Solving Optimization Problemswith Boolean
Combinations of Pseudo-boolean Constraints
(apreliminary report)

Lengning Liu and Mirostaw Truszchgki

Department of Computer Science, University of Kentucky,
Lexington, KY 40506-0046, USA

Abstract. We study the optimization problems where the constraints are boolean
combinations of pseudo-boolean constraints and the objective funcadmisar
function with integer coefficients and 0-1 variables. We call such optimizatio
problemsPL(PB) optimization problemsPL(PB) optimization problems gen-
eralize the well known pseudo-boolean optimization problems whereaach
straint is a single pseudo-boolean constraint. We propose a methodlves s
PL(PB) optimization problems via a stochastic local seafth(PB) solver
calledwsat (plpb). Our method iteratively rungsat(plpb) to improve the value

of the objective functions. In addition to the linear search, which mostadsth
that solve pseudo-boolean optimization problems use, our method esoait
option that uses a combination of linear and binary search, which redbee
number of timewsat(plpb) is executed. We perform experimental study on our
implementation. We compare our method to existing pseudo-boolean opsmize
on a set of instances. Transformation is needed as those optimizeos @ocept
boolean combinations of pseudo-boolean constraints. The resulsshaty ex-
cept for one instance, our method is uniformly better than existing methods
the rest of the instances.

1 Introduction

We propose a method that computes optimal (or sub-optinadltiens to optimiza-
tion problems with boolean combinations of pseudo-boolg&di(PB) for short) con-
straints.

Informally, an optimization problem consists of an objeetfunction and a set of
constraints. To solve an optimization problem, we need tgimize or minimize the
objective function subject to the constraints. Problenth s finding a minimal domi-
nating set in a graph are optimization problems.

In our setting, we represent the constraints of an optingirgiroblem as boolean
combinations of pseudo-boolean constraints, a formali@pgsed by [1]. By @seudo-
boolean constrainfor a PB constraint for short) we mean an integer programming
constraint with only 0-1 variables. Bylzoolean combinatiorwe mean a disjunction
of PB constraints.

Optimization problems with only?B constraints (no disjunctions @B constraints)
have received much attention during the past decade. Rgaerahy optimizers that

solve PB optimization problems have emerged, includiagut(oip) [2], minisat+
[3], pb2sat + zchaff [4], bsolo [5], pueblo [6] and PBS [7].

To obtain an optimal solution, the optimizers we listed abosly on a series of
queries to programs, calledodel generatorsthat compute (generate) models of sets
of PB constraints. MosPB optimizers perform the linear search on the value of the
objective function. Other approaches include the binagydepb2sat + zchaff) and
a SAT-based branch and bound methae o).

In the linear search, the optimizer first queries the modeéggtor for a solution to
the set ofPB constraints, disregarding the objective function. Thendptimizer iter-
atively improves the value of the objective function, edafetintroducing a newPB
constraint saying that the value of the objective functibowd be less than the one
found in the previous step. When the query to the model georefiatlly results in the
"failed-to-satisfy” answer, the process terminates amddievious value of the objec-
tive function is returned. If the model generator is complend the “failed-to-satisfy”
answer is the result of a normal termination without findingadel, the returned value
is optimal. If the model generator terminates due to exlirgishe CPU time allocated
(incomplete model generators are covered by this case)faited-to-satisfy” message
does not mean that the instance is unsatisfiable. In such,¢hsesalue returned is only
an approximation of the optimal one.

The main reason behind the use of linear search instead afybgearch, is that,
deciding unsatisfiability of a set @?B constraints typically takes longer than deciding
satisfiability. In the first case, the whole search space brisbnsidered, in the second
one we can stop as soon as the first model is found. The linasststerminates with
only one “failed-to-satisfy” result. The binary searchersftneeds significantly fewer
iterations to terminate but many of these iterations mayrnethe “failed-to-satisfy”
message, often requiring much more time.

In this paper, we propose an algorithm that computes solsitad PL(PB) opti-
mization problems. Our optimizer usesPd(PB) model generatowsat(plpd) [1].
Sincewsat(plpd) is a local-search algorithm, solutions returned by ourrojzer are
not guaranteed to be optimal. For the search componentubegssively improves on
the quality of a solution, our optimizer provides two op8ofi) the linear search (most
often used in other optimizers), and (2) a novel combinaditthe linear search with a
variant of the binary search. As we noted above, the linemcheexecutes exactly one
call to the model generator which results in the “failedstdisfy” message. Our hybrid
method is designed so that there are exactly two calls to th@efrgenerator return-
ing the “failed-to-satisfy” message, a significant impnment over the straightforward
binary search approach.

