
 1

KATR: A Set-Based Extension of DATR*

Raphael Finkel, Lei Shen, Gregory Stump and Suresh Thesayi
University of Kentucky

(raphael@cs.uky.edu, lshen@rswsoftware.com, gstump@uky.edu, suresh_t_r@hotmail.com)

Technical Report No. 346-02

ABSTRACT

In the framework of Network Morphology (Corbett & Fraser 1993; Fraser & Corbett 1995, 1997),
realizational models of natural-language morphology have customarily been defined in DATR, a
language for lexical knowledge representation designed and implemented by Roger Evans and
Gerald Gazdar (Evans & Gazdar 1989a,b, 1996). We show that certain kinds of morphological
analyses that are wholly consonant with the general program of Network Morphology are not
directly expressible in existing forms of DATR; we therefore propose and exemplify KATR, an
extension of DATR whose motivation is to accommodate these desired kinds of morphological
analyses. The proposed modifications are motivated by the need to represent a word’s
morphosyntactic property as essentially unordered; to account for the incidence of nonlocal sandhi
phenomena; to define common patterns of inflectional syncretism; and to allow certain
morphological rules to apply in “expanded mode” (Stump 2001). Although KATR affords
morphological definitions that are more streamlined than those afforded by DATR, its generative
capacity is no greater than that of DATR, since both languages are capable of emulating a Turing
machine.

1 Introduction

In an important series of articles (Corbett & Fraser 1993; Fraser & Corbett 1995, 1997), Greville
Corbett and Norman Fraser elaborated an approach to morphology that makes extensive use of
default inheritance hierarchies in the analysis of complex inflectional systems. This approach,
dubbed Network Morphology, is squarely in the tradition of inferential-realizational theories of
morphology: It is inferential (as opposed to lexical) in the sense that it represents inflectional
exponents not as lexically listed elements, but as markings associated with the application of rules
by which complex word forms are deduced from simpler roots and stems; and it is realizational (as
opposed to incremental) in the sense that it entails that a word’s association with a particular set of
morphosyntactic properties is a precondition for--rather than a consequence of--the application of
the rule introducing the inflectional exponents of those properties. What distinguishes Network
Morphology from certain other inferential-realizational theories is its systematic use of non-
monotonic inheritance hierarchies to structure the information constituting a language’s
morphology. Analyses in Network Morphology are formally implemented in DATR, a formal
language for lexical knowledge representation designed and implemented by Roger Evans and
Gerald Gazdar (Evans & Gazdar 1989a,b, 1996).

In this paper, we show that certain kinds of morphological analyses that are wholly
consonant with the general program of Network Morphology are not directly expressible in existing
forms of DATR; we therefore propose and exemplify KATR, an extension of DATR whose

 2

motivation is to accommodate these desired kinds of morphological analyses. Our discussion
proceeds as follows. In Section 2, we review the fundamental characteristics of DATR proper. In
Section 3, we demonstrate that under the assumptions of Network Morphology, these
characteristics entail undesirable complications for the analysis of certain kinds of morphological
phenomena. These complications stem from the essential lack of linear ordering among the
members of a morphosyntactic property set; from the incidence of nonlocal sandhi phenomena; and
from common patterns of inflectional syncretism. In Section 4, we introduce KATR and show how
it resolves the issues raised in Section 3. In Section 5, we discuss an additional empirical challenge
for KATR and show how KATR meets this challenge. In Section 6, we consider the relative power
of DATR and KATR; we show that KATR is no more powerful than DATR, since both are capable
of emulating a Turing machine. Section 7 summarizes our conclusions.

2 Basic characteristics of DATR

Before introducing the formal properties of KATR and the linguistic phenomena that have
motivated its development, we outline the basic characteristics of DATR.

DATR is a formal language for defining nonmonotonic inheritance networks. It has been
applied with considerable success in modeling morphological systems (in addition to the cited
works by Corbett and Fraser, see Brown 1996, 1998a,b,c; Brown & Hippisley 1994; Brown et al.
1996; Cahill & Gazdar 1997; Hippisley 1996, 1997, 1998). The central notion in DATR is that of
a THEORY: a network of nodes such that (i) each node houses some body of information and (ii)
this information is shared among nodes in a deterministic fashion. A simple example of a DATR
theory is the network of nodes in (1), which affords a compact description of some of the
morphological and syntactic characteristics of three English verbs. Each NODE in a theory is a
location at which facts are situated; for instance, the nodes in (1) are locations at which the facts in
(2) are situated.

(1) VERB

 q!p
Walk Jump Run

(2) VERB:
<syntactic category> == verb
<present participle> == "<root>" ing
<past> == "<root>" ed.

Walk:
<> == VERB
<root> == walk.

Jump:
<> == VERB
<root> == jump.

Run:
<> == VERB
<root> == run
<past> == ran
<past participle> == <root>.

A FACT pairs an atom-path with a value and has the format atom_path == value; thus, the first fact
located at the VERB node in (2) pairs the atom-path <syntactic category> with the value

 3

verb. An ATOM-PATH is a sequence of atoms enclosed in angle brackets; thus, the atom-path
<syntactic category> in (2) consists of the atoms syntactic and category.1 We refer to
the atom-path as the fact's LEFTHAND SIDE (LHS) and to the value as the fact's RIGHTHAND SIDE
(RHS).

2.1 Matching facts to queries in DATR

The DATR engine follows a deterministic algorithm for extracting information from a theory of
this sort; in particular, when queries are addressed to a theory such as (2), the DATR engine
computes values for them. A QUERY takes the form Node_q:atom_path_q; we refer to Node_q and
atom_path_q as the QUERY NODE and as QUERY PATH, respectively.

An example of an appropriate query for the theory in (2) is Run:<past participle>;
given the facts in (2), the DATR engine computes run as the value corresponding to this query.

In (2), two facts have LHS <past> and <past participle>. We say that the first is a
prefix of the second. More formally, if atom_path_1 is of length n, where length is measured as the
number of atoms in an atom-path, then atom_path_1 is the PREFIX of atom_path_2 if and only if
for every i (where 1 ≤ i ≤ n), atom_path_1's ith member is also atom_path_2's ith member. For
instance, the atom-paths <>, <past>, and <past participle> are all prefixes of the atom-path
<past participle>; of these, <past participle> is the longest prefix.

Suppose now that we have a query Node_q:atom_path_q. In order to compute a value for
this query, the DATR engine matches a fact situated at the query node Node_q to the query path
atom_path_q; in particular, the engine identifies that fact at Node_q whose LHS is the longest
prefix of atom-path_q. Thus, when the DATR engine searches the theory in (2) in response to the
query Run:<past participle>, it employs the fact <past participle> == <root> at the
Run node in evaluating this query. This principle for matching a fact at the query node to a query
path can be seen as an expression of Pāõini's principle (Kiparsky’s (1973) “Elsewhere Condition”):
The evaluation of a query of the form Node_q:atom_path_q proceeds according to that fact at
Node_q whose LHS atom_path_f is a prefix of atom_path_q and is such that for any other fact at
Node_q whose LHS atom_path_c is a prefix of atom_path_q, atom_path_f is more specific (that is,
longer) than atom_path_c.

2.2 Evaluating queries in DATR

If a query path atom_path_q is matched by a fact at the query node Node_q, evaluation of the query
Node_q:atom_path_q is possible. In DATR, the RHS of a fact is a sequence of zero or more terms.
A TERM may be (A) an atom (as in the fact <syntactic category> == verb in (2)); (B) a
node (as in the fact <> == VERB in (2)); (C) a TERM-PATH, that is, a sequence of terms enclosed in
angle brackets (as in the fact <past participle> == <root> in (2)); (D) a pairing of a node
with a term-path, that is Node_y:<term_1 ... term_n>; (E) a quoted term-path, that is "<term_1 ...
term_n>"; (F) a quoted node, that is "Node_y"; or (G) a quoted pairing of a node with a term-path,
that is "Node_y:<term_1 ... term_n>".

Empty case: At Node_q, a query path atom_path_q is matched by the fact in (3), whose
RHS is a sequence of zero terms; in that case, the value computed for the query
Node_q:atom_path_q is the empty sequence. Single-term case: At Node_q, a query path
atom_path_q is matched by the fact in (4), whose RHS is a single term term_0.

 4

(3) atom_path_c ==
(4) atom_path_f == term_0

In this case, the value computed for the query Node_q:atom_path_q is the value of term_0 relative
to the query path atom_path_q and the LHS atom_path_f at Node_q. The value of a term relative
to a query path and an LHS at some node depends on which of the seven types of terms is involved.
If term_0 is an atom, as in Table 1(A), then no further computation is necessary: The value
computed for the query Node_q:atom_path_q is simply that atom. But if term_0 is any other sort
of term, as in Table 1(B)-(G), then subsequent computation is necessary. As an example, consider
the DATR theory in (5).

