≤ i ≤ k, 1 ≤ j ≤ wi}.

The w-atom W and {W ′} ∪ EQ are equivalent in the following sense. There is a one-to-

one correspondence between models of W and models of {W ′} ∪EQ. The corresponding

models coincide on the set {a1, . . . , ak}. In the case of the theory {W ′} ∪ EQ, the part of

the model contained in {a1, . . . , ak} determines the rest, as models of {W ′} ∪ EQ must

satisfy formulas in EQ.

Let set S consist of the following clauses:

¬xi1 ∨ . . . ∨ ¬xiu+1 (4.11)

for every (u + 1)-element subset {xi1 , . . . , xiu+1} of {a1
1, . . . , a

w1
1 , . . . , a1

k, . . . , a
wk
k }, and

xi1 ∨ . . . ∨ xiK−l+1
(4.12)

for every (K − l + 1)-element subset {xi1 , . . . , xiK−l+1
} of {a1

1, . . . , a
w1
1 , . . . , a1

k, . . . , a
wk
k },

where K =
∑

wi.

The following theorem says that the cardinality constraint W ′ is equivalent to S:

Theorem 32. Let W ′ be the cardinality constraint and S the set of clauses we defined

above. Then a truth assignment I satisfies W ′ if and only if I satisfies S.

Proof. (⇐): let I be a truth assignment that satisfies S. We need to show that I |= W ′

as well. Assume it is not the case. Then, either |X| ≤ l − 1 or |X| ≥ u + 1, where

X = {aj
i : I |= aj

i}.

If it is the first case, let us take X ′ = {a1
1, . . . , a

wk
k }\X . It is clear that for every a ∈ X ′,

I 6|= a. Since |X| ≤ l− 1, |X ′| ≥ K − l + 1. Therefore, there exists a (K − l + 1)-element

subset of X ′ that is also a (K − l + 1)-element subset of {a1
1, . . . , a

wk
k }. Since this subset

forms a clause of the form (4.12), this clause is not satisfied by I . It is a contradiction.

If it is the second case, then |X| ≥ u + 1. Therefore, there exists a (u + 1)-element

subset of X that is also a (u + 1)-element subset of {a1
1, . . . , a

wk
k }. Then the clause formed

by this subset (it is of form (4.11)) is not satisfied by I . Again, a contradiction.

83

Therefore, I must satisfy W ′.

(⇒): let I |= W ′. Since the lower bound constraint of W ′ is satisfied by I , then the

number of atoms from {a1
1, . . . , a

wk
k } that are false under I is at most K − l. Therefore, for

any K − l + 1-element subset of {a1
1, . . . , a

wk
k }, there exists at least one atom that is true.

Therefore, all clauses of form (4.12) are satisfied.

Similarly, since the upper bound constraint of W ′ is satisfied by I , the number of atoms

from {a1
1, . . . , a

wk
k } that are true under I is at most u. Therefore, for any u + 1-element

subset of {a1
1, . . . , a

wk
k }, there exists at least one atom that is false. Therefore, all clauses

of form (4.11) are satisfied.

Therefore, I satisfies S.

Thus, W is equivalent to S ∪ EQ (in the same sense as before). Consequently, W is

equivalent (has the same models) as the multiset of clauses obtained from S by replacing

each atom aj
i with ai. We define TW to be this multiset. We also note that clauses in this

multiset may contain multiple occurrences of the same literals.

We do not simplify TW further (that is, we do not eliminate duplicate clauses nor du-

plicate occurrences of literals in clauses) since the multiset form of TW makes it easier to

compute the cardinalities e, f and g of the sub-multisets EW,x, FW,x and GW,x of TW and

their cardinalities e, f and g. Namely, we have the following formulas for e, f and g:

e =


0 case 1(

N+w
K−l+1

)
−

(
N

K−l+1

)
case 2(

P+w
u+1

)
−

(
P

u+1

)
otherwise

(4.13)

f =


0 case 1(

P
u+1

)
−

(
P−w
u+1

)
case 2(

N
K−l+1

)
−

(
N−w

K−l+1

)
otherwise

(4.14)

g =


(

N
K−l+1

)
+

(
P

u+1

)
case 1(

N
K−l+1

)
+

(
P−w
u+1

)
case 2(

P
u+1

)
+

(
N−w

K−l+1

)
otherwise.

(4.15)

Case 1 covers all situations when x does not occur in W . Case 2 covers situations when

x occurs in W and I |= x. In these formulas we use the notation K =
∑

wi, P =∑
I|=ai

wi, N =
∑

I 6|=ai
wi, and write w for the weight of atom x in W (if x occurs in W).

84

We now provide arguments for each case of (4.13), (4.14), and (4.15). In the following,

let I be a truth assignment. Let us assume N = {aj
i : 1 ≤ i ≤ k, 1 ≤ j ≤ wi, I 6|= ai}

and P = {aj
i : 1 ≤ i ≤ k, 1 ≤ j ≤ wi, I |= ai}. It is clear that N = |N | and P = |N |.

Case 1. Since x does not occur in W , by the definition of sets EW,x and FW,x, e = f = 0.

Therefore, (4.13) and (4.14) are correct in this case. By the definition of GW,x, all clauses

in GW,x are those not satisfied by I and not satisfied by I x̄. Since x does not occur in W ,

all clauses that are not satisfied by I form precisely the set G. That is, a clause C ∈ GW,x

if and only if

1. C is obtained from a clause C ′ in S of the form (4.11) such that C ′ contains only

atoms from P; or

2. C is obtained from a clause C ′ in S of the form (4.12) such that C ′ contains only

atoms from N .

For the first type of C, there are
(

P
u+1

)
such clauses in S. For the second type of C, there

are
(

N
K−l+1

)
such clauses in S. Since we do not remove duplicate clauses when we generate

TW from S, the number of clauses C in GW,x is precisely
(

N
K−l+1

)
+

(
P

u+1

)
. Thus, case 1 of

(4.15) holds.

Case 2. We first look at the case 2 of the equation (4.13). In this case, x occurs in W and

I |= x. Let us assume that x = a1. Since I |= a1, {a1
1, . . . , a

w1
1 } ∩ N = ∅. The definitions

of S and EW,x imply that C ∈ EW,x if and only if C is obtained from a clause C ′ in S of

the form (4.12) such that C ′ contains at least one atom ap
1, 1 ≤ p ≤ w1, and for every other

disjunct y of C ′, y ∈ N . Since N = |N |, there are
(

N+w1

K−l+1

)
−

(
N

K−l+1

)
such clauses C ′.

Since when generating TW from S we do not remove any clauses, the formula (4.13), case

2, follows.

With the same assumption, a clause C belongs to FW,x if and only if C is obtained from

a clause C ′ in S of the form (4.11) such that C ′ contains at least one atom ap
1, for some

1 ≤ p ≤ w1, and for every other disjunct y of C ′, y ∈ P . Since P = |P|, there are(
P

u+1

)
−

(
P−w1

u+1

)
such clauses C ′, which is also the number of clauses C. Thus the formula

(4.14), case 2, holds.

85

For the formula (4.15), again, a clause C belongs to GW,x if and only if one of the two

conditions listed in case 1 is true. Since this time x ∈ W and I |= x, the number of the first

type of the clauses becomes
(

P−w1

u+1

)
, while the number of the second type of clauses does

not change. Therefore, case 2 of the formula (4.15) holds.

Case 3. The reasoning is similar to that in case 2. This time x occurs in W and I 6|= x.

Again we assume that x = a1. Since I 6|= a1, {a1
1, . . . , a

w1
1 } ∩ P = ∅. The definitions

of S and EW,x imply that C ∈ EW,x if and only if C is obtained from a clause C ′ in S

of the form (4.11) such that C ′ contains at least one atom ap
1, 1 ≤ p ≤ w1, and for every

other disjunct y of C ′, y ∈ P . Since P = |P|, there are
(

P+w1

u+1

)
−

(
P

u+1

)
such clauses C ′.

Since when generating TW from S we do not remove any clauses, the formula (4.13), case

3, follows.

With the same assumption, a clause C belongs to FW,x if and only if C is obtained

from a clause C ′ in S of the form (4.12) such that C ′ contains at least one atom ap
1, for

some 1 ≤ p ≤ w1, and for every other disjunct y of C ′, y ∈ N . Since N = |N |, there

are
(

N
K−l+1

)
−

(
N−w1

K−l+1

)
such clauses C ′, which is also the number of clauses C. Thus the

formula (4.14), case 3, holds.

For the formula (4.15), a clause C belongs to GW,x if and only if one of the two condi-

tions listed in case 1 is true. Since this time x ∈ W and I 6|= x, the number of the second

type of the clauses becomes
(

N−w1

K−l+1

)
, while the number of the first type of clauses does not

change. Therefore, case 3 of the formula (4.15) holds. 2

We now use the following example to illustrate how the virtual break- and make-count

of an atom are computed.

Example 33. Let C = W1 ∨W2 ∨W3, where W1 = 2[a1, a2, a3]2, W2 = 4[2a2, 1a3, 4a4]5,

and W3 = 3[10a5, 3a3, 8a6]10.

Let I = {a1, a3, a4, a5} be the truth assignment. We first note that:

1. in W1, K1 = 3, N1 = 1, P1 = 2

2. in W2, K2 = 7, N2 = 2, P2 = 5

3. in W3, K3 = 21, N3 = 8, P3 = 13.

86

Now suppose we flip atom a2. We recall that I 6|= a2. Based on the formulas of e, f, g,

we have the following result:

1. in W1, since a2 ∈ W1, case 3 applies:

e1 =

(
P1 + w2

1

u1 + 1

)
−

(
P1

u1 + 1

)
=

(
2 + 1

2 + 1

)
−

(
2

2 + 1

)
= 1

f1 =

(
N1

K1 − l1 + 1

)
−

(
N1 − w2

1

K1 − l1 + 1

)
=

(
1

3− 2 + 1

)
−

(
1− 1

3− 2 + 1

)
= 0

g1 =

(
P1

u1 + 1

)
+

(
N1 − w2

1

K1 − l1 + 1

)
=

(
2

2 + 1

)
+

(
1− 1

3− 2 + 1

)
= 0

2. in W2, since a2 ∈ W2, case 3 applies:

e2 =

(
P2 + w2

2

u2 + 1

)
−

(
P2

u2 + 1

)
=

(
5 + 2

5 + 1

)
−

(
5

5 + 1

)
= 7

f1 =

(
N2

K2 − l2 + 1

)
−

(
N2 − w2

2

K2 − l2 + 1

)
=

(
2

7− 4 + 1

)
−

(
2− 2

7− 4 + 1

)
= 0

g1 =

(
P2

u2 + 1

)
+

(
N2 − w2

2

K2 − l2 + 1

)
=

(
5

5 + 1

)
+

(
2− 2

7− 4 + 1

)
= 0

3. in W3, since a2 6∈ W3, case 1 applies:

e3 = f3 = 0

g3 =

(
P3

u3 + 1

)
+

(
N3

K3 − l3 + 1

)
=

(
13

10 + 1

)
+

(
8

21− 3 + 1

)
= 78

Then we can compute the break- and make-count of a2 using formula (4.9) and (4.10):

break -countC(a2) =
3∏

i=1

(ei +gi)−
3∏

i=1

gi = (1+0)× (7+0)× (0+78)−0×0×78 = 546

make-countC(a2) =
3∏

i=1

(fi + gi)−
3∏

i=1

gi = (0 + 0)× (0 + 0)× (0 + 78)− 0× 0× 78 = 0

4

We now use the formulas for break- and make-counts in Figure 4.8 and Figure 4.9. We

call the resulting two implementations wsat(wa)-skc and wsat(wa)-rnp respectively.

87

Clearly, CNF representations of PB constraints other than the one proposed in this chap-

ter are possible and could be used within a general approach we have developed, as long as

one can derive formulas (or procedures) to compute values of e, f and g. In fact, we can

push this idea even further. For an arbitrary constraint (not necessarily a pb-constraint),

if we can evaluate e, f and g in some translation that converts it into a set of proposi-

tional clauses, our general framework yields solvers accepting theories containing such

constraints.

Finally, we point out that, in the formulas we have derived, we use values of the form(
n
k

)
, which will exceed the maximum integer that a computer can represent even for rela-

tively small values of n, if k is close to n/2. For instances we used in our experiments,

even though in some cases overflows occurred quite often (which we replaced with a cer-

tain fixed large integer), for the atoms our solvers selected to flip the computation of virtual

counts only rarely involved overflows. Still, in our future research we will study how to

approximate
(

n
k

)
to avoid overflows. Since we only care about the relative order of the

break- and make-counts of atoms, any approximation that maintains this ordering will be

appropriate.

4.2.2 Double flip procedure

The second type of instantiations of the algorithm SLS -generic that we will discuss applies

only to PLwa theories of some special syntactic form. Let A be a w-atom of the form

l[a1 = w1, . . . , ak = wk]u. We say that A is trivial if A ≡ ⊥ or A ≡ >; we say that A is

simplifiable if A logically entails ai or ¬ai for some ai in A.

Example 34. Let A = 10[a1 = 8, a2 = 3, a3 = 3, a4 = 21]20. Since the upper bound of

A is 20 and the weight a4 is 21, we must set a4 to false in order to satisfy A. That is, A

logically entails ¬a4. Furthermore, since the lower bound of A is 10, we must set atom a1

to true in order to satisfy A. Therefore, A logically entails a1. 4

Definition 24. A PLwa theory T is simple, if T = T u ∪ T nu , where T u ∩ T nu = ∅ and

88

1. T u consists of unit clauses Wi, where Wi is a c-atom2, 1 ≤ i ≤ p, such that sets of

atoms in Wi are pairwise disjoint

2. for every i, 1 ≤ i ≤ p, Wi is neither trivial nor simplifiable.

Condition (2) is not particularly restrictive. We can always simplify a PLwa theory that

violates only condition (2) and obtain an equivalent simple PLwa theory.

Definition 25. A simple PLwa theory T is strictly simple, if all clauses in T nu are propo-

sitional clauses.

In this section, we consider simple PLwa theories. Let us assume that we design the

procedure Flip(T, I, a) so that it has the following property:

(DF) if a truth assignment I is a model of T u then I ′ = Flip(T, I, a) is also a model of

T u.

Let us consider a try starting with a truth assignment I that satisfies all clauses in T u. If our

procedure Flip satisfies the property (DF), then all truth assignments that we generate in

this try satisfy all clauses in T u. It follows that the only clauses that can become unsatisfied

during the try are the clauses in T nu . Consequently, we can compute the virtual break-

count and make-count with respect to T nu only. Furthermore, if T is strictly simple, then

all clauses in T nu are propositional. In that case, we only need to consider the CNF theory

T nu and count how many clauses in T nu become unsatisfied or satisfied when we perform

a flip.

Since all c-atoms in T u are pairwise disjoint, it is easy to generate random truth assign-

ments that satisfy all these constraints. Thus, it is easy to generate a random starting truth

assignment for a try. Moreover, it is also quite straightforward to design a procedure Flip so

that it satisfies property (DF). We outline one such procedure now. A detailed pseudo-code

description is given in Figure 4.10.

Let us assume that I is a truth assignment that satisfies all clauses in T u and that we

select an atom a as the third argument for the procedure Flip. If flipping the value of a does
2In general, Wi could be a w-atom. However, it is computationally more expensive to keep Wi satisfied

all the time if Wi is a general w-atom, as fixing a broken w-atom often requires more than one flip.