We perform an experimental study on the algorithm we proj@rske compare it
to existing optimizers forPB optimization problems. Results show that our method
performs better tha®B optimizers in the benchmark instances we use, except for jus
one instance that is highly structured.

The paper is organized as follows: Section 2 gives defirstiand examples for
PL(PB) optimization problems. Section 3 describes our method wipzding optimal
solutions toPL(PB) optimization problems. Section 4 shows the experimengallte.
Section 5 concludes the paper and gives possible futurandsdirections.

2 Preliminaries

A pseudo-boolean (oPB) constraintis an integer inequality of the form

Z a;x; > b,

wherea;’s andb are integers and;’s are 0-1 variables. A& B theoryis a finite collec-
tion of PB constraints. A value assignmenthat assign$ or 1 to all variables in the
PB constraintsatisfiegor is amodelof) the constraint iy a; x v(x;) > b holds. An
expression

dx1 + (—6)3’52 +2x3 > 2

is an example of @B constraint. One can verify thaty = 1,20 = 0,23 = lisa
satisfying value assignment of tHeB constraint. A value assignmesatisfiesa PB
theory if it satisfies allPB constraints in the theory.

We now define a formalism [1] that generaliz@B theories. APL(PB) constraint
is a disjunction ofPB constraints. APL(PB) theoryis a finite collection ofPL(PB)
constraints. A value assignmesdtisfiesa PL(PB) constraint if it satisfies at least one
PB constraint in the disjunction. A value assignmeatisfiesa PL(PB) theory if it
satisfies allPL(PB) constraints in the theory. As pointed out in [1], many pretti
constraints involve disjunctions of numerical propertessets of weighted elements.
Thus allowing boolean combinations &5 constraints facilitates modeling this type
of constraint.

A PL(PB) optimization problenis a pair(O, P), whereO is an objective function
of the form}_ a;x;, a;'s are integers;;’s are 0-1 variables, an® is a PL(PB) theory.
An optimal solutionto a PL(PB) optimization problem is a value assignment that
minimizes the value of the objective function while satisfythe PL(PB) theory.

A PL(PB) optimization problen{O, P) is aPB optimization problenif P consists
of PB constraints (is &B theory).

We can encode many practical optimization problems iRfg PB) optimization
problems so that optimal solutions to tif¥.(PB) optimization problem correspond
to optimal solutions to the original problem. In other wardse can viewPL(PB)
optimization as a modeling formalism that captures othe¢inupation problems. For
example, we consider the following variant of the dominget problem:

Example 1.Let G = (V, E) be a directed graph, whefé€ is the set of vertices and
E is the set of directed edges. Each edgev) in E has an associated integer weight
w(u, v). A k-dominating set/ is a subset o/ such that for every € V, one of the
following three conditions hold:

l.veU
2. ZuGU:(u,v)GE ’LU(U,U) 2 k
3. ZUEU!(’U,U)EE w(v, U) > k.
The objective is to find a minimal-dominating set for a given weighted gragh
In order to represent the minimatdominating set problem for a graph as a

PL(PB) optimization problem, we use 0-1 variabl&s, wherev € V. Intuitively, by
assigning 1 td/, we represent the fact that vertesbelongs to &-dominating set.

The objective function in thi®L(PB) optimization problem is:

> U,

veV

For a vertexvo € V, we define thred’B constraints:

wl= U,>1,
W2= Y Us,>k
w:(w,v)EE
and
Wi= Y Us,xk
w:(v,w)EE

The PL(PB) constraintsV,! v W2 v W3, v € V, capture the defining constraints for
ak-dominating set, with the three disjuncts representingtralitions (1), (2) and (3),
respectively.