Given a query Node_q:atom_path_q such that atom_path_q is matched by the fact in (4) at
Node_q:
if term_0 is of type then the value of term_0 relative to the query path

atom_path_q and the LHS atom_path_f at Node_q is
(A) atom term_0
(B) Node_y the value computed for the query Node_y:atom_path_q
(C) <term_1 ... term_n> the value computed for the query Node_q:<X Y>,

where
(i) X is the result of concatenating the values of term_1
... term_n relative to the query path atom_path_q and
the LHS atom_path_f at Node_q, and
(ii) Y is the (possibly empty) sequence of atoms such
that atom_path_q is <W Y> and atom_path_f is <W>

(D) Node_y:<term_1 ... term_n> the value computed for the query Node_y:<X Y>,
where X and Y are as above

(E) "<term_1 ... term_n>" the value computed for a new query Node_INIT:<X Y>,
where Node_INIT is the initial query node (defined
below) and X and Y are as above

(F) "Node_y" the value computed for a new query Node_y:<Z>,
where <Z> is the initial query path (defined below)

(G) "Node_y:<term_1 ... term_n>" the value computed for a new query Node_y:<X Y>,
where X and Y are as above

Table 1. Terms and their values in DATR

(5) A:

<a b c> == B
<d e f> == <a C B>
<g> == B:<d e <h>>
<h> == k
<i> == B
<j> == <k l>
<k l> == "B"
<m> == "B:<n>".

B:
<a b c> == d
<d e f> == c
<d e k> == j

 5

<h> == j
<i> == "<h>"
<j> == C
<k l> == a
<n> == C.

C:
<d e f> == b
<j> == "<h>"
<n> == "<h>".

According to Table 1(B), the value computed for the query A:<a b c> in the theory of (5) is the
value computed for the query B:<a b c>; in accordance with Table 1(A), this latter value is d. In
this instance, the evaluation of a query path at some query node amounts to evaluating the same
query path at another query node.

According to Table 1(C), the value computed for the query A:<d e f g> in this theory is
the value computed for the query A:<a b c g>, that is, for the query A:<X g>, where X is the
result of concatenating the values of the terms a, C, and B relative to the query path <d e f g>
and the LHS <d e f> at A; thus, in accordance with Table 1(A, B), the value computed for the
query A:<d e f g> in this theory is d. In this instance, the evaluation of a query path at some
query node amounts to the evaluation of another query path at that same query node.

According to Table 1(D), the value computed for the query A:<g> in this theory is the value
computed for the query B:<d e k>, that is, for the query B:<d e X>, where X is the value of the
term <h> relative to the query path <g> and the LHS <g> at A; thus, in accordance with Table
1(A-C), the value computed for the query A:<g> in this theory is j. In this instance, the evaluation
of a query path at some query node amounts to the evaluation of another query path at another
query node.

As these examples show, the evaluation of one query may entail the evaluation of a chain of
subsequent queries. The node at which a chain of queries is initiated is the INITIAL QUERY NODE;
the query path with which a chain of queries is initiated is the INITIAL QUERY PATH. These notions
are essential for understanding the double-quote notation in Table 1(E-G).

Suppose that node A is the initial query node in the evaluation of a query A:<i> in this
theory. According to Table 1(B), the value of this query is the value computed for the query
B:<i>; according to Table 1(E), this latter value is in turn the result of initiating a new query
A:<h>. Thus, the value computed for the query A:<i> is k. In this instance, the evaluation of a
query path at some query node amounts to initiating a new query at the initial query node.

It is also possible to initiate a new query at a node distinct from the initial query node; in
this case, the node at which the new query is initiated becomes the initial query node for purposes
of dependent calculations. Suppose that a query A:<j> is initiated at node A. According to Table
1(F), the value computed for this query is the result of initiating a new query at node B with the
initial query path <j>. For purposes of dependent calculations, B rather than A is the initial query
node; thus, the ultimate value computed for A:<j> is j rather than k. In this instance, the
evaluation of a query path at some query node amounts to initiating a new query at another node
using the initial query path.

Suppose now that a query A:<m> is initiated at node A. According to Table 1(G), the value
computed for this query is the result of initiating a new query B:<n>; accordingly, the ultimate
value computed for A:<m> is again j rather than k. In this instance, the evaluation of a query path
at some query node amounts to initiating a new query at another node using another query path.

 6

General-term case: At Node_q, a query path atom_path_q is matched by the fact in (6),
whose RHS is a sequence of zero or more terms.

(6) atom_path_f == term_1... term_n

If a query path atom_path_q is matched by the fact in (6) at Node_q, the value computed for the
query Node_q:atom_path_q is the sequence of the values of term_1 … term_n relative to the query
path atom_path_q and the LHS atom_path_f at Node_q. The value of each of these terms relative
to atom_path_q and atom_path_f at Node_q is determined exactly as in Table 1.

3 Some empirical challenges for Network Morphology

Recent work in Network Morphology (Brown 1996, 1998a,b,c; Brown & Hippisley 1994; Brown et
al. 1996; Cahill & Gazdar 1997; Corbett & Fraser 1993; Fraser & Corbett 1995, 1997; Hippisley
1996, 1997, 1998) has demonstrated the exceptional utility of DATR for modelling inflectional
systems. Nevertheless, certain kinds of morphological phenomena in natural language present
important challenges for Network Morphology because they are not directly representable in
existing forms of DATR. Here, we discuss three specific problems: the need to represent a word’s
morphosyntactic property set as unordered (3.1); the description of nonlocal sandhi phenomena
(3.2); and the phenomenon of inflectional syncretism (3.3). One further problem, that of competing
rules, is discussed later (5.1).

3.1 Unordered morphosyntactic property sets

Stump (2001) discusses a difficulty that DATR poses for the representation of natural-language
rules of inflectional morphology. In network-morphologic applications of DATR, an inflectional
rule realizing a morphosyntactic property-set σ is represented as a fact f whose LHS atom_path_f is
an atom-path containing the members of σ; in (2), for instance, the inflectional rule realizing the
morphosyntactic property set {present, participle} is represented as a fact whose LHS is the atom-
path <present participle>. This representation is, however, somewhat paradoxical, since the
members of an atom-path are by definition ordered, while those of a property set are unordered. A
consequence of this paradox is an inevitable redundancy in the formulation of inflectional rules.

The partial Swahili verb paradigm in Table 2 provides a clear illustration of this situation.
As this table shows, a Swahili verb inflects for polarity, tense, and subject agreement: The prefix
ha- appears as the exponent of negative polarity in slot iii; prefixal exponents of subject agreement
appear in slot ii; prefixal exponents of tense, in slot i; and in the special case of first-person singular
negative forms, the portmanteau prefix si- appears in slot iv, pre-empting slots iii and ii. Now,
suppose the set σ of morphosyntactic properties realized by a Swahili verb form W is formulated as
a path P. In that case, each of the inflectional exponents in W realizes a subset of σ; yet, no matter
what ordering is assumed for the properties constituting P, the rules introducing the various
inflectional exponents in W cannot be formulated without redundancy as facts having prefixes of P
as their lefthand sides. Consider, for example, the DATR theory in (7).

 7

 P o s i t i v e N e g a t i v e

 iv

Affix slot:

ii

i

(stem)

iii ii

i

(stem)

1SG ni- li- taka si- ku- taka

Past
Tense

2SG
3SG (CLASS 1)
1PL
2PL
3PL (CLASS 2)

u-
a-
tu-
m-
wa-

li-
li-
li-
li-
li-

taka
taka
taka
taka
taka

ha-
ha-
ha-
ha-
ha-

u-
a-
tu-
m-
wa-

ku-
ku-
ku-
ku-
ku-

taka (phonetically hukutaka)
taka (phonetically hakutaka)
taka
taka
taka

1SG ni- ta- taka si- ta- taka

Future
Tense

2SG
3SG (CLASS 1)
1PL
2PL
3PL (CLASS 2)

u-
a-
tu-
m-
wa-

ta-
ta-
ta-
ta-
ta-

taka
taka
taka
taka
taka

ha-
ha-
ha-
ha-
ha-

u-
a-
tu-
m-
wa-

ta-
ta-
ta-
ta-
ta-

taka (phonetically hutataka)
taka (phonetically hatataka)
taka
taka
taka

Table 2 . Partial inflectional paradigm of Swahili taka `want'

(7) A DATR theory defining the Swahili paradigm in Table 2

%variable declarations:
#vars $abc: a h i k l m n s t u w.
#vars $tense: future past.
#vars $polarity: negative positive.
SANDHI:

<$abc> == $abc <>
<> ==
<a u> == u <>
<a a> == a <>.