89

INPUT: T - a simple PLwa theory (T = T u ∪ T nu)
I - current truth assignment
a - an atom chosen to flip

OUTPUT: I - updated I after a is flipped
BEGIN
1. If a occurs in a clause in T u and flipping a will break it then
2. pick an atom b in the clause such that flipping it will fix the clause;
3. I ← I b̄;
4. End if
5. I ← I ā;
6. return I;
END

Figure 4.10: Algorithm Flip(T, I, a)

not violate any unit clause in T u, the procedure Flip(T, I, a) returns the truth assignment

obtained from I by flipping the value of a. Otherwise, since the c-atoms forming the

clauses in T u are pairwise disjoint, there is exactly one clause in T u, say W , that becomes

unsatisfied when the value of a is flipped. In this case, clearly, a ∈ W .

We proceed now as follows. We find in W an atom, say b, such that flipping both a and

b makes W satisfied. Such b exists because W is neither trivial nor simplifiable. Clearly, by

performing this double flip we maintain the property that all clauses in T u are still satisfied.

Indeed all clauses in T u other than W are not affected by the flips (these clauses contain

neither a nor b).

We implement one instance of wsat(cc)-generic using the double flip procedure, which

uses the SKC heuristic to pick atoms a and b. We call it wsat(wa)-df .

Finally, we want to point out that we could extend the T u to the case where each unit

clause is formed by a w-atom. However, in general, we need to flip a set of atoms to main-

tain the truth value of a w-atom if flipping a will make it unsatisfied. We will investigate

ways of finding such set of atoms in our future work.

Copyright c© Lengning Liu 2006

90

Chapter 5

Experimental results

In this chapter, we conduct experimental study on the implementations of the solvers we

have proposed so far. To be precise, we implement the following solvers:

1. pbmodels: a family of solvers that compute stable models of lparse-programs via

different PB solvers and PLwa solvers. The PB solvers we use in this chapter are:

satzoo [45], pbs [1], and wsatoip [132]. The first two are complete PB solvers while

the last one is an incomplete PB solver based on WSAT [123] local search algorithm.

We also plug our PLwa solvers showed below into pbmodels .

2. wsat(wa): a family of SLS solvers that compute models of PLwa-theories. There are

three of them: wsat(wa)-skc, wsat(wa)-rnp, and wsat(wa)-df .

We compare pbmodels to smodels , the existing native solver that computes stable mod-

els of lparse-programs [125]. We test them on instances of six NP -search problems. The

results show that pbmodels performs better than smodels on instances of five problems and

is comparable to smodels on instances of the last problem.

The architecture of pbmodels allows the use of SLS PB and PLwa solvers as the back-

end computing engine. The experimental results also show that pbmodels with SLS solvers

outperforms smodels significantly in instances of four problems that have solutions.

With the development of PB solvers [96], we expect that pbmodels’ performance will

be improved as well.

The development of wsat(wa) solvers was motivated by the fact that direct PLwa

solvers fit better in the pbmodels architecture than PB solvers. In this chapter, we also show

that performance-wise, wsat(wa) performs better than SLS PB solvers on instances of six

NP -search problems. In particular, three of these problems require the use of boolean com-

binations of PB -constraints in their PLwa encodings. They do not have straight-forward

91

encodings as sets of PB -constraints. Therefore, SLS PB solvers suffer from the overhead

caused by the transformation from PLwa theories into PB -theories.

The chapter is organized as follows: in Section 5.1 we describe the setup of our experi-

ments and the comparison measures we focus on; in Section 5.2, we show the experimental

results of comparing pbmodels to lparse-program solvers; in Section 5.3, we show experi-

mental results of comparing wsat(wa) to SLS PB solvers.

5.1 Experiment setup

We use four identical machines in all of our experiments. Each of these machines is

equipped with a Pentium 4 3.2GHz CPU, 1GB memory, running Linux with kernel ver-

sion 2.6.10. The compiler we use to compile the source codes of solvers is gcc 3.3.4 1.

For smodels and cmodels , we use the default compilation flags provided by the software

packages. For our solvers, we compile them with the following two flags: “-Wall -O3”.

We set the run-time parameters of each solver we test to its default values except for

SLS solvers. For SLS solvers, command-line parameters such as MAX-TRY, MAX-FLIP,

and p(the noise ratio) greatly affect their performance. In Section 4.2, we perform a sys-

tematic experimental study on the performance of SLS solvers with different values of the

parameters, especially with different values of the noise ratio. In testing pbmodels com-

bined with SLS solvers, however, for simplicity, we only use the values of those parameters

that give the best performance to the SLS solvers.

The general schema of our experiments is as follows:

1. We choose several benchmark problems from domains such as graph theory, puz-

zles, and planning. For each benchmark problem, we generate a family of random

instances, or otherwise, when there is no easy way to generate random instances,

we pick a family of determined instances. The lparse and PLwa encodings of these

problem are given in Appendix A.

1We could not obtain the source code of wsat(oip). The binary code we use was obtained from the
author’s website [131].

92

2. We set a 1000-second run-time limit to each solver we test. There is no limitation,

other than the physical one, on the memory usage.

All solvers we test report the amount of time they spend to solve an instance. By solving

an instance, we mean either the solver finds a model (or stable model) or it decides that

no models (or stable models) exist. However, the way in which they measure the timing

information is not consistent among these solvers. Some of them report the CPU time, but

others report the wall-time. For a fair comparison, we use the GNU time program (version

1.7) to gather the timing information of all solvers. We report or perform statistical analysis

on the “user time” reported by the GNU time program, which is the CPU time spent by the

solvers.

For comparison, we report the following statistics of all solvers tested for each bench-

mark problem. We first compare the solvers instance by instance. A solver wins in that

instance if the amount of time it uses to solve the instance is the minimum one (no other

solver uses less time). We report, for each benchmark problem, in how many instances a

solver wins. Then we aggregate the timing information of a solver in the family of random

instances by means of the run-time distribution (or RTD for short) instead of the simple

statistical measures such as average or standard deviation.

The reason is that, experiments show that the hardness of instances generated randomly

with fixed parameters varies significantly. Therefore, the run time of a solver solving an

instance, which can be viewed as a random variable, varies significantly as well. In other

words, the probability distribution on the run time has high variance. In this case, simple

statistics such as average run time does not provide enough information about the perfor-

mance of different solvers. Researchers have studied the similar problem in evaluating

stochastic local search solvers. Hoos and Stützle [71] propose that we should use the run-

time distribution as a more accurate and realistic measure of the performance behavior of

local search solvers. They focus on estimating and characterizing the run-time distribution

over a single instance, because the run-time of a local search solver is a random variable

even on a single instance.

We estimate the run-time distribution of a solver over a family of randomly generated

93

instances as follows. We run the solver on each instance and record the amount of time it

takes to solve the instance. If a solver does not terminate when the 1000-second time limit

is reached, we say the solver fails to solve this instance. Then we estimate the probability

for a solver S to solve an instance in the family F within time 0 ≤ t ≤ 1000 by the ratio

M/N , where M is the number of instances that are solved by S within time t and N is the

total number of instances in that family. More precisely, PrF
S (T ≤ t) = M/N .

5.2 Comparing pbmodels with lparse-program solvers

In this section, we present our experimental results concerning the performance of pbmodels .

In the experiments we use instances of the following benchmark problems: traveling

salesperson, weighted n-queens, weighted Latin square, magic square, vertex cover,

and towers of Hanoi. The lparse-programs we used for the first four problems involve

general w-atoms. The lparse-programs for the last two problems only use c-atoms.

The experiments compare pbmodels to smodels on several sets of benchmark instances.

In most cases pbmodels outperforms its competitors. We also test cmodels in the experi-

ment because pbmodels is based on the idea of cmodels [7]. However, cmodels does not

perform well in most of the instances: either cmodels times out or it gives a segmentation

fault. The only benchmark problem in which cmodels can solve some instances is the ver-

tex cover problem. Even there, cmodels is outperformed by both smodels and pbmodels

with most of the PB solvers as the back-end search engines.

We now give the description of each benchmark problem we use in our experiments.

1. Traveling salesperson problem (tsp). An instance consists of a weighted complete

graph of n vertices and a bound w. Edge weights and w are non-negative integers. A

solution to an instance is a Hamiltonian cycle whose weight (the sum of the weights

of its edges in the cycle) is less than or equal to w.

We randomly generate 50 weighted complete graphs with 20 vertices. The weight of

each edge is chosen uniformly from the range [1..19]. By setting w to 100 we obtain

an “easy” set, denoted by TSP-e, of 50 instances (the bound is high enough for every

94

instance in the set to have a solution). We also create another set, denoted by TSP-h,

of 50 instances from the same collection of graphs by setting w to 62. This set is

“harder” as the constraint on the weight of the cycle is stronger. Consequently, we

find solutions only for about half of these instances. For the remaining ones we either

determine that they do not have solutions or none of the solvers we test terminated

with success within the time limit of 1000 seconds.

2. Weighted n-queens problem (wnq). An instance consists of a weighted n × n

chess board and a bound w. All weights and the bound are non-negative integers. A

solution to an instance is a placement of n queens on the chess board so that

• no queen attacks another, and

• the weight of the placement (the sum of the weights of the squares with queens)

is not greater than w.

We randomly generate 50 weighted chess boards of the size 20 × 20 (each chess

board is associated with a set of 20× 20 weights wi,j , 1 ≤ i, j ≤ 20, which is chosen

uniformly from the range [1..19]). We then create two sets of instances, easy and

hard, by setting the bound w to 70 and 50, respectively. We denote the two sets of

instances wnq-e and wnq-h respectively.

3. Weighted Latin square problem (wlsq). An instance consists of an n × n array

W and a bound w. All entries in W and the bound w are non-negative integers. A

solution to an instance is an n× n array L with all entries from {1, . . . , n} and such

that

• each element in {1, . . . , n} occurs exactly once in each row and each column

in the array L, and

•
∑n

i=1

∑n
j=1 L[i, j]×W [i, j] ≤ w.

We randomly generate 50 arrays W of size 10× 10 with values uniformly randomly

95

chosen from the range [1..10]. Again we create two families of instances, easy (wlsq-

e) and hard (wlsq-h), by setting w to 280 and 225, respectively.

4. Magic square problem (msq). An instance consists of a positive integer n. The

goal is to construct an n × n array using each integer 1, . . . n2 as an entry in the

array exactly once in such a way that entries in each row, each column and in both

main diagonals sum up to n(n2 +1)/2. For the experiments we use the magic square

problem for n = 4, 5 and 6.

5. Vertex cover problem (vcov). An instance consists of graph of n vertices and m

edges, and a non-negative integer k — a bound. A solution to the instance is a subset

of vertices of the graph with no more than k vertices and such that at least one end

vertex of every edge of the graph is in the subset.

We choose the vertex cover problem for experiments for two reasons. First, the

most direct encoding of the problem uses cardinality constraints only. While the

way cmodels complies away weight atoms is not very effective, it generally handles

cardinality atoms quite well. Thus, we could perform meaningful tests of cmodels

on programs encoding instances of that problem. Second, we expect the programs

encoding instances of the vertex cover problem to be challenging for cmodels . The

difficulty is due to the fact that the upper bound in the cardinality atom in these

programs may be quite large and require superlinear representations as CNF theories.

We randomly generate 50 graphs each with 80 vertices and 400 edges. For each

graph, we set k to be a smallest integer such that a vertex cover with that many

elements still exists.

6. Towers of Hanoi problem (toh). This is a generalization of the original problem.

We consider the case with six disks. An instance consists of an initial configuration

of disks that satisfies the constraint of the problem (larger disk must not be on top of

a smaller one). These configurations were selected so that they were 31, 36, 41, 63

steps away from the goal configuration, respectively. We also consider a standard

96

Benchmark smodels pbmodels-satzoo pbmodels-pbs
magic square (4× 4) 1.36 1.70 2.41
magic square (5× 5) > 1000 28.13 0.31
magic square (6× 6) > 1000 75.58 > 1000

towers of Hanoi (d = 6, t = 31) 16.19 18.47 1.44
towers of Hanoi (d = 6, t = 36) 32.21 31.72 1.54
towers of Hanoi (d = 6, t = 41) 296.32 49.90 3.12
towers of Hanoi (d = 6, t = 63) > 1000 > 1000 3.67
towers of Hanoi (d = 7, t = 127) > 1000 > 1000 22.83

Table 5.1: pbmodels v.s. smodels: Magic square and towers of Hanoi problems

version of the problem with seven disks, in which the initial configuration is 127

steps away from the goal.

In order to test pbmodels and smodels , we encode the constraints of each benchmark

problem along with the instances we generate as lparse logic programs. Those families of

lparse-programs form inputs to pbmodels and smodels .

In the tests, we use pbmodels with the following four PB and PLwa solvers: satzoo

[45], pbs [1], wsat(oip) [132], and wsat(wa). As we have mentioned, we use default values

of the command-line parameters of each solver. For wsat(wa), we only report the result

of wsat(wa)-rnp implementation as wsat(wa)-rnp performs better than wsat(wa)-skc in

these benchmark problems. For both wsat(wa)-rnp and wsat(oip), we set their command-

line parameters to the values that give them the best performance. That is, we set MAX-

TRY to 10, MAX-FLIP to 2,000,000, and p to 0.1.

In the figures and tables below we report results from our experiments.

We first show the results for the magic square and towers of Hanoi problems in Table

5.1. For each solver and each instance we report the corresponding running time in seconds.

Both pbmodels-satzoo and pbmodels-pbs perform better than smodels on programs

obtained by encoding instances of both problems. We observe that pbmodels-pbs performs

exceptionally well in the tower of Hanoi problem. It is the only solver that can compute a

plan for 7 disks, which requires 127 steps. Despite the fact that the tower of Hanoi problem

involves only cardinality constraints, cmodels times out on every instance we tested. Local-

97

of SAT instances # of UNSAT instances # of UNKNOWN instances
TSP-e 50 0 0
TSP-h 31 1 18
wnq-e 49 0 1
wnq-h 29 0 21
wlsq-e 45 4 1
wlsq-h 8 41 1
vtxcov 50 0 0

Table 5.2: pbmodels v.s. smodels: Summary of Instances

smodels pbmodels-satzoo pbmodels-pbs
TSP-e 45/17 50/30 18/3
TSP-h 7/3 16/14 0/0
wnq-e 11/5 26/23 0/0
wnq-h 2/2 0/0 0/0
wlsq-e 21/1 49/29 46/19
wlsq-h 0/0 47/26 47/23
vtxcov 50/40 50/1 47/3

sum over all 136/68 238/123 158/48

Table 5.3: pbmodels v.s. smodels: Summary on all instances

search solvers were unable to solve any of the instances in the two problems and so are not

included in the table.

For the remaining four problems, we use 50-element families of instances, which we

generate randomly in the way discussed above. We study the performance of complete

solvers (smodels , pbmodels-satzoo and pbmodels-pbs) on all instances. We then include

local-search solvers (pbmodels-wsatcc and pbmodels-wsatoip) in the comparisons but re-

strict attention only to instances that were determined to be satisfiable (as local-search

solvers are, by their design, unable to decide unsatisfiability). In Table 5.2, for each family

we list how many of its instances are satisfiable, unsatisfiable, and for how many of the

instances none of the solvers we test was able to decide satisfiability.