We note that if onlyPB constraints were allowed, the defining constraintg:-of
dominating sets would require a more complex representatio

3 Local search based optimizer for PL(PB) optimization
problems

To solve PL(PB) optimization problems, we use a method that iterativelyroups
the quality of models of th&L(PB) theory with respect to the objective function, until
no further improvements are possible. To be precise, ounadetonsists of #L(PB)
model generatolS and a search algorithm. Given RL(PB) optimization problem
(O, P), we use thePL(PB) model generator to compute a model (or, as we will also
say, aeasible solutiohof P (ignoring the objective function). If no model is found, we
terminate the search (either there are no feasible sokitigrif the model generator is
incomplete, it fails to find any). Otherwise, we take the fiel@ssolution computed as
the starting point and use the search algorithm organizadaries of iterations to find
feasible solutions with successively better objectivecfion values. When improve-
ment is no longer possible, we stop and return the most dgceninputed feasible
solution.

The method we implemented following this general patteffed from existing
PB optimizers in two ways. First, it deals withL(PB) optimization problems, which
are syntactically more general th&B optimization problem’s Second, in addition
to linear search it also supports a new search stratef,. The LBS algorithm is
obtained by combining the linear search and a variant of itieryp search. We describe
all these methods below.

! Formally, the two formalisms have the same expressive power. Tliagig, exist polynomial-
time algorithms to convert £L(PB) optimization problem into an equivale®B optimiza-
tion problem and vice versa.

The linear and binary search methods differ in the way theyrave on the feasible
solution found in the first call to the model generator (asifea out above, if no feasible
solution is found by that call, the whole process terminjates

Let us assuméO, P) is the PL(PB) optimization problem ana is the current
feasible solution found by the model generator. We wr{i@) to denote the value @
under the assignment

In the linear search, in each iteration we addPtthe PL(PB) constraint

-0 2 7LU(O) - 1J7

wherew is the present feasible solution. With exception of the ftestation, this con-
straint subsumes the one added in the previous one, whiclcanvbe removed. The
new constraint ensures that all feasible solutions fourtarfuture will have a smaller
objective-function value tham. When the model generator fails, we terminate the
search and return the last feasible solution computed.

In the binary search, we maintain both the lower and the uppends on the
objective-function values for feasible solutions. The emppound is provided by(O),
wherew is the present feasible solution. We denote the lower boyrid®). Initially,
we set/(O) to the sum of all negative coefficients(if there are none(O) = 0).

If 1(O) = v(0), we terminate the search. Otherwise, we W4 < v(O) and we
add toP the constraint

—0 = —[l(0) + ¢ x (v(0) = (0))],
wherec is a real number betweénand1. It is easy to check that
1(0) < [I(O)+ ¢ x (v(0) =1(0))] <v(0).

We then run the model generator. If it fails, we update theelomound to|/(O) + ¢ x
(v(0)—1(0))] +1 and continue. Otherwise, we continue with the new feasitlgtion
replacing the old one.

For both the linear and binary search methods, the objefitivetion value of each
next solution is better than that of the previous one. If a glete model generator is
used in the search, the returned feasible solution is amaptine. If an incomplete
model generator is used, it is not guaranteed to be an optingal

The reason why the linear search is might be preferred toitteypsearch is that
establishing that @B (or PL(PB)) theory is unsatisfiable often requires much more
CPU time than establishing that?B (or PL(PB)) theory is satisfiable. Indeed, in the
first case, we must explore the entire search space to mak@sumodels exist, while
the latter task can be completed as soon as the first solstfonmd (which may happen
quite early in the search).

Let (O, P) be a PL(PB) optimization problem(O, P) and letv, be a feasible
solution to the search problef?. Let n = vy(0) — I(O). In such case, the binary
search queries a model generaltgy(n) times to find the optimal solution, while the

21f P has no solutions, the optimization problem has no solutions either, and athadsapler-
form in the same way. Thus, we will consider only optimization problemsra/iselutions
exist.

linear search, in the worst case may require as mamycgeries. However, all model-
generator calls made by the binary search afteis found may (in the worst case)
involve unsatisfied instances. On the other hand, if we usaltisearch, then only the
last call requires the model generator to run on an unsdtisfiastance. This is the
reason why most optimizers employ the linear search.

Our search algorithni. BS combines the linear search and the binary search and
balances between the number of iterations and the CPU timéededuring each it-
eration. LBS starts with the binary search algorithm. The binary-seattase stops
immediately after the model generator fails to find a feassialution for the first time.
Then LBS switches to the linear search phase, starting with the leesilile solution
found in the binary-search phase. This method guarantaeattmost two unsuccessful
calls to the model generator are made in the process.

