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ABSTRACT 

 
In the framework of Network Morphology (Corbett & Fraser 1993; Fraser & Corbett 1995,  1997), 
realizational models of natural-language morphology have customarily been defined in DATR, a 
language for lexical knowledge representation designed and implemented by Roger Evans and 
Gerald Gazdar (Evans & Gazdar 1989a,b, 1996).  We show that certain kinds of morphological 
analyses that are wholly consonant with the general program of Network Morphology are not 
directly expressible in existing forms of DATR; we therefore propose and exemplify KATR, an 
extension of DATR whose motivation is to accommodate these desired kinds of morphological 
analyses.  The proposed modifications are motivated by the need to represent a word’s 
morphosyntactic property as essentially unordered; to account for the incidence of nonlocal sandhi 
phenomena; to define common patterns of inflectional syncretism; and to allow certain 
morphological rules to apply in “expanded mode” (Stump 2001).  Although KATR affords 
morphological definitions that are more streamlined than those afforded by DATR, its generative 
capacity is no greater than that of DATR, since both languages are capable of emulating a Turing 
machine.   
 
1 Introduction 
 
In an important series of articles (Corbett & Fraser 1993; Fraser & Corbett 1995,  1997), Greville 
Corbett and Norman Fraser elaborated an approach to morphology that makes extensive use of 
default inheritance hierarchies in the analysis of complex inflectional systems.  This approach, 
dubbed Network Morphology, is squarely in the tradition of inferential-realizational theories of 
morphology:  It is inferential (as opposed to lexical) in the sense that it represents inflectional 
exponents not as lexically listed elements, but as markings associated with the application of rules 
by which complex word forms are deduced from simpler roots and stems; and it is realizational (as 
opposed to incremental) in the sense that it entails that a word’s association with a particular set of 
morphosyntactic properties is a precondition for--rather than a consequence of--the application of 
the rule introducing the inflectional exponents of those properties.  What distinguishes Network 
Morphology from certain other inferential-realizational theories is its systematic use of non-
monotonic inheritance hierarchies to structure the information constituting a language’s 
morphology.  Analyses in Network Morphology are formally implemented in DATR, a formal 
language for lexical knowledge representation designed and implemented by Roger Evans and 
Gerald Gazdar (Evans & Gazdar 1989a,b, 1996).   

In this paper, we show that certain kinds of morphological analyses that are wholly 
consonant with the general program of Network Morphology are not directly expressible in existing 
forms of DATR; we therefore propose and exemplify KATR, an extension of DATR whose 
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motivation is to accommodate these desired kinds of morphological analyses.  Our discussion 
proceeds as follows.  In Section 2, we review the fundamental characteristics of DATR proper.  In 
Section 3, we demonstrate that under the assumptions of Network Morphology, these 
characteristics entail  undesirable complications for the analysis of certain kinds of morphological 
phenomena.  These complications stem from the essential lack of linear ordering among the 
members of a morphosyntactic property set; from the incidence of nonlocal sandhi phenomena; and 
from common patterns of inflectional syncretism.  In Section 4, we introduce KATR and show how 
it resolves the issues raised in Section 3.  In Section 5, we discuss an additional empirical challenge 
for KATR and show how KATR meets this challenge.  In Section 6, we consider the relative power 
of DATR and KATR; we show that KATR is no more powerful than DATR, since both are capable 
of emulating a Turing machine.  Section 7 summarizes our conclusions.   

 
2 Basic characteristics of DATR 
 
Before introducing the formal properties of KATR and the linguistic phenomena that have 
motivated its development, we outline the basic characteristics of DATR. 

DATR is a formal language for defining nonmonotonic inheritance networks.  It has been 
applied with considerable success in modeling morphological systems (in addition to the cited 
works by Corbett and Fraser, see Brown 1996, 1998a,b,c; Brown & Hippisley 1994; Brown et al. 
1996; Cahill & Gazdar 1997; Hippisley 1996, 1997, 1998).  The central notion in DATR is that of  
a THEORY:  a network of nodes such that (i) each node houses some body of information and (ii) 
this information is shared among nodes in a deterministic fashion.  A simple example of a DATR 
theory is the network of nodes in (1), which affords a compact description of some of the 
morphological and syntactic characteristics of three English verbs.  Each NODE in a theory is a 
location at which facts are situated; for instance, the nodes in (1) are locations at which the facts in 
(2) are situated.   
 
(1)  VERB

          q!p 
Walk Jump Run

(2)   VERB:
<syntactic category> == verb
<present participle> == "<root>" ing
<past> == "<root>" ed.

Walk:
<> == VERB
<root> == walk.

Jump:
<> == VERB
<root> == jump.

Run:
<> == VERB
<root> == run
<past> == ran
<past participle> == <root>.

 
A FACT pairs an atom-path with a value and has the format atom_path == value; thus, the first fact 
located at the VERB node in (2) pairs the atom-path <syntactic category> with the value 
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verb.  An ATOM-PATH is a sequence of atoms enclosed in angle brackets; thus, the atom-path 
<syntactic category>  in (2) consists of the atoms syntactic and category.1  We refer to 
the atom-path as the fact's LEFTHAND SIDE (LHS) and to the value as the fact's RIGHTHAND SIDE 
(RHS). 
 
2.1 Matching facts to queries in DATR 
 
The DATR engine follows a deterministic algorithm for extracting information from a theory of 
this sort; in particular, when queries are addressed to a theory such as (2), the DATR engine 
computes values for them.  A QUERY takes the form Node_q:atom_path_q; we refer to Node_q and 
atom_path_q as the QUERY NODE and as QUERY PATH, respectively.   

An example of an appropriate query for the theory in (2) is Run:<past participle>; 
given the facts in (2), the DATR engine computes run as the value corresponding to this query. 

In (2), two facts have LHS <past> and <past participle>.  We say that the first is a 
prefix of the second.  More formally, if atom_path_1 is of length n, where length is measured as the 
number of atoms in an atom-path, then atom_path_1 is the PREFIX of atom_path_2 if and only if 
for every i (where 1 ≤ i ≤ n), atom_path_1's ith member is also atom_path_2's ith member.  For 
instance, the atom-paths <>, <past>, and <past participle> are all prefixes of the atom-path 
<past participle>; of these, <past participle> is the longest prefix.   

Suppose now that we have a query Node_q:atom_path_q.  In order to compute a value for 
this query, the DATR engine matches a fact situated at the query node Node_q to the query path 
atom_path_q; in particular, the engine identifies that fact at Node_q whose LHS is the longest 
prefix of atom-path_q.  Thus, when the DATR engine searches the theory in (2) in response to the 
query Run:<past participle>, it employs the fact <past participle> == <root> at the 
Run node in evaluating this query.  This principle for matching a fact at the query node to a query 
path can be seen as an expression of Pāõini's principle (Kiparsky’s (1973) “Elsewhere Condition”):  
The evaluation of a query of the form Node_q:atom_path_q proceeds according to that fact at 
Node_q whose LHS atom_path_f is a prefix of atom_path_q and is such that for any other fact at 
Node_q whose LHS atom_path_c is a prefix of atom_path_q, atom_path_f is more specific (that is, 
longer) than atom_path_c.  

 
2.2 Evaluating queries in DATR 
 
If a query path atom_path_q is matched by a fact at the query node Node_q, evaluation of the query 
Node_q:atom_path_q is possible.  In DATR, the RHS of a fact is a sequence of zero or more terms.  
A TERM may be (A) an atom (as in the fact <syntactic category> == verb in (2)); (B) a 
node (as in the fact <> == VERB in (2)); (C) a TERM-PATH, that is, a sequence of terms enclosed in 
angle brackets (as in the fact <past participle> == <root>  in (2)); (D) a pairing of a node 
with a term-path, that is Node_y:<term_1 ... term_n>; (E) a quoted term-path, that is "<term_1 ... 
term_n>"; (F) a quoted node, that is "Node_y"; or (G) a quoted pairing of a node with a term-path, 
that is "Node_y:<term_1 ... term_n>". 

Empty case:  At Node_q, a query path atom_path_q is matched by the fact in (3), whose 
RHS is a sequence of zero terms; in that case, the value computed for the query 
Node_q:atom_path_q is the empty sequence.  Single-term case:  At Node_q, a query path 
atom_path_q is matched by the fact in (4), whose RHS is a single term term_0. 
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(3) atom_path_c == 
(4) atom_path_f == term_0 
 
In this case, the value computed for the query Node_q:atom_path_q is the value of term_0 relative 
to the query path atom_path_q and the LHS atom_path_f at Node_q.  The value of a term relative 
to a query path and an LHS at some node depends on which of the seven types of terms is involved.  
If term_0 is an atom, as in Table 1(A), then no further computation is necessary:  The value 
computed for the query Node_q:atom_path_q is simply that atom.  But if term_0 is any other sort 
of term, as in Table 1(B)-(G), then subsequent computation is necessary.  As an example, consider 
the DATR theory in (5).   
 