In Table 5.3, for each of the seven families of instances and for each complete solver,

we report two values s/w, where s is the number of instances solved by the solver and w

is the number of times it won in the test (the fastest among the three).

The results in Table 5.3 show that overall pbmodels-satzoo solved more instances than

pbmodels-pbs , followed by smodels . When we look at the number of times a solver was

98

smodels pbmodels-satzoo pbmodels-pbs pbmodels-wsat(wa)-rnp pbmodels-wsatoip
TSP-e 45/3 50/5 18/2 32/7 47/34
TSP-h 7/0 16/2 0/0 19/6 28/22
wnq-e 11/0 26/0 0/0 49/45 49/4
wnq-h 2/0 0/0 0/0 29/15 29/14
wlsq-e 21/0 45/0 44/0 45/33 45/14
wlsq-h 0/0 7/0 8/0 7/1 8/7
vtxcov 50/0 50/0 47/0 50/36 50/15

sum over all 136/3 194/7 117/2 231/143 256/110

Table 5.4: pbmodels v.s. smodels: Summary on SAT instances

the fastest one, pbmodels-satzoo was a clear winner overall, followed by smodels and

then by pbmodels-pbs . Looking at the seven families of tests individually, we see that

pbmodels-satzoo performs better than the other two solvers on five of the families. On

the other two smodels was the best performer (although, it is a clear winner only on the

vertex-cover benchmark; all solvers were essentially ineffective on the wnq-h).

We also study the performance of pbmodels combined with local-search solvers wsat(wa)

and wsat(oip) [132]. For this study, we consider only those instances in the seven families

that we knew were satisfiable. Table 5.4 presents results for all solvers we study (including

the complete ones). As before, each entry provides a pair of numbers s/w, where s is the

number of solved instances and w is the number of times the solver performs better than its

competitors.

The results show superior performance of pbmodels combined with local-search solvers.

They solve more instances than complete solvers (including smodels). In addition, they are

significantly faster, winning much more frequently than complete solvers do (complete

solvers were faster only on 12 instances, while local-search solvers were faster on 253

instances).

Our results demonstrate that pbmodels with solvers of pseudo-boolean constraints out-

performs smodels on several types of search problems involving pseudo-boolean (weight)

constraints.

Next, we discuss our observations based on the RTDs of these solvers in the experiment.

These RTDs further confirm our observations. All the RTD plots are presented in Appendix

99

B.

According to those figures:

1. We observe that the run-time distribution of pbmodels with satzoo is consistently

above that of smodels in five out of seven families of instances. That implies pbmodels

with satzoo performs better than smodels in those five families. In the weighted latin

square hard instance family, smodels only outperforms pbmodels with satzoo by less

than 0.05% when t ≥ 750. Therefore, smodels does not have a significant win in this

family of instances.

2. The difference between the run-time distribution of smodels and that of pbmodels

with satzoo increases when the family of instances changes from the easy one to the

hard one in the TSP and weighted latin square problems. It shows that smodels

does not scale well in those two problems as instances become hard.

3. Smodels is outperformed by pbmodels with PB solvers, especially with local search

PB solvers. We also have experiments that show pbmodels with local search PB

solvers scales better than smodels when the size of the instances increases.

4. The vertex cover family is the only one in which cmodels could solve some in-

stances. From the run-time distribution of cmodels , we observe that cmodels is

consistently worse than PB with wsat(oip), wsat(wa) and satzoo and worse than

smodels . This observation supports our conjecture that the compilation of cardinal-

ity constraints with large bounds (such as the one in the vertex cover problem) has

an adverse effect the performance of solvers that require that step.

5.3 Comparing wsat(wa) with PB SAT solvers

In this section, we further test the implementations of our algorithms on PLwa-theories

encoding instances of six search problems.

Solvers for PLwa-theories are important both because pbmodels uses PLwa as the target

logic for computing the completion and the loop formulas and because logic PLwa itself is

100

an effective declarative programming formalism that subsumes logic PB . In other words,

we can use PLwa-theories directly to model search problems, without the need to start from

logic programs and go through the completion and the loop formula construction. We have

illustrated how to model a search problem directly in logic PLwa in Section 3.5, Chapter 3.

Consequently, wsat(wa) is also an independent computational tool by which we can solve

search problems directly encoded as PLwa-theories. Therefore, it is important to see how

well wsat(wa) performs.

We compare the performance of our solvers to that of wsat(oip) [132], the only known

SLS PB solver in the literature. We show that our solvers designed directly for PLwa-

theories perform better than wsat(oip), which requires non-trivial transformation from

PLwa-theories into PB -theories. This result implies that the development of direct PLwa

solvers is important and, potentially, will improve the performance of pbmodels as well.

We now discuss our experiments in detail. First, let us take a look at the six search

problems we use in this section:

1. Vertex-cover problem (vcov). The problem is the same as vcov problem defined in

Section 5.2. There, in order to test complete solvers, we did not use large graphs. In

this section, we are testing SLS solvers. Thus we generate 50 random graphs of 2000

vertices and 4000 edges. For each graph, we then select a relatively small integer as

the bound for the size of the vertex cover in such a way that the problem still had a

solution.

2. Traveling salesperson problem (tsp). The problem is the same as the one defined

in Section 5.2. In this experiment, we generate 50 random weighted complete graphs

of 40 vertices. The weight of each edge is uniformly chosen from the range [1..39].

Then for each instance, we then select a relatively small integer as the TSP bound in

such a way that the problem still had a solution.

3. Bounded spanning tree problem (bst). Let G = (V, E) be an undirected graph and

w a positive integer. Each edge {x, y} ∈ E has a weight wx,y ≥ 0. The goal is to

find a spanning tree T of G such that for each vertex x ∈ V , the sum of the weights

101

of all edges in T incident to x is at most w.

We generate 50 random graphs of 30 vertices and 240 edges. The weight of each

edge is uniformly chosen from the range [1..29]. We set w to 15 so that all instances

are satisfiable.

4. Weighted k-coloring problem (wcol) This is a variant of the graph k-coloring prob-

lem. In this variant, we assign weights to edges in the graph. That is, each edge

{u, v} has a non-negative weight denoted by wu,v. We then require that 1) for each

color the sum of weights of edges whose two ends receive the same color is at most

p; and 2) there exists at least one color such that the sum of weights of edges whose

two ends receive that color at the same time is at least q.

5. Weighted dominating set problem (wdm). The problem is defined earlier in Chap-

ter 1.

We generate 50 random graphs of 500 vertices and 2000 edges. The weight of each

edge is generated uniformly from [1..19]. The value of w is set to 40 and k to 330 so

that all instances we generate are satisfiable.

6. Weighted n-queens problem with distance constraint (dwnq). This problem is a

variant of the weighted n-queens problem we have introduced in Section 5.2. Every

square (i, j) on an n × n chess board has a weight wi,j ≥ 0. Given two integers

w ≥ 0 and d ≥ 0, the goal is to find an arrangement of n queens on the board so

that 1) no two queens attack each other; 2) the sum of weights of the squares with

queens does not exceed w; and 3) for each queen Q, there is at least one queen Q′ in

a neighboring row or column such that the Manhattan distance between Q and Q′ is

greater than or equal to d.

We generate 50 random weighted 20 × 20 chess boards, where the weights are uni-

formly chosen from range [1..19]. The value of w is set to 80 and d to 10. All

instances we generate are satisfiable.

We use the first two problems in testing pbmodels as well. However, the instances

102

we generate in this section are different from those generated in the previous section.

The reason is that those instances generated in the previous section are too easy for SLS

solvers. The other four problems are new. The bst problem is interesting in itself. The

other three problems involve boolean combinations of PB -constraints that do not have a

straight-forward encoding in PB .

We present the PLwa-theory encoding an instance of the problem wdm earlier in the

thesis. Encodings for other problems can be found in Appendix A. We note that:

1. Theories for the vcov problem consist only of strict pb-constraints and are accepted

directly by our programs and wsat(oip). Thus, they can be processed without any

modifications by our programs as well as by solvers of strict pb-constraints.

2. Theories for the tsp problem and the bst problem contain formulas which are not

strict pb-constraints. However, these formulas have simple representations as one

or two strict pb-constraints and do not require the help of new atoms. In experi-

ments, we use original encodings with our algorithms and transformed encodings

with wsat(oip).

3. Theories encoding instances of the last three problems consist of non-unary PLwa-

clauses. To avoid a blow-up in the size of representation, when expressing these

clauses in terms of sets of pb-constraints, we need to introduce new atoms. As be-

fore, we use original encodings with our algorithms and transformed encodings with

wsat(oip).

Since the choice of the noise ratio p often has strong effect on the performance of

wsat(wa)-rnp, we test all methods with 9 different noise ratios 0.1, 0.2, . . . , 0.9. For com-

parisons, we use results obtained with the best value of p for each method.

For each instance, we ran each solver in one try, with the maximum number of flips set

so that to guarantee the unsuccessful try does not end prior to the 1000-second limit. We

set other parameters of each solver to their default settings.

We first present a summary of all experiments in Table 5.5. It shows two values in the

form s/w. Value s denotes the number of instances a solver solved in a family of instances.

103

wsat(wa)-skc wsat(wa)-rnp wsat(wa)-df wsat(oip)
vcov 30/0 48/35 47/10 42/4
tsp 1/0 50/48 NA 50/2
bst 50/10 50/41 NA 50/0

wcol 50/0 50/0 50/49 1/1
wdm 49/25 50/26 49/0 4/0
dwnq 50/38 46/11 NA 2/0

Table 5.5: wsat(wa) v.s. wsat(oip): summary on all instances

Value w denotes the number of instances that it solves with the shortest amount of time

among all solvers we tested.

These results demonstrate the superiority of our methods over wsat(oip) on the in-

stances we use in experiments. Of the two methods we proposed, wsat(wa)-rnp per-

forms better in three out of four problems, with wsat(wa)-skc being significantly better

for the remaining one. We emphasize that our algorithms perform better than wsat(oip)

even for problems that were encoded directly as sets of strict pb-constraints or required

only small and simple modifications (problems vcov and bst). There is only one excep-

tion: for the problem vcov wsat(oip) outperforms wsat(wa)-skc (but is outperformed by

wsat(wa)-rnp).

We now present RTD graphs for the problems bst and wdm problem. RTDs for other

problems can be found in Appendix C. Figure 5.1 shows that wsat(wa)-rnp performs the

best.

104

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512 1024

Pr
ob

ab
ili

ty
 o

f s
ol

vi
ng

 a
n

in
st

an
ce

Time (≤ seconds)

bounded spanning tree v=30 e=240 w=15 wrange=[1..29]

wsat(wa)-skc (p=0.1)
wsat(wa)-rnp (p=0.7)

wsatoip (p=0.2)

Figure 5.1: RTDs on the bst problem

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512 1024

Pr
ob

ab
ili

ty
 o

f s
ol

vi
ng

 a
n

in
st

an
ce

Time (≤ seconds)

weighted dominating set v=500 e=2000 w=40 k=330 wrange=[1..19]

wsat(wa)-skc (p=0.1)
wsat(wa)-rnp (p=0.6)

wsat(wa)-df (p=0.5)
wsatoip (p=0.3)

Figure 5.2: RTDs on the wdm problem

105

Figure 5.2 shows that wsat(oip) is not effective. It also shows that wsat(wa)-skc has

a higher probability of solving easy instances (instances that can be solved in up to about

8 seconds). Then wsat(wa)-rnp catches up and the performance of the two algorithms is

very similar, with wsat(wa)-rnp being slightly better (in fact, it is the only algorithm that

solves all instances in the family).

Finally, we discuss the robustness of a local search solver with respect to the noise

ratio. The noise ratio is an important parameter to all wsat-like solvers. Experiments show

that the behavior of a wsat-like solver, measured by its run-time distribution, on some input

theories may vary significantly if the noise ratio is changed slighted. Furthermore, to solve

different input theories, a solver may need different noise ratios to achieve its best behavior.

Therefore, setting the noise ratio is not a trivial task.

A local search solver is robust on an instance P with respect to the noise ration if

its run-time distribution on P does not depend on the value of the noise ratio. A robust

solver makes the task of choosing the best noise ratio easier. We note that researchers [69]

have studied the problem of learning the best noise ratio by solvers themselves. We do not

address this issue in the dissertation.

To study the robustness of variants of wsat(wa) and wsat(oip), we gather the run-time

distributions of the solvers using nine different noise ratios on a family of test instances.

We construct a 3D plot using these data, where x-axis measures the noise ratio, y-axis

measures the running time, and z-axis measures the probability of solving an instance in

the family. A solver is robust on the family of instances if the plot shows a collection of

similar curves along the x-axis. We need to point out that if a solver is robust it does not

necessarily mean the solver performs well on the instance. For example, a solver can be

completely ineffective (not being able to solve the instance) no matter which noise ratio is

used. Then its run-timing distribution will not change at all when the noise ratio changes.

Figure 5.3 shows the plot for wsat(wa)-skc on the family of instances from the problem

vcov.

We observe that the best run-time distribution of wsat(wa)-skc changes dramatically

when the noise ratio changes from 0.1 to 0.2 and larger. With the noise ratio being 0.1,

106

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: vertex cover v=2000 e=4000

wsat(wa)-vbc

Time (<=)

Noise

RTD

Figure 5.3: vcov : wsat(wa)-skc

wsat(wa)-skc is able to achieve a peak at 0.6 on the z-axis. When the noise ratio goes

up to 0.2, the peak drops to 0.2. When the noise ratio is greater than 0.2, the curve of the

run-time distribution becomes a line on the x-y surface.

Figure 5.4, 5.5, 5.6 show the plots for wsat(wa)-rnp, wsat(wa)-df , and wsat(oip) on

the same family of instances respectively.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: vertex cover v=2000 e=4000

wsat(wa)-rnp

Time (<=)

Noise

RTD

Figure 5.4: vcov : wsat(wa)-rnp

It is clear that wsat(wa)-rnp is much more robust than wsat(wa)-skc on this family

107

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: vertex cover v=2000 e=4000

wsat(wa)-df

Time (<=)

Noise

RTD

Figure 5.5: vcov : wsat(wa)-df

of instance. Actually, if we compare Figure 5.4 to Figure 5.5 and 5.6, we observe that

wsat(wa)-rnp is the most robust solver among all four solvers in this family of instances.

Solver wsat(wa)-df is the second most robust solver. wsat(oip) is slightly more robust

than wsat(wa)-skc. However, it becomes completely ineffective when the noise ratio is

greater than 0.3.

The set of data comparing the robustness of the solvers on every family of instances is

given in Appendix D. The conclusion on this comparison is that wsat(wa)-skc is the most

robust solver on these tests, with two exceptions: problem wrcol and problem dwnq. In

problem dwnq, the only robust solver is wsat(oip), which is completely ineffective. We

note that wsat(wa)-df is robust whenever it is applicable.

Copyright c© Lengning Liu 2006

108

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: vertex cover v=2000 e=4000

wsatoip

Time (<=)

Noise

RTD

Figure 5.6: vcov : wsat(oip)

109

Chapter 6

Conclusions

We addressed the problem of solving hard search problems. We adopted a declarative pro-

gramming approach. In declarative programming paradigm, we write programs to capture

specifications of problems rather than the control algorithms. In particular, we focused

on logic programming with stable model semantics. In this formalism, we represent con-

straints of problems as a collection of logic program rules, called a logic program, such that

stable models of the logic program are precisely the solutions to the problem. We write the

logic program in a first-order language, where we can use predicates and domain variables.