VERB:
<slot_iv> == <slot_iii> <slot_ii>
<slot_iv negative $tense 1 sg> == s i %fact F1
<slot_iii negative> == h a
<slot_iii> ==
<slot_ii $polarity $tense 1 sg> == n i %fact F2
<slot_ii $polarity $tense 2 sg> == u %fact F3
<slot_ii $polarity $tense 3 sg> == a %fact F4
<slot_ii $polarity $tense 1 pl> == t u %fact F5
<slot_ii $polarity $tense 2 pl> == m %fact F6
<slot_ii $polarity $tense 3 pl> == w a %fact F7
<slot_i positive past> == l i
<slot_i negative past> == k u
<slot_i $polarity future> == t a %fact F8
<> == SANDHI:<<slot_iv> <slot_i> "<root>">.

Want:
<> == VERB
<root> == t a k a.

#hide SANDHI VERB.
#show

 8

<positive past 1 sg>
<positive past 2 sg>
<positive past 3 sg>
…

In this theory, the query Want:<positive future 3 pl> produces the value
w a t a t a k a, the query Want:<negative past 1 sg> produces s i k u t a k a,
and so on. The morphosyntactic properties in each query follow the sequence polarity, tense,
person, number. This fact in turn requires that morphosyntactic properties be mentioned in this
same sequence on the lefthand sides of the facts at the VERB node. More generally, if a fact's LHS
mentions a property associated with position n in this sequence, then it must likewise mention a
property associated with position n − 1. For instance, in fact F2, which specifies the prefix ni as
the exponent of first-person singular subject agreement, the variables $polarity and $tense
must be mentioned, even though ni is, strictly speaking, an exponent of neither polarity nor tense.
Rather than say that the prefixation of ni realizes the path <slot_ii $polarity $tense 1

sg>, one would prefer to be able to say that the prefixation of ni simply realizes the property set
{slot_ii, 1, sg}, whatever the order might be in which these properties are specified in the query
path. The problem cannot simply be solved by changing the sequence to person, number, polarity,
tense in the query path, since that change would require that facts specifying the exponents of
polarity and tense also include redundant variables over person and number values.

3.2 Nonlocal sandhi

In DATR, a rule of sandhi can be formulated as a fact whose LHS is a path that matches a sequence
of adjacent phonological segments; some examples are the facts situated at the SANDHI node in (7).
Though sandhi alternations usually involve a conditioning element adjacent to the conditioned
alternant, it is not rare in natural language for a conditioning element to be nonlocal, in the sense
that it is separated from the conditioned alternant by an indefinite amount of intervening material.
Consider, for instance, the Sanskrit principle of n retroflexion. In Gonda's (1966:19) succinct
formulation:

An n which a vowel or n m y v follows is changed to õ if ç é r ù immediately precede in the
same word or no palatal, cerebral [= retroflex], or dental stands in between: muù-nā-ti >
muùõāti "he steals"; karman-ā > karmaõā "by the deed", but rathena "by the chariot";
śuśrūùaõa- "obedience", sravaõa- "flowing", but darśana- "seeing", grasana-
"swallowing".

In order to accommodate the expression of sandhi principles having this nonlocal character, DATR
should make it possible to formulate a fact whose LHS matches a sequence of phonological
segments in which an indefinite amount of material may intervene between two designated
segments. Though DATR affords various indirect means of achieving this effect, it does not allow
this effect to be achieved in the simplest, most direct way: by reference to a variable over strings.

3.3 Subtractive vs nonsubtractive rules

DATR facts have a subtractive quality. For instance, addressing the query A:<a b c d> to the
sample theory in (8) yields the value f rather than e: Fact F1 situated at the A node subtracts away

 9

the prefix <a b c>, causing the query A:<a b c d> to be subsequently evaluated as the query
B:<d d> rather than as B:<d a b c d>.

(8) A:

<a b c> == B:<d>. %fact F1
B:

<d a b c d> == e
<d d> == f.

In the definition of certain linguistic phenomena, however, this subtractive quality engenders
redundancies. One phenomenon of which this is true is that of syncretism. In Sanskrit, for
example, the default declensional pattern includes the following syncretisms, among others: (a) a
nominal’s ablative singular form is identical to its genitive singular form; (b) a nominal’s locative
dual form is identical to its genitive dual form; (c) a nominal’s dative dual form is identical to its
instrumental dual form; and (d) a neuter nominal’s nominative forms are identical to the
corresponding accusative forms. The paradigm of manas- `mind’ in Table 3 illustrates. In
inferential-realizational theories of morphology, such instances of syncretism are effected by rules
of referral--rules that cause the realization of one morphosyntactic property set to mimic that of a
distinct property set. In the DATR definition of the manas- paradigm in Table 3, these syncretisms
are accounted for by four facts situated at the node from which all nominals inherit by default
(specifically, by the facts F1 through F4 situated at the NOMINAL node of (9)).

 Singular Dual Plural

Nominative, Vocative, Accusative manas manas-ī manāüs-i
Instrumental manas-ā mano-bhis
Dative manas-e
Ablative

mano-bhyām

mano-bhyas
Genitive

manas-as manas-ām

Locative manas-i

manas-os manas-su

Table 3. Declensional paradigm of the Sanskrit noun manas- `mind’

(9) A DATR theory defining the Sanskrit paradigm in Table 3 (without sandhi)

#atom M.
#vars $case: nom voc acc ins dat abl gen loc.
#vars $direct: nom voc acc.
#vars $number: sg du pl.
NOMINAL:

<> == "<stem>" "<suff>"
<stem> == "<vstem>"
<vstem> == "<root>" "<stemvowel>"
<longvstem> == "<vstem>" ;
<stemobs> ==
<suff nom sg> == s
<suff acc sg neuter> ==
<suff acc sg> == m
<suff dat sg> == e
<suff ins sg> == a a
<suff gen sg> == a s
<suff loc sg> == i

 10

<suff $direct du> == i i
<suff gen du> == o s
<suff ins du> == bh y a a m
<suff acc pl neuter> == i
<suff dat pl> == bh y a s
<suff ins pl> == bh i s
<suff gen pl> == a a m
<suff loc pl> == s u
<abl> == "<dat>"
<voc> == "<nom>"
<abl sg> == "<gen sg>" %fact F1
<loc du> == "<gen du>" %fact F2
<dat du> == "<ins du>" %fact F3
<nom $number neuter> == "<acc $number neuter>". %fact F4

CONSONANT_STEM:
<> == NOMINAL
<stem> == "<vstem>" "<stemobs>"
<stem $direct pl neuter> == "<longvstem>" M "<stemobs>".

Manas:
<> == CONSONANT_STEM
<$case $number> == CONSONANT_STEM:<$case $number neuter>
<root> == m a n
<stemvowel> == a
<stemobs> == s.

#hide NOMINAL CONSONANT_STEM.
#show

<nom sg>
<acc sg>
<voc sg>
…

Clearly there is a redundancy in the formulation of the facts F1 through F4: In each of these, both
the LHS and the RHS must be specified for the same number property, and in F4, both are
additionally specified for neuter gender. The source of this redundancy is the subtractive quality of
DATR facts. In a redundancy-free formulation of these Sanskrit rules of referral, a fact’s RHS
would instead be interpreted nonsubtractively, that is, as sharing all of the properties of the fact’s
LHS by default (in the absence of any contrary stipulation).

4 An extension of DATR: KATR

In order to facilitate the formal representation of the morphological phenomena exemplified by the
foregoing evidence from Swahili and Sanskrit, we propose an extension of the DATR language; we
refer to this extension as KATR. In this section, we discuss three novel characteristics of KATR:
that of allowing a fact’s LHS to be formulated either as a path or as a set; that of allowing regular
expressions to figure in the representation of a fact’s LHS; and that of allowing facts to be defined
in either a subtractive or a nonsubtractive way. As we show, these three characteristics afford a
simple account of each of the problematic morphological phenomena identified in Section 3.

 11

4.1 Sets vs paths in KATR

Syntactically, KATR differs very little from DATR: A query is always an atom-path, and the RHS
of a fact is always a sequence of zero or more terms. The fundamental differences between DATR
and KATR relate to the formulation of a fact’s LHS and to query evaluation. The first fundamental
difference between KATR and DATR is that while the LHS of a fact must be an atom-path in
DATR, it may be either an atom-path or an atom-set in KATR (where an ATOM-SET is a sequence
of atoms enclosed in curly brackets). In view of this difference, the matching of facts to queries
proceeds somewhat differently in KATR and in DATR.