Given a query Node_q:atom_path_q such that atom_path_q is matched by the fact in (4) at 
Node_q: 
if term_0 is of type then the value of term_0 relative to the query path 

atom_path_q and the LHS atom_path_f at Node_q is 
(A) atom term_0 
(B) Node_y the value computed for the query Node_y:atom_path_q 
(C) <term_1 ... term_n> the value computed for the query Node_q:<X Y>, 

where  
(i) X is the result of concatenating the values of term_1 
... term_n relative to the query path atom_path_q and 
the LHS atom_path_f at Node_q, and 
(ii) Y is the (possibly empty) sequence of atoms such 
that atom_path_q is <W Y> and atom_path_f is <W> 

(D) Node_y:<term_1 ... term_n> the value computed for the query Node_y:<X Y>, 
where X and Y are as above 

(E) "<term_1 ... term_n>" the value computed for a new query Node_INIT:<X Y>, 
where Node_INIT is the initial query node (defined 
below) and X and Y are as above 

(F) "Node_y" the value computed for a new query Node_y:<Z>, 
where <Z> is the initial query path (defined below) 

(G) "Node_y:<term_1 ... term_n>" the value computed for a new query Node_y:<X Y>, 
where X and Y are as above 

Table 1. Terms and their values in DATR 
 
(5) A:

<a b c> == B
<d e f> == <a C B>
<g> == B:<d e <h>>
<h> == k
<i> == B
<j> == <k l>
<k l> == "B"
<m> == "B:<n>".

B:
<a b c> == d
<d e f> == c
<d e k> == j
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<h> == j
<i> == "<h>"
<j> == C
<k l> == a
<n> == C.

C:
<d e f> == b
<j> == "<h>"
<n> == "<h>".

According to Table 1(B), the value computed for the query A:<a b c> in the theory of (5) is the 
value computed for the query B:<a b c>; in accordance with Table 1(A), this latter value is d.  In 
this instance, the evaluation of a query path at some query node amounts to evaluating the same 
query path at another query node. 

According to Table 1(C), the value computed for the query A:<d e f g> in this theory is 
the value computed for the query A:<a b c g>, that is, for the query A:<X g>, where X is the 
result of concatenating the values of the terms a, C, and B relative to the query path <d e f g> 
and the LHS <d e f> at A; thus, in accordance with Table 1(A, B), the value computed for the 
query A:<d e f g> in this theory is d.  In this instance, the evaluation of a query path at some 
query node amounts to the evaluation of another query path at that same query node. 

According to Table 1(D), the value computed for the query A:<g> in this theory is the value 
computed for the query B:<d e k>, that is, for the query B:<d e X>, where X is the value of the 
term <h> relative to the query path <g> and the LHS <g> at A; thus, in accordance with Table 
1(A-C), the value computed for the query A:<g> in this theory is j.  In this instance, the evaluation 
of a query path at some query node amounts to the evaluation of another query path at another 
query node. 

As these examples show, the evaluation of one query may entail the evaluation of a chain of 
subsequent queries.  The node at which a chain of queries is initiated is the INITIAL QUERY NODE; 
the query path with which a chain of queries is initiated is the INITIAL QUERY PATH.  These notions 
are essential for understanding the double-quote notation in Table 1(E-G). 

Suppose that node A is the initial query node in the evaluation of a query A:<i> in this 
theory.  According to Table 1(B), the value of this query is the value computed for the query 
B:<i>; according to Table 1(E), this latter value is in turn the result of initiating a new query 
A:<h>.  Thus, the value computed for the query A:<i> is k.  In this instance, the evaluation of a 
query path at some query node amounts to initiating a new query at the initial query node. 

It is also possible to initiate a new query at a node distinct from the initial query node; in 
this case, the node at which the new query is initiated becomes the initial query node for purposes 
of dependent calculations.   Suppose that a query A:<j> is initiated at node A.  According to Table 
1(F), the value computed for this query is the result of initiating a new query at node B with the 
initial query path <j>.  For purposes of dependent calculations, B rather than A is the initial query 
node; thus, the ultimate value computed for A:<j> is j rather than k.  In this instance, the 
evaluation of a query path at some query node amounts to initiating a new query at another node 
using the initial query path. 

Suppose now that a query A:<m> is initiated at node A.  According to Table 1(G), the value 
computed for this query is the result of initiating a new query B:<n>; accordingly, the ultimate 
value computed for A:<m> is again j rather than k.  In this instance, the evaluation of a query path 
at some query node amounts to initiating a new query at another node using another query path. 
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General-term case:  At Node_q, a query path atom_path_q is matched by the fact in (6), 
whose RHS is a sequence of zero or more terms. 
 
(6) atom_path_f ==  term_1... term_n 
 
If a query path atom_path_q is matched by the fact in (6) at Node_q, the value computed for the 
query Node_q:atom_path_q is the sequence of the values of term_1 … term_n relative to the query 
path atom_path_q and the LHS atom_path_f at Node_q.  The value of each of these terms relative 
to atom_path_q and atom_path_f at Node_q is determined exactly as in Table 1. 
 
3 Some empirical challenges for Network Morphology 
 
Recent work in Network Morphology (Brown 1996, 1998a,b,c; Brown & Hippisley 1994; Brown et 
al. 1996; Cahill & Gazdar 1997; Corbett & Fraser 1993; Fraser & Corbett 1995, 1997; Hippisley 
1996, 1997, 1998) has demonstrated the exceptional utility of DATR for modelling inflectional 
systems.  Nevertheless, certain kinds of morphological phenomena in natural language present 
important challenges for Network Morphology because they are not directly representable in 
existing forms of DATR.  Here, we discuss three specific problems:  the need to represent a word’s 
morphosyntactic property set as unordered (3.1); the description of nonlocal sandhi phenomena 
(3.2); and the phenomenon of inflectional syncretism (3.3).  One further problem, that of competing 
rules, is discussed later (5.1). 
 
3.1 Unordered morphosyntactic property sets  
 
Stump (2001) discusses a difficulty that DATR poses for the representation of natural-language 
rules of inflectional morphology.  In network-morphologic applications of DATR, an inflectional 
rule realizing a morphosyntactic property-set σ is represented as a fact f whose LHS atom_path_f is 
an atom-path containing the members of σ; in (2), for instance, the inflectional rule realizing the 
morphosyntactic property set {present, participle} is represented as a fact whose LHS is the atom-
path <present participle>.  This representation is, however, somewhat paradoxical, since the 
members of an atom-path are by definition ordered, while those of a property set are unordered.  A 
consequence of this paradox is an inevitable redundancy in the formulation of inflectional rules.   

The partial Swahili verb paradigm in Table 2 provides a clear illustration of this situation.  
As this table shows, a Swahili verb inflects for polarity, tense, and subject agreement:  The prefix 
ha- appears as the exponent of negative polarity in slot iii; prefixal exponents of subject agreement 
appear in slot ii; prefixal exponents of tense, in slot i; and in the special case of first-person singular 
negative forms, the portmanteau prefix si- appears in slot iv, pre-empting slots iii and ii.  Now, 
suppose the set σ of morphosyntactic properties realized by a Swahili verb form W is formulated as 
a path P.  In that case, each of the inflectional exponents in W realizes a subset of σ; yet, no matter 
what ordering is assumed for the properties constituting P, the rules introducing the various 
inflectional exponents in W cannot be formulated without redundancy as facts having prefixes of P 
as their lefthand sides.  Consider, for example, the DATR theory in (7). 
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 P o s i t i v e N e g a t i v e 

      iv 
 

   
Affix slot: 

 
ii 

 
i 

 
(stem) 

iii ii 

 
i 

 
(stem) 

1SG   ni- li- taka       si- ku- taka  
 
Past 
Tense 

2SG   
3SG (CLASS 1)  
1PL   
2PL   
3PL (CLASS 2) 

u- 
a- 
tu- 
m- 
wa- 

li- 
li- 
li- 
li- 
li- 

taka 
taka 
taka 
taka 
taka 

ha- 
ha- 
ha-
ha-
ha-

u- 
a- 
tu- 
m- 
wa- 

ku- 
ku- 
ku- 
ku- 
ku- 

taka (phonetically hukutaka) 
taka (phonetically hakutaka) 
taka 
taka 
taka 

1SG   ni- ta- taka       si- ta- taka  
 
Future 
Tense 

2SG   
3SG (CLASS 1)  
1PL   
2PL   
3PL (CLASS 2) 

u- 
a- 
tu- 
m- 
wa- 

ta- 
ta- 
ta- 
ta- 
ta- 

taka 
taka 
taka 
taka 
taka 

ha-
ha-
ha-
ha-
ha-

u- 
a- 
tu- 
m- 
wa- 

ta- 
ta- 
ta- 
ta- 
ta- 

taka (phonetically hutataka) 
taka (phonetically hatataka) 
taka 
taka 
taka 

Table 2 . Partial inflectional paradigm of Swahili taka `want' 
 

(7) A DATR theory defining the Swahili paradigm in Table 2 
 

%variable declarations:
#vars $abc: a h i k l m n s t u w.
#vars $tense: future past.
#vars $polarity: negative positive.
SANDHI:

<$abc> == $abc <>
<> ==
<a u> == u <>
<a a> == a <>.