Then we ground the first-order logic program into a propositional one. Finally we compute

the stable models of the ground logic program.

In this thesis, we focused on ground logic programs and developed theories concerned

with properties of ground logic programs. Researchers have studied normal logic programs

for more than two decades, developing the definition of the stable model semantics and

properties of normal logic programs. In early 2000’s, researchers proposed high-level con-

structs to the language to facilitate the modeling of constraints on sets. One notable such

construct is the weight constraint (or pseudo-boolean constraint), by which we can capture

constraints of the weight of a set in a concise way. We call logic programs with such exten-

sions the lparse programs. Lparse programs are the main objects we investigated in this

thesis.

The goal of this thesis was to develop theories and algorithms to compute stable models

of lparse programs, by which we can solve search problems. Therefore, we first investi-

gated properties of lparse programs. Since researchers proposed lparse programs, most of

the research on lparse programs focuses on extending the stable model semantics to this

setting. Beyond the definition of stable models of lparse programs, we have not seen much

work on their properties.

110

In the thesis, we considered an even more general type of logic program than lparse

programs. We considered logic programs built of abstract monotone or convex constraints.

We call such programs mac programs. In particular, lparse programs, with the restriction

that only non-negative integers and positive literals occur in a weight constraint, form a

subclass of mac programs. We applied an algebraic approach under this setting to define

the stable model semantics and to investigate properties of such logic programs. We showed

that concepts, techniques and results from normal logic programming generalize to this

abstract setting of programs with monotone and convex constraints. Our work differs from

related research in the literature because we allow constraints to appear in the heads of

program rules. This difference is significant as the one-step provability operator for mac

programs becomes non-deterministic.

We studied in properties of mac programs that are related to computing stable models

of mac programs. We extended results such as program equivalence, tightness of logic

programs, Fages Lemma, program completion, and loop formulas from normal logic pro-

gramming to this abstract setting. The results we obtained for mac programs specialize to

new results about lparse programs. While characterizations of strong equivalence of lparse

programs were obtained by Turner [129], the characterization of uniform equivalence of

lparse programs implied by Theorem 14 is new.

Specializations to the case of lparse of Theorems 16, 19, 22 and 23, concerning Fages

Lemma, the completion of a program and loop formulas, are also new.

Given these results we developed an implementation of a new software for computing

stable models of lparse programs. The idea is to follow the approach developed in as-

sat [81], and use the results we mentioned above to reduce the problem to that of finding

models of theories that are boolean combinations of pseudo-boolean constraints, for which

several fast solvers exist [38, 82, 87]. We can also convert theories that are boolean combi-

nations of pseudo-boolean constraints into pseudo-boolean SAT instances, for which many

effective PB SAT solvers exist [96].

The new software we developed differs from its ancestors assat and cmodels since it

does not compile away weight atoms from logic programs. Therefore, in many cases, our

111

software performs better than both the native stable model solver smodels and compilation-

to-SAT stable model solvers assat and cmodels. Moreover, as the area of PB SAT receives

more and more attention and new faster PB solvers are designed, the scope of the effec-

tiveness of pbmodels will continue expanding because our software can take any PB SAT

solver as the back-end engine in computing stable models.

As a byproduct of our research on lparse programs, we proposed the extension to propo-

sitional logic called logic PLwa , which allows boolean combinations of pseudo-boolean

constraints. This logic is of its own interest because of the use of pseudo-boolean con-

straints. Therefore, we also conducted another line of research to develop solvers for this

new logic in the thesis. In particular, we extended the stochastic local search algorithms

proposed for SAT to this new logic.

That is, we designed a family of extensible SLS algorithms for PLwa theories. The

key idea behind our algorithms is to view a PLwa theory T as a concise representation of

a certain propositional CNF theory cl(T) logically equivalent to T , and to show that key

parameters needed by SLS solvers developed for CNF theories can be computed on the

basis of T , without the need to build cl(T) explicitly. Our experiments demonstrate that

our methods are superior to those relying on explicit representations of PLwa clauses as

sets of PB constraints (a.k.a. PB SAT instances) and resorting to off-the-shelf local-search

solvers for PB constraints such as wsat(oip).

We performed extensive experimental study at the end of this dissertation. The results

show that our research has yield two types of solver that are significantly better than existing

solvers in the literature.

There are still open questions in this research that may constitute future investigations:

1. extending our results to disjunctive logic programming with pseudo-boolean con-

straints.

2. defining new type of program equivalence. Current definition of strong or uniform

equivalence is too restrictive. Therefore, it is hard to use these two types of equiv-

alence in practical applications such as program optimization or building libraries.

112

We want to weaken the definition of program equivalence, yet still can replace one

program module by another without changing the meaning of the overall program.

3. improving pbmodels algorithm. Current algorithm treats PB solvers as blackboxes.

That is, when a supported but not stable model is found, the algorithm computes

its loop formula, adds it to the theories, and calls the PB solver. The PB solver

in this case will start its search process all from scratch. In other words, the PB

solver loses all the information it gained during previous search processes. We want

to modify pbmodels algorithm so that it treats PB solvers as grayboxes, which can

pause the search process, wait for pbmodels to add loop formulas, and resume the

search process from where it was stopped.

4. finding ways to deal with overflow problem in computing virtual counts in wsat(wa).

As we have mentioned, the virtual counts can cause overflows fairly easily. Since

we only care about the ordering of atoms defined by the virtual counts, we want

to develop effective and fast approximations of virtual counts so that: 1) few or no

overflow will occur when we use the approximations; and 2) they maintain the correct

ordering by the accurate virtual counts.

5. extending wsat(wa) to deal with more types of constraint. As we pointed out in

Chapter 4, the idea of virtual counts can be pushed even further. Given an arbitrary

constraint (not necessarily a PB constraint), as long as we can find an equivalent

propositional logic representation that has a regular structure, we can apply our vir-

tual count computation on this constraint. This extension will enable wsat(wa) to

even more general settings.

Copyright c© Lengning Liu 2006

113

Appendix A Lparse and Logic PLwa encodings of the benchmark
problems

We show encodings of the benchmark problems we used in our experiments, the RTD plots

and the comparison of solvers on the robustness in this chapter.

A.1 Vertex cover problem

We build the theory Tvc(G, k) of atoms ini, 1 ≤ i ≤ n, (intended meaning of ini: vertex i

is in a vertex cover) and define it to consist of the following clauses:

VCC1: {in1, . . . , inn}k

VCC2: inp ∨ inr

for every edge (p, r) ∈ E

Clause (VCC1) (a single one) guarantees that at most k vertices are chosen to a vertex

cover. Clauses (VCC2) enforce the main vertex cover constraint. That is, for each edge

(p, r), either p is in the subset or r is in the subset.

The logic program that represents vertex cover problem is similar.

VCR1: {in1, . . . , inn}k ←

VCR2: ← not(inp),not(inr)

for every edge (p, r) ∈ E

Rule (VCR1) is used to guess a subset of vertices of size less than or equal to k. Then

rules (VCR2) ensure the subset we guess from rule (VCR1) is indeed a vertex cover.

A.2 Traveling salesperson problem

To encode the problem as a PLwa-theory, say Ttsp(G, k), we use atoms pi,v and eu,v, where

1 ≤ i ≤ |V | and u, v ∈ V . The atoms pi,v define a permutation of V specifying a Hamil-

tonian cycle. Intuitively, an atom pi,v captures the statement that v is in the position i in

114

the permutation. Auxiliary atoms eu,v are meant to represent the edges {u, v} that form a

selected Hamiltonian cycle. The theory Ttsp(G, k) consists of the following clauses:

TC1: 1[pi,v : v ∈ V]1

for every i, 1 ≤ i ≤ |V |

TC2: 1[pi,v : 1 ≤ i ≤ |V |]1

for every v ∈ V

TC3: ¬pi,u ∨ ¬pi+1,v ∨ eu,v

for every u, v ∈ V and for every i, 1 ≤ i ≤ n (when incrementing indices by one,

we assume here that n + 1 = 1)

TC4: ¬eu,v ∨ ¬pi,u ∨ pi+1,v

for every u, v ∈ V and for every i, 1 ≤ i ≤ n (as before, we assume that n+1 = 1)

TC5: [eu,v = wu,v : u, v ∈ V]k

The first two sets (TC1) and (TC2) of clauses together ensure the permutation con-

straints. The second pair of sets (TC3) and (TC4) of clauses define the edges eu,v that form

the Hamiltonian cycle determined by a permutation pi,v. Finally, clause (TC5) enforces the

bound on the length of a cycle.

The logic program Ptsp(G, k) is given as follows:

TR1: 1[pi,v : v ∈ V]1

for every i, 1 ≤ i ≤ |V |

TR2: 1[pi,v : 1 ≤ i ≤ |V |]1

for every v ∈ V

TR3: eu,v ← pi,u, pi+1,v

for every u, v ∈ V and for every i, 1 ≤ i ≤ n (when incrementing indices by one,

we assume here that n + 1 = 1)

TR4: ← k + 1[eu,v = wu,v : u, v ∈ V]

115

A.3 Bounded spanning tree problem

To build a spanning tree, we pick exactly n − 1 edges from the graph. These edges form

a spanning tree if and only if we can find a permutation of vertices such that the following

property holds:

(ST) for any vertex at position i > 1 in the permutation, there must have exactly one

vertex at position 1 ≤ j < i such that there is a tree edge between them.

Indeed, if these edges form a spanning tree T , then we perform a breadth-first search.

The order in which vertices are visited forms a permutation since the spanning tree connects

all vertices in G. Since vertices in G are connected in T , every vertex at position i > 1

of the permutation has an ancestor. Assume the permutation does not satisfy the property

(ST). Then there exists a position i > 1 such that the vertex u at this position has edges to

more than one vertex at position 1 ≤ j < i. Then one can construct a cycle in this case.

It contradicts the assumption that T is a spanning tree. Therefore the permutation satisfies

the property (ST).

For the other direction, let T be the edges we choose, and let P be the permutation

of vertices that satisfies property (ST). In order to prove the edges in T form a spanning

tree, We need to show that the edges do not form cycles. Assume it is not the case, then

there exists a cycle (v1, . . . , vk) such that vi and vi+1 are connected by an edge in T , for

i = 1, . . . , k and k + 1 = 1. Since vertices v1, . . . , vk appear in the permutation P , without

loss of generality, we assume v1 is the vertex in the cycle that occurs the earliest in the

permutation. Since v2 occurs after v1 in the permutation and there is an edge in T between

v2 and v1, then v3 must occur after v2 because the permutation satisfies property (ST). With

the same reasoning, we infer that vk occurs the last in the permutation. However, since

there is an edge between v1 and vk, vk has two vertices: v1 and vk−1 that occur before it and

have edges in T to vk. It is a contradiction. Therefore, the edges in T form a spanning tree.

To build PLwa-theory, Tbst(G, k), encoding the bounded spanning tree problem, we use

atoms svi,x and tex,y (i = 1, . . . , |V |, x, y ∈ V). Atoms svi,x establish a permutation of

vertices in G. The intended meaning of tex,y is that edge (x, y) is chosen into the spanning

116

tree. In order to model the property (ST) concisely, we view edges represented by tex,y as

directed edges from x to y. Thus the property (ST) can be modified to the following one:

(ST’-1) a vertex at position i > 1 in the permutation has exactly one incoming tree edge

from a vertex at position 1 ≤ j < i;

(ST’-2) if there is a tree edge from x to y, then x appears before y in the permutation.

Once the spanning tree is built, the bound constraint is easy to capture. We include in

Tbst(G, w) the following clauses:

SC1: (n− 1){tex,y : {x, y} ∈ E}(n− 1)

SC2: ¬tex,y

for every non-edge pair {x, y}

SC3: 1{svi,x : x ∈ V }1

for every i = 1, . . . , n

SC4: 1{svi,x : i = 1, . . . n}1

for every x ∈ V

SC5: ¬svi,y ∨ C

where C = 1{tez,y : ∀z, {z, y} ∈ E}1

for every i > 1 and y ∈ V

SC6: ¬svi,x ∨ ¬svj,y ∨ ¬tex,y

for every 1 ≤ j < i ≤ n and x, y ∈ V

SC7: {tex,y = wx,y : ∀x, z, {x, y} ∈ E}w

for all y ∈ V

It is clear that clauses (SC1) and (SC2) enforce that exactly n − 1 edges are chosen

into the spanning tree. Clauses (SC3) and (SC4) generate a permutation of all vertices

in G. Clauses (SC5) capture the property (ST’-1) and clauses (SC6) capture the property

(ST’-2). Finally clauses (SC7) ensure the weight bound constraint on each vertex.

117

Now we give an lparse-program that represents the same problem. We use the same

set of atoms that occur in PLwa-theory Tbst(G, k). The lparse-program Pbst(G, k) contains

the following rules:

SR1: (n− 1){tex,y : {x, y} ∈ E}(n− 1)←

SR2: 1{svi,x : x ∈ V }1←

for every i = 1, . . . , n

SR3: 1{svi,x : i = 1, . . . n}1←

for every x ∈ V

SR4: C ← svi,y

where C = 1{tez,y : ∀z, {z, y} ∈ E}1

for every i > 1 and y ∈ V

SR5: ← svi,x, svj,y, tex,y

for every 1 ≤ j < i ≤ n and x, y ∈ V

SR6: ← w + 1{tex,y = wx,y : ∀x, z, {x, y} ∈ E}

for all y ∈ V

The lparse-program Pbst(G, k) is almost the same as the PLwa theory Tbst(G, k). The

only exception is that clauses (SC2) do not have a correspondence in program Pbst(G, k).

The reason is that the only ways to derive atoms tex,y are through rules (SR1) and (SR4).

They have restricted that only those tex,y’s such that {x, y} is an edge in G could ever be

derived (or assigned value t in any stable model).

A.4 Weighted k-coloring problem

We use the following PLwa-theory Tpcol to represent the weighted relaxed k-coloring prob-

lem. We introduce a set of propositional atoms: ci,c and ei,j,c, where 1 ≤ i, j ≤ n and

1 ≤ c ≤ k. The intended meaning of ci,c is that vertex i has color c, and the intended

meaning of ei,j,c is the two ends of edge (i, j) receive the same color c.

CC1: 1{ci,1, . . . , ci,k}1
for every i, 1 ≤ i ≤ n.

118

CC2: ¬ci,c ∨ ¬cj,c ∨ ei,j,c

for every edge {i, j} in the graph and every color 1 ≤ c ≤ k

CC3: ¬ei,j,c ∨ ci,c

for every edge {i, j} and every color 1 ≤ c ≤ k

CC4: ¬ei,j,c ∨ cj,c

for every edge {i, j} and every color 1 ≤ c ≤ k

CC5: ¬ei,j,c

for every non-edge pair {i, j} and every color 1 ≤ c ≤ k

CC6: [ei,j,c = wi,j : {i, j} ∈ E]p
for every color 1 ≤ c ≤ k

CC7: W1 ∨ . . . ∨Wk

where Wx = q[ei,j,cx = wi,j : {i, j} ∈ E]
for x = 1, . . . , k

Clauses (CC1) ensure that every vertex obtains exactly one color. Clauses (CC2) to

(CC5) enforce that ei,j,c is t if and only if {i, j} is an edge whose two ends receive the

same color c. Clauses (CC6) ensure the constraint 1) of the problem. Finally, clause (CC7)

ensures the constraint 2) of the problem.