4.1.1 Matching facts to queries in KATR

When atom_path_f is the LHS of a fact f at Node_q, we say that f is a POTENTIAL MATCH FOR
atom_path_q AT Node_q iff atom_path_f is a prefix of atom_path_q. Similarly, when atom_set_f is
the LHS of a fact f at Node_q, we say that f is a POTENTIAL MATCH FOR atom_path_q AT Node_q
iff each member of atom_set_f is a distinct member of atom_path_q. Now, the matching of facts to
queries in KATR can be precisely characterized as follows: Where X is the LHS of a fact f at
Node_q, f MATCHES atom_path_q AT Node_q iff (a) f is a potential match for atom_path_q at
Node_q and (b) there is no fact f′ at Node_q such that (i) f′ is a potential match for atom_path_q at
Node_q and (ii) the LHS of f′ is greater in cardinality than X.

4.1.2 Evaluating queries in KATR

Suppose now that at Node_q, a query path atom_path_q is matched by the fact in (10a), whose
RHS X is a sequence of zero or more terms; in that case, the value for the query
Node_q:atom_path_q is computed exactly as in DATR. Suppose, on the other hand, that at
Node_q, a query path atom_path_q is matched by the fact in (10b).

(10) a. atom_path_f == X
 b. atom_set_f == term_1 ... term_n

In that case, the value computed for the query Node_q:atom_path_q is the sequence of the values of
term_1 ... term_n relative to the query path atom_path_q and the LHS atom_set_f at Node_q. The
value of each term_i (1 ≤ i ≤ n) is determined as in Table 4. Rows (A), (B), and (F) of Tables 1 and
4 are alike. The only significant difference between Tables 1 and 4 involves those instances in
which the fact matching the query path has a RHS that includes a term-path (i.e. rows (C), (D), (E),
and (G)). In those instances, the evaluation of the query depends on a new notion of path
reduction. If atom_set_f is the LHS of a fact that matches atom_path_q at some node, the PATH
REDUCTION of atom_path_q relative to atom_set_f is that atom-path P that is like atom_path_q
except that the leftmost instances of atom_set_f's members appearing in atom_path_q are absent
from P. For instance, if the atom-set {a b c} is the LHS of a fact matching the atom-path <c a

e b d a> at some node, the path reduction of <c a e b d a> relative to {a b c} is the atom-
path <e d a>.2

 12

Given a query Node_q:atom_path_q such that atom_path_q is matched by the fact in (10b) at
Node_q:
if term_i is of type then the value of term_i relative to the query path

atom_path_q and the LHS atom_set_f at Node_q is
(A) atom term_i
(B) Node_y the value computed for the query Node_y:atom_path_q
(C) <term_1 ... term_n> the value computed for the query Node_q:<X Y>,

where
(i) X is the result of concatenating the values of term_1
... term_n relative to the query path atom_path_q and the
LHS atom_set_f at Node_q, and
(ii) <Y> is the (possibly empty) path-reduction of
atom_path_q relative to atom_set_f.

(D) Node_y:<term_1 ... term_n> the value computed for the query Node_y:<X Y>,
where X and Y are as above

(E) "<term_1 ... term_n>" the value computed for the new query Node_INIT:<X
Y>, where Node_INIT is the initial query node and X
and Y are as above

(F) "Node_y" the value computed for the new query Node_y:<Z>,
where <Z> is the initial query path

(G) "Node_y:<term_1 ... term_n>" the value computed for the new query Node_y:<X Y>,
where X and Y are as above

Table 4. Terms and their values in KATR

Given this notion of path reduction, consider the KATR theory in (11).

(11) A:

{c a b} == <f g h>
{d f h g a} == i
{i j k} == B:<a b c>
{l} == B
{m n} == o
{p} == "B:<q>".

B:
{c a b} == m
{c a l b} == n
{l} == "<m n o>"
{m} == C.

C:
{} == "<a b c>"
{s a b} == t
{u a b} == v.

According to Table 4(C), the value computed for the query A:<c a e b d a> in theory (11) is
the value computed for the query A:<f g h e d a>, namely i (in accordance with Table 4(A)).
According to Table 4(D), the value computed for the query A:<l k j i> in this theory is the
value computed for the query B:<a b c l>, namely n.

 13

Suppose that node A is the initial query node in the evaluation of a query A:<l> in this
theory. According to Table 4(B), the value of this query is the value computed for the query
B:<l>; according to Table 4(E), this latter value is in turn the result of initiating a new query A:<m
n o>. Thus, the value computed for the query A:<l> in this theory is o.

Suppose finally that a query A:<m p> is initiated at node A in this theory. According to
Table 4(G), the value computed for this query is the result of initiating a new query B:<q m>; thus,
the final value computed for A:<m p> is m.

Two facts situated at the same node can, in principle, match a query path equally well. For
instance, what would be the value computed for the query C:<a b s u> in this theory? The
problem is that there are two facts at node C that match the query path <a b s u> equally well.
This ambiguity constitutes a flaw in this theory. Our KATR implementation therefore issues a
warning when it computes this query, although it returns an answer, namely v: When two facts are
overtly ambiguous, the second of these facts overrides the first. (In this respect, KATR follows
DATR.)

4.1.3 An example of unordered property sets in KATR: Swahili verb inflection

Because KATR allows facts to mention morphosyntactic properties without having to adhere to a
canonical sequence, the DATR theory in (7) can be expressed more simply as the KATR theory in
(12).

(12) A KATR theory defining the Swahili paradigm in Table 2

[Identical to (7) except for the following substitutions at the VERB node.]

VERB:

{slot_iv negative 1 sg} == s i %replaces fact F1
{slot_ii 1 sg} == n i %replaces fact F2
{slot_ii 2 sg} == u %replaces fact F3
{slot_ii 3 sg} == a %replaces fact F4
{slot_ii 1 pl} == t u %replaces fact F5
{slot_ii 2 pl} == m %replaces fact F6
{slot_ii 3 pl} == w a %replaces fact F7
{slot_i future} == t a %replaces fact F8

The analysis in (12) resolves the problem embodied in (7). In place of the highly redundant facts
F1-F8 situated at the VERB node in (7), the theory in (12) involves redundancy-free facts. The
output of the theory in (12) is nevertheless identical to that of the theory in (7).

One reason why KATR retains the option of allowing a fact's LHS to be an atom-path
(instead of simply requiring that every LHS be an atom-set) is upward compatibility: Any well-
formed theory expressed in DATR remains a well-formed theory (though not necessarily the
optimal theory) in KATR; thus, KATR is literally an extension of DATR. A second reason is that
certain facts presuppose a linear ordering of the atoms constituting their LHS. A case in point is
any fact describing sandhi phenomena; for instance, the fact <a u> == u <> at the SANDHI node
in the theory of (7) makes essential reference to the linear ordering of two adjacent vowels.

 14

4.2 Nonlocal sandhi and regular expressions

The second fundamental difference between KATR and DATR is motivated by the need to
accommodate instances of nonlocal sandhi. Unlike DATR, KATR allows the LHS of a fact to be
stated as an atom-path incorporating one or more regular expressions. A regular expression is a
pattern that describes a set of strings; regular expressions are constructed analogously to arithmetic
expressions by using various operators to build larger patterns out of smaller ones.

4.2.1 Regular-expression operators and their usage

Table 5 shows the (restricted) list of regular-expression operators implemented in KATR. Atoms
or variables can join with regular-expression operators in the specification of a regular expression.
Regular expressions are only allowed in an atom-path on a fact's LHS; that is, regular expressions
are disallowed both in an atom-set on a fact's LHS and in queries. The KATR theory in (13a) and
its output in (13b) illustrate the usage of regular expressions in KATR; in (13), $c is a variable
whose only permitted value is the atom c.

Regular
Expression

Description

* The preceding item is matched zero or more times.

+ The preceding item is matched one or more times.

? The preceding item is optional and matched at most once.

(n,) The preceding item is matched n or more times.

(,m) The preceding item is matched at most m times.

(n, m) The preceding item is matched at least n times, but not more than m
times.

Table 5. Regular-expression operators in KATR

(13) a. #vars $c: c.

Node:
<> == does not match
<a b* $c(2,)> = matches.