VERB:
<slot_iv> == <slot_iii> <slot_ii>
<slot_iv negative $tense 1 sg> == s i %fact F1
<slot_iii negative> == h a
<slot_iii> ==
<slot_ii $polarity $tense 1 sg> == n i %fact F2
<slot_ii $polarity $tense 2 sg> == u %fact F3
<slot_ii $polarity $tense 3 sg> == a %fact F4
<slot_ii $polarity $tense 1 pl> == t u %fact F5
<slot_ii $polarity $tense 2 pl> == m %fact F6
<slot_ii $polarity $tense 3 pl> == w a %fact F7
<slot_i positive past> == l i
<slot_i negative past> == k u
<slot_i $polarity future> == t a %fact F8
<> == SANDHI:<<slot_iv> <slot_i> "<root>">.

Want:
<> == VERB
<root> == t a k a.

#hide SANDHI VERB.
#show
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<positive past 1 sg>
<positive past 2 sg>
<positive past 3 sg>
…

In this theory, the query Want:<positive future 3 pl> produces the value 
w a t a t a k a, the query Want:<negative past 1 sg> produces s i k u t a k a, 
and so on.  The morphosyntactic properties in each query follow the sequence polarity, tense, 
person, number.  This fact in turn requires that morphosyntactic properties be mentioned in this 
same sequence on the lefthand sides of the facts at the VERB node.  More generally, if a fact's LHS 
mentions a property associated with position n in this sequence, then it must likewise mention a 
property associated with position n − 1.  For instance, in fact F2, which specifies the prefix ni as 
the exponent of first-person singular subject agreement, the variables $polarity and $tense 
must be mentioned, even though ni is, strictly speaking, an exponent of neither polarity nor tense.  
Rather than say that the prefixation of ni realizes the path <slot_ii $polarity $tense 1

sg>,  one would prefer to be able to say that the prefixation of ni simply realizes the property set 
{slot_ii, 1, sg}, whatever the order might be in which these properties are specified in the query 
path.  The problem  cannot simply be solved by changing the sequence to person, number, polarity, 
tense in the query path, since that change would require that facts specifying the exponents of 
polarity and tense also include redundant variables over person and number values. 
 
3.2 Nonlocal sandhi 
 
In DATR, a rule of sandhi can be formulated as a fact whose LHS is a path that matches a sequence 
of adjacent phonological segments; some examples are the facts situated at the SANDHI node in (7).  
Though sandhi alternations usually involve a conditioning element adjacent to the conditioned 
alternant, it is not rare in natural language for a conditioning element to be nonlocal, in the sense 
that it is separated from the conditioned alternant by an indefinite amount of intervening material.  
Consider, for instance, the Sanskrit principle of n retroflexion.  In Gonda's (1966:19) succinct 
formulation:   
 

An n which a vowel or n m y v follows is changed to õ if ç é r ù immediately precede in the 
same word or no palatal, cerebral [= retroflex], or dental stands in between:  muù-nā-ti > 
muùõāti "he steals"; karman-ā > karmaõā "by the deed", but rathena "by the chariot"; 
śuśrūùaõa- "obedience", sravaõa- "flowing", but darśana- "seeing", grasana- 
"swallowing". 

 
In order to accommodate the expression of sandhi principles having this nonlocal character, DATR 
should make it possible to formulate a fact whose LHS matches a sequence of phonological 
segments in which an indefinite amount of material may intervene between two designated 
segments.  Though DATR affords various indirect means of achieving this effect, it does not allow 
this effect to be achieved in the simplest, most direct way:  by reference to a variable over strings. 
 
3.3 Subtractive vs nonsubtractive rules 
 
DATR facts have a subtractive quality.  For instance, addressing the query A:<a b c d> to the 
sample theory in (8) yields the value f rather than e:  Fact F1 situated at the A node subtracts away 
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the prefix <a b c>, causing the query A:<a b c d> to be subsequently evaluated as the query 
B:<d d> rather than as B:<d a b c d>. 
 
(8) A:

<a b c> == B:<d>. %fact F1
B:

<d a b c d> == e
<d d> == f.

 
In the definition of certain linguistic phenomena, however, this subtractive quality engenders 
redundancies.  One phenomenon of which this is true is that of syncretism.  In Sanskrit, for 
example, the default declensional pattern includes the following syncretisms, among others: (a) a 
nominal’s ablative singular form is identical to its genitive singular form; (b) a nominal’s locative 
dual form is identical to its genitive dual form; (c) a nominal’s dative dual form is identical to its 
instrumental dual form; and (d) a neuter nominal’s nominative forms are identical to the 
corresponding accusative forms.  The paradigm of manas- `mind’ in Table 3 illustrates.  In 
inferential-realizational theories of morphology, such instances of syncretism are effected by rules 
of referral--rules that cause the realization of one morphosyntactic property set to mimic that of a 
distinct property set.  In the DATR definition of the manas- paradigm in Table 3, these  syncretisms 
are accounted for by four facts situated at the node from which all nominals inherit by default 
(specifically, by the facts F1 through F4 situated at the NOMINAL node of (9)). 

 
 Singular Dual Plural 

Nominative, Vocative, Accusative  manas manas-ī manāüs-i 
Instrumental manas-ā mano-bhis 
Dative manas-e 
Ablative  

 
mano-bhyām  

mano-bhyas 
Genitive 

 
manas-as manas-ām 

Locative manas-i 
 
manas-os manas-su 

Table 3.  Declensional paradigm of the Sanskrit noun manas- `mind’ 
 
(9) A DATR theory defining the Sanskrit paradigm in Table 3 (without sandhi) 

#atom M.
#vars $case: nom voc acc ins dat abl gen loc.
#vars $direct: nom voc acc.
#vars $number: sg du pl.
NOMINAL:

<> == "<stem>" "<suff>"
<stem> == "<vstem>"
<vstem> == "<root>" "<stemvowel>"
<longvstem> == "<vstem>" ;
<stemobs> ==
<suff nom sg> == s
<suff acc sg neuter> ==
<suff acc sg> == m
<suff dat sg> == e
<suff ins sg> == a a
<suff gen sg> == a s
<suff loc sg> == i
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<suff $direct du> == i i
<suff gen du> == o s
<suff ins du> == bh y a a m
<suff acc pl neuter> == i
<suff dat pl> == bh y a s
<suff ins pl> == bh i s
<suff gen pl> == a a m
<suff loc pl> == s u
<abl> == "<dat>"
<voc> == "<nom>"
<abl sg> == "<gen sg>" %fact F1
<loc du> == "<gen du>" %fact F2
<dat du> == "<ins du>" %fact F3
<nom $number neuter> == "<acc $number neuter>". %fact F4

CONSONANT_STEM:
<> == NOMINAL
<stem> == "<vstem>" "<stemobs>"
<stem $direct pl neuter> == "<longvstem>" M "<stemobs>".

Manas:
<> == CONSONANT_STEM
<$case $number> == CONSONANT_STEM:<$case $number neuter>
<root> == m a n
<stemvowel> == a
<stemobs> == s.

#hide NOMINAL CONSONANT_STEM.
#show

<nom sg>
<acc sg>
<voc sg>
…

Clearly there is a redundancy in the formulation of the facts F1 through F4:  In each of these, both 
the LHS and the RHS must be specified for the same number property, and in F4, both are 
additionally specified for neuter gender.  The source of this redundancy is the subtractive quality of 
DATR facts.  In a redundancy-free formulation of these Sanskrit rules of referral, a fact’s RHS 
would instead be interpreted nonsubtractively, that is, as sharing all of the properties of the fact’s 
LHS by default (in the absence of any contrary stipulation). 
 