Now let us take a look at the logic program encoding for the same variant.

CR1: 1{ci,1, . . . , ci,k}1←

for every i, 1 ≤ i ≤ n

CR2: ei,j,c ← ci,c, cj,c

for every edge {i, j} in the graph and every color 1 ≤ c ≤ k

CR3: ← p + 1[ei,j,c = wi,j : (i, j) ∈ E]

for every color 1 ≤ c ≤ k

CR4: ← W1, . . . ,Wk

where Wx = [ei,j,cx = wi,j : {i, j} ∈ E]q − 1

for x = 1, . . . , k

Rules (CR1) ensure that every vertex obtains exactly one color. Rules (CR2) compute

the edge coloring. Rules (CR3) and (CR4) ensure two constraints of the problem.

119

A.5 W -Dominating set problem

To construct a theory Tdm(G, k, w) encoding the w-dominating-set problem we use atoms

of the form ini, i ∈ V (this time, ini stands for: vertex i is in a dominating set). Theory

Tdm(G, k, w) consists of the following clauses:

DC1: ini ∨W1 ∨W2

for every i ∈ V , where

W1 = w[iny = wi,y : (i, y) ∈ E], and

W2 = w[inz = wz,i : (z, i) ∈ E]

DC2: {ini : i ∈ V }k

Clauses (DC1) enforce the defining constraint for the w-dominating set problem. Clause

(DC2) guarantees that a selected subset has at most k vertices.

The logic program Pdm(G, k, w) that represents the w-dominating set problem is given

below:

DR1: ← not(ini), W1, W2

for every i ∈ V , where

W1 = [iny = wi,y : (i, y) ∈ E]w − 1, and

W2 = [inz = wz,i : (z, i) ∈ E]w − 1

DR2: {ini : i ∈ V }k

A.6 Weighted n-queens problem

In the PLwa-theory Twnq(n, k), encoding this problem, we use propositional atoms qi,j ,

1 ≤ i, j ≤ n, to represent occupied blocks: intuitively, qi,j is true if and only if the square

(i, j) has a queen. The theory Twnq(n, k) consists of the following clauses:

QC1: 1{qi,1, . . . , qi,n}1

for every i, 1 ≤ i ≤ n

120

QC2: 1{q1,j, . . . , qn,j}1

for every j, 1 ≤ j ≤ n

QC3: ¬qi,j ∨ ¬qk,l

for every i, j, k, l such that 1 ≤ i < k ≤ n, 1 ≤ j, l ≤ n and abs(i−k) = abs(j− l)

QC4: [qi,j = wi,j : 1 ≤ i, j ≤ n]k

Clauses (QC1) ensure that no row contains two or more queens. Similarly clauses

(QC2) ensure that no column contains two or more queens. Clauses (QC3) ensure that no

diagonal contains two or more queens. The last clause (QC4) enforces the upper bound

constraint on the sum of weights of occupied squares.

The following logic program Pwnq(n, k) represents the same problem.

QR1: 1{qi,1, . . . , qi,n}1←

for every i, 1 ≤ i ≤ n

QR2: 1{q1,j, . . . , qn,j}1←

for every j, 1 ≤ j ≤ n

QR3: ← qi,j ∧ qk,l

for every i, j, k, l such that 1 ≤ i < k ≤ n, 1 ≤ j, l ≤ n and abs(i−k) = abs(j− l)

QR4: ← k + 1[qi,j = wi,j : 1 ≤ i, j ≤ n]

A.7 Weighted n-queens problem with distance constraint

Now we define a logic PLwa-theory Tdwnq(n, k, d) that represents this problem. In addition

to the set of atoms qi,j , we use atoms mdux,y,z, mddx,y,z, mdlx,y,z, and mdrx,y,z to denote

the Manhattan distance from queen in position (x, y) to its neighbors in row x − 1, row

x + 1, column y − 1, column y + 1 respectively.

DQC1: 1{qi,1, . . . , qi,n}1

for every i, 1 ≤ i ≤ n

121

DQC2: 1{q1,j, . . . , qn,j}1

for every j, 1 ≤ j ≤ n

DQC3: ¬qi,j ∨ ¬qk,l

for every i, j, k, l such that 1 ≤ i < k ≤ n, 1 ≤ j, l ≤ n and abs(i−k) = abs(j−l)

DQC4: [qi,j = wi,j : 1 ≤ i, j ≤ n]k

DQC5: ¬qx,y ∨ ¬qx−1,w ∨mdux,y,z

for every 1 < x ≤ n, 1 ≤ y, w ≤ n and z = |w − y|+ 1

DQC6: ¬mdux,y,z ∨ qx,y

for every 1 ≤ x, y, z ≤ n

DQC7: ¬mdux,y,z ∨ qu,v ∨ qu,w

for every 1 ≤ x, y, z ≤ n and u = x− 1 ≥ 0, v = y + z ≤ n, 1 ≤ y − z

DQC8: ¬qx,y ∨ ¬qx+1,w ∨mddx,y,z

for every 1 ≤ x < n, 1 ≤ y, w ≤ n and z = |w − y|+ 1

DQC9: ¬mddx,y,z ∨ qx,y

for every 1 ≤ x, y, z ≤ n

DQC10: ¬mddx,y,z ∨ qu,v ∨ qu,w

for every 1 ≤ x, y, z ≤ n and u = x + 1 ≤ n, v = y + z ≤ n, 1 ≤ y − z

DQC11: ¬qx,y ∨ ¬qw,y−1 ∨mdlx,y,z

for every 1 < y ≤ n, 1 ≤ x, w ≤ n and z = |w − x|+ 1

DQC12: ¬mdlx,y,z ∨ qx,y

for every 1 ≤ x, y, z ≤ n

DQC13: ¬mdlx,y,z ∨ qv,u ∨ qw,u

for every 1 ≤ x, y, z ≤ n and u = y − 1 ≥ 0, v = x + z ≤ n, 1 ≤ x− z

DQC14: ¬qx,y ∨ ¬qw,y+1 ∨mdrx,y,z

for every 1 ≤ y < n, 1 ≤ x, w ≤ n and z = |w − x|+ 1

DQC15: ¬mdrx,y,z ∨ qx,y

for every 1 ≤ x, y, z ≤ n

122

DQC16: ¬mdrx,y,z ∨ qu,v ∨ qu,w

for every 1 ≤ x, y, z ≤ n and u = y + 1 ≤ n, v = x + z ≤ n, 1 ≤ x− z

DQC17: ¬qx,y ∨W1 ∨W2 ∨W3 ∨W4

where W1 = d[mdux,y,z = z : 1 ≤ z ≤ n]

W2 = d[mddx,y,z = z : 1 ≤ z ≤ n]

W3 = d[mdlx,y,z = z : 1 ≤ z ≤ n] and

W4 = d[mdrx,y,z = z : 1 ≤ z ≤ n]

for every 1 ≤ x, y ≤ n

Clauses (DQC1) to (DQC4) are from the original weighted n-queens theory. Clauses

(DQC5) to (DQC7) define atoms wdux,y,z. That is, wdux,y,z is t if and only if qx,y is t and

qx−1,w is t such that z = |y − w| + 1. Similarly clauses (DQC8) to (DQC10), (DQC11)

to (DQC13), and (DQC14) to (DQC16) define atoms wddx,y,z, wdlx,y,z, and wdrx,y,z re-

spectively. The last set of clauses (DQC17) ensure that, for each queen, at least one of its

neighbors has distance at least d from it.

Now we define logic program Pdwnq(n, k, d) that represents the same problem:

DQR1: 1{qi,1, . . . , qi,n}1

for every i, 1 ≤ i ≤ n

DQR2: 1{q1,j, . . . , qn,j}1

for every j, 1 ≤ j ≤ n

DQR3: ← qi,j, qk,l

for every i, j, k, l such that 1 ≤ i < k ≤ n, 1 ≤ j, l ≤ n and abs(i−k) = abs(j−l)

DQR4: ← k + 1[qi,j = wi,j : 1 ≤ i, j ≤ n]

DQR5: mdux,y,z ← qx,y, qx−1,w

for every 1 < x ≤ n, 1 ≤ y, w ≤ n and z = |w − y|+ 1

DQR6: mddx,y,z ← qx,y, qx+1,w

for every 1 ≤ x < n, 1 ≤ y, w ≤ n and z = |w − y|+ 1

123

DQR7: mdlx,y,z ← qx,y, qw,y−1

for every 1 < y ≤ n, 1 ≤ x, w ≤ n and z = |w − x|+ 1

DQR8: mdrx,y,z ← qx,y, qw,y+1

for every 1 ≤ y < n, 1 ≤ x, w ≤ n and z = |w − x|+ 1

DQR9: ← qx,y, W1, W2, W3, W4

where W1 = [mdux,y,z = z : 1 ≤ z ≤ n]d− 1

W2 = [mddx,y,z = z : 1 ≤ z ≤ n]d− 1

W3 = [mdlx,y,z = z : 1 ≤ z ≤ n]d− 1 and

W4 = [mdrx,y,z = z : 1 ≤ z ≤ n]d− 1

for every 1 ≤ x, y ≤ n

124

Appendix B RTDs: pbmodels v.s. smodels

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

P
ro

b
ab

il
it

y
 o

f
so

lv
in

g
 a

n
 i

n
st

an
ce

Time (<=)

RTD in TSP n=20 w=100

smodels
pbmodels-satzoo

pbmodels-pbs
pbmodels-wsatcc

pbmodels-wsatoip

Figure B.1: pbmodels v.s. lparse: tsp-e

125

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000

P
ro

b
ab

il
it

y
 o

f
so

lv
in

g
 a

n
 i

n
st

an
ce

Time (<=)

RTD in TSP n=20 w=62

smodels
pbmodels-satzoo

pbmodels-pbs
pbmodels-wsatcc

pbmodels-wsatoip

Figure B.2: pbmodels v.s. lparse: tsp-h

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

P
ro

b
ab

il
it

y
 o

f
so

lv
in

g
 a

n
 i

n
st

an
ce

Time (<=)

RTD in Weighted NQueens n=20 w=70

smodels
pbmodels-satzoo

pbmodels-pbs
pbmodels-wsatcc

pbmodels-wsatoip

Figure B.3: pbmodels v.s. lparse: wnq-e

126

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000

P
ro

b
ab

il
it

y
 o

f
so

lv
in

g
 a

n
 i

n
st

an
ce

Time (<=)

RTD in Weighted NQueens n=20 w=50

smodels
pbmodels-satzoo

pbmodels-pbs
pbmodels-wsatcc

pbmodels-wsatoip

Figure B.4: pbmodels v.s. lparse: wnq-h

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

P
ro

b
ab

il
it

y
 o

f
so

lv
in

g
 a

n
 i

n
st

an
ce

Time (<=)

RTD in Weighted Latin Square n=10 w=280

smodels
pbmodels-satzoo

pbmodels-pbs
pbmodels-wsatcc

pbmodels-wsatoip

Figure B.5: pbmodels v.s. lparse: wls-e

127

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

P
ro

b
ab

il
it

y
 o

f
so

lv
in

g
 a

n
 i

n
st

an
ce

Time (<=)

RTD in Weighted Latin Square n=10 w=225

smodels
pbmodels-satzoo

pbmodels-pbs
pbmodels-wsatcc

pbmodels-wsatoip

Figure B.6: pbmodels v.s. lparse: wls-h

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

P
ro

b
ab

il
it

y
 o

f
so

lv
in

g
 a

n
 i

n
st

an
ce

Time (<=)

RTD in Vertex Cover n=80 w=400

smodels
pbmodels-satzoo

pbmodels-pbs
pbmodels-wsatcc

pbmodels-wsatoip
cmodels

pbmodels-aspps

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

Figure B.7: pbmodels v.s. lparse: vtxcov

128

Appendix C RTDs: wsat(wa) v.s. wsat(oip)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512 1024

Pr
ob

ab
ili

ty
 o

f s
ol

vi
ng

 a
n

in
st

an
ce

Time (≤ seconds)

vertex cover v=2000 e=4000

wsat(wa)-skc (p=0.1)
wsat(wa)-rnp (p=0.4)

wsat(wa)-df (p=0.3)
wsatoip (p=0.1)

Figure C.1: wsat(wa) v.s. wsat(oip): vcov

129

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512 1024

Pr
ob

ab
ili

ty
 o

f s
ol

vi
ng

 a
n

in
st

an
ce

Time (≤ seconds)

weighted vertex cover v=2000 e=4000 w=9000 WRange=[1..19]

wsat(wa)-skc (p=0.1)
wsat(wa)-rnp (p=0)

wsatoip (p=0)

Figure C.2: wsat(wa) v.s. wsat(oip): wvcov

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512 1024

Pr
ob

ab
ili

ty
 o

f s
ol

vi
ng

 a
n

in
st

an
ce

Time (≤ seconds)

TSP n=40 WRange=[1..39]

wsat(wa)-skc (p=0.1)
wsat(wa)-rnp (p=0.3)

wsatoip (p=0.1)

Figure C.3: wsat(wa) v.s. wsat(oip): tsp

130

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512 1024

Pr
ob

ab
ili

ty
 o

f s
ol

vi
ng

 a
n

in
st

an
ce

Time (≤ seconds)

bounded spanning tree v=30 e=240 w=15 wrange=[1..29]

wsat(wa)-skc (p=0.1)
wsat(wa)-rnp (p=0.7)

wsatoip (p=0.2)

Figure C.4: wsat(wa) v.s. wsat(oip): bst

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512 1024

Pr
ob

ab
ili

ty
 o

f s
ol

vi
ng

 a
n

in
st

an
ce

Time (≤ seconds)

weighted relaxed 4-coloring v=200 e=3000 p=1000 q=100 WRange=[1..19]

wsat(wa)-skc (p=0.3)
wsat(wa)-rnp (p=0.9)

wsat(wa)-df (p=0.8)
wsatoip (p=0.1)

Figure C.5: wsat(wa) v.s. wsat(oip): wrcol

131

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512 1024

Pr
ob

ab
ili

ty
 o

f s
ol

vi
ng

 a
n

in
st

an
ce

Time (≤ seconds)

weighted dominating set v=500 e=2000 w=40 k=330 wrange=[1..19]

wsat(wa)-skc (p=0.1)
wsat(wa)-rnp (p=0.6)

wsat(wa)-df (p=0.5)
wsatoip (p=0.3)

Figure C.6: wsat(wa) v.s. wsat(oip): wdm

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512 1024

Pr
ob

ab
ili

ty
 o

f s
ol

vi
ng

 a
n

in
st

an
ce

Time (≤ seconds)

weighted nqueens n=20 w=80 d=10 wrange=[1..19]

wsat(wa)-skc (p=0.1)
wsat(wa)-rnp (p=0.6)

wsatoip (p=0.3)

Figure C.7: wsat(wa) v.s. wsat(oip): dwnq

132

Appendix D Robustness w.r.t. the noise ratio

D.1 On vcov instances

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: vertex cover v=2000 e=4000

wsat(wa)-vbc

Time (<=)