%a followed by zero or more occurrences of b followed by two
%or more occurrences of c.

b. Node:<a c c> ==> matches
Node:<a b c c> ==> matches
Node:<a b b c c c> ==> matches
Node:<a c> ==> does not match

 15

4.2.2 Strings of atoms that match regular expressions

As KATR evaluates a given query, it captures strings of atoms that match a regular expression and
binds them to an identifier sharing the name of that regular expression. The KATR theory in (14a)
and its sample output in (14b) illustrate this kind of binding. In (14), fact F1 matches the query
path <a b b b c>; in particular, the regular expression b* in the atom-path in fact F1's LHS
matches the string b b b present in the query path. This string is bound to a newly-introduced
identifier b*; thus, while the expression b* in the atom-path on fact F1's LHS is a regular
expression, its namesake b* in the atom-path on F1's RHS is an identifier. Regular expressions
are, again, only allowed in an atom-path in a fact's LHS, and any identifier named for a regular
expression appearing in some fact has its scope limited to the RHS of that same fact.

(14) a. Node:

<a b* c> == <c b* d> %fact F1
<c b* d> == hello. %fact F2

 b. Node:<a b b b c> == hello.

As it is formulated, fact F2 causes the theory in (14a) to produce the same result hello for
any of the following queries: Node:<a c>, Node:<a b c>, Node:<a b b c>. When these
same queries are addressed to the sample theory in (15), only the first two produce output.

(15) Node:

<a b* c> == <c b* d>
<c d> == no b
<c b d> == one b.

Identifiers associated with regular expressions can be present in any order and any number

of times, as illustrated by theory (16a) and its sample output (16b). In (16), for query Q1, fact F1’s
RHS expands to <b b e b b d d>, since the identifier b(2,2) refers to the string b b that
matches the regular expression b(2,2), and the identifier d(2,3) refers to the string d d d that
matches the regular expression d(2,3).

(16) a. Node:

<a b(2,2) c d(2,3)> == <b(2,2) e b(2,2) d(2,3)> %fact F1
<b b e b b d d> == 2 d %fact F2
<b b e b b d d d> == 3 d. %fact F3

b. Node:<a b b c d d> ==> 2 d %query Q1
Node:<a b b c d d d> ==> 3 d %query Q2

4.2.3 Handling identical regular expressions

Because the string of atoms that matches a given regular expression is bound to an identifier named
after that regular expression, the presence of two identical regular expressions leads to a name-
resolution conflict. Example (17) shows a KATR theory involving a name-resolution conflict
owing to the presence of two instances of b* in the path on F1's LHS. Example (18) is the
corrected version of example (17).

 16

(17) Node:

<a b* c b*> == b*. %fact F1

(18) Node:
<a b*#name1 c b*#name2> == b*#name1. %fact F1

In (18), the two instances of b* are made unique by renaming. Strings matched by the first
regular expression b* are bound to the newly-introduced identifier b*#name1, while strings
matched by the second regular expression b* are bound to the newly-introduced identifier
b*#name2. The names name1, name2 can be arbitrary so long as they are distinct.

The theory in (19a) and its sample output (19b) demonstrate renaming. When F1 matches
Q1 in example (19), the identifiers b+#1 and b+#2 are mapped to the contents b and b b,
respectively.

(19) a. Node:

<a b+#1 c b+#2> == <c b+#2 a b+#1> %fact F1
<c b b b a> == long %fact F2
<c b b a> == short. %fact F3

b. Node:<a b c b b> ==> short %query Q1
Node:<a b c b b b> ==> long %query Q2

4.2.4 Handling similar variables

Every instance of a given named variable in some path or set is interpreted as matching the same
atom. Theory (20a) and its sample output (20b) illustrate. All three instances of $abc#1 in the
path of F1 are required to match the same atom. Fact F1 matches queries Q1 and Q2, but only fact
F5 matches queries Q3 and Q4. For example, when query Q3 is given to the program in example
(20), at F1, $abc#1 matches a in Q3.

(20) a. #vars $abc: a b c.

Node:
<$abc#1 x $abc#1 y $abc#1> == <$abc#1 z> %fact F1
<a z> == a %fact F2
<b z> == b %fact F3
<c z> == c %fact F4
<> == does not match. %fact F5

b. Node:<a x a y a> ==> a %query Q1
Node:<b x b y b> ==> b %query Q2
Node:<a x a y b> ==> does not match %query Q3
Node:<a x b y c> ==> does not match %query Q4

The next three elements (atoms x, a, y) in the path on F1's LHS also successfully match the

next elements in query Q3. The match fails when the next element ($abc#1) in the path on F1's
LHS tries to match atom b in query Q3, since it is expecting the atom a.

By renaming the three instances of $abc to separate them, we can have them match
different atoms. Theory (21a) modifies theory (20a) to produce the new results in (21b).

 17

(21) a. [Identical to (20a) except for the following substitution at the Node node.]

Node:
<$abc#1 x $abc#2 y $abc#3> == <$abc#1 z> %replaces fact F1

b. Node:<a x a y a> ==> a

Node:<b x b y b> ==> b
Node:<a x a y b> ==> a
Node:<a x b y c> ==> a

To allow for backward compatibility, the program listed in example (19) works in KATR

even without naming the instances of $abc, but a warning message is displayed during
compilation, alerting the user to possible ambiguity in variable usage.

There are some limitations on the use of regular expressions in KATR: (a) The regular-
expression operator * doesn't fully implement Kleene's closure (thus, the query <a b b b c>
would not match a path <a b* b c>, because the regular expression b* absorbs all instances of b
present in the query; the query would match if the principles of Kleene's closure were strictly
adhered to); (b) the regular-expression operator {n, } has its upper bound set at 10,000
(representing infinity); (c) nested regular expressions (such as (b* c)+) are disallowed in KATR;
and (d) since regular expressions presume a linear ordering that sets do not possess, regular
expressions are not allowed for sets appearing on a fact's LHS.

4.2.5 An example of regular expressions in KATR: Sanskrit n-retroflexion

The following KATR theory expresses the Sanskrit principle of n-retroflexion given in Section 3.2
above. We code Sanskrit phonological segments using the ITRANS coding scheme; thus, N, sh,
and Sh represent õ, ś, and ù, respectively. The regular expression $non_cor_cons* designates a
string of zero or more instances of the variable $non_cor_cons.

(22) a. A KATR theory of the Sanskrit principle of n-retroflexion

%Declaration of atoms beginning with capital letters:
#atom Ri RI Li LI M H ~N Ch ~n T Th D Dh N Sh. %etc.
#vars $abc: Ri RI Li LI M H ~N Ch ~n T Th D Dh N Sh a ch d dh

e g i j jh k m n o r s sh t th u v y. %etc.
#vars $cor_cons: ch Ch j jh ~n T Th D Dh N t th d dh n sh Sh

s. %coronal consonants
#vars $non_cor_cons: $abc - $cor_cons.
#vars $retr_cont: r Ri RI Sh. %retroflex continuants
#vars $vowel_nasal_glide: a e i o u Ri n m y v.
SANDHI:

<$abc> == $abc <>
<> ==
<$retr_cont $non_cor_cons* n $vowel_nasal_glide>

== <$retr_cont $non_cor_cons* N $vowel_nasal_glide>.

 18

 b. Output for sample queries

SANDHI:< m u Sh n a a t i > ==> m u Sh N a a t i
SANDHI:< k a r m a n a a > ==> k a r m a N a a
SANDHI:< r a th e n a > ==> r a th e n a
SANDHI:< sh u sh r u u Sh a n a > ==> sh u sh r u u Sh a N a
SANDHI:< s r a v a n a > ==> s r a v a N a
SANDHI:< d a r sh a n a > ==> d a r sh a n a
SANDHI:< g r a s a n a > ==> g r a s a n a

4.3 Nonsubtractive rules in KATR

The third fundamental difference between KATR and DATR concerns the form and interpretation
of facts having term-paths on their RHS. Consider again Table 4(C). According to this property,
the value computed for the query Node:<a b c e> in the KATR theory (23) is this rather than
that.

(23) Node:

{a b c} == <d> %fact F1
{d} == this
{a b c d} == that.

In KATR as in DATR, the == operator has a subtractive quality, in the sense that it causes the
atoms a, b, and c constituting the LHS of fact F1 in (23) to be eliminated from the query path
prescribed for subsequent evaluation. This subtractive quality is appropriate for the expression of
many morphological phenomena, but not for all, as we showed in Section 3.3. In addition to the
double equal sign ==, whose interpretation involves the subtractive quality exemplified in (23),
KATR introduces the =+= sign, whose interpretation does not involve this quality. Accordingly,
the value computed for the query Node:<a b c e> in the KATR theory in (24) is that rather
than this.

(24) Node:

{a b c} =+= <d> %fact F1
{d} == this
{a b c d} == that.