4 An extension of DATR: KATR 
 
In order to facilitate the formal representation of the morphological phenomena exemplified by the 
foregoing evidence from Swahili and Sanskrit, we propose an extension of the DATR language; we 
refer to this extension as KATR.  In this section, we discuss three novel characteristics of KATR:  
that of allowing a fact’s LHS to be formulated either as a path or as a set; that of allowing regular 
expressions to figure in the representation of a fact’s LHS; and that of allowing facts to be defined 
in either a subtractive or a nonsubtractive way.  As we show, these three characteristics afford a 
simple account of each of the problematic morphological phenomena identified in Section 3. 
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4.1 Sets vs paths in KATR 
 
Syntactically, KATR differs very little from DATR:  A query is always an atom-path, and the RHS 
of a fact is always a sequence of zero or more terms.  The fundamental differences between DATR 
and KATR relate to the formulation of a fact’s LHS and to query evaluation.  The first fundamental 
difference between KATR and DATR is that while the LHS of a fact must be an atom-path in 
DATR, it may be either an atom-path or an atom-set in KATR (where an ATOM-SET is a sequence 
of atoms enclosed in curly brackets).  In view of this difference, the matching of facts to queries 
proceeds somewhat differently in KATR and in DATR. 
 
4.1.1 Matching facts to queries in KATR 
 
When atom_path_f is the LHS of a fact f at Node_q, we say that f is a POTENTIAL MATCH FOR 
atom_path_q AT Node_q iff atom_path_f is a prefix of atom_path_q.  Similarly, when atom_set_f is 
the LHS of a fact f at Node_q, we say that f is a POTENTIAL MATCH FOR atom_path_q AT Node_q 
iff each member of atom_set_f is a distinct member of atom_path_q.  Now, the matching of facts to 
queries in KATR can be precisely characterized as follows:  Where X is the LHS of a fact f at 
Node_q, f MATCHES atom_path_q AT Node_q iff (a) f is a potential match for atom_path_q at 
Node_q and (b) there is no fact f′ at Node_q such that (i) f′ is a potential match for atom_path_q at 
Node_q and (ii) the LHS of f′ is greater in cardinality than X. 
 
4.1.2 Evaluating queries in KATR 
 
Suppose now that at Node_q, a query path atom_path_q is matched by the fact in (10a), whose 
RHS X is a sequence of zero or more terms; in that case, the value for the query 
Node_q:atom_path_q is computed exactly as in DATR.  Suppose, on the other hand, that at 
Node_q, a query path atom_path_q is matched by the fact in (10b).  
 
(10) a. atom_path_f == X 
 b.  atom_set_f == term_1 ... term_n 
 
In that case, the value computed for the query Node_q:atom_path_q is the sequence of the values of 
term_1 ... term_n relative to the query path atom_path_q and the LHS atom_set_f at Node_q.  The 
value of each term_i (1 ≤ i ≤ n) is determined as in Table 4.  Rows (A), (B), and (F) of Tables 1 and 
4 are alike.  The only significant difference between Tables 1 and 4 involves those instances in 
which the fact matching the query path has a RHS that includes a term-path (i.e. rows (C), (D), (E), 
and (G)).  In those instances, the evaluation of the query depends on a new notion of path 
reduction.  If atom_set_f is the LHS of a fact that matches atom_path_q at some node, the PATH 
REDUCTION of atom_path_q relative to atom_set_f is that atom-path P that is like atom_path_q 
except that the leftmost instances of atom_set_f's members appearing in atom_path_q are absent 
from P.  For instance, if the atom-set {a b c} is the LHS of a fact matching the atom-path <c a

e b d a> at some node, the path reduction of <c a e b d a> relative to {a b c} is the atom-
path <e d a>.2 
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Given a query Node_q:atom_path_q such that atom_path_q is matched by the fact in (10b) at 
Node_q: 
if term_i is of type then the value of term_i relative to the query path 

atom_path_q and the LHS atom_set_f at Node_q is 
(A) atom term_i 
(B) Node_y the value computed for the query Node_y:atom_path_q  
(C) <term_1 ... term_n> the value computed for the query Node_q:<X Y>, 

where  
(i) X is the result of concatenating the values of term_1 
... term_n relative to the query path atom_path_q and the 
LHS atom_set_f at Node_q, and 
(ii) <Y> is the (possibly empty) path-reduction of 
atom_path_q relative to atom_set_f. 

(D) Node_y:<term_1 ... term_n> the value computed for the query Node_y:<X Y>, 
where X and Y are as above 

(E) "<term_1 ... term_n>" the value computed for the new query Node_INIT:<X 
Y>, where Node_INIT is the initial query node and X 
and Y are as above 

(F) "Node_y" the value computed for the new query Node_y:<Z>, 
where <Z> is the initial query path 

(G) "Node_y:<term_1 ... term_n>" the value computed for the new query Node_y:<X Y>, 
where X and Y are as above 

Table 4. Terms and their values in KATR 
 
Given this notion of path reduction, consider the KATR theory in (11). 

 
(11) A:

{c a b} == <f g h>
{d f h g a} == i
{i j k} == B:<a b c>
{l} == B
{m n} == o
{p} == "B:<q>".

B:
{c a b} == m
{c a l b} == n
{l} == "<m n o>"
{m} == C.

C:
{} == "<a b c>"
{s a b} == t
{u a b} == v.

According to Table 4(C), the value computed for the query A:<c a e b d a> in theory  (11) is 
the value computed for the query A:<f g h e d a>, namely i (in accordance with Table 4(A)).  
According to Table 4(D), the value computed for the query A:<l k j i> in this theory is the 
value computed for the query B:<a b c l>, namely n.   
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Suppose that node A is the initial query node in the evaluation of a query A:<l> in this 
theory.  According to Table 4(B), the value of this query is the value computed for the query 
B:<l>; according to Table 4(E), this latter value is in turn the result of initiating a new query A:<m
n o>.  Thus, the value computed for the query A:<l> in this theory is o. 

Suppose finally that a query A:<m p> is initiated at node A in this theory.  According to 
Table 4(G), the value computed for this query is the result of initiating a new query B:<q m>; thus, 
the final value computed for A:<m p> is m. 

Two facts situated at the same node can, in principle, match a query path equally well.  For 
instance, what would be the value computed for the query C:<a b s u> in this theory?  The 
problem is that there are two facts at node C that match the query path <a b s u> equally well.  
This ambiguity constitutes a flaw in this theory.  Our KATR implementation therefore issues a 
warning when it computes this query, although it returns an answer, namely v:  When two facts are 
overtly ambiguous, the second of these facts overrides the first.  (In this respect, KATR follows 
DATR.) 

 
4.1.3 An example of unordered property sets in KATR:  Swahili verb inflection 
 
Because KATR allows facts to mention morphosyntactic properties without having to adhere to a 
canonical sequence, the DATR theory in (7) can be expressed more simply as the KATR theory in 
(12).  
 
(12) A KATR theory defining the Swahili paradigm in Table 2 
 

[Identical to (7) except for the following substitutions at the VERB node.] 
 
VERB:

{slot_iv negative 1 sg} == s i %replaces fact F1
{slot_ii 1 sg} == n i %replaces fact F2
{slot_ii 2 sg} == u %replaces fact F3
{slot_ii 3 sg} == a %replaces fact F4
{slot_ii 1 pl} == t u %replaces fact F5
{slot_ii 2 pl} == m %replaces fact F6
{slot_ii 3 pl} == w a %replaces fact F7
{slot_i future} == t a %replaces fact F8

The analysis in (12) resolves the problem embodied in (7).  In place of the highly redundant facts 
F1-F8 situated at the VERB node in (7), the theory in (12) involves redundancy-free facts.  The 
output of the theory in (12) is nevertheless identical to that of the theory in (7).  

One reason why KATR retains the option of allowing a fact's LHS to be an atom-path 
(instead of simply requiring that every LHS be an atom-set) is upward compatibility:  Any well-
formed theory expressed in DATR remains a well-formed theory (though not necessarily the 
optimal theory) in KATR; thus, KATR is literally an extension of DATR.  A second reason is that 
certain facts presuppose a linear ordering of the atoms constituting their LHS.  A case in point is 
any fact describing sandhi phenomena; for instance, the fact <a u> == u <> at the SANDHI node 
in the theory of (7) makes essential reference to the linear ordering of two adjacent vowels. 
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4.2 Nonlocal sandhi and regular expressions 
 
The second fundamental difference between KATR and DATR is motivated by the need to 
accommodate instances of nonlocal sandhi.  Unlike DATR, KATR allows the LHS of a fact to be 
stated as an atom-path incorporating one or more regular expressions.  A regular expression is a 
pattern that describes a set of strings; regular expressions are constructed analogously to arithmetic 
expressions by using various operators to build larger patterns out of smaller ones.   
 