Noise

RTD

Figure D.1: vcov : wsat(wa)-skc

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: vertex cover v=2000 e=4000

wsat(wa)-rnp

Time (<=)

Noise

RTD

Figure D.2: vcov : wsat(wa)-rnp

133

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: vertex cover v=2000 e=4000

wsat(wa)-df

Time (<=)

Noise

RTD

Figure D.3: vcov : wsat(wa)-df

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: vertex cover v=2000 e=4000

wsatoip

Time (<=)

Noise

RTD

Figure D.4: vcov : wsat(oip)

134

D.2 On wvcov instances

 0

 0.2

 0.4

 0.6

 0.8

 1

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: weighted vertex cover v=2000 e=4000 w=9000 WRange=[1..19]

wsat(wa)-vbc

Time (<=)

Noise

RTD

Figure D.5: wvcov : wsat(wa)-skc

135

D.3 On tsp instances

 0

 0.005

 0.01

 0.015

 0.02

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: TSP n=40 WRange=[1..39]

wsat(wa)-vbc

Time (<=)

Noise

RTD

Figure D.6: tsp: wsat(wa)-skc

 0

 0.2

 0.4

 0.6

 0.8

 1

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: TSP n=40 WRange=[1..39]

wsat(wa)-rnp

Time (<=)

Noise

RTD

Figure D.7: tsp: wsat(wa)-rnp

136

 0

 0.2

 0.4

 0.6

 0.8

 1

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: TSP n=40 WRange=[1..39]

wsatoip

Time (<=)

Noise

RTD

Figure D.8: tsp: wsat(oip)

137

D.4 On bst instances

 0

 0.2

 0.4

 0.6

 0.8

 1

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: bounded spanning tree v=30 e=240 w=15 wrange=[1..29]

wsat(wa)-vbc

Time (<=)

Noise

RTD

Figure D.9: bst : wsat(wa)-skc

 0

 0.2

 0.4

 0.6

 0.8

 1

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: bounded spanning tree v=30 e=240 w=15 wrange=[1..29]

wsat(wa)-rnp

Time (<=)

Noise

RTD

Figure D.10: bst : wsat(wa)-rnp

138

 0

 0.2

 0.4

 0.6

 0.8

 1

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: bounded spanning tree v=30 e=240 w=15 wrange=[1..29]

wsatoip

Time (<=)

Noise

RTD

Figure D.11: bst : wsat(oip)

139

D.5 On wrcol instances

 0

 0.2

 0.4

 0.6

 0.8

 1

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: weighted relaxed 4-coloring v=200 e=3000 p=1000 q=100 WRange=[1..19]

wsat(wa)-vbc

Time (<=)

Noise

RTD

Figure D.12: wrcol : wsat(wa)-skc

 0

 0.2

 0.4

 0.6

 0.8

 1

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: weighted relaxed 4-coloring v=200 e=3000 p=1000 q=100 WRange=[1..19]

wsat(wa)-rnp

Time (<=)

Noise

RTD

Figure D.13: wrcol : wsat(wa)-rnp

140

 0

 0.2

 0.4

 0.6

 0.8

 1

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: weighted relaxed 4-coloring v=200 e=3000 p=1000 q=100 WRange=[1..19]

wsat(wa)-df

Time (<=)

Noise

RTD

Figure D.14: wrcol : wsat(wa)-df

 0

 0.005

 0.01

 0.015

 0.02

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: weighted relaxed 4-coloring v=200 e=3000 p=1000 q=100 WRange=[1..19]

wsatoip

Time (<=)

Noise

RTD

Figure D.15: wrcol : wsat(oip)

141

D.6 On wdm instances

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: weighted dominating set v=500 e=2000 w=40 k=330 wrange=[1..19]

wsat(wa)-vbc

Time (<=)

Noise

RTD

Figure D.16: wdm: wsat(wa)-skc

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: weighted dominating set v=500 e=2000 w=40 k=330 wrange=[1..19]

wsat(wa)-rnp

Time (<=)

Noise

RTD

Figure D.17: wdm: wsat(wa)-rnp

142

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: weighted dominating set v=500 e=2000 w=40 k=330 wrange=[1..19]

wsat(wa)-df

Time (<=)

Noise

RTD

Figure D.18: wdm: wsat(wa)-df

 0
 0.005
 0.01
 0.015
 0.02
 0.025
 0.03
 0.035
 0.04

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: weighted dominating set v=500 e=2000 w=40 k=330 wrange=[1..19]

wsatoip

Time (<=)

Noise

RTD

Figure D.19: wdm: wsat(oip)

143

D.7 On dwnq instances

 0

 0.2

 0.4

 0.6

 0.8

 1

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: weighted nqueens n=20 w=80 d=10 wrange=[1..19]

wsat(wa)-vbc

Time (<=)

Noise

RTD

Figure D.20: dwnq : wsat(wa)-skc

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: weighted nqueens n=20 w=80 d=10 wrange=[1..19]

wsat(wa)-rnp

Time (<=)

Noise

RTD

Figure D.21: dwnq : wsat(wa)-rnp

144

 0

 0.005

 0.01

 0.015

 0.02

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

0.90.80.70.60.50.40.30.20.1

 0

 0.2

 0.4

 0.6

 0.8

 1

RTD

RTD: weighted nqueens n=20 w=80 d=10 wrange=[1..19]

wsatoip

Time (<=)

Noise

RTD

Figure D.22: dwnq : wsat(oip)

145

Bibliography

[1] F. ALOUL, A. RAMANI, I. MARKOV, AND K. SAKALLAH, PBS: a backtrack-

search pseudo-boolean solver and optimizer, in Proceedings of the 5th International

Symposium on Theory and Applications of Satisfiability, 2002, pp. 346 – 353.

[2] F. ALOUL, A. RAMANI, I. MARKOV, AND K. SAKALLAH, PBS v0.2, incremental

pseudo-boolean backtrack search SAT solver and optimizer, 2003. http://www.

eecs.umich.edu/∼faloul/Tools/pbs/.

[3] H. ANDRÉKA AND I. NÉMETI, The generalized completeness of Horn predicate

logic as a programming language, Acta Cybernetica, 4 (1978/79), pp. 3–10.

[4] C. ANGER, K. KONCZAK, AND T. LINKE, Nomore: Nonmonotonic reasoning with

logic programs, in Proceedings of the 8th European Conference on Logics in Artifi-

cial Intelligence (JELIA), vol. 2424, Lecture Notes in Computer Science, Springer,

2002, pp. 521–524.

[5] K. APT, Logic programming, in Handbook of theoretical computer science, J. van

Leeuven, ed., Elsevier, Amsterdam, 1990, pp. 493–574.

[6] C. ARAVINDAN, J. DIX, AND I. NIEMELÄ, DisLoP: Towards a disjunctive

logic programming system, in Logic Programming and Nonmonotonic Reason-

ing (Dagstuhl, Germany, 1997), vol. 1265 of Lecture Notes in Computer Science,

Springer, 1997, pp. 342–353.

[7] Y. BABOVICH AND V. LIFSCHITZ, Cmodels package, 2002. http://www.cs.

utexas.edu/users/tag/cmodels.html.

[8] C. BARAL AND M. GELFOND, Logic programming and knowledge representation,

Journal of Logic Programming, 19(20) (1994), pp. 73–148.

[9] C. BARAL, M. GELFOND, AND A. PROVETTI, Representing actions: laws, obser-

vations and hypotheses, Journal of Logic Programming, 31 (1997), pp. 201–243.

146

http://www.eecs.umich.edu/~faloul/Tools/pbs/
http://www.eecs.umich.edu/~faloul/Tools/pbs/
http://www.cs.utexas.edu/users/tag/cmodels.html
http://www.cs.utexas.edu/users/tag/cmodels.html

[10] C. BARAL AND V. SUBRAHMANIAN, Dualities between alternative semantics

for logic programming and nonmonotonic reasoning (extended abstract), in Logic

programming and non-monotonic reasoning (Washington, DC, 1991), A. Nerode,

W. Marek, and V. Subrahmanian, eds., Cambridge, MA, 1991, MIT Press, pp. 69–

86.

[11] P. BARTH, A Davis-Putnam based elimination algorithm for linear pseudo-boolean

optimization, tech. rep., Max-Planck-Institut für Informatik, 1995. MPI-I-95-2-003.

[12] B. BENHAMOU, L. SAIS, , AND P. SIEGEL, Two proof procedures for a cardinality

based language in propositional calculus, in Proceedings of the 11th Annual Sym-

posium on Theoretical Aspects of Computer Science (STACS-1994), vol. 775 of

LNCS, Springer, 1994, pp. 71–82.

[13] C. BOUTILIER, R. BRAFMAN, C. DOMSHLAK, H. HOOS, AND D. POOLE, Cp-

nets: A tool for representing and reasoning with conditional ceteris paribus prefer-

ence statements, Journal of Artificial Intelligence Research, 21 (2003), pp. 135–191.

[14] , Preference-based constrained optimization with cp-nets, Computational Intel-

ligence, 20 (2004), pp. 137–157.

[15] C. BOUTILIER, R. BRAFMAN, H. HOOS, AND D. POOLE, Reasoning with condi-

tional ceteris paribus preference statements, in Proceedings of the 15th Conference

on Uncertainty in Artificial Intelligence (UAI-99), 1999, pp. 71–80.

[16] R. BRAFMAN AND C. DOMSHLAK, Introducing variable importance tradeoffs into

cp-nets, in Proceedings of the 18th Annual Conference on Uncertainty in Artificial

Intelligence (UAI-02), Morgan Kaufmann, 2002.

[17] G. BREWKA, I. NIEMELÄ, AND M. TRUSZCZYŃSKI, Answer set optimization, in

Proceedings of the 18th International Joint Conference on Artificial Intelligence,

2003, pp. 867–872.

147

[18] K. CLARK, Negation as failure, in Logic and data bases, H. Gallaire and J. Minker,

eds., Plenum Press, New York-London, 1978, pp. 293–322.

[19] M. DAVIS, G. LOGEMANN, AND D. LOVELAND, A machine program for theorem-

proving, Comm. Assoc. for Computing Machinery, 5 (1962), pp. 394–397.

[20] T. DELL’ARMI, W. FABER, G. IELPA, N. LEONE, S. PERRI, AND G. PFEIFER,

System description: DLV with aggregates, in Logic programming and Nonmono-

tonic Reasoning, Proceedings of the tth International Conference, V. Lifschitz and

I. Niemelä, eds., vol. 2923, Springer, 2004, pp. 326–330.

[21] T. DELL’ARMI, W. FABER, G. IELPA, N. LEONE, AND G. PFEIFER, Aggregate

functions in disjunctive logic programming: semantics, complexity, and implemen-

tation in DLV, in Proceedings of the 18th International Joint Conference on Artificial

Intelligence (IJCAI-2003), Morgan Kaufmann, 2003, pp. 847–852.

[22] M. DENECKER, V. MAREK, AND M. TRUSZCZYŃSKI, Approximations, stable

operators, well-founded fixpoints and applications in nonmonotonic reasoning, in

Logic-Based Artificial Intelligence, J. Minker, ed., Kluwer Academic Publishers,

2000, pp. 127–144.

[23] , Unified semantic treatment of default and autoepistemic logics, in Principles

of Knowledge Representation and Reasoning, Proceedings of the 7th International

Conference (KR2000), Morgan Kaufmann Publishers, 2000, pp. 74 – 84.

[24] , Ultimate approximations in nonmonotonic knowledge representation systems,

in Principles of Knowledge Representation and Reasoning, Proceedings of the 8th

International Conference (KR2002), Morgan Kaufmann Publishers, 2002, pp. 177–

188.

[25] , Uniform semantic treatment of default and autoepistemic logics, Artificial In-

telligence Journal, 143 (2003), pp. 79–122.

148

[26] M. DENECKER, N. PELOV, AND M. BRUYNOOGHE, Ultimate well-founded and

stable semantics for logic programs with aggregates, in Logic programming, Pro-

ceedings of the 2001 International Conference on Logic Programming, P. Codognet,

ed., vol. 2237, Springer, 2001, pp. 212–226.

[27] Y. DIMOPOULOS AND A. SIDERIS, Towards local search for answer sets, in Pro-

ceedings of the 18th International Conference on Logic Programming, vol. 2401 of

LNCS, Springer, 2002, pp. 363 – 367.

[28] H. DIXON AND M. GINSBERG, Inference methods for a pseudo-boolean satisfiabil-

ity solver, in The 18th National Conference on Artificial Intelligence (AAAI-2002),

AAAI Press, 2002, pp. 635–640.

[29] K. DOETS, From Logic to Logic Programming, Foundations of Computing Series,

MIT Press, Cambridge, MA, 1994.

[30] W. DOWLING AND J. GALLIER, Linear-time algorithms for testing the satisfiability

of propositional Horn formulae, Journal of Logic Programming, 1 (1984), pp. 267–

284.

[31] M. DRANSFIELD, L. LIU, V. MAREK, AND M. TRUSZCZYŃSKI, Satisfiability

and computing van der waerden numbers, The Electronic Journal of Combinatorics,

11(1) (2004).

[32] M. DRANSFIELD, V. MAREK, AND M. TRUSZCZYŃSKI, Satisfiability and comput-

ing van der waerden numbers, in Theory and Applications of Satisfiability Testing,

6th International Conference, SAT-2003, vol. 2919 of LNCS, Springer, 2003, pp. 1–

13.

[33] D. EAST, M. IAKHIAEV, A. MIKITIUK, AND M. TRUSZCZYŃSKI, Tools for mod-

eling and solving search problems, 2004. Submitted for publication (available at

http://www.cs.uky.edu/psgrnd/).

[34] , Tools for modeling and solving search problems, 2006. submitted.

149

http://www.cs.uky.edu/psgrnd/

[35] D. EAST, L. LIU, S. LOGSDON, V. MAREK, AND M. TRUSZCZYŃSKI, ASPPS

user’s manual, 2003. http://www.cs.uky.edu/aspps/users manual.

ps.

[36] D. EAST AND M. TRUSZCZYŃSKI, On the accuracy and running time of gsat, in

Proceedings of the 9th Portuguese Conference on Artificial Intelligence(EPIA’99),

vol. 1695 of Lecture Notes in Artificial Intelligence, Springer, 1999, pp. 49–61.

[37] D. EAST AND M. TRUSZCZYŃSKI, Datalog with constraints, in Proccedings of

the 17th National Conference on Artificial Intelligence (AAAI-2000), AAAI Press,

2000, pp. 163–168.

[38] D. EAST AND M. TRUSZCZYŃSKI, ASP solver aspps, 2001. http://www.cs.

uky.edu/aspps/.

[39] D. EAST AND M. TRUSZCZYŃSKI, aspps — an implementation of answer-set pro-

gramming with propositional schemata, in Proceedings of Logic Programming and

Nonmonotonic Reasoning Conference, LPNMR 2001, vol. 2173, Lecture Notes in

Artificial Intelligence, Springer, 2001, pp. 402–405.

[40] , More on wire-routing, in Answer-Set Programming: Towards Efficient and

Scalable Knowledge Representation and Reasoning, AAAI Press, 2001. Papers from

the 2001 AAAI Spring Symposium, Technical Report SS-01-01.