We expect that. BS will outperform the linear search when the range of the ebjec
tive function is large and the quality improvement in eaehdtion is small. On the other
hand, when the range of the objective function is small oirttrovement of the qual-
ity of the feasible solutions is large, the linear search watperformZBS. Our, still
preliminary and non-comprehensive experiments, supp@texpectation. We come
back to these issues in the experimentation section.

The pseudo code dfBS is given in Figure 1.

Algorithm 1 LBS

INPUT: P -aPL(PB) theory
O - an objective function
S - a PL(PB) model generator
OUTPUT: v - a value assignment that optimizésubject tol’
BEGIN
1. CallS with P; If S fails, return “unsatisfiable”;

2. While S returns a value assignmeunt

3 Letm bel(O) + ¢ x (v(0) — 1(0));

4. LetP' bePU{-0 > —|m]};

5. Call S with P’;

6. End While

7. Letw be the last value assignmesireturns;
8. Do

9. Letm bev(O) — 1;

10. LetP' bePU{-0 > —|m]};

11. CallS with P’;

12. While S returns a value assignmeunt
13. return the last value assignméhteturns;
END

Line 1 says wherf fails the optimizer will halt and report the set &fL(PB)
constraints alone is unsatisfiable. In the case whés an incomplete solver, as is in
our implementation, this message me&hfails to find a model given the amount of

resource allocated t8. It may be the case thét is indeed satisfiable. This limitation
comes from the fact theff is incomplete.

From line 2 to line 6, we first perform a variant of the binargish with the constant
valuec set between 0 and 1. In practice, we s&b 2/3. From line 8 to line 12, we
perform a linear search, starting with the valuefdbund from the binary search step.
Itis clear thatLBS search needs to test exactly two unsatisfiable instancesataihe
end of the binary search and the other at the end of the limzacls.

In our implementation, as the model generator we use the existing PL(PB)
solver that we are aware afisat(plpd) [1]. Sincewsat(plpd) is an incomplete solver,
our optimizer does not guarantee optimality of solutiomstiirns. However, our method
is general in that it works with any model generator for ths &€ PL(PB) constraints.
When used with a completBL(PB) solver (and without any time-out limits on calls
to the model generator), our method returns optimal saistio

4 Experimental results

Our implementation has two optionsBS-wsat(plpb) and LS-wsat (plpb), using the
LBS search and pure linear search respectively (our experinstiatved that the pure
binary search often performs worse than the linear and the methods). We compare
the performance of the two implementations to existitig optimizers,minisat+ [3]
andbsolo [5], on a set ofPL(PB) optimization problems. Since thiéB optimizers do
not acceptPL(PB) constraints, we apply the transformation fréhi(PB) constraints
to PB constraints proposed in [1].

We now describe thé’L(PB) optimization problem instances used in our exper-
iments. We considered three categories of instances dgedd the traveling sales-
person problem, the minimuktdominating set problem, and a variant of the NQueens
problem, respectively.

Traveling salesman problem (tsp). Given a complete undirected gragh= (V, E),
where each edgéu,v) € E has an associated weight(u, v), the goal is to find a
Hamiltonian cycle inG such that the sum of the weights of the edges in the cycle is
minimized. For testing, we randomly generated 10 weightedpiete graphs with 70
vertices. The edge weight ranges frarto 9.

Minimum k-dominating set problem (dms). We have defined this problem in Sec-
tion 2. To generatéL(PB) optimization instances for testing, we randomly generated
10 weighted graphs of 500 vertices and 2000 edges. The rdrthe edge weight is
[1..19]. Finally, we setw to 4.

Weighted n-queens problem (wnq). Squares of an x n chess-board have integer
weights. Given two integers andd, find an arrangement of queens on the board
so that 1) no two queens attack each other; 2) the sum of vgetdlihe squares with
gueens does not excead and 3) for each quee, there is at least one que&ji
in a neighboring row or column such that the Manhattan digdvetweer) and Q’
exceedsl. For testing, we randomly generated 10 weighted chessbo@h@ weights
of the blocks on the chessboards range frioto 29.

The first problem yield?B optimization instances while the other two yield gen-
eral PL(PB) optimization instances. We use the transformation praposE] to con-

vert thePL(PB) instances into equivaleitB instances when we test tfiB optimiz-
ers.