The nonsubtractive fact F1 in (24) causes the entire query path to be included in the path used for
subsequent evaluation. KATR also makes it possible to formulate nonsubtractive facts that cause a
modified form of the query path to be included in the path used for subsequent evaluation.
Substitution is accomplished by means of the slash operator exemplified in the KATR theory in
(25); this operator is defined in such a way that the value computed for the query Node:<a b d>
in the KATR theory (25) is the other rather than this or that.

(25) Node:

{a b/c d} =+= <e>
{e} == this
{a b d e} == that
{a c d e} == the other.

 19

Thus, in general, the slash operator makes it possible to evaluate a path P as some distinct path P′
that is derived from P by means of particular substitutions. In order to define the evaluation of a
fact whose LHS includes the slash operator, we must define a number of ancillary notions.

4.3.1 Defining the =+= operator

The expression atom_1/atom_2 is a SLASH-ATOM if atom_1 and atom_2 are atoms. For any
atom_1, atom_2, the slash-atom atom_1/atom_2 is an L-INSTANCE of atom_1. A SLASH-PATH is a
sequence (enclosed in angle brackets) that contains an instance of at least one slash-atom and
whose other members (if any) are instances of atoms or slash-atoms. A SLASH-SET is a sequence
(enclosed in curly brackets) that contains an instance of at least one slash-atom and whose other
members (if any) are instances of atoms or slash-atoms. The members of a slash-path, like those of
an ordinary atom-path, are linearly ordered. The members of a slash-set S are partially ordered; in
particular, they are unordered except to the extent that all L-instances of a given atom in S are
linearly ordered with respect to each other (though not with respect to L-instances of other atoms).

We define a relation of L-MATCHING as follows: (a) for any atom_1, atom_2, both atom_1
and atom_1/atom_2 L-match atom_1; (b) an n-member slash-path SP L-matches atom_path_q iff
the ith member of SP L-matches the ith member of atom_path_q (1 ≤ i ≤ n); and (c) a slash-set SS
L-matches atom_path_q iff every member of SS L-matches a distinct member of atom_path_q.

If the LHS of fact f at Node_q is a slash-path or slash-set S, then f is a POTENTIAL MATCH
FOR atom_path_q at Node_q iff S L-matches atom_path_q. As before, where X is the LHS of a
fact f at Node_q, f MATCHES atom_path_q AT Node_q iff (a) f is a potential match for atom_path_q
at Node_q and (b) there is no fact f′ at Node_q such that (i) f′ is a potential match for atom_path_q
at Node_q and (ii) the LHS of f′ is greater in cardinality than X.

Given a fact f which matches atom_path_q, the SLASH-ALTERNANT SA of atom_path_q
relative to f is that path that is like atom_path_q except that if atom_1/atom_2 is the nth L-instance
of atom_1 in f ’s LHS and the nth instance of atom_1 in atom_path_q is the xth member of
atom_path_q, then atom_2 is the xth member of SA. If the LHS of fact f is an atom-path or an
atom-set (and not a slash-path or slash-set), the slash-alternant of atom_path_q relative to f is
atom_path_q itself.

Thus, suppose that at Node_q, a query path atom_path_q is matched by fact (26), whose
LHS X is an atom-path, an atom-set, a slash-path, or a slash-set and whose RHS is term_a_1 ...
term_a_m. In that case, the value computed for the query Node_q:atom_path_q is the sequence of
the values of term_a_1 ... term_a_m relative to the query path atom_path_q and the LHS X at
Node_q. The value of each term_a_i (1 ≤ i ≤ m) is determined as in Table 6. The evaluation
principles in Table 6 are exemplified by the KATR theory in (27).

(26) X =+= term_a_1 ... term_a_m

 20

Given a query Node_q::::atom_path_q such that atom_path_q is matched by fact (26) at Node_q:
if term_a_i is then the value of term_a_i relative to the query path

atom_path_q and the LHS X at Node_q is
(A) atom_1 term_a_i
(B) Node_y the value computed for the query Node_y::::atom_path_q
(C) <<<<term_b_1 ... term_b_n>>>> the value computed for the query Node_q:<:<:<:<Y Z>>>>,

where
(i) Y is the result of concatenating the values of
term_b_1 ... term_b_n relative to the query path
atom_path_q and the LHS X at Node_q, and
(ii) <Z> is the slash-alternant of atom_path_q relative to
(26)

(D) Node_y:<:<:<:<term_b_1 ... term_b_n>>>> the value computed for the query Node_y:<:<:<:<Y Z>>>>,
where Y and Z are as above

(E) """"<<<<term_b_1 ... term_b_n>>>>"""" the result of initiating a new query Node_INIT:<:<:<:<Y Z>>>>,
where Node_INIT is the initial query node and Y and Z
are as above

(F) """"Node_y"""" the result of initiating a new query Node_y:<:<:<:<W>>>>, where
<W> is the initial query path

(G) """"Node_y:<:<:<:<term_b_1 ... term_b_n>>>>"""" the result of initiating a new query Node_y:<:<:<:<Y Z>>>>,
where Y and Z are as above

Table 6. Terms and their values in KATR

(27) A:

<a> =+= b
<a b/c d> =+= e
{b} =+= c
<e> =+= <f g h>
<e f/i f> =+= <f g h>
{e g/i g} =+= <f g h>
{e h/i f h g h/k} =+= B:<n o p>
<f g h e> =+= k
<f g h e i f> =+= m
<f g h e i g> =+= n
{f f/g} =+= B
{h h h} =+= "B"
{h i f g} =+= l
{i} =+= <f g h>
{i h/a g} =+= f
<m> =+= B:<n o p>
<q> =+= B
<s> =+= a
{s f h} =+= q
<t> =+= "B"
<u> =+= "B:<v>"
<v> =+= "B:<w>"
{w} =+= d.

 21

B:
<a> =+= A
<a b/c d> =+= A
{b} =+= A
<f f/h> =+= "<s>"
{h h h} == C
{h q s t} == i
{i h/a g} =+= A
{m o p} == w
<n o p e f g i k h> == o
<q> == "<s>"
<s> == q
<t> == C
<u> == x
<v> == C
{w v} == C.

C:
{h h/q h/t} =+= "<s>"
<t> == "<s>"
<v> == <t>
<w v> == "<u>" "A"
<v w> == "A" "<u>".

In accordance with Table 6(A), the values computed for the queries A:<a>, A:, A:<a
b d>, and A:<g h i> in the theory of (27) are b, c, e, and f, respectively. In accordance with
Table 6(A, B), the values computed for the queries B:<a>, B:, B:<a b d>, and B:<g h i>
are b, c, e, and f, respectively. In accordance with Table 6(A, C), the values computed for the
queries A:<e>, A:<i> , A:<e f f>, and A:<e g g> are k, l, m, and n, respectively. In
accordance with Table 6(A, D), the values computed for the queries A:<m> and A:<e f g h h

h> are w and o, respectively. In accordance with Table 6(A, B, E), the values computed for the
queries A:<q> and A:<f f> are a and q, respectively. In accordance with Table 6(A, B, E, F),
the values computed for the queries A:<t> and A:<h h h> are q and i, respectively. In
accordance with Table 6(A, B, C, E, G), the values computed for the queries A:<u> and A:<v> are
q and x d, respectively.

4.3.2 An example of nonsubtractive rules in KATR: Sanskrit declensional syncretism

The option of using nonsubtractive rules in KATR makes it possible to streamline the analysis of
Sanskrit declensional syncretism given in (9): The subtractive rules F1-F4 at the NOMINAL node in
(9) can now be replaced with the nonsubtractive rules in (28), eliminating the redundancy inherent
in the former rules.

(28) A KATR theory defining the Sanskrit paradigm in Table 3

[Identical to (9) except for the following substitutions at the NOMINAL node.]

NOMINAL:

<abl/gen sg> =+= "<>" %replaces fact F1
<loc/gen du> =+= "<>" %replaces fact F2

 22

<dat/ins du> =+= "<>" %replaces fact F3
{nom/acc neuter} =+= "<>" %replaces fact F4

5 An empirical challenge: Rules applying in “expanded mode”

As noted in Section 4.2, two facts situated at the same node in a KATR theory may match a query
path equally well; a theory in which this happens is therefore flawed, and our implementation of
KATR issues a warning to that effect. Nevertheless, the inflectional systems of natural languages
sometimes seem to involve competition between rules that are equally narrow in their specification.
Georgian presents a case in point: A transitive verb may exhibit agreement with both its subject
and its direct object; the particular system of subject- and object- agreement markings that a
transitive verb exhibits varies according to the conjugation class to which the verb belongs and to
the specific temporal, modal, and aspectual properties for which it is inflected--see Stump (2001,
Chapter 3) for additional details and references. At issue here is the default pattern of affixal
agreement in Table 7, which is exhibited by verbs in any but the fourth conjugation in most
temporal/modal/aspectual contexts. For instance, the first-conjugation verb mo-®lav 'kill' has the
future-tense paradigm in Table 8; thus, the form mo-gv-®lav-en consists of the "preverb" mo-, the
first-person plural object-agreement prefix gv-, the verb root ®lav, and the third-person plural
subject-agreement suffix -en, and hence means `they will kill us'. The forms in Table 8 can
seemingly be generated by the KATR program in (29); thus, the query Kill:<3PerSubj sgSubj

3PerObj plObj> produces the value m o K l a v s, and so on.