4.2.1 Regular-expression operators and their usage 
 
Table 5 shows the (restricted) list of regular-expression operators implemented in KATR.  Atoms 
or variables can join with regular-expression operators in the specification of a regular expression.  
Regular expressions are only allowed in an atom-path on a fact's LHS; that is, regular expressions 
are disallowed both in an atom-set on a fact's LHS and in queries.  The KATR theory in (13a) and 
its output in (13b) illustrate the usage of regular expressions in KATR; in (13), $c is a variable 
whose only permitted value is the atom c.  
 

Regular 
Expression 

Description 

* The preceding item is matched zero or more times. 

+ The preceding item is matched one or more times. 

? The preceding item is optional and matched at most once. 

(n, ) The preceding item is matched n or more times. 

( ,m) The preceding item is matched at most m times. 

(n, m) The preceding item is matched at least n times, but not more than m 
times.  

Table 5. Regular-expression operators in KATR 
 
(13) a. #vars $c: c.

Node:
<> == does not match
<a b* $c(2, )> = matches.

%a followed by zero or more occurrences of b followed by two
%or more occurrences of c.

b. Node:<a c c> ==> matches
Node:<a b c c> ==> matches
Node:<a b b c c c> ==> matches
Node:<a c> ==> does not match
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4.2.2 Strings of atoms that match regular expressions 
 
As KATR evaluates a given query, it captures strings of atoms that match a regular expression and 
binds them to an identifier sharing the name of that regular expression.  The KATR theory in (14a) 
and its sample output in (14b) illustrate this kind of binding.  In (14), fact F1 matches the query 
path <a b b b c>; in particular, the regular expression b* in the atom-path in fact F1's LHS 
matches the string b b b present in the query path.  This string is bound to a newly-introduced 
identifier b*; thus, while the expression b* in the atom-path on fact F1's LHS is a regular 
expression, its namesake b* in the atom-path on F1's RHS is an identifier.  Regular expressions 
are, again, only allowed in an atom-path in a fact's LHS, and any identifier named for a regular 
expression appearing in some fact has its scope limited to the RHS of that same fact.  
 
(14) a. Node:

<a b* c> == <c b* d> %fact F1
<c b* d> == hello. %fact F2

 b. Node:<a b b b c> == hello.
 

As it is formulated, fact F2 causes the theory in (14a) to produce the same result hello for 
any of the following queries:  Node:<a c>, Node:<a b c>, Node:<a b b c>.  When these 
same queries are addressed to the sample theory in (15), only the first two produce output. 
 
(15) Node:

<a b* c> == <c b* d>
<c d> == no b
<c b d> == one b.

 
Identifiers associated with regular expressions can be present in any order and any number 

of times, as illustrated by theory (16a) and its sample output (16b).  In (16), for query Q1, fact F1’s 
RHS expands to <b b e b b d d>, since the identifier b(2,2) refers to the string b b that 
matches the regular expression b(2,2), and the identifier d(2,3) refers to the string d d d that 
matches the regular expression d(2,3).   
 
(16)  a. Node:

<a b(2,2) c d(2,3)> == <b(2,2) e b(2,2) d(2,3)> %fact F1
<b b e b b d d> == 2 d %fact F2
<b b e b b d d d> == 3 d. %fact F3

b.  Node:<a b b c d d> ==> 2 d %query Q1
Node:<a b b c d d d> ==> 3 d %query Q2

 
4.2.3 Handling identical regular expressions 
 
Because the string of atoms that matches a given regular expression is bound to an identifier named 
after that regular expression, the presence of two identical regular expressions leads to a name- 
resolution conflict.  Example (17) shows a KATR theory involving a name-resolution conflict 
owing to the presence of two instances of b* in the path on F1's LHS.  Example (18) is the 
corrected version of example (17). 
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(17) Node:

<a b* c b*> == b*. %fact F1

(18) Node:
<a b*#name1 c b*#name2> == b*#name1. %fact F1

 
In (18), the two instances of  b*  are made unique by renaming.  Strings matched by the first 
regular expression b* are bound to the newly-introduced identifier b*#name1, while strings 
matched by the second regular expression b* are bound to the newly-introduced identifier 
b*#name2. The names name1, name2 can be arbitrary so long as they are distinct.   

The theory in (19a) and its sample output (19b) demonstrate renaming.  When F1 matches 
Q1 in example (19), the identifiers b+#1 and b+#2 are mapped to the contents b and  b b, 
respectively. 

 
(19)  a. Node:

<a b+#1 c b+#2> == <c b+#2 a b+#1> %fact F1
<c b b b a> == long %fact F2
<c b b a> == short. %fact F3

b.   Node:<a b c b b> ==> short %query Q1
Node:<a b c b b b> ==> long %query Q2

 
4.2.4 Handling similar variables 
 
Every instance of a given named variable in some path or set is interpreted as matching the same 
atom.  Theory (20a) and its sample output (20b) illustrate.  All three instances of  $abc#1  in the 
path of F1 are required to match the same atom.  Fact F1 matches queries Q1 and Q2, but only fact 
F5 matches queries Q3 and Q4.  For example, when query Q3 is given to the program in example 
(20), at F1, $abc#1 matches a in Q3. 
 
(20) a. #vars $abc: a b c.

Node:
<$abc#1 x $abc#1 y $abc#1> == <$abc#1 z> %fact F1
<a z> == a %fact F2
<b z> == b %fact F3
<c z> == c %fact F4
<> == does not match. %fact F5

b. Node:<a x a y a> ==> a %query Q1
Node:<b x b y b> ==> b %query Q2
Node:<a x a y b> ==> does not match %query Q3
Node:<a x b y c> ==> does not match %query Q4

 
The next three elements (atoms x, a, y) in the path on F1's LHS also successfully match the 

next elements in query Q3.  The match fails when the next element ($abc#1) in the path on F1's 
LHS tries to match atom b in query Q3, since it is expecting the atom a.  

By renaming the three instances of $abc to separate them, we can have them match 
different atoms.  Theory (21a) modifies theory (20a) to produce the new results in (21b).  
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(21) a. [Identical to (20a) except for the following substitution at the Node node.] 
 

Node:
<$abc#1 x $abc#2 y $abc#3> == <$abc#1 z> %replaces fact F1

 
b.    Node:<a x a y a> ==> a

Node:<b x b y b> ==> b
Node:<a x a y b> ==> a
Node:<a x b y c> ==> a

 
To allow for backward compatibility, the program listed in example (19) works in KATR 

even without naming the instances of $abc, but a warning message is displayed during 
compilation, alerting the user to possible ambiguity in variable usage.  

There are some limitations on the use of regular expressions in KATR:  (a)  The regular-
expression operator * doesn't fully implement Kleene's closure (thus, the query <a b b b c> 
would not match a path <a b* b c>, because the regular expression b* absorbs all instances of  b 
present in the query; the query would match if the principles of Kleene's closure were strictly 
adhered to); (b) the regular-expression operator {n, } has its upper bound set at 10,000 
(representing infinity); (c) nested regular expressions (such as (b* c)+)  are disallowed in KATR; 
and (d) since regular expressions presume a linear ordering that sets do not possess, regular 
expressions are not allowed for sets appearing on a fact's LHS.  

 
4.2.5 An example of regular expressions in KATR:  Sanskrit n-retroflexion 
 
The following KATR theory expresses the Sanskrit principle of n-retroflexion given in Section 3.2 
above.  We code Sanskrit phonological segments using the ITRANS coding scheme; thus, N, sh, 
and Sh represent õ, ś, and ù, respectively.  The regular expression $non_cor_cons* designates a 
string of zero or more instances of the variable $non_cor_cons.   
 