We also test all optimizers on an instance, normalized%5t, from thepseudo-
boolean evaluation OfB]. The objective function of this instance has a rajigeé22411].
Instances like this one can be used to study our conjectuttesorases whehBS per-
forms better than the linear search.

We use the following parameters fakat(pipb), the underlyingPL(PB) solver of
our optimizers: 1 restart, 200000 flips per restart. We ugaultevalues for the other
parameters required hysat(pipb) [1].

All experiments are conducted on machines with P4 3.2GHz<RGB memory,
and running Linux with kernel version 2.6.15. We allocat® 2@conds to each opti-
mizer on each instance.

We write LS-wsat(plpb) and LBS-wsat(plpd) to denote our linear search opti-
mizer andLBS search optimizer respectively. Both optimizers uset(plpbd) as the
PL(PB) model generator. None of the optimizers we tested (everethased on com-
plete solversninisat+ and bsolo) can prove the optimality of the solutions they find
within the 200-second time limit. Therefore, we only repthit best value for the ob-
jective function found by each optimizer in the followindtes.

We first present the results on the problem in Figure 1. We observe that both of

[tsp[LS-wsat (plpb) | LBS-wsat (plpb)[minisat+]|bsolo]

I 138 140 245 299
1> 133 138 255 256
I3 142 136 262 279
N 135 132 248 302
Is 133 135 246 291
Is 143 144 272 251
I7 140 144 267 292
Is 150 133 272 266
Iy 140 144 240 225
Tio 139 143 275 274

Fig. 1. Best value found —sp

our optimizers find significantly better values for the ohijeefunctions than the”B
optimizers in this category of instances. Among our two rofers, LS-wsat(plpb)
performs better thah BS-wsat (plpd).

Figure 2 shows the results on thews problem instances. In this category of in-
stances/LS-wsat(plpb) is a clear winnerL BS-wsat(plpb) loses tominisat+ in one
instance, but is the second best optimizer in the rest ofrtftamces. We examined the
log file of the LBS-wsat(plpd) in this experiment and found thaBS-wsat(plpd) did
not even start the linear search phase when the 200-secoatiniit was reached. This
result shows that the performance of local-search solvesstme improved if multiple
tries are used.

|[dmg LS-wsat (plpb) [LBS-wsat (plpb)|minisat+]bsolo]

I 98 115 121 127
1> 93 112 119 118
I3 95 111 119 127
N 96 121 119 125
I 96 118 121 128
Is 95 116 120 118
I7 94 117 123 122
1Is 95 119 123 124
Iy 97 112 122 126
Tio 98 112 122 127

Fig. 2. Best value found —dms

Figure 3 shows the results from theug problem. In this category of instances,

\wnq LS-wsat (plpb)| LBS-wsat (plpb) [minisat+|bsolo]

I 161 137 275 303
I 190 175 314 386
I3 228 162 308 365
N 250 162 301 360
Is 200 190 268 431
Is 176 110 316 350
I7 188 174 282 325
Is 242 224 302 438
Iy 146 119 279 324
I1o 242 131 312 359

Fig. 3. Best value found —wngq

we observe thal BS-wsat(plpb) performs better than all the other optimizers. The
LS-wsat(plpd) is the second best among these optimizers.

Finally, in Figure 4 we present the result of testing all foptimizers on the instance
from [8]. As we mentioned earlier, this instance has an dljeunction with the range
from 0 to 122411. The instance consists of 63009 0-1 variables andB@onstraints.

It is clear that thel. BS search performs much better than the linear search in this
instance. Within similar amount of time, tHeBS improves the value of the objective
function to 8038, almost7.5 times better than what the linear search could achieve.
minisat+ caused a segmentation fault on this instance. Thereforeould oot report
the result ofminisat+.

bsolo is the best optimizer on this instance (the only instancenwthe optimizers
were outperformed). We think the reason is the high degrs&adture in this instance.
Local-search based model generators are known to perfoonypmn such instance.

[normalized-fastO50Z.5-wsat (plpb) | LBS-wsat (plpb) [minisat+|bsolo]
Best value 59947 8038 N/A 251
Time to best valug 173 165 N/A 71

Fig. 4. Instance from PB competition '05

5 Conclusions and future work

Many practical optimization problems can be encoded in aisenway asPL(PB)
optimization problems. We propose a method to deal withlprab in this class. Our
method relies on #L(PB) model generator and a search algorithm that iteratively im-
proves the quality of the feasible solutions found by the ehagnerator. Our method
differs from the existingPB optimizers in two ways: (1) it accepts optimization prob-
lems whose constraints are encoded as disjunctionBbfconstraints; and (2) our
method uses a combination of the linear and the binary seéaiatprove the quality of
the feasible solutions.

