Examination “Breadth” — Theory
February 11, 2005
SOLVE EACH PROBLEM ON A SEPARATE PAGE. WRITE ONLY ON ONE SIDE
OF A PAGE. WRITE YOUR CODE AT THE TOP OF EACH PAGE.
IF YOU HAVE PROBLEMS WITH THE MEANING OF THE QUESTIONS,
ASK THE PROCTOR.

1. What are the deterministic time and space complexities of regular languages? In other
words, if you are given a regular language description and asked to build a Turing
machine to accept that regular language, what can you say about the time the Turing
machine would need to accept a string of length n? How much additional memory
(besides the read-only input tape) would the Turing machine need?

Sketch proofs of your answers.

2. Let k > 2 be an integer and let L be a language that is accepted by a k-tape Turing
machine M. Prove that there is a one-tape Turing machine that accepts L.

3. (a) Give the definition of a Binary Search Tree for a set of n numbers.

(b) Suppose that the search for key k in a binary search tree ends up in a leaf.
Consider three sets: A, the keys to the left of the search path; B, keys on the
search path; and C, keys to the right of the search path. Prove, or disprove by
showing an example, the following statement: For any three keys a € A, b € B,
andce(C,a<b<e

4. Let S = ai,...,an, be a sequence of n numbers. Provide a recursive formula for
[(i), the length r of the longest monotonically increasing sequence ay, < ... < ag,,
k1 < ... < ky, which is a subsequence of ay, ...,a; and k, = .

Based on this formula give an O(n?) dynamic programming algorithm to find the
length of the longest monotonically increasing subsequence of S. Justify that the
running time is indeed O(n?).

Example:

For S = 2,5,4,8,6,7,10,5, {(3) = 2 and the desired monotonic subsequence is 2, 4.
Likewise [(4) = 3 and, in fact there are two different subsequences witnessing this

equality. Note that [(8) = 3 while the length of the longest monotonic subsequence of
our sequence S is 5.

5. Let X be a set consisting of n elements. Prove that there are exactly 3" pairs (A, B),
where A, B are subsets of X and A C B.



SELECT ONE OF PROBLEMS BELOW AND SOLVE IT. WRITE ON PAGE
ONE YOUR SELECTION. DO NOT INCLUDE SOLUTIONS OF MORE
THAN ONE PROBLEM, ONLY THE PROBLEM LISTED ON PAGE
ONE WILL COUNT.

(The two requested topics are: Graph Algorithms and Computational Complezity.)

. (Graph Algorithms) A tournament is a directed graph such that for all nodes u # v,
exactly one of the edges (u,v) and (v,u) is present.

Given a directed graph G = (V, F), a set D is a dominating set in G if for every
node v ¢ D, there is a node d € D such that (d,v) € E (in such case, we say that d
dominates v).

Show that every tournament with n nodes has a dominating set of size ©(logn).
(Show that in any tournament there is a player who beats at least half of remaining
players; add this player to the dominating set. What is left to dominate?) Design an
efficient algorithm finding such a dominating set.

. (Computational Complezity) Let UP be the subset of NP consisting of those languages
accepted by nondeterministic polynomial time Turing machines that accept on at most
one computation per string. (The “U” stands for “unique”.)

Let f be a one-to-one, polynomial-time computable function such that there is a
polynomial p such that |z| < p(|f(z)|). (Note that f computable in polynomial time
only implies the existence of a polynomial ¢ such that |f(z)| < gq(|z]).)

Show that if f has no polynomial-time computable inverse, then P # UP. In other
words, if there is no polynomial-time computable g such that for all z, g(f(z)) = =z,
then there is a language L in UP \ P. Give a description of L in terms of f, and
show that it is in UP, then show that L in P would imply that f is polynomial-time
invertible.

For partial credit, show that if f has no polynomial-time computable inverse, then P
# NP.