(22) a. A KATR theory of the Sanskrit principle of n-retroflexion 
 

%Declaration of atoms beginning with capital letters:
#atom Ri RI Li LI M H ~N Ch ~n T Th D Dh N Sh. %etc.
#vars $abc: Ri RI Li LI M H ~N Ch ~n T Th D Dh N Sh a ch d dh

e g i j jh k m n o r s sh t th u v y. %etc.
#vars $cor_cons: ch Ch j jh ~n T Th D Dh N t th d dh n sh Sh

s. %coronal consonants
#vars $non_cor_cons: $abc - $cor_cons.
#vars $retr_cont: r Ri RI Sh. %retroflex continuants
#vars $vowel_nasal_glide: a e i o u Ri n m y v.
SANDHI:

<$abc> == $abc <>
<> ==
<$retr_cont $non_cor_cons* n $vowel_nasal_glide>

== <$retr_cont $non_cor_cons* N $vowel_nasal_glide>.
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 b. Output for sample queries 

SANDHI:< m u Sh n a a t i > ==> m u Sh N a a t i
SANDHI:< k a r m a n a a > ==> k a r m a N a a
SANDHI:< r a th e n a > ==> r a th e n a
SANDHI:< sh u sh r u u Sh a n a > ==> sh u sh r u u Sh a N a
SANDHI:< s r a v a n a > ==> s r a v a N a
SANDHI:< d a r sh a n a > ==> d a r sh a n a
SANDHI:< g r a s a n a > ==> g r a s a n a

 
4.3 Nonsubtractive rules in KATR 
 
The third fundamental difference between KATR and DATR concerns the form and interpretation 
of facts having term-paths on their RHS.  Consider again Table 4(C).  According to this property, 
the value computed for the query Node:<a b c e> in the KATR theory (23) is this rather than 
that. 
 
(23) Node:

{a b c} == <d> %fact F1
{d} == this
{a b c d} == that.

  
In KATR as in DATR, the == operator has a subtractive quality, in the sense that it causes the 
atoms a, b, and c constituting the LHS of fact F1 in (23) to be eliminated from the query path 
prescribed for subsequent evaluation.  This subtractive quality is appropriate for the expression of 
many morphological phenomena, but not for all, as we showed in Section 3.3.  In addition to the 
double equal sign ==, whose interpretation involves the subtractive quality exemplified in (23), 
KATR introduces the =+= sign, whose interpretation does not involve this quality.  Accordingly, 
the value computed for the query Node:<a b c e> in the KATR theory in (24) is that rather 
than this. 
 
(24) Node:

{a b c} =+= <d> %fact F1
{d} == this
{a b c d} == that.

 
The nonsubtractive fact F1 in (24) causes the entire query path to be included in the path used for 
subsequent evaluation.  KATR also makes it possible to formulate nonsubtractive facts that cause a 
modified form of the query path to be included in the path used for subsequent evaluation.  
Substitution is accomplished by means of the slash operator exemplified in the KATR theory in 
(25); this operator is defined in such a way that the value computed for the query Node:<a b d> 
in the KATR theory (25) is the other rather than this or that. 
 
(25) Node:

{a b/c d} =+= <e>
{e} == this
{a b d e} == that
{a c d e} == the other.
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Thus, in general, the slash operator makes it possible to evaluate a path P as some distinct path P′ 
that is derived from P by means of particular substitutions.  In order to define the evaluation of a 
fact whose LHS includes the slash operator, we must define a number of ancillary notions. 
 
4.3.1 Defining the =+= operator 
 
The expression atom_1/atom_2 is a SLASH-ATOM if atom_1 and atom_2 are atoms.  For any 
atom_1, atom_2, the slash-atom atom_1/atom_2 is an L-INSTANCE of atom_1.  A SLASH-PATH is a 
sequence (enclosed in angle brackets) that contains an instance of at least one slash-atom and 
whose other members (if any) are instances of atoms or slash-atoms.  A SLASH-SET is a sequence 
(enclosed in curly brackets) that contains an instance of at least one slash-atom and whose other 
members (if any) are instances of atoms or slash-atoms.  The members of a slash-path, like those of 
an ordinary atom-path, are linearly ordered.  The members of a slash-set S are partially ordered; in 
particular, they are unordered except to the extent that all L-instances of a given atom in S are 
linearly ordered with respect to each other (though not with respect to L-instances of other atoms).   

We define a relation of L-MATCHING as follows:  (a) for any atom_1, atom_2, both atom_1 
and atom_1/atom_2 L-match atom_1; (b) an n-member slash-path SP L-matches atom_path_q iff 
the ith member of SP L-matches the ith member of atom_path_q (1 ≤ i ≤ n); and (c) a slash-set SS 
L-matches atom_path_q iff every member of SS L-matches a distinct member of atom_path_q.  

If the LHS of fact f at Node_q is a slash-path or slash-set S, then f is a POTENTIAL MATCH 
FOR atom_path_q at Node_q iff S L-matches atom_path_q.  As before, where X is the LHS of a 
fact f at Node_q, f MATCHES atom_path_q AT Node_q iff (a) f is a potential match for atom_path_q 
at Node_q and (b) there is no fact f′ at Node_q such that (i) f′ is a potential match for atom_path_q 
at Node_q and (ii) the LHS of f′ is greater in cardinality than X. 

Given a fact f which matches atom_path_q, the SLASH-ALTERNANT SA of atom_path_q 
relative to f is that path that is like atom_path_q except that if atom_1/atom_2 is the nth L-instance 
of atom_1 in f ’s LHS and the nth instance of atom_1 in atom_path_q is the xth member of 
atom_path_q, then atom_2 is the xth member of SA.  If the LHS of fact f is an atom-path or an 
atom-set (and not a slash-path or slash-set), the slash-alternant of atom_path_q relative to f is 
atom_path_q itself. 

Thus, suppose that at Node_q, a query path atom_path_q is matched by fact (26), whose 
LHS X is an atom-path, an atom-set, a slash-path, or a slash-set and whose RHS is term_a_1 ... 
term_a_m.  In that case, the value computed for the query Node_q:atom_path_q is the sequence of 
the values of term_a_1 ... term_a_m relative to the query path atom_path_q and the LHS X at 
Node_q.  The value of each term_a_i (1 ≤ i ≤ m) is determined as in Table 6.  The evaluation 
principles in Table 6 are exemplified by the KATR theory in (27). 

 
(26) X =+= term_a_1 ... term_a_m 
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Given a query Node_q::::atom_path_q such that atom_path_q is matched by fact (26) at Node_q: 
if term_a_i is  then the value of term_a_i relative to the query path 

atom_path_q and the LHS X at Node_q is 
(A) atom_1 term_a_i 
(B) Node_y the value computed for the query Node_y::::atom_path_q  
(C) <<<<term_b_1 ... term_b_n>>>> the value computed for the query Node_q:<:<:<:<Y Z>>>>, 

where  
(i) Y is the result of concatenating the values of 
term_b_1 ... term_b_n relative to the query path 
atom_path_q and the LHS X at Node_q, and  
(ii) <Z> is the slash-alternant of atom_path_q relative to 
(26) 

(D) Node_y:<:<:<:<term_b_1 ... term_b_n>>>> the value computed for the query Node_y:<:<:<:<Y Z>>>>, 
where Y and Z are as above 

(E) """"<<<<term_b_1 ... term_b_n>>>>"""" the result of initiating a new query Node_INIT:<:<:<:<Y Z>>>>, 
where Node_INIT is the initial query node and Y and Z 
are as above 

(F) """"Node_y"""" the result of initiating a new query Node_y:<:<:<:<W>>>>, where 
<W> is the initial query path 

(G) """"Node_y:<:<:<:<term_b_1 ... term_b_n>>>>"""" the result of initiating a new query Node_y:<:<:<:<Y Z>>>>, 
where Y and Z are as above 

Table 6. Terms and their values in KATR 
 
(27) A:

<a> =+= b
<a b/c d> =+= e
{b} =+= c
<e> =+= <f g h>
<e f/i f> =+= <f g h>
{e g/i g} =+= <f g h>
{e h/i f h g h/k} =+= B:<n o p>
<f g h e> =+= k
<f g h e i f> =+= m
<f g h e i g> =+= n
{f f/g} =+= B
{h h h} =+= "B"
{h i f g} =+= l
{i} =+= <f g h>
{i h/a g} =+= f
<m> =+= B:<n o p>
<q> =+= B
<s> =+= a
{s f h} =+= q
<t> =+= "B"
<u> =+= "B:<v>"
<v> =+= "B:<w>"
{w} =+= d.
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B:
<a> =+= A
<a b/c d> =+= A
{b} =+= A
<f f/h> =+= "<s>"
{h h h} == C
{h q s t} == i
{i h/a g} =+= A
{m o p} == w
<n o p e f g i k h> == o
<q> == "<s>"
<s> == q
<t> == C
<u> == x
<v> == C
{w v} == C.

C:
{h h/q h/t} =+= "<s>"
<t> == "<s>"
<v> == <t>
<w v> == "<u>" "A"
<v w> == "A" "<u>".