Our experimental results show that, our optimizers, perfaniformly better than
existing PB optimizers we tested, except for one instance which is kigtlictured.
We believe there are two reasons for this. First, we use d&smzach model generator
while the PB optimizers use DPLL-based model generators. Sekhah[9] and Hoos
et al. [10] have shown that local-search based methods often bettier than DPLL
methods in solving propositional satisfiability probler8&ce the satisfiability testing
of PL(PB) andPB theories is closely related to propositional satisfiaptksting, this
phenomenon also appears in the cas@bfPB) and PB model generators. Second,
two optimization problems we test involve disjunctions ohstraints. Therefore, it is
natural to encode them usim@L(PB) theories. In order to tesPB solvers on those
instances, one needs to transform theééPB) theories into equivalen?B theories,
which makes the theories larger aR@ optimizers less effective.

However, our preliminary implementation of S method is not uniformly bet-
ter than the linear search method. In fact, the linear seaetmod won in a slightly
larger number of instances thaBS.

There are several research directions we intend to inadstig the future:

1. Refinement of thé BS strategy. We feel it can be improved significantly by allow-
ing dynamic adjustments in the selection of the constaRurthermore, for easy
problems, linear search has an advantage as it may happeti ttexations are fast
except for the last one. The cost of two calls to the model ggoefailing to find
a solution in theL BS-search method may negate all the savings coming from the
fewer number of iterations it makes. We will study dynamratggies to select be-
tween the linear and binary search depending on the instamttthe characteristics
of search, possibly using machine learning approaches.

2. We will study how to generate randoRL(PB) optimization problems and the
distribution of the optimal solutions of these random ins&s. Experimenting with
random instances will provide us with insights into the gies of solutions of
such problems and may give us methods to guide the seledttbe oonstant.

3. A comparison of the linear search with th&S with complete model generators.
Since local-search based model generators are incompkdtetinning time may
show a significant variability from run to run even on the sanstance. We intend
to integratel BS with DPLL model generators and systematically comparetibe t
linear search with thé& BS method for this class of solvers.

References

1. Liu, L., Truszczyski, M.: Local search techniques for boolean combinations of mseud
boolean constraints. In: Proceedings of The Twentieth National Gamderon Atrtificial
Intelligence (AAAI-06), AAAI Press (2006) to appear

2. Walser, J.: Solving linear pseudo-boolean constraints with locattsedn: Proceedings
of the 11th National Conference on Artificial Intelligence (AAAI-97), AAPress (1997)
269-274

3. Eén, N., Srensson, N.: Translating pseudo-boolean constraints into sat.alonratisfi-
ability, Boolean Modeling and Computati@(2006) 1-25

4. Bailleux, O., Boufkhad, Y., Roussel, O.: A translation of pseudald®n constraints to sat.
Journal on Satisfiability, Boolean Modeling and Computa2¢f2006) 191-200

5. Manquinho, V., Marques-Silva, J.: Effective lowerbounding tégbes for pseudo-boolean
optimization. In: Proceedings of the Design and Test in Europe Corderé2005) 660—665

6. Sheini, H., Sakallah, K.: Pueblo: a modern pseudo-booleanlsat.sim: Proceedings of the
Design and Test in Europe Conference. (2005) 684-685

7. Aloul, F., Ramani, A., Markov, |., Sakallah, K.: PBS v0.2, incesrtal pseudo-boolean
backtrack search SAT solver and optimizer (2088p://www.eecs.umich.edu/
“faloul/Tools/pbs/

8. Manquinho, V., Roussel, O.: Pseudo boolean evaluation 200%5)20tp://www.
cril.univ-artois.fr/PB05/

9. Selman, B., Kautz, H., Cohen, B.: Noise strategies for improvingl leearch. In: Proceed-
ings of the 12th National Conference on Atrtificial Intelligence (AAAI-299Seattle, USA,
AAAI Press (1994) 337-343

10. Hoos, H.H., Sttzle, T.: Stochastic Local Search Foundations and Applications. Morga
Kaufmann, San Francisco (CA), USA (2004)

