
Important:
Applies to Service Level #1 for Xbase++ 1.90 or newer version only

© Alaska Software April 2009

Rule No. 1
• Objects are everywhere!

Class

class object

instance object

„Class“ is an abstract term.

The Xbase++ runtime knows class objects and instance
objects. Class objects are created at the first time the class
function is executed. Subsequent executions of a class
function then return the same class object.

To „free“ a class object, the function ClassDestroy() can be
used. The Xbase++ runtime has a process-global hash table
used to associate class objects with class names.
ClassDestroy() simply removes the name<->class object
association. However, a class object is not freed until the last
instance object of the class is destroyed.

:New() is the default constructor to create instance objects.
Instance objects are always created by class objects.
Therefore, class objects are sometimes called „object
factories“. You can create an unlimited number of instance
objects of the same class. In the following, the term „object“
is used to describe instance objects.

:New()

Variable(s)

Method(s)

Variable(s)

Method(s)

Note: Class objects which reference code or data in a DLL lead to side effects, such as that the DLL is not unloadable
until all objects and the class objects themselves have been destroyed. Until this precondition has been met, the DLL
can not be unloaded.

© Alaska Software April 2009

Rule No. 2
• All Classes are dynamic

CLASS A
EXPORTED:
VAR Lastname
INLINE METHOD Init()
::LastName := „hello“

RETURN
INLINE METHOD PrintA()
? ::LastName

RETURN
ENDCLASS

There is no difference between a class object
created from a class function A() generated by the
compiler and a class object created with
CreateClass() by a Function A().

Runtime-classes can replace compile-time classes
and vice versa. Any class can be replaced by
another class with the same name. That‘s why
classes are dynamic.

The FREEZE attribute in a CLASS declaration
prohibits the implicit replacement of the class.
FREEZE can be used to protect class
implementations from being replaced implicitly.

The FINAL attribute prohibits subclassing of a
class. The behaviour of FINAL classes can
therefore no longer be changed – it is FINAL.

Note: Compile-time classes can execute their methods faster and have in many cases faster access to their variables.
In general, compile-time classes should be preferred over runtime classes. However, runtime classes are perfect to
dynamically create types and behaviour.

FUNCTION A()
LOCAL oCO
oCO := ClassCreate(„A“....

RETURN(oCO)

A()=A()

© Alaska Software April 2009

Rule No. 3
• METHODs are by default VIRTUAL OVERRIDE

CLASS A
EXPORTED:
INLINE METHOD Bark()
::Print(„Wuff Wuff“)

RETURN
INLINE METHOD Print(cText)
? cText

RETURN
ENDCLASS

CLASS B FROM A
EXPORTED:
INLINE METHOD Print(cText)
? „I say:“,cText

RETURN
ENDCLASS

Consider the code on the right side:
Executing the method :Bark() on
objects of Class A executes method
:Print() in Class A. Executing the
method :Bark() on objects of Class B
executes the method :Print()
implemented in Class B.

This behaviour is called virtual override
because each method implementation
in a subclass overrides a possible
implementation of its superclasses

Having all methods virtual by default leads to a very natural behaviour. As a matter of fact, in almost all
cases when a method is redefined we want the method of the subclass to be executed and not the method
of the superclass. Other languages such as C++, C# require to plan ahead for this behaviour. The
implementor of the superclasses has to add the virtual keyword to his/her method declarations in the
baseclass. This makes customizing of behaviour of class frameworks without having the source code
sometimes complicated or even impossible.

© Alaska Software April 2009

Rule No. 4
• Overriding of METHODs is always a replacement

CLASS A
EXPORTED:
INLINE METHOD Bark()
::Print(„Wuff Wuff“)

RETURN
INLINE METHOD Print(cText)
? cText

RETURN
ENDCLASS

CLASS B FROM A
EXPORTED:
INLINE METHOD Print(cText)
? „I say:“,cText

RETURN
ENDCLASS

CLASS C FROM A
EXPORTED:
INLINE METHOD Print(cText)
SUPER
SUPER:Print(„I say:“+cText)

RETURN
ENDCLASS

A method replacement completely overwrites the
method of the baseclasses. That is, the code in the
baseclasses is never executed when instances of
subclasses are manipulated. The Class B and the
method :Print() is an example of method
replacement.

Refinement can be achieved as outlined in Class C.
To do that, we must be able to execute the
superclass‘ method implementation. SUPER is used
to refer to the direct superclass implementation.
The SUPER statement executes the superclass‘
implementation of the current method and passes
along all its parameters. SUPER:Print() can be
used as an alternative, and allows to specify the
method name and the parameters passed.

Note: You can write SELF:A:Print(...) as an alternative to SUPER:Print() but this makes your code depend on
the superclass names. Furthermore, using SELF:A:Print() increases maintenance costs and makes code less
robust against changes. In general, the best approach is to use SUPER as this makes an implemention
immune against class hierarchy, method name and parameter changes.

© Alaska Software April 2009

Rule No. 5
• VARIABLES are by default INTRODUCED

CLASS A
EXPORTED:
VAR Lastname
INLINE METHOD Init()
::LastName := „Value from A“

RETURN
INLINE METHOD PrintA()
? ::LastName

RETURN
ENDCLASS

CLASS B FROM A
EXPORTED:
VAR Lastname
INLINE METHOD Init()
::A:Init()
::LastName := „Value from B“

RETURN
INLINE METHOD PrintB()
? ::LastName

RETURN
ENDCLASS

Consider the code on the right side:
Executing the method :PrintA() on
objects of Class B prints „Value from A“,
while executing the method :PrintB()
shows „Value from B“.

This behaviour is called hiding in OO
terms. It simply means that redefining
a variable in a subclass hides the
variable of its superclass. The variable
is therefore introduced in the subclass.

Note: Encapsulation is a language feature that facilitates the bundling of state (data) with behaviour (the
methods) operating on that data. Consequently, method implementations in different classes in a class
hierarchy accessing a variable are automatically bound to the value related to their implementation level.

© Alaska Software April 2009

Rule No. 6
• ACCESS/ASSIGN methods are OVERRIDE, too

When designing larger class frameworks, we strongly recommend to make all ACCESS/ASSIGN methods FINAL to
ensure that class users do not accidently change behaviour. FINAL methods can still be replaced in subclass
implementations by using the OVERRIDE attribute at the subclass.

CLASS A
EXPORTED:
VAR Var1
INLINE ACCESS METHOD GetVar1() VAR Var1
RETURN(::Var1)
INLINE METHOD Init()
::Var1 := „value-a“

RETURN
ENDCLASS

CLASS B FROM A
EXPORTED:
INLINE METHOD GetVar1()
RETURN(„FromB:“+::Var1)

ENDCLASS

CLASS C FROM A
EXPORTED:
VAR Var1

ENDCLASS

Consider the code on the right side:
Accessing variable :Var1 on objects of
Class B returns „FromB:value-a“.
Accessing variable :Var1 on objects of
Class A returns „value-a“. Accessing
variable :A:Var1 on objects of Class B
again results in „value-a“.

Introducing a new :Var1 at Class C
simply hides the access/assign var of
our baseclass. Therefore oC:Var1 is NIL
while oC:A:Var1 is „value-a“.