[41] D. EAST AND M. TRUSZCZYŃSKI, Propositional satisfiability in answer-set pro-

gramming, in Proceedings of Joint German/Austrian Conference on Artificial Intel-

ligence (KI-2001), vol. 2174 of LNAI, Springer, 2001, pp. 138–153.

[42] D. EAST AND M. TRUSZCZYŃSKI, The aspps system, in Proceedings of the 8th Eu-

ropean Conference on Logics in Artificial Intelligence (JELIA), vol. 2424, Lecture

Notes in Computer Science, Springer, 2002, pp. 533–536.

[43] D. EAST AND M. TRUSZCZYŃSKI, Propositional satisfiability in declarative pro-

gramming, 2003. http://xxx.lanl.gov/abs/cs.LO/0211033.

150

http://www.cs.uky.edu/aspps/users_manual.ps
http://www.cs.uky.edu/aspps/users_manual.ps
http://www.cs.uky.edu/aspps/
http://www.cs.uky.edu/aspps/

[44] D. EAST AND M. TRUSZCZYŃSKI, Predicate-calculus based logics for modeling

and solving search problems, ACM Transactions on Computational Logic, (2004).

To appear, available at http://www.acm.org/tocl/accepted.html.

[45] N. EÉN AND N. SÖRENSSON, An extensible SAT solver, in Theory and Applica-

tions of Satisfiability Testing, 6th International Conference, SAT-2003, vol. 2919 of

LNCS, Springer, 2003, pp. 502–518.

[46] T. EITER, W. FABER, N. LEONE, AND G. PFEIFER, Declarative problem-solving

in DLV, in Logic-Based Artificial Intelligence, J. Minker, ed., Kluwer Academic

Publishers, Dordrecht, 2000, pp. 79–103.

[47] T. EITER AND M. FINK, Uniform equivalence of logic programs under the stable

model semantics, in Proceedings of the 2003 International Conference on Logic Pro-

gramming, vol. 2916 of Lecture Notes in Computer Science, Berlin, 2003, Springer,

pp. 224–238.

[48] E. ERDEM AND V. LIFSCHITZ, Tight logic programs, Theory and Practice of Logic

Programming, 3 (2003), pp. 499–518.

[49] W. FABER, N. LEONE, AND G. PFEIFER., Recursive aggregates in disjunctive logic

programs: Semantics and complexity., in Proceedings of the 9th European Confer-

ence on Artificial Intelligence (JELIA 2004), number 3229 in Lecture Notes in AI

(LNAI)., 2004, pp. 200 – 212.

[50] F. FAGES, Consistency of Clark’s completion and existence of stable models, Journal

of Methods of Logic in Computer Science, 1 (1994), pp. 51–60.

[51] P. FERRARIS, Answer sets for propositional theories.

http://www.cs.utexas.edu/˜otto/papers/proptheories.ps, 2004.

[52] P. FERRARIS AND V. LIFSCHITZ, Weight constraints ans nested expressions, The-

ory and Practice of Logic Programming, (forthcoming), (2004).

151

http://www.acm.org/tocl/accepted.html

[53] R. FINKEL, V. MAREK, AND M. TRUSZCZYŃSKI, Constraint lingo: A program

for solving logic puzzles and other tabular constraint problems, in Proceedings of

the 8th European Conference on Logics in Artificial Intelligence (JELIA), vol. 2424,

Lecture Notes in Computer Science, Springer, 2002, pp. 513–516.

[54] , Constraint lingo: A program for modeling and solving tabular constraint prob-

lems. Submitted for journal publication, 2003.

[55] R. FINKEL, V. MAREK, AND M. TRUSZCZYŃSKI, Constraint lingo: Towards

high-level constraint programming, Software Practice and Experience, 34 (2004),

pp. 1481–1504.

[56] R. FINKEL, W. MAREK, AND M. TRUSZCZYNSKI, Tabular constraint-satisfaction

problems and answer-set programming, in Answer-Set Programming: Towards Ef-

ficient and Scalable Knowledge Representation and Reasoning, AAAI Press, 2001.

Papers from the 2001 AAAI Spring Symposium, Technical Report SS-01-01.

[57] M. C. FITTING, Fixpoint semantics for logic programming – a survey, Theoretical

Computer Science, 278 (2002), pp. 25–51.

[58] M. GAREY AND D. JOHNSON, Computers and intractability. A guide to the theory

of NP-completeness, W.H. Freeman and Co., San Francisco, Calif., 1979.

[59] M. GELFOND AND V. LIFSCHITZ, The stable semantics for logic programs, in Pro-

ceedings of the 5th International Conference on Logic Programming, MIT Press,

1988, pp. 1070–1080.

[60] M. GINSBERG, ed., Readings in Nonmonotonic Reasoning, Morgan Kaufmann, Palo

Alto, CA, 1987.

[61] M. GINSBERG AND D. MCALLESTER, GSAT and dynamic bactracking, in Princi-

ples of Knowledge Representation and Reasoning, KR ’94, J. Doyle, E. Sandewall,

and P. Torasso, eds., Morgan Kaufmann, 1994, pp. 226–237.

152

[62] E. GIUNCHIGLIA, Y. LIERLER, AND M. MARATEA, SAT-based answer-set pro-

gramming, in Proceedings of the 19th National Conference on Artificial Intelligence

(AAAI-2004), AAAI Press, 2004, pp. 61–66.

[63] E. GOLDBERG AND Y. NOVIKOV, Berkmin: a fast and robust sat-solver, in DATE-

2002, 2002, pp. 142–149.

[64] C. GOMES, B. SELMAN, N. CRATO, AND H. KAUTZ, Heavy-tailed phenomena

in satisfiability and constraint satisfaction problems, in SAT2000: Highlights of

satisfiability research in the year 2000, I. Gent, H. van Maaren, and T. Walsh, eds.,

IOS Press, 2000, pp. 15–41.

[65] J. HANSEN AND B. JAUMARD, Algorithms for the maximum satisfiability problem,

Computing, 44 (1990), pp. 279–303.

[66] K. HELJANKO AND I. NIEMELÄ, Bounded ltl model checking with stable models,

Theory and Practice of Logic Programming (TPLP), 3(4,5) (2003), pp. 519–550.

[67] J. HOOKER, Logic-Based Methods for Optimization, J. Wiley and Sons, 2000.

[68] H. HOOS, On the run-time behaviour of stochastic local search algorithms for sat, in

Proceedings of The Sixteenth National Conference on Artificial Intelligence (AAAI-

99), Orlando, Florida, 1999, pp. 661–666.

[69] , An adaptive noise mechanism for walksat, in Proceedings of The Nineteenth

National Conference on Artificial Intelligence (AAAI-99), 2002, pp. 655–660.

[70] H. HOOS AND T. STÜTZLE, Local search algorithms for sat: An empirical evalu-

ation, in SAT2000: Highlights of Satisfiability REsearch in the Year 2000, I. Gent,

H. van Maaren, and T. Walsh, eds., vol. 62 of Frontiers in Artificial Intelligence and

Applications, IOS Press, Amsterdam, 2000, pp. 43–88.

[71] H. H. HOOS AND T. STÜTZLE, A characterization the run-time behaviour

of stochastic local search. http://www.cs.ubc.ca/∼hoos/Publ/

aida-98-01.ps, 1998.

153

http://www.cs.ubc.ca/~hoos/Publ/aida-98-01.ps
http://www.cs.ubc.ca/~hoos/Publ/aida-98-01.ps

[72] , Stochastic Local Search Foundations and Applications, Morgan Kaufmann,

San Francisco, CA, USA, 2004.

[73] H. KAUTZ, Blackbox — a sat technology planning system, 2003. http://www.

cs.washington.edu/homes/kautz/satplan/blackbox/.

[74] H. KAUTZ, D. MCALLESTER, AND B. SELMAN, Encoding plans in propositional

logic, in Proceedings of 5th International Conference on Principles of Knowledge

Representation and Reasoning (KR-1996), Morgan Kaufmann, 1996, pp. 374–384.

[75] N. LEONE, G. PFEIFER, W. FABER, T. EITER, G. GOTTLOB, S. PERRI, AND

F. SCARCELLO, The dlv system for knowledge representation and reasoning, ACM

Transactions on Computational Logic, (2004). To appear, available at http://

xxx.lanl.gov/abs/cs.AI/0211004.

[76] N. LEONE, G. PFEIFER, AND F. W, System dlv, 1997. http://www.dbai.

tuwien.ac.at/proj/dlv/.

[77] C. LI, SAT solver satz, 1997. http://www.laria.u-picardie.fr/∼cli/

EnglishPage.html.

[78] , Integrating equivalency reasoning into davis-putnam procedure, in Procced-

ings of the 17th National Conference on Artificial Intelligence (AAAI-2000), AAAI

Press, 2000, pp. 291–296.

[79] V. LIFSCHITZ, D. PEARCE, AND A. VALVERDE, Strongly equivalent logic pro-

grams, ACM Transactions on Computational Logic, 2(4) (2001), pp. 526–541.

[80] F. LIN, Reducing strong equivalence of logic programs to entailment in classical

propositional logic, in Principles of Knowledge Representation and Reasoning, Pro-

ceedings of the 8th International Conference (KR2002), Morgan Kaufmann Publish-

ers, 2002.

154

http://www.cs.washington.edu/homes/kautz/satplan/blackbox/
http://www.cs.washington.edu/homes/kautz/satplan/blackbox/
http://xxx.lanl.gov/abs/cs.AI/0211004
http://xxx.lanl.gov/abs/cs.AI/0211004
http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.laria.u-picardie.fr/~cli/EnglishPage.html
http://www.laria.u-picardie.fr/~cli/EnglishPage.html

[81] F. LIN AND Y. ZHAO, ASSAT: Computing answer sets of a logic program by SAT

solvers, in Proccedings of the 18th National Conference on Artificial Intelligence

(AAAI-2002), AAAI Press, 2002, pp. 112–117.

[82] L. LIU AND M. TRUSZCZYŃSKI, Local-search techniques in propositional logic

extended with cardinality atoms, in Proceedings of the 9th International Confer-

ence on Principles and Practice of Constraint Programming (CP-2003), F. Rossi,

ed., vol. 2833 of LNCS, Springer, 2003, pp. 495–509. Lecture Notes in Computer

Science, Springer.

[83] , Local search with bootstrapping, in Proceedings of the Seventh International

Conference on Theory and Applications of Satisfiability Testing (SAT-2004), 2004.

[84] , Wsat(cc) — a fast local-search ASP solver, in Proceedings of the 7th Interna-

tional Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-

7), vol. 2923 of LNCS, Springer, 2004, pp. 351–355. Lecture Notes in Computer

Science, Springer.

[85] , Pbmodels — software to compute stable models by pseudoboolean solvers, in

Proceedings of the 8th International Conference on Logic Programming and Non

Monotonic Reasoning (LPNMR-05), vol. 3662 of LNCS, Springer, 2005, pp. 410–

415. Lecture Notes in Computer Science, Springer.

[86] , Properties of programs with monotone and convex constraints, in Proceedings

of The Twentieth National Conference on Artificial Intelligence (AAAI-05), AAAI

Press, 2005, pp. 701–706.

[87] , Local search techniques for boolean combinations of pseudo-boolean constar-

ints, in Proceedings of The Twenty First National Conference on Artificial Intelli-

gence (AAAI-06), AAAI Press, 2006, p. Accepted.

[88] , Properties and applications of programs with monotone and convex con-

straints, The Journal of Artificial Intelligence Research, Accepted (2006).

155

[89] Z. LONC AND M. TRUSZCZYŃSKI, On the problem of computing the well-founded

semantics, in Proceedings of the 1st International Conference on Computational

Logic, CL-2000, Springer, 2000, pp. 673–687. Lecture Notes in Artificial Intelli-

gence, Vol. 1861.

[90] , Fixed-parameter complexity of semantics for logic programs, in Logic pro-

gramming, Proceedings of the 2001 International Conference on Logic Program-

ming, vol. 2237 of Lecture Notes in Computer Science, Springer, 2001, pp. 197–

211.

[91] , On the problem of computing the well-founded semantics, Theory and Practice

of Logic Programming, 5 (2001), pp. 591–609.

[92] , Computing stable models: worst-case performance estimates, in Logic Pro-

gramming, Proceedings of the 2002 International Conference on Logic Program-

ming, vol. 2401 of Lecture Notes in Computer Science, Springer, 2002, pp. 347–

362.

[93] , Computing minimal models, stable models and answer sets, in Logic Program-

ming, Proceedings of the 2003 International Conference on Logic Programming,

Lecture Notes in Computer Science, Springer, 2003.

[94] , Computing stable models: worst-case performance estimates, Theory and

Practice of Logic Programming, (2003). To appear.

[95] , Fixed-parameter complexity of semantics for logic programs, ACM Transac-

tions on Computational Logic, (2003). To appear.

[96] V. MANQUINHO AND O. ROUSSEL, Pseudo boolean evaluation 2005, 2005.

http://www.cril.univ-artois.fr/PB05/.

[97] V. MAREK, I. NIEMELÄ, AND M. TRUSZCZYŃSKI, Characterizing stable models

of logic programs with cardinality constraints, in Proceedings of the 7th Interna-

156

http://www.cril.univ-artois.fr/PB05/

tional Conference on Logic Programming and Nonmonotonic Reasoning, vol. 2923

of Lecture Notes in Artificial Intelligence, Springer, 2004, pp. 154–166.

[98] V. MAREK AND J. REMMEL, Logic programs with cardinality constraints, in Pro-

ceedings of the 9th International Workshop on Nonmonotonic Reasoning, 2002,

pp. 219–228.

[99] , Set constraints in logic programming, in Proceedings of the 7th International

Conference on Logic Programming and Nonmonotonic Reasoning, 2004. Lecture

Notes in Computer Science, Springer.

[100] , On body-normal programs with cardinality constraints. Unpublished

manuscript, 2005.

[101] V. MAREK AND M. TRUSZCZYŃSKI, Stable models and an alternative logic pro-

gramming paradigm, in The Logic Programming Paradigm: a 25-Year Perspective,

K. Apt, W. Marek, M. Truszczyński, and D. Warren, eds., Springer, Berlin, 1999,

pp. 375–398.

[102] , Logic programs with abstract constraint atoms, in Proceedings of the 19th Na-

tional Conference on Artificial Intelligence (AAAI-04), AAAI Press, 2004, pp. 86–

91.

[103] W. MAREK, A. NERODE, AND M. TRUSZCZYNSKI, eds., Logic programming and

nonmonotonic reasoning. Proceedings of the 3rd International Conference (LPNMR

’95) held in Lexington, KY, June 26–28, 1995, vol. 928 of Lecture Notes in Computer

Science, Springer, Berlin, 1995.

[104] W. MAREK AND J. REMMEL, On the foundations of answer-set programming, in

Answer-Set Programming: Towards Efficient and Scalable Knowledge Representa-

tion and Reasoning, AAAI Press, 2001. Papers from the 2001 AAAI Spring Sym-

posium, Technical Report SS-01-01.

157

[105] J. MARQUES-SILVA AND K. SAKALLAH, GRASP: A new search algorithm for sat-

isfiability, IEEE Transactions on Computers, 48 (1999), pp. 506–521.

[106] M. MOSKEWICZ, C. MADIGAN, Y. ZHAO, L. ZHANG, AND S. MALIK, Chaff:

engineering an efficient SAT solver, in Proceedings of the 38th ACM IEEE Design

Automation Conference, ACM Press, 2001, pp. 530–535.