In accordance with Table 6(A), the values computed for the queries A:<a>, A:<b>, A:<a
b d>, and A:<g h i>  in the theory of (27) are b, c, e, and f, respectively.  In accordance with 
Table 6(A, B), the values computed for the queries B:<a>, B:<b>, B:<a b d>, and B:<g h i> 
are b, c, e, and f, respectively.  In accordance with Table 6(A, C), the values computed for the 
queries A:<e>, A:<i> , A:<e f f>, and A:<e g g>  are k, l, m, and n, respectively.  In 
accordance with Table 6(A, D), the values computed for the queries A:<m>  and A:<e f g h h

h>  are w and o, respectively.  In accordance with Table 6(A, B, E), the values computed for the 
queries A:<q>  and A:<f f>  are a and q, respectively.  In accordance with Table 6(A, B, E, F), 
the values computed for the queries A:<t>  and A:<h h h> are q and i, respectively.  In 
accordance with Table 6(A, B, C, E, G), the values computed for the queries A:<u> and A:<v> are 
q and x d, respectively. 

 
4.3.2 An example of nonsubtractive rules in KATR:  Sanskrit declensional syncretism 
 
The option of using nonsubtractive rules in KATR makes it possible to streamline the analysis of 
Sanskrit declensional syncretism given in (9):  The subtractive rules F1-F4 at the NOMINAL node in 
(9) can now be replaced with the nonsubtractive rules in (28), eliminating the redundancy inherent 
in the former rules. 
 
(28) A KATR theory defining the Sanskrit paradigm in Table 3 
 

[Identical to (9) except for the following substitutions at the NOMINAL node.] 
 
NOMINAL:

<abl/gen sg> =+= "<>" %replaces fact F1
<loc/gen du> =+= "<>" %replaces fact F2
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<dat/ins du> =+= "<>" %replaces fact F3
{nom/acc neuter} =+= "<>" %replaces fact F4

 
5 An empirical challenge:  Rules applying in “expanded mode” 
 
As noted in Section 4.2, two facts situated at the same node in a KATR theory may match a query 
path equally well; a theory in which this happens is therefore flawed, and our implementation of 
KATR issues a warning to that effect.  Nevertheless, the inflectional systems of natural languages 
sometimes seem to involve competition between rules that are equally narrow in their specification.  
Georgian presents a case in point:  A transitive verb may exhibit agreement with both its subject 
and its direct object; the particular system of subject- and object- agreement markings that a 
transitive verb exhibits varies according to the conjugation class to which the verb belongs and to 
the specific temporal, modal, and aspectual properties for which it is inflected--see Stump (2001, 
Chapter 3) for additional details and references.  At issue here is the default pattern of affixal 
agreement in Table 7, which is exhibited by verbs in any but the fourth conjugation in most 
temporal/modal/aspectual contexts.  For instance, the first-conjugation verb mo-®lav 'kill' has the 
future-tense paradigm in Table 8; thus, the form mo-gv-®lav-en consists of the "preverb" mo-, the 
first-person plural object-agreement prefix gv-, the verb root ®lav, and the third-person plural 
subject-agreement suffix -en, and hence means `they will kill us'.  The forms in Table 8 can 
seemingly be generated by the KATR program in (29); thus, the query Kill:<3PerSubj sgSubj

3PerObj plObj> produces the value m o K l a v s, and so on.   
 

Subject-agreement affixes Object-agreement affixes  
Singular Plural Singular Plural 

1st Person v- v-...-t1  m- gv-  
2nd Person none  -t1 g- g-...(-t2)* 
3rd Person -s -en  none  none 

*-t2 appears only in the presence of singular subject agreement. 
Table 7.  Default subject- and object-agreement affixes in Georgian 

 
SUBJECT: 1SG 1PL 2SG 2PL 3SG 3PL 

1SG   mo-m-®lav mo-m-®lav-t1 mo-m-®lav-s mo-m-®lav-en
2SG mo-g-®lav mo-g-®lav-t1   mo-g-®lav-s mo-g-®lav-en 
3SG mo-v-®lav mo-v-®lav-t1 mo-®lav mo-®lav-t1 mo-®lav-s mo-®lav-en 
1PL   mo-gv-®lav mo-gv-®lav-t1 mo-gv-®lav-s mo-gv-®lav-en
2PL mo-g-®lav-t2 mo-g-®lav-t1   mo-g-®lav-t2 mo-g-®lav-en 

 
 
 
OBJECT 

3PL mo-v-®lav mo-v-®lav-t1 mo-®lav mo-®lav-t1 mo-®lav-s mo-®lav-en 
Table 8.  Future-tense paradigm of Georgian mo-®lav 'kill' 

 
(29) A KATR theory generating the Georgian paradigm in Table 8 

#atom K.
VERB:

{} == "<preverb>" <prefix> "<root>" <suffix>
{prefix 1PerSubj} == v %fact F1
{prefix 1PerObj} == m %fact F3
{prefix 1PerObj plObj} == g v
{prefix 2PerObj} == g %fact F2
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{suffix 3PerSubj sgSubj} == s
{suffix 3PerSubj plSubj} == e n
{suffix plSubj} == t_1
{suffix sgSubj 2PerObj plObj} == t_2
{prefix} ==
{suffix} ==.

Kill:
{} == VERB
{root} == K l a v
{preverb} == m o.

There is, however, a problem with this theory.  When values are computed for the queries in 
Table 9, competition arises between facts F1 and F2 at the VERB node; that is, when theory (29) is 
queried for a verb form realizing first-person subject agreement and second-person object 
agreement, the appearance of the first-person subject prefix v (dictated by F1) is incompatible with 
that of the second-person object prefix g (dictated by F2).  Both facts match the queries in Table 9, 
and their lefthand sides have the same cardinality.  Consequently, our KATR implementation issues 
a warning (More than one maximal match for node VERB with local query

< prefix 1PerSubj sgSubj 2PerObj sgObj >), and the values returned for the queries in 
Table 9 are determined by whichever of the two competing facts happens to be ordered last in 
theory (29):3 

 
 

Corresponding value in theory (29) Query 

if F1 precedes F2 if F2 precedes F1 

Kill:<1PerSubj sgSubj 2PerObj sgObj>
Kill:<1PerSubj sgSubj 2PerObj plObj>
Kill:<1PerSubj plSubj 2PerObj sgObj>
Kill:<1PerSubj plSubj 2PerObj plObj> 

m o g K l a v
m o g K l a v t_2
m o g K l a v t_1
m o g K l a v t_1

m o v K l a v
m o v K l a v t_2
m o v K l a v t_1
m o v K l a v t_1 

Table 9. Queries producing alternative values according to the relative ordering 
of F1 and F2 in (29) 

 
From a theoretical standpoint, this sensitivity to the linear ordering of a node’s facts is 

problematic.   Most instances of competition among inflectional rules are resolved by Pāõini’s 
principle, without reference to language-specific relations of linear rule ordering:  When two rules 
are in competition, the more narrowly specified rule wins.  Considerations of theoretical parsimony 
would therefore favor the assumption that parochial relations of linear ordering are in principle 
irrelevant to the resolution of rule competition.  How can Pāõini’s principle be relied upon to 
resolve the competition in the case at hand? 

 
5.1 The +n and ++ notations 
 
Inspection of the forms in Table 8 reveals that fact F2 should determine the evaluation of the four 
queries in Table 9; that is, contrary to its formulation in (29), F2 acts as if it were a narrower 
stipulation than fact F1.    Stump (2001) argues that the Georgian rule introducing the inflectional 
prefix g- applies in “expanded mode”:  The application of this rule doesn’t simply realize the 
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property of second-person object agreement; instead, it realizes every well-formed extension of that 
property set.  This argument implies that rule F2 is more narrowly specified than every rule with 
which it enters into competition; Pāõini’s principle therefore correctly predicts that it should 
override any such rule. 

In order to implement this notion of rules applying in expanded mode, we introduce the 
following new notation in KATR:  where {X} and <X> each have cardinality m, {X +n} and <X 
+n> each have cardinality m+n, and {X ++} and <X ++> each have indefinitely great cardinality.  
Thus, in the context of the KATR theory in (30), the queries A:<a b c d>, A:<a b c>, A:<a
b>, and A:<a> all yield e as their value, and the queries A:<b a c d> and A:<b>  have the 
respective values e and f. 
 
(30) A:

{a b c} == d
{a ++} == e
<b +3> == f.