Subject-agreement affixes Object-agreement affixes
Singular Plural Singular Plural

1st Person v- v-...-t1 m- gv-
2nd Person none -t1 g- g-...(-t2)*
3rd Person -s -en none none

*-t2 appears only in the presence of singular subject agreement.
Table 7. Default subject- and object-agreement affixes in Georgian

SUBJECT: 1SG 1PL 2SG 2PL 3SG 3PL

1SG mo-m-®lav mo-m-®lav-t1 mo-m-®lav-s mo-m-®lav-en
2SG mo-g-®lav mo-g-®lav-t1 mo-g-®lav-s mo-g-®lav-en
3SG mo-v-®lav mo-v-®lav-t1 mo-®lav mo-®lav-t1 mo-®lav-s mo-®lav-en
1PL mo-gv-®lav mo-gv-®lav-t1 mo-gv-®lav-s mo-gv-®lav-en
2PL mo-g-®lav-t2 mo-g-®lav-t1 mo-g-®lav-t2 mo-g-®lav-en

OBJECT

3PL mo-v-®lav mo-v-®lav-t1 mo-®lav mo-®lav-t1 mo-®lav-s mo-®lav-en
Table 8. Future-tense paradigm of Georgian mo-®lav 'kill'

(29) A KATR theory generating the Georgian paradigm in Table 8

#atom K.
VERB:

{} == "<preverb>" <prefix> "<root>" <suffix>
{prefix 1PerSubj} == v %fact F1
{prefix 1PerObj} == m %fact F3
{prefix 1PerObj plObj} == g v
{prefix 2PerObj} == g %fact F2

 23

{suffix 3PerSubj sgSubj} == s
{suffix 3PerSubj plSubj} == e n
{suffix plSubj} == t_1
{suffix sgSubj 2PerObj plObj} == t_2
{prefix} ==
{suffix} ==.

Kill:
{} == VERB
{root} == K l a v
{preverb} == m o.

There is, however, a problem with this theory. When values are computed for the queries in
Table 9, competition arises between facts F1 and F2 at the VERB node; that is, when theory (29) is
queried for a verb form realizing first-person subject agreement and second-person object
agreement, the appearance of the first-person subject prefix v (dictated by F1) is incompatible with
that of the second-person object prefix g (dictated by F2). Both facts match the queries in Table 9,
and their lefthand sides have the same cardinality. Consequently, our KATR implementation issues
a warning (More than one maximal match for node VERB with local query

< prefix 1PerSubj sgSubj 2PerObj sgObj >), and the values returned for the queries in
Table 9 are determined by whichever of the two competing facts happens to be ordered last in
theory (29):3

Corresponding value in theory (29) Query

if F1 precedes F2 if F2 precedes F1

Kill:<1PerSubj sgSubj 2PerObj sgObj>
Kill:<1PerSubj sgSubj 2PerObj plObj>
Kill:<1PerSubj plSubj 2PerObj sgObj>
Kill:<1PerSubj plSubj 2PerObj plObj>

m o g K l a v
m o g K l a v t_2
m o g K l a v t_1
m o g K l a v t_1

m o v K l a v
m o v K l a v t_2
m o v K l a v t_1
m o v K l a v t_1

Table 9. Queries producing alternative values according to the relative ordering
of F1 and F2 in (29)

From a theoretical standpoint, this sensitivity to the linear ordering of a node’s facts is

problematic. Most instances of competition among inflectional rules are resolved by Pāõini’s
principle, without reference to language-specific relations of linear rule ordering: When two rules
are in competition, the more narrowly specified rule wins. Considerations of theoretical parsimony
would therefore favor the assumption that parochial relations of linear ordering are in principle
irrelevant to the resolution of rule competition. How can Pāõini’s principle be relied upon to
resolve the competition in the case at hand?

5.1 The +n and ++ notations

Inspection of the forms in Table 8 reveals that fact F2 should determine the evaluation of the four
queries in Table 9; that is, contrary to its formulation in (29), F2 acts as if it were a narrower
stipulation than fact F1. Stump (2001) argues that the Georgian rule introducing the inflectional
prefix g- applies in “expanded mode”: The application of this rule doesn’t simply realize the

 24

property of second-person object agreement; instead, it realizes every well-formed extension of that
property set. This argument implies that rule F2 is more narrowly specified than every rule with
which it enters into competition; Pāõini’s principle therefore correctly predicts that it should
override any such rule.

In order to implement this notion of rules applying in expanded mode, we introduce the
following new notation in KATR: where {X} and <X> each have cardinality m, {X +n} and <X
+n> each have cardinality m+n, and {X ++} and <X ++> each have indefinitely great cardinality.
Thus, in the context of the KATR theory in (30), the queries A:<a b c d>, A:<a b c>, A:<a
b>, and A:<a> all yield e as their value, and the queries A:<b a c d> and A: have the
respective values e and f.

(30) A:

{a b c} == d
{a ++} == e
<b +3> == f.

5.2 An example of a rule applying in “expanded mode”: Georgian verb agreement

Using this new notation, we replace fact F2 situated at the VERB node in theory (29) with (31):

(31) {prefix 2PerObj ++} == g %replaces fact F2

Although the set {prefix 2PerObj} has cardinality 2, {prefix 2PerObj ++} is a set with
indefinitely great cardinality whose only stipulated members are prefix and 2PerObj. By virtue
of the indefinitely great cardinality of its LHS, the revised formulation of fact F2 in (31) overrides
F1 in matching the queries in Table 9, regardless of the order in which the two facts are given.
Accordingly, once (31) is substituted into the theory in (29), our implementation of KATR no
longer issues any warning, since for any query for which facts F1 and F2 are potential matches, F2
is necessarily the better match.

6 Generative capacity

Notwithstanding the extensions that it incorporates, KATR is no more powerful than DATR. We
derive this result from the fact that DATR itself is capable of emulating a Turing machine, so it can
compute any partial recursive function, so it is quite powerful. The KATR enhancements cannot
increase its power; they only provide a convenient way to express morphological rules that are
otherwise clumsy to specify. (This result also suggests that DATR should perhaps be weakened.)

A Turing machine is composed of an infinite tape of 0’s and 1’s, a movable read/write head,
and a finite control. To prove that DATR can emulate a Turing machine, we encode the initial tape
as a query, where the alphabet is restricted to the symbols 0, 1, and h (for the read-write head).
Without loss of generality, the tape starts with the symbols "0 h" (to avoid writing DATR code to
cover the case when the head is at the very beginning). We encode each state in the finite control
of the Turing machine as a DATR node. In addition, we provide the following utility DATR
nodes:

 25

(32)
First: % returns the part to the left of the h (minus the last symbol)

<0 0> == 0 First:<0>
<1 0> == 1 First:<0>
<0 1> == 0 First:<1>
<1 1> == 1 First:<1>
<0 h> ==
<1 h> ==.

Done: % the final node, which just leaves the head where it is.
<0> == 0 <>
<1> == 1 <>
<h> == h <>
<> =.

Every encoded state has at least the following three rules:

(33) <0> == <> % scan to the right looking for the h

<1> == <> % scan to the right looking for the h
<> == "Done" % got to the end of the tape; quit

In a Turing machine, transitions in the finite-state control at a state N are of the form "if the symbol
at the head is x, replace it with y and move the head right/left one position, going to state M". We
notate this transition by labelling an arrow between states N and M with the label x/yL or x/yR, as
shown in Figure 1.

Figure 1. Finite control of a Turing machine
 1/1R 1/1R 1/0L 0/0L 0/0R
A B C D E done

 1/0R
 0/0R 0/0R 0/0R 1/0L

We encode the transition from state N to state M with two rules in N's DATR node:

(34) <0 h x> == "M:<"First" 0 y h>" % if the direction is right

<1 h x> == "M:<"First" 1 y h>" % if the direction is right
<0 h x> == "M:<"First" h 0 y>" % if the direction is left
<1 h x> == "M:<"First" h 1 y>" % if the direction is left

Thus, Figure 1 represents the finite control of a Turing machine that converts the first "1 1 1" to the
right of the head to "0 0 0", leaving the head on the second 0 in the replacement. The DATR
translation of this sample Turing maching is (35).4

 26

(35) Translation of sample Turing machine into DATR
First: % returns the part to the left of the h (minus the last symbol)

<0 0> == 0 First:<0>
<1 0> == 1 First:<0>
<0 1> == 0 First:<1>
<1 1> == 1 First:<1>
<0 h> ==
<1 h> == .