[107] , SAT solver chaff, 2001. http://www.ee.princeton.edu/∼chaff/.

[108] I. NIEMELÄ, Logic programs with stable model semantics as a constraint program-

ming paradigm, in Proceedings of the Workshop on Computational Aspects of Non-

monotonic Reasoning, I. Niemelä and T. Schaub, ed., 1998, pp. 72–79.

[109] , Logic programming with stable model semantics as a constraint programming

paradigm, Annals of Mathematics and Artificial Intelligence, 25 (1999), pp. 241–

273.

[110] I. NIEMELÄ AND P. SIMONS, Smodels — an implementation of the stable model

and well-founded semantics for normal logic programs, in Logic Programming and

Nonmonotonic Reasoning (the 4th International Conference, Dagstuhl, Germany,

1997), vol. 1265 of Lecture Notes in Computer Science, Springer, 1997, pp. 420–

429.

[111] , Extending the smodels system with cardinality and weight constraints, in

Logic-Based Artificial Intelligence, J. Minker, ed., Kluwer Academic Publishers,

2000, pp. 491–521.

[112] I. NIEMELÄ AND P. SIMONS, Extending the Smodels system with cardinality and

weight constraints, in Logic-Based Artificial Intelligence, J. Minker, ed., Kluwer

Academic Publishers, Dordrecht, 2000, pp. 491–521.

[113] I. NIEMELÄ, P. SIMONS, AND T. SOININEN, Stable model semantics of weight

constraint rules, in Proceedings of LPNMR-1999, vol. 1730 of Lecture Notes in

Computer Science, Springer, 1999, pp. 317–331.

158

http://www.ee.princeton.edu/~chaff/

[114] I. NIEMELÄ, P. SIMONS, AND T. SYRJÄNEN, SLP solver smodels, 1997. http:

//www.tcs.hut.fi/Software/smodels/.

[115] I. NIEMELÄ, P. SIMONS, AND T. SYRJÄNEN, Smodels: a system for answer set

programming, in Proceedings of the 8th International Workshop on Non-Monotonic

Reasoning, NMR’2000, Breckenridge, Co., C. Baral and M. Truszczyński, eds.,

2000.

[116] A. PARKES, Lifted Search Engines for Satisfiability, PhD thesis, University of Ore-

gon, Department of Computer Science, 1999.

[117] N. PELOV., Semantics of logic programs with aggregates, PhD Thesis. Department

of Computer Science, K.U.Leuven, Leuven, Belgium, (2004).

[118] N. PELOV, M. DENECKER, AND M. BRUYNOOGHE, Partial stable models for logic

programs with aggregates, in Logic programming and Nonmonotonic Reasoning,

Proceedings of the 7th International Conference, V. Lifschitz and I. Niemelä, eds.,

vol. 2923, Springer, 2004, pp. 207–219.

[119] N. PELOV, M. DENECKER, AND M. BRUYNOOGHE, Partial stable semantics for

logic programs with aggregates, in Proceedings of the 7th International Conference

on Logic Programming and Nonmonotonic Reasoning, V. Lifschitz and I. Niemelä,

eds., vol. 2923 of Lecture Notes in Artificial Intelligence, Springer, 2004, pp. 207–

219.

[120] S. PRESTWICH, Randomised backtracking for linear pseudo-boolean constraint

problems, in Proceedings of the 4th International Workshop on Integration of AI

and OR techniques in Constraint Programming for Combinatorial Optimisation

Problems, (CPAIOR-2002), 2002, pp. 7–20. http://www.emn.fr/x-info/

cpaior/Proceedings/CPAIOR.pdf.

[121] S. PRESWITCH, Randomised backtracking for weightless linear pseudo-boolean

constraint problems, in Fourth International Workshop on Integration of AI and OR

159

http://www.tcs.hut.fi/Software/smodels/
http://www.tcs.hut.fi/Software/smodels/
http://www.emn.fr/x-info/cpaior/Proceedings/CPAIOR.pdf
http://www.emn.fr/x-info/cpaior/Proceedings/CPAIOR.pdf

techniques in Constraint Programming for Combinatorial Optimisation Problems

(CPAIOR’02), N. Jussien and F. Laburthe, eds., Le Croisic, France, 2002, pp. 7–

19.

[122] B. SELMAN, Stochastic search and phase transitions: AI meets physics, in Proceed-

ings of IJCAI-95, Morgan Kaufmann, 1995, pp. 998–1002.

[123] B. SELMAN, H. KAUTZ, AND B. COHEN, Noise strategies for improving local

search, in Proceedings of the 12th National Conference on Artificial Intelligence

(AAAI-1994), Seattle, USA, 1994, AAAI Press, pp. 337–343.

[124] B. SELMAN AND H. A. KAUTZ, Planning as satisfiability, in Proceedings of the

10th European Conference on Artificial Intelligence, Vienna, Austria, 1992.

[125] P. SIMONS, I. NIEMELÄ, AND T. SOININEN, Extending and implementing the sta-

ble model semantics, Artificial Intelligence, 138 (2002), pp. 181–234.

[126] T. SYRJÄNEN, lparse, a procedure for grounding domain restricted logic programs.

http://www.tcs.hut.fi/Software/smodels/lparse/, 1999.

[127] T. SYRJÄNEN AND I. NIEMELÄ, Cardinality constraints, variables and stable mod-

els, (2002). A manuscript.

[128] H. TURNER, Strong equivalence for logic programs and default theories (made

easy), in Proceedings of Logic Programming and Nonmonotonic Reasoning Con-

ference, LPNMR 2001, vol. 2173, Lecture Notes in Artificial Intelligence, Springer,

2001, pp. 81–92.

[129] , Strong equivalence made easy: Nested expressions and weight constraints,

Theory and Practice of Logic Programming, 3, (4&5) (2003), pp. 609–622.

[130] M. VAN EMDEN AND R. KOWALSKI, The semantics of predicate logic as a pro-

gramming language, Journal of the ACM, 23 (1976), pp. 733–742.

160

http://www.tcs.hut.fi/Software/smodels/lparse/

[131] J. WALSER, SLS PB solver wsatoip, 1997. http://www.ps.uni-sb.de/

∼walser/wsatpb/wsatpb.html.

[132] J. WALSER, Solving linear pseudo-boolean constraints with local search, in Pro-

ceedings of the 11th National Conference on Artificial Intelligence (AAAI-97),

AAAI Press, 1997, pp. 269–274.

[133] K. XU, Bhoslib, 2005. URL: http://www.nlsde.buaa.edu.cn/∼kexu/

benchmarks/graph-benchmarks.htm.

[134] H. ZHANG, SATO: an efficient propositional prover, in Proceedings of the Interna-

tional Conference on Automated Deduction (CADE-97), 1997, pp. 308–312. Lec-

ture Notes in Artificial Intelligence, 1104.

[135] , Generating college conference basketball schedules by a sat solver, in Pro-

ceedings of the Fifth International Symposium on Theory and Applications of Sat-

isfiability Testing (SAT-2002), 2002, pp. 281–291.

161

http://www.ps.uni-sb.de/~walser/wsatpb/wsatpb.html
http://www.ps.uni-sb.de/~walser/wsatpb/wsatpb.html
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm

Vita

1. Background.

(a) Date of Birth: 06 March, 1975

(b) Place of Birth: Changchun, Jilin, China

2. Academic Degrees.

(a) Ph.D., August 2006 (expected)

Computer Science Department, University of Kentucky, Lexington, Kentucky,

U.S.A.

(b) M.E., Date received: July 2000

Institute of Mathematics, Chinese Academy of Science, Beijing, China

(c) B.S., Date received: July 1997

Computer Science Department, Jilin University, Changchun, Jilin, China

3. Professional Experience.

(a) Research Assistant, Spring 2001 - present

Computer Science Department, University of Kentucky, Lexington, Kentucky

Adviser: Dr. Miroslaw Truszczynski

Research: knowledge representation and reasoning, logic programming, answer-

set programming, SAT, CSP, and planning under uncertainty

Major Projects:

• Welfare to Work project (NSF grant ITR-0325063). Responsibilities in-

clude modeling application domain using factored MDPs, developing plan-

ning algorithms under uncertainty with hard and soft constraints

162

• Theoretical and practical aspects of answer-set programming formalisms

(NSF grant IIS-0097278). Responsibilities include designing and imple-

menting local search algorithms for propositional logic theories with weight

atoms, extending properties of normal logic programs to monotone-constraint

programs, implementing algorithms to compute stable models of logic pro-

grams with weight constraints (an instantiation of monotone-constraint pro-

grams)

(b) Instructor, Fall 2003

Computer Science Department, University of Kentucky, Lexington, Kentucky

CS375: Logic and Theory of Computing. Full responsibilities including lecture

preparation and presentation, homework assignments and exams

(c) Instructor, Summer 2001

Computer Science Department, University of Kentucky, Lexington, Kentucky

CS216: Introduction to Software Engineering. Full responsibilities including

lecture preparation and presentation, homework assignments and exams

(d) Instructor, Fall 2000 and Spring 2001

CS221: FORTRAN Programming Language. Major responsibilities including

lecture preparation and presentation

(e) Research Assistant, Fall 1998 — Fall 2000

Institute of Mathematics, Academia Sinica, Beijing, China

Adviser: Dr. Ruqian Lu

Research: natural language processing, common-sense knowledge representa-

tion and reasoning

Project: Pragmatic Aspects of Common-sense Knowledge, supported by Chi-

nese Natural Science Foundation

(f) Research Assistant, Spring 1998

Institute of Mathematics, Academia Sinica, Beijing, China

163

Adviser: Dr. Ruqian Lu

Research: 3D computer animation and virtual reality

Project: Virtual Dentist Training System, supported by Chinese Natural Science

Foundation

(g) Research Assistant, Fall 1997

Institute of Mathematics, Academia Sinica, Beijing, China

Adviser: Dr. Ruqian Lu

Research: computer animation generation, and script analysis

Project: Full-Life-Cycle Automation of Computer Animation, supported by Chi-

nese Natural Science Foundation

4. Publications.

(a) Papers in Refereed Journals

i. Satisfiability and computing van der Waerden numbers

Michael R. Dransfield, Lengning Liu, Victor W. Marek and Miroslaw Truszczyn-

ski

In the Electronic Journal of Combinatorics, Volume 11, 2004

(b) Papers at Refereed Conferences

i. Pbmodels - software to compute stable models by pseudoboolean solvers

Lengning Liu and Miroslaw Truszczynski

In Proceedings of the 8th International Conference on Logic Programming

and Non Monotonic Reasoning, September, 2005, Diamante, Italy. Page

410 - 415, LNCS 3662, Springer

ii. Properties of logic programs with monotone and convex constraints

Lengning Liu and Miroslaw Truszczynski

In Proceedings of the Twentieth National Conference on Artificial Intelli-

gence (AAAI-05), July, 2005, Pittsburgh, Pennsylvania, U.S.A. Page 701 -

706, AAAI Press

164

iii. Local search with bootstrapping

Lengning Liu and Miroslaw Truszczynski

In Proceedings of the Seventh International Conference on Theory and Ap-

plications of Satisfiability Testing, May 2004. Vancouver, Canada

iv. WSAT(CC) - a fast local-search ASP solver

Lengning Liu and Miroslaw Truszczynski

In Proceedings of the Seventh International Conference on Logic Pro-

gramming and Nonmonotonic Reasoning, January 2004. Fort Lauderdale,

Florida, U.S.A. Page 351 - 355, LNCS 2923, Springer

v. Local-search techniques for propositional logic with cardinality constraints

Lengning Liu and Miroslaw Truszczynski

In Proceedings of the Ninth International Conference on Principles and

Practice of Constraint Programming, September, 2003. Kinsale, County

Cork, Ireland. Page 495 - 509, LNCS 2833, Springer

vi. Children Turing Test

Ruqian Lu, Songmao Zhang, Lengning Liu, Fan Yang, Xiaolong Jin, Chong

Zhao, Hong Zheng, Hongge Liu, Mo Wang

In Proceedings of the Second China-Japan Natural Language Processing,

October 30 - November 2, 2002. Peking University, China

vii. Talk to Computer in Natural Style

Ruqian Lu, Songmao Zhang and Lengning Liu

In Proceedings of the International Symposium on Future Software Tech-

nology, October 27 - 29, 1999. Nanjing, China

(c) Papers Accepted

i. Properties and applications of monotone and convex constraint programs

Lengning Liu and Miroslaw Truszczynski

Accepted by JAIR, pending for revision

ii. Local search techniques for boolean combinations of pseudo-boolean con-

165

straints

Lengning Liu and Miroslaw Truszczynski

To appear in Proceedings of AAAI-06, July 16 - 21, 2006, Boston, USA

(d) Master’s Dissertation

i. Children Turing Test (in Chinese)

Lengning Liu

Institute of Mathematics, Chinese Academy of Science, Beijing, China,

2000

(e) Technical Report

i. Aspps Users Manual

Deborah East, Lengning Liu, Stephen Logston, Victor Marek and Miroslaw

Truszczynski

Department of Computer Science, University of Kentucky, July, 2004, Lex-

ington, Kentucky, U.S.A.

166

	Abstract
	Title Page
	Acknowledgments
	List of Tables
	List of Figures
	Chapter 1 Introduction
	Motivation
	Goals of this thesis
	Related work
	Contributions of the thesis
	Organization of the thesis

	Chapter 2 Logic programming with stable-model semantics
	Normal logic programming with stable-model semantics
	Stable logic programming extended with weight atoms (lparse-programs)

	Chapter 3 Lparse-programs, stable models, and their properties
	Mac programs --- a generalization of logic programs with weight constraints
	Horn programs and bottom-up computations
	Stable models

	Equivalence of mac programs
	M-maximal models
	Strong equivalence and SE-models
	Uniform equivalence and UE-models

	From mac-programs to logic theories
	Fages' Lemma for mac-programs
	Completion of mac-programs
	Loop formulas for mac-programs

	Programs with convex constraints
	Computing stable models of lparse-programs via PLwa solvers
	lparse-programs as convex constraint programs
	Propositional logic extended with weight constraints
	Transformation between PB-theories and PLwa-theories
	Computing stable models of lparse-programs

	Chapter 4 Stochastic Local Search in logic PLwa-theories
	Stochastic local search algorithm in propositional logic
	Gsat family
	Wsat family

	Extending wsat algorithms to logic PLwa
	Virtual break-count and make-count
	Double flip procedure

	Chapter 5 Experimental results
	Experiment setup
	Comparing pbmodels with lparse-program solvers
	Comparing wsat(wa) with PB SAT solvers

	Chapter 6 Conclusions
	Appendix A Lparse and Logic PLwa encodings of the benchmark problems
	Vertex cover problem
	Traveling salesperson problem
	Bounded spanning tree problem
	Weighted k-coloring problem
	W-Dominating set problem
	Weighted n-queens problem
	Weighted n-queens problem with distance constraint

	Appendix B RTDs: pbmodels v.s. smodels
	Appendix C RTDs: wsat(wa) v.s. wsat(oip)
	Appendix D Robustness w.r.t. the noise ratio
	On vcov instances
	On wvcov instances
	On tsp instances
	On bst instances
	On wrcol instances
	On wdm instances
	On dwnq instances

	Bibliography
	Vita