5.2 An example of a rule applying in “expanded mode”:  Georgian verb agreement 
 
Using this new notation, we replace fact F2 situated at the VERB node in theory (29) with (31): 
 
(31) {prefix 2PerObj ++} == g %replaces fact F2 
 
Although the set {prefix 2PerObj} has cardinality 2, {prefix 2PerObj ++} is a set with 
indefinitely great cardinality whose only stipulated members are prefix and 2PerObj.  By virtue 
of the indefinitely great cardinality of its LHS, the revised formulation of fact F2 in (31) overrides 
F1 in matching the queries in Table 9, regardless of the order in which the two facts are given.  
Accordingly, once (31) is substituted into the theory in (29), our implementation of KATR no 
longer issues any warning, since for any query for which facts F1 and F2 are potential matches, F2 
is necessarily the better match.   

6 Generative capacity 
 
Notwithstanding the extensions that it incorporates, KATR is no more powerful than DATR. We 
derive this result from the fact that DATR itself is capable of emulating a Turing machine, so it can 
compute any partial recursive function, so it is quite powerful.  The KATR enhancements cannot 
increase its power; they only provide a convenient way to express morphological rules that are 
otherwise clumsy to specify.  (This result also suggests that DATR should perhaps be weakened.) 

A Turing machine is composed of an infinite tape of 0’s and 1’s, a movable read/write head, 
and a finite control.  To prove that DATR can emulate a Turing machine, we encode the initial tape 
as a query, where the alphabet is restricted to the symbols 0, 1, and h (for the read-write head).  
Without loss of generality, the tape starts with the symbols "0 h" (to avoid writing DATR code to 
cover the case when the head is at the very beginning).  We encode each state in the finite control 
of the Turing machine as a DATR node.  In addition, we provide the following utility DATR 
nodes: 
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(32)  
First: % returns the part to the left of the h (minus the last symbol)

<0 0> == 0 First:<0>
<1 0> == 1 First:<0>
<0 1> == 0 First:<1>
<1 1> == 1 First:<1>
<0 h> ==
<1 h> ==.

Done: % the final node, which just leaves the head where it is.
<0> == 0 <>
<1> == 1 <>
<h> == h <>
<> =.

 
Every encoded state has at least the following three rules: 
 
(33) <0> == <> % scan to the right looking for the h

<1> == <> % scan to the right looking for the h
<> == "Done" % got to the end of the tape; quit

 
In a Turing machine, transitions in the finite-state control at a state N are of the form "if the symbol 
at the head is x, replace it with y and move the head right/left one position, going to state M".  We 
notate this transition by labelling an arrow between states N and M with the label x/yL or x/yR, as 
shown in Figure 1.   

Figure 1.  Finite control of a Turing machine 
         1/1R                1/1R                 1/0L                0/0L                0/0R 
A  B  C  D  E  done 

        1/0R  
           0/0R           0/0R                  0/0R            1/0L                      

 
 
 
 
 
 
We encode the transition from state N to state M with two rules in N's DATR node: 
 
(34) <0 h x> == "M:<"First" 0 y h>" % if the direction is right

<1 h x> == "M:<"First" 1 y h>" % if the direction is right
<0 h x> == "M:<"First" h 0 y>" % if the direction is left
<1 h x> == "M:<"First" h 1 y>" % if the direction is left

Thus, Figure 1 represents the finite control of a Turing machine that converts the first "1 1 1" to the 
right of the head to "0 0 0", leaving the head on the second 0 in the replacement.  The DATR 
translation of this sample Turing maching is (35).4 
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(35) Translation of sample Turing machine into DATR 
First: % returns the part to the left of the h (minus the last symbol)

<0 0> == 0 First:<0>
<1 0> == 1 First:<0>
<0 1> == 0 First:<1>
<1 1> == 1 First:<1>
<0 h> ==
<1 h> == .

Done: % the final node, which just leaves the head where it is.
<0> == 0 <>
<1> == 1 <>
<h> == h <>
<> =.

A:
<0> == <>
<1> == <>
<> == "Done"
<0 h 0> == "A:<"First" 0 0 h>" % 0/0RA
<1 h 0> == "A:<"First" 1 0 h>" % 0/0RA
<0 h 1> == "B:<"First" 0 1 h>" % 1/1RB
<1 h 1> == "B:<"First" 1 1 h>". % 1/1RB

B:
<0> == <>
<1> == <>
<> == "Done"
<0 h 0> == "A:<"First" 0 0 h>" % 0/0RA
<1 h 0> == "A:<"First" 1 0 h>" % 0/0RA
<0 h 1> == "C:<"First" 0 1 h>" % 1/1RC
<1 h 1> == "C:<"First" 1 1 h>". % 1/1RC

C:
<0> == <>
<1> == <>
<> == "Done"
<0 h 0> == "A:<"First" 0 0 h>" % 0/0RA
<1 h 0> == "A:<"First" 1 0 h>" % 0/0RA
<0 h 1> == "D:<"First" h 0 0>" % 1/0LD
<1 h 1> == "D:<"First" h 1 0>". % 1/0LD

D:
<0> == <>
<1> == <>
<> == "Done"
<0 h 0> == "E:<"First" h 0 0>" % 0/0LE
<1 h 0> == "E:<"First" h 1 0>" % 0/0LE
<0 h 1> == "E:<"First" h 0 0>" % 1/0LE
<1 h 1> == "E:<"First" h 1 0>". % 1/0LE

E:
<0> == <>
<1> == <>
<> == "Done"
<0 h 0> == "Done:<"First" 0 0 h>" % 0/0Rdone
<1 h 0> == "Done:<"First" 1 0 h>" % 0/0Rdone
<0 h 1> == "Done:<"First" 0 0 h>" % 1/0Rdone



   27 

<1 h 1> == "Done:<"First" 1 0 h>". % 1/0Rdone
#show

<0 h 0 1 1 1 0 1> % expect 0 0 0 h 0 0 0 1
<0 h 0 1 1 1 1 1> % expect 0 0 0 h 0 0 1 1
<0 h 0 0 1 1 0 1>. % expect 0 0 0 1 1 0 1 h

#hide B C D E Done First.

7 Summary 
 
KATR incorporates a number of formal features motivated by empirically observable 
characteristics of natural-language morphology.  First, KATR allows the facts defining a 
language’s exponence relations to be formulated without presuming any sort of ordering among a 
word’s morphosyntactic properties (Section 4.1); second, it allows the facts defining a language’s 
morphophonology to make reference to variables over strings of segments (Section 4.2); third, it 
affords a redundancy-free formulation of “rules of referral”:  facts referring the evaluation of one 
set (or sequence) of properties to that of some distinct set (or sequence) of properties (Section 4.3); 
and finally, it allows competition among a node’s facts to be resolved in a uniform way, always by 
reference to the relative cardinality of the facts’ lefthand sides (Section 5).  These extensions make 
KATR especially well-suited for modelling systems of inflectional morphology.  In particular, 
KATR facilitates a compact definition of rules specifying the exponence of a language’s 
morphosyntactic properties, of rules regulating the incidence of a language’s sandhi phenomena, 
and of rules determining a language’s systematic patterns of syncretism.  In addition, it is 
compatible with a highly restrictive conception of rule competition, according to which such 
competition is in all instances resolved by Pāõini’s principle. 

The KATR software is freely available for download from the KATR website, 
http://www.cs.uky.edu/~gstump/katrsite/home.html. 
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Notes 
 
*   This work was partially supported by the National Science Foundation under Grant 

0097278 and by the University of Kentucky Center for Computational Science.  Any 
opinions, findings, conclusions or recommendations expressed in this material are those of 
the authors and do not necessarily reflect the views of the funding agencies. 

1. By convention, a node's name begins with a capital letter, while an atom's name begins with 
a lower-case letter.  We further distinguish between an inheritance hierarchy’s leaf nodes 
(with initial capitalization only) and its internal nodes (in all capitals). 

2.   The "sets" in KATR are, to be precise, multisets (or bags), in that they may contain multiple 
tokens of a single type.  Path reduction can therefore remove the same atom more than once 
from a query path. 

3. A similar conflict might appear to be engendered by facts F1 and F3 for the queries 
<1PerSubj sgSubj 1PerObj sgObj> and <1PerSubj plSubj 1PerObj sgObj>; 
but because a rule of Georgian morphosyntax stipulates that a first-person object cannot 
occur with a first-person subject (Aronson 1990:169), these queries would be ill-formed in a 
comprehensive account of Georgian morphology.  

4. We thank Alexander Dekhtyar for insights leading to the proof that DATR can emulate a 
Turing Machine. 
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