Done: % the final node, which just leaves the head where it is.
<0> == 0 <>
<1> == 1 <>
<h> == h <>
<> =.

A:
<0> == <>
<1> == <>
<> == "Done"
<0 h 0> == "A:<"First" 0 0 h>" % 0/0RA
<1 h 0> == "A:<"First" 1 0 h>" % 0/0RA
<0 h 1> == "B:<"First" 0 1 h>" % 1/1RB
<1 h 1> == "B:<"First" 1 1 h>". % 1/1RB

B:
<0> == <>
<1> == <>
<> == "Done"
<0 h 0> == "A:<"First" 0 0 h>" % 0/0RA
<1 h 0> == "A:<"First" 1 0 h>" % 0/0RA
<0 h 1> == "C:<"First" 0 1 h>" % 1/1RC
<1 h 1> == "C:<"First" 1 1 h>". % 1/1RC

C:
<0> == <>
<1> == <>
<> == "Done"
<0 h 0> == "A:<"First" 0 0 h>" % 0/0RA
<1 h 0> == "A:<"First" 1 0 h>" % 0/0RA
<0 h 1> == "D:<"First" h 0 0>" % 1/0LD
<1 h 1> == "D:<"First" h 1 0>". % 1/0LD

D:
<0> == <>
<1> == <>
<> == "Done"
<0 h 0> == "E:<"First" h 0 0>" % 0/0LE
<1 h 0> == "E:<"First" h 1 0>" % 0/0LE
<0 h 1> == "E:<"First" h 0 0>" % 1/0LE
<1 h 1> == "E:<"First" h 1 0>". % 1/0LE

E:
<0> == <>
<1> == <>
<> == "Done"
<0 h 0> == "Done:<"First" 0 0 h>" % 0/0Rdone
<1 h 0> == "Done:<"First" 1 0 h>" % 0/0Rdone
<0 h 1> == "Done:<"First" 0 0 h>" % 1/0Rdone

 27

<1 h 1> == "Done:<"First" 1 0 h>". % 1/0Rdone
#show

<0 h 0 1 1 1 0 1> % expect 0 0 0 h 0 0 0 1
<0 h 0 1 1 1 1 1> % expect 0 0 0 h 0 0 1 1
<0 h 0 0 1 1 0 1>. % expect 0 0 0 1 1 0 1 h

#hide B C D E Done First.

7 Summary

KATR incorporates a number of formal features motivated by empirically observable
characteristics of natural-language morphology. First, KATR allows the facts defining a
language’s exponence relations to be formulated without presuming any sort of ordering among a
word’s morphosyntactic properties (Section 4.1); second, it allows the facts defining a language’s
morphophonology to make reference to variables over strings of segments (Section 4.2); third, it
affords a redundancy-free formulation of “rules of referral”: facts referring the evaluation of one
set (or sequence) of properties to that of some distinct set (or sequence) of properties (Section 4.3);
and finally, it allows competition among a node’s facts to be resolved in a uniform way, always by
reference to the relative cardinality of the facts’ lefthand sides (Section 5). These extensions make
KATR especially well-suited for modelling systems of inflectional morphology. In particular,
KATR facilitates a compact definition of rules specifying the exponence of a language’s
morphosyntactic properties, of rules regulating the incidence of a language’s sandhi phenomena,
and of rules determining a language’s systematic patterns of syncretism. In addition, it is
compatible with a highly restrictive conception of rule competition, according to which such
competition is in all instances resolved by Pāõini’s principle.

The KATR software is freely available for download from the KATR website,
http://www.cs.uky.edu/~gstump/katrsite/home.html.

 28

Notes

* This work was partially supported by the National Science Foundation under Grant

0097278 and by the University of Kentucky Center for Computational Science. Any
opinions, findings, conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the funding agencies.

1. By convention, a node's name begins with a capital letter, while an atom's name begins with
a lower-case letter. We further distinguish between an inheritance hierarchy’s leaf nodes
(with initial capitalization only) and its internal nodes (in all capitals).

2. The "sets" in KATR are, to be precise, multisets (or bags), in that they may contain multiple
tokens of a single type. Path reduction can therefore remove the same atom more than once
from a query path.

3. A similar conflict might appear to be engendered by facts F1 and F3 for the queries
<1PerSubj sgSubj 1PerObj sgObj> and <1PerSubj plSubj 1PerObj sgObj>;
but because a rule of Georgian morphosyntax stipulates that a first-person object cannot
occur with a first-person subject (Aronson 1990:169), these queries would be ill-formed in a
comprehensive account of Georgian morphology.

4. We thank Alexander Dekhtyar for insights leading to the proof that DATR can emulate a
Turing Machine.

 29

References

Aronson, Howard I. 1990. Georgian: A Reading Grammar. Columbus, OH: Slavica.
Brown, Dunstan. 1996. Facts that influence the shape of inheritance hierarchies, Manuscript.

[Surrey Morphology Group Document RP-34.]
Brown, Dunstan. 1998a. Defining `subgender': virile and devirilized nouns in Polish, Lingua 104:

187-233.
Brown, Dunstan. 1998b. From the General to the Exceptional, Unpublished PhD thesis, University

of Surrey.
Brown, Dunstan. 1998c. Stem indexing and morphonological selection in the Russian verb. In R.

Fabri, A. Ortmann and T. Parodi (eds), Models of Inflection, 196-221. Niemeyer: Tübingen.
Brown, Dunstan & Andrew Hippisley. 1994. Conflict in Russian genitive plural assignment: a

solution represented in DATR, Journal of Slavic Linguistics 2: 30-48.
Brown, Dunstan, Greville Corbett, Norman Fraser, Andrew Hippisley & Alan Timberlake. 1996.

Russian noun stress and Network Morphology, Linguistics 34: 53-107.
Cahill, Lynne J. & Gerald Gazdar. 1997. The inflectional phonology of German adjectives,

determiners and pronouns, Linguistics 35: 211-245.
Corbett, Greville G. & Norman M. Fraser. 1993. Network Morphology: A DATR account of

Russian nominal inflection. Journal of Linguistics 29, 113-142.
Evans, Roger & Gerald Gazdar. 1989a. Inference in DATR, in Proceedings of the Fourth

Conference of the European Chapter of the Association for Computational Linguistics, 66-
71, Manchester: Association for Computational Linguistics.

Evans, Roger & Gerald Gazdar. 1989b. The semantics of DATR, in A. G. Cohn (ed.), Proceedings
of the Seventh Conference of the Society for the Study of Artifical Intelligence and
Simulation of Behaviour, 79-87, London: Pitman/Morgan Kaufmann.

Evans, Roger & Gerald Gazdar. 1996. DATR: A language for lexical knowledge representation.
Computational Linguistics 22, 167-216.

Fraser, Norman M. & Greville G. Corbett. 1995. Gender, animacy, and declensional class
assignment: a unified account for Russian, in G. Booij and J. van Marle (eds.), Yearbook of
Morphology 1994, 123-150, Dordrecht: Kluwer.

Fraser, Norman M. & Greville G. Corbett. 1997. Defaults in Arapesh, Lingua 103: 25-57.
Gonda, Jan. 1966. A Concise Elementary Grammar of the Sanskrit Language, trans. by Gordon B.

Ford, Jr. University of Alabama Press.
Hippisley, Andrew. 1996. Russian expressive derivation: a Network Morphology account, The

Slavonic and East European Review 74 (2): 201-222.
Hippisley, Andrew. 1997. Declarative Derivation: A Network Morphology Account of Russian

Word Formation with Reference to Nouns Denoting `Person', Unpublished PhD thesis,
University of Surrey.

Hippisley, Andrew. 1998. Indexed stems and Russian word formation: a Network Morphology
account of Russian personal nouns, Linguistics 36: 1039-1124.

Kiparsky, Paul. 1973. `Elsewhere’ in phonology. In S. R. Anderson & P. Kiparsky, eds., A Festschrift
for Morris Halle. New York: Holt, Rinehart & Winston.

Shen, Lei 1999, KATR: Software for morphological studies in computational linguistics, M.S.
project, University of Kentucky Department of Computer Science. (Available at

 http://www.cs.engr.uky.edu/~raphael/studentWork/#KATR.)
Stump, Gregory T. 2001. Inflectional Morphology. Cambridge University Press.